Spaces:
Sleeping
Sleeping
import streamlit as st | |
# Use a pipeline as a high-level helper | |
from transformers import pipeline | |
toxic_model = pipeline("text-classification", model="Matt09Miao/GP5_tweet_toxic") | |
def text2audio(text): | |
pipe = pipeline("text-to-audio", model="Matthijs/mms-tts-eng") | |
audio_data = pipe(text) | |
return audio_data | |
st.set_page_config(page_title="Tweet Toxicity Analysis") | |
st.header("Please input a Tweet for Toxicity Analysis :performing_arts:") | |
input = st.text_area("Enter a Tweer for analysis") | |
if st.button("Toxic Analysis"): | |
result = toxic_model(input) | |
# Display the result | |
st.write("Tweet:", input) | |
st.write("label:", result[0]['label']) | |
st.write("score:", result[0]['score']) | |
# Read the result | |
audio_data1 = text2audio(input) | |
st.audio(audio_data1['audio'], | |
format="audio/wav", | |
start_time=0, | |
sample_rate = audio_data1['sampling_rate']) | |
audio_data2 = text2audio(result[0]['label']) | |
st.audio(audio_data2['audio'], | |
format="audio/wav", | |
start_time=0, | |
sample_rate = audio_data2['sampling_rate']) | |