import streamlit as st # Use a pipeline as a high-level helper from transformers import pipeline toxic_model = pipeline("text-classification", model="Matt09Miao/GP5_tweet_toxic") def text2audio(text): pipe = pipeline("text-to-audio", model="Matthijs/mms-tts-eng") audio_data = pipe(text) return audio_data st.set_page_config(page_title="Tweet Toxicity Analysis") st.header("Please input a Tweet for Toxicity Analysis :performing_arts:") input = st.text_area("Enter a Tweer for analysis") if st.button("Toxic Analysis"): result = toxic_model(input) # Display the result st.write("Tweet:", input) st.write("label:", result[0]['label']) st.write("score:", result[0]['score']) # Read the result audio_data1 = text2audio(input) st.audio(audio_data1['audio'], format="audio/wav", start_time=0, sample_rate = audio_data1['sampling_rate']) audio_data2 = text2audio(result[0]['label']) st.audio(audio_data2['audio'], format="audio/wav", start_time=0, sample_rate = audio_data2['sampling_rate'])