Chatbot / app.py
Manoj21k's picture
Update app.py
b9c4ce9
import os
import json
import re
import streamlit as st
from transformers import AutoTokenizer
import pandas as pd
# Importing Hugging Face models and libraries
from sentence_transformers import SentenceTransformer, CrossEncoder
import hnswlib
import numpy as np
from typing import Iterator
from easyllm.clients import huggingface
# Set Hugging Face API key
huggingface.prompt_builder = "llama2"
huggingface.api_key = os.environ["HUGGINGFACE_TOKEN"]
# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 4000
EMBED_DIM = 1024
K = 10
EF = 100
SEARCH_INDEX = "search_index.bin"
EMBEDDINGS_FILE = "embeddings.npy"
DOCUMENT_DATASET = "chunked_data.parquet"
COSINE_THRESHOLD = 0.7
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
print("Running on device:", torch_device)
print("CPU threads:", torch.get_num_threads())
model_id = "meta-llama/Llama-2-70b-chat-hf"
biencoder = SentenceTransformer("intfloat/e5-large-v2", device=torch_device)
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2", max_length=512, device=torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=os.environ["HUGGINGFACE_TOKEN"])
# Initialize Streamlit app
st.title("PEFT Docs QA Chatbot")
# Function to create QA prompt
def create_qa_prompt(query, relevant_chunks):
stuffed_context = " ".join(relevant_chunks)
return f"""\
Use the following pieces of context given in to answer the question at the end. \
If you don't know the answer, just say that you don't know, don't try to make up an answer. \
Keep the answer short and succinct.
Context: {stuffed_context}
Question: {query}
Helpful Answer: \
"""
# Function to generate a Streamlit app response
def generate_response(message, history_with_input, system_prompt, max_new_tokens, temperature, top_p, top_k):
if max_new_tokens > MAX_MAX_NEW_TOKENS:
raise ValueError
history = history_with_input[:-1]
if len(history) > 0:
condensed_query = generate_condensed_query(message, history)
print(f"{condensed_query=}")
else:
condensed_query = message
query_embedding = create_query_embedding(condensed_query)
relevant_chunks = find_nearest_neighbors(query_embedding)
reranked_relevant_chunks = rerank_chunks_with_cross_encoder(condensed_query, relevant_chunks)
qa_prompt = create_qa_prompt(condensed_query, reranked_relevant_chunks)
print(f"{qa_prompt=}")
generator = get_completion(
qa_prompt,
system_prompt=system_prompt,
stream=True,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
)
output = ""
for idx, response in generator:
token = response["choices"][0]["delta"].get("content", "") or ""
output += token
if idx == 0:
history.append((message, output))
else:
history[-1] = (message, output)
history = [
(wrap_html_code(history[i][0].strip()), wrap_html_code(history[i][1].strip()))
for i in range(0, len(history))
]
return history
# Function to get input token length
def get_input_token_length(message, chat_history, system_prompt):
prompt = get_prompt(message, chat_history, system_prompt)
input_ids = tokenizer([prompt], return_tensors="np", add_special_tokens=False)["input_ids"]
return input_ids.shape[-1]
# Function to create a condensed query
def generate_condensed_query(query, history):
chat_history = ""
for turn in history:
chat_history += f"Human: {turn[0]}\n"
chat_history += f"Assistant: {turn[1]}\n"
condense_question_prompt = create_condense_question_prompt(query, chat_history)
condensed_question = json.loads(get_completion(condense_question_prompt, max_new_tokens=64, temperature=0))
return condensed_question["question"]
# Function to load the HNSW index
def load_hnsw_index(index_file):
index = hnswlib.Index(space="ip", dim=EMBED_DIM)
index.load_index(index_file)
return index
# Function to create the HNSW index
def create_hnsw_index(embeddings_file, M=16, efC=100):
embeddings = np.load(embeddings_file)
num_dim = embeddings.shape[1]
ids = np.arange(embeddings.shape[0])
index = hnswlib.Index(space="ip", dim=num_dim)
index.init_index(max_elements=embeddings.shape[0], ef_construction=efC, M=M)
index.add_items(embeddings, ids)
return index
# Function to create a query embedding
def create_query_embedding(query):
embedding = biencoder.encode([query], normalize_embeddings=True)[0]
return embedding
# Function to find nearest neighbors
def find_nearest_neighbors(query_embedding):
search_index.set_ef(EF)
labels, distances = search_index.knn_query(query_embedding, k=K)
labels = [label for label, distance in zip(labels[0], distances[0]) if (1 - distance) >= COSINE_THRESHOLD]
relevant_chunks = data_df.iloc[labels]["chunk_content"].tolist()
return relevant_chunks
# Function to rerank chunks with the cross encoder
def rerank_chunks_with_cross_encoder(query, chunks):
pairs = [(query, chunk) for chunk in chunks]
scores = cross_encoder.predict(pairs)
sorted_chunks = [chunk for _, chunk in sorted(zip(scores, chunks), reverse=True)]
return sorted_chunks
# Function to wrap HTML code
def wrap_html_code(text):
pattern = r"<.*?>"
matches = re.findall(pattern, text)
if len(matches) > 0:
return f"```{text}```"
else:
return text
# Load the HNSW index for the PEFT docs
search_index = create_hnsw_index(EMBEDDINGS_FILE) # load_hnsw_index(SEARCH_INDEX)
data_df = pd.read_parquet(DOCUMENT_DATASET).reset_index()
# Streamlit UI
st.markdown("Welcome to the PEFT Docs QA Chatbot.")
message = st.text_input("You:", "")
history_with_input = []
system_prompt = st.text_area("System prompt", DEFAULT_SYSTEM_PROMPT)
max_new_tokens = st.slider("Max new tokens", 1, MAX_MAX_NEW_TOKENS, DEFAULT_MAX_NEW_TOKENS)
temperature = st.slider("Temperature", 0.1, 4.0, 0.2, 0.1)
top_p = st.slider("Top-p (nucleus sampling)", 0.05 , 1.0, 0.05)
top_k = st.slider("Top-k", 1, 1000, 50)
if st.button("Submit"):
if message:
try:
history_with_input, response = generate_response(
message, history_with_input, system_prompt, max_new_tokens, temperature, top_p, top_k
)
st.write("Chatbot:", response[-1][1])
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.warning("Please enter a message.")
if st.button("Retry"):
if history_with_input:
history_with_input, _ = generate_response(
message, history_with_input, system_prompt, max_new_tokens, temperature, top_p, top_k
)
st.write("Chatbot:", history_with_input[-1][1])
else:
st.warning("No previous message to retry.")
if st.button("Undo"):
if history_with_input:
_, last_message = history_with_input.pop()
st.text_area("You:", last_message, height=50)
else:
st.warning("No previous message to undo.")
if st.button("Clear"):
message = ""
history_with_input = []
system_prompt = DEFAULT_SYSTEM_PROMPT
max_new_tokens = DEFAULT_MAX_NEW_TOKENS
temperature = 0.2
top_p = 0.95
top_k = 50
st.sidebar.markdown(
"This is a Streamlit app for the PEFT Docs QA Chatbot. Enter your message, configure advanced options, and interact with the chatbot."
)