File size: 7,513 Bytes
7bf90b9 b9c4ce9 7bf90b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import os
import json
import re
import streamlit as st
from transformers import AutoTokenizer
import pandas as pd
# Importing Hugging Face models and libraries
from sentence_transformers import SentenceTransformer, CrossEncoder
import hnswlib
import numpy as np
from typing import Iterator
from easyllm.clients import huggingface
# Set Hugging Face API key
huggingface.prompt_builder = "llama2"
huggingface.api_key = os.environ["HUGGINGFACE_TOKEN"]
# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 4000
EMBED_DIM = 1024
K = 10
EF = 100
SEARCH_INDEX = "search_index.bin"
EMBEDDINGS_FILE = "embeddings.npy"
DOCUMENT_DATASET = "chunked_data.parquet"
COSINE_THRESHOLD = 0.7
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
print("Running on device:", torch_device)
print("CPU threads:", torch.get_num_threads())
model_id = "meta-llama/Llama-2-70b-chat-hf"
biencoder = SentenceTransformer("intfloat/e5-large-v2", device=torch_device)
cross_encoder = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-12-v2", max_length=512, device=torch_device)
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=os.environ["HUGGINGFACE_TOKEN"])
# Initialize Streamlit app
st.title("PEFT Docs QA Chatbot")
# Function to create QA prompt
def create_qa_prompt(query, relevant_chunks):
stuffed_context = " ".join(relevant_chunks)
return f"""\
Use the following pieces of context given in to answer the question at the end. \
If you don't know the answer, just say that you don't know, don't try to make up an answer. \
Keep the answer short and succinct.
Context: {stuffed_context}
Question: {query}
Helpful Answer: \
"""
# Function to generate a Streamlit app response
def generate_response(message, history_with_input, system_prompt, max_new_tokens, temperature, top_p, top_k):
if max_new_tokens > MAX_MAX_NEW_TOKENS:
raise ValueError
history = history_with_input[:-1]
if len(history) > 0:
condensed_query = generate_condensed_query(message, history)
print(f"{condensed_query=}")
else:
condensed_query = message
query_embedding = create_query_embedding(condensed_query)
relevant_chunks = find_nearest_neighbors(query_embedding)
reranked_relevant_chunks = rerank_chunks_with_cross_encoder(condensed_query, relevant_chunks)
qa_prompt = create_qa_prompt(condensed_query, reranked_relevant_chunks)
print(f"{qa_prompt=}")
generator = get_completion(
qa_prompt,
system_prompt=system_prompt,
stream=True,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
)
output = ""
for idx, response in generator:
token = response["choices"][0]["delta"].get("content", "") or ""
output += token
if idx == 0:
history.append((message, output))
else:
history[-1] = (message, output)
history = [
(wrap_html_code(history[i][0].strip()), wrap_html_code(history[i][1].strip()))
for i in range(0, len(history))
]
return history
# Function to get input token length
def get_input_token_length(message, chat_history, system_prompt):
prompt = get_prompt(message, chat_history, system_prompt)
input_ids = tokenizer([prompt], return_tensors="np", add_special_tokens=False)["input_ids"]
return input_ids.shape[-1]
# Function to create a condensed query
def generate_condensed_query(query, history):
chat_history = ""
for turn in history:
chat_history += f"Human: {turn[0]}\n"
chat_history += f"Assistant: {turn[1]}\n"
condense_question_prompt = create_condense_question_prompt(query, chat_history)
condensed_question = json.loads(get_completion(condense_question_prompt, max_new_tokens=64, temperature=0))
return condensed_question["question"]
# Function to load the HNSW index
def load_hnsw_index(index_file):
index = hnswlib.Index(space="ip", dim=EMBED_DIM)
index.load_index(index_file)
return index
# Function to create the HNSW index
def create_hnsw_index(embeddings_file, M=16, efC=100):
embeddings = np.load(embeddings_file)
num_dim = embeddings.shape[1]
ids = np.arange(embeddings.shape[0])
index = hnswlib.Index(space="ip", dim=num_dim)
index.init_index(max_elements=embeddings.shape[0], ef_construction=efC, M=M)
index.add_items(embeddings, ids)
return index
# Function to create a query embedding
def create_query_embedding(query):
embedding = biencoder.encode([query], normalize_embeddings=True)[0]
return embedding
# Function to find nearest neighbors
def find_nearest_neighbors(query_embedding):
search_index.set_ef(EF)
labels, distances = search_index.knn_query(query_embedding, k=K)
labels = [label for label, distance in zip(labels[0], distances[0]) if (1 - distance) >= COSINE_THRESHOLD]
relevant_chunks = data_df.iloc[labels]["chunk_content"].tolist()
return relevant_chunks
# Function to rerank chunks with the cross encoder
def rerank_chunks_with_cross_encoder(query, chunks):
pairs = [(query, chunk) for chunk in chunks]
scores = cross_encoder.predict(pairs)
sorted_chunks = [chunk for _, chunk in sorted(zip(scores, chunks), reverse=True)]
return sorted_chunks
# Function to wrap HTML code
def wrap_html_code(text):
pattern = r"<.*?>"
matches = re.findall(pattern, text)
if len(matches) > 0:
return f"```{text}```"
else:
return text
# Load the HNSW index for the PEFT docs
search_index = create_hnsw_index(EMBEDDINGS_FILE) # load_hnsw_index(SEARCH_INDEX)
data_df = pd.read_parquet(DOCUMENT_DATASET).reset_index()
# Streamlit UI
st.markdown("Welcome to the PEFT Docs QA Chatbot.")
message = st.text_input("You:", "")
history_with_input = []
system_prompt = st.text_area("System prompt", DEFAULT_SYSTEM_PROMPT)
max_new_tokens = st.slider("Max new tokens", 1, MAX_MAX_NEW_TOKENS, DEFAULT_MAX_NEW_TOKENS)
temperature = st.slider("Temperature", 0.1, 4.0, 0.2, 0.1)
top_p = st.slider("Top-p (nucleus sampling)", 0.05 , 1.0, 0.05)
top_k = st.slider("Top-k", 1, 1000, 50)
if st.button("Submit"):
if message:
try:
history_with_input, response = generate_response(
message, history_with_input, system_prompt, max_new_tokens, temperature, top_p, top_k
)
st.write("Chatbot:", response[-1][1])
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.warning("Please enter a message.")
if st.button("Retry"):
if history_with_input:
history_with_input, _ = generate_response(
message, history_with_input, system_prompt, max_new_tokens, temperature, top_p, top_k
)
st.write("Chatbot:", history_with_input[-1][1])
else:
st.warning("No previous message to retry.")
if st.button("Undo"):
if history_with_input:
_, last_message = history_with_input.pop()
st.text_area("You:", last_message, height=50)
else:
st.warning("No previous message to undo.")
if st.button("Clear"):
message = ""
history_with_input = []
system_prompt = DEFAULT_SYSTEM_PROMPT
max_new_tokens = DEFAULT_MAX_NEW_TOKENS
temperature = 0.2
top_p = 0.95
top_k = 50
st.sidebar.markdown(
"This is a Streamlit app for the PEFT Docs QA Chatbot. Enter your message, configure advanced options, and interact with the chatbot."
)
|