Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -8,33 +8,28 @@ import datetime
|
|
8 |
|
9 |
# Function to load stock data using yfinance
|
10 |
@st.cache_data(ttl=86400)
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
'KO', 'F', 'COST', 'DIS', 'VZ', 'CRM', 'INTC', 'BA', 'BX', 'NOC', 'PYPL', 'ENPH', 'NIO', 'ZS', 'XPEV']
|
15 |
-
|
16 |
-
# Set the start and end dates for the past 1 year
|
17 |
-
start_date = (datetime.datetime.now() - datetime.timedelta(days=365)).strftime('%Y-%m-%d')
|
18 |
-
end_date = datetime.datetime.today().strftime('%Y-%m-%d')
|
19 |
-
|
20 |
-
# Download the stock data using yfinance
|
21 |
-
data = yf.download(tickers, start=start_date, end=end_date, group_by='ticker')
|
22 |
|
23 |
-
|
|
|
24 |
all_data = []
|
25 |
for ticker in tickers:
|
26 |
-
df = data[ticker].copy()
|
27 |
-
df.reset_index(inplace=True)
|
28 |
df['Stock Name'] = ticker
|
29 |
all_data.append(df)
|
30 |
-
|
31 |
-
# Concatenate all the data into a single DataFrame
|
32 |
-
all_stock_data = pd.concat(all_data, ignore_index=True)
|
33 |
|
34 |
-
|
|
|
35 |
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# Perform sentiment analysis on tweets (assuming you still have your tweets data)
|
40 |
tweets_data = pd.read_csv('data/stock_tweets.csv')
|
@@ -158,11 +153,17 @@ if st.button("Predict"):
|
|
158 |
stock_history = data[data['Stock Name'] == selected_stock]
|
159 |
|
160 |
# Date filter slider
|
161 |
-
min_date =
|
162 |
-
max_date =
|
163 |
-
|
164 |
-
|
165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
filtered_data = stock_history[(stock_history['Date'] >= date_range[0]) & (stock_history['Date'] <= date_range[1])]
|
167 |
|
168 |
with st.expander(" Price vs Sentiment Trend"):
|
|
|
8 |
|
9 |
# Function to load stock data using yfinance
|
10 |
@st.cache_data(ttl=86400)
|
11 |
+
def load_stock_data(tickers, start_date, end_date):
|
12 |
+
import yfinance as yf
|
13 |
+
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
data = yf.download(tickers, start=start_date, end=end_date, group_by='ticker', auto_adjust=True)
|
16 |
+
|
17 |
all_data = []
|
18 |
for ticker in tickers:
|
19 |
+
df = data[ticker].copy().reset_index()
|
|
|
20 |
df['Stock Name'] = ticker
|
21 |
all_data.append(df)
|
|
|
|
|
|
|
22 |
|
23 |
+
merged_data = pd.concat(all_data, ignore_index=True)
|
24 |
+
return merged_data
|
25 |
|
26 |
+
|
27 |
+
tickers = ['TSLA', 'MSFT', 'PG', 'META', 'AMZN', 'GOOG', 'AMD', 'AAPL', 'NFLX', 'TSM',
|
28 |
+
'KO', 'F', 'COST', 'DIS', 'VZ', 'CRM', 'INTC', 'BA', 'BX', 'NOC', 'PYPL', 'ENPH', 'NIO', 'ZS', 'XPEV']
|
29 |
+
start_date = (datetime.today() - pd.DateOffset(years=1)).strftime('%Y-%m-%d')
|
30 |
+
end_date = datetime.today().strftime('%Y-%m-%d')
|
31 |
+
|
32 |
+
stock_data = load_stock_data(tickers, start_date, end_date)
|
33 |
|
34 |
# Perform sentiment analysis on tweets (assuming you still have your tweets data)
|
35 |
tweets_data = pd.read_csv('data/stock_tweets.csv')
|
|
|
153 |
stock_history = data[data['Stock Name'] == selected_stock]
|
154 |
|
155 |
# Date filter slider
|
156 |
+
min_date = pd.to_datetime(data['Date'].min()).date()
|
157 |
+
max_date = pd.to_datetime(data['Date'].max()).date()
|
158 |
+
|
159 |
+
date_range = st.slider(
|
160 |
+
"Select Date Range for Visualizations",
|
161 |
+
min_value=min_date,
|
162 |
+
max_value=max_date,
|
163 |
+
value=(min_date, max_date),
|
164 |
+
format="YYYY-MM-DD"
|
165 |
+
)
|
166 |
+
|
167 |
filtered_data = stock_history[(stock_history['Date'] >= date_range[0]) & (stock_history['Date'] <= date_range[1])]
|
168 |
|
169 |
with st.expander(" Price vs Sentiment Trend"):
|