Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import matplotlib.pyplot as plt
|
|
7 |
import datetime
|
8 |
|
9 |
# Function to load stock data using yfinance
|
10 |
-
@st.cache_data
|
11 |
def load_yfinance_data():
|
12 |
# List of stock tickers
|
13 |
tickers = ['TSLA', 'MSFT', 'PG', 'META', 'AMZN', 'GOOG', 'AMD', 'AAPL', 'NFLX', 'TSM',
|
@@ -59,10 +59,10 @@ daily_sentiment['Date'] = pd.to_datetime(daily_sentiment['Date'])
|
|
59 |
merged_data = pd.merge(data, daily_sentiment, how='left', on=['Date', 'Stock Name'])
|
60 |
|
61 |
# Fill missing sentiment values with 0 (neutral sentiment)
|
62 |
-
merged_data['Sentiment'].fillna(0
|
63 |
|
64 |
# Sort the data by date
|
65 |
-
merged_data.sort_values(by='Date'
|
66 |
|
67 |
# Create lagged features
|
68 |
merged_data['Prev_Close'] = merged_data.groupby('Stock Name')['Close'].shift(1)
|
|
|
7 |
import datetime
|
8 |
|
9 |
# Function to load stock data using yfinance
|
10 |
+
@st.cache_data(ttl=86400)
|
11 |
def load_yfinance_data():
|
12 |
# List of stock tickers
|
13 |
tickers = ['TSLA', 'MSFT', 'PG', 'META', 'AMZN', 'GOOG', 'AMD', 'AAPL', 'NFLX', 'TSM',
|
|
|
59 |
merged_data = pd.merge(data, daily_sentiment, how='left', on=['Date', 'Stock Name'])
|
60 |
|
61 |
# Fill missing sentiment values with 0 (neutral sentiment)
|
62 |
+
merged_data['Sentiment'] = merged_data['Sentiment'].fillna(0)
|
63 |
|
64 |
# Sort the data by date
|
65 |
+
merged_data = merged_data.sort_values(by='Date')
|
66 |
|
67 |
# Create lagged features
|
68 |
merged_data['Prev_Close'] = merged_data.groupby('Stock Name')['Close'].shift(1)
|