ChatUI / app.py
K00B404's picture
Update app.py
6e527a5 verified
from auto_round import AutoRoundConfig ## must import for auto-round format
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration
quantized_model_path="OPEA/llama-joycaption-alpha-two-hf-llava-int4-sym-inc"
# Load JoyCaption INT4 Model
processor = AutoProcessor.from_pretrained(quantized_model_path)
model = LlavaForConditionalGeneration.from_pretrained(
quantized_model_path,
device_map="auto",
revision="bc917a8" ## ##AutoGPTQ format
)
model.eval()
image_url = "http://images.cocodataset.org/train2017/000000116003.jpg"
content = "Write a descriptive caption for this image in a formal tone."
# Preparation for inference
with torch.no_grad():
image = Image.open(requests.get(image_url, stream=True).raw)
messages = [
{
"role": "system",
"content": "You are a helpful image captioner.",
},
{
"role": "user",
"content": content,
},
]
prompt = processor.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
assert isinstance(prompt, str)
inputs = processor(text=[prompt], images=[image], return_tensors="pt").to(model.device)
inputs['pixel_values'] = inputs['pixel_values'].to(model.dtype)
# Generate the captions
generate_ids = model.generate(
**inputs,
max_new_tokens=50,
do_sample=False,
suppress_tokens=None,
use_cache=True,
temperature=0.6,
top_k=None,
top_p=0.9,
)[0]
# Trim off the prompt
generate_ids = generate_ids[inputs['input_ids'].shape[1]:]
# Decode the caption
caption = processor.tokenizer.decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
caption = caption.strip()
print(caption)
'''import os
import re
from typing import List, Optional, Union
from qwen_agent import Agent, MultiAgentHub
from qwen_agent.gui.gradio_utils import format_cover_html
from qwen_agent.gui.utils import convert_fncall_to_text, convert_history_to_chatbot, get_avatar_image
from qwen_agent.llm.schema import CONTENT, IMAGE, FILE, NAME, USER, Message
from qwen_agent.log import logger
from qwen_agent.utils.utils import print_traceback
class WebUI:
"""Chatbot application for managing multiple agents."""
def __init__(self, agent: Union[Agent, MultiAgentHub, List[Agent]], chatbot_config: Optional[dict] = None):
"""
Initialize the chatbot application with one or more agents and configuration options.
"""
chatbot_config = chatbot_config or {}
self.agent_list = [agent] if not isinstance(agent, list) else agent
self.agent_hub = None if isinstance(agent, list) else agent
self.user_config = {
'name': chatbot_config.get('user.name', 'user'),
'avatar': chatbot_config.get('user.avatar', get_avatar_image(chatbot_config.get('user.name', 'user')))
}
self.agent_config_list = [{
'name': agent.name,
'avatar': chatbot_config.get('agent.avatar', os.path.join(os.path.dirname(__file__), 'assets/logo.jpeg')),
'description': agent.description or "I'm a helpful assistant."
} for agent in self.agent_list]
self.input_placeholder = chatbot_config.get('input.placeholder', 'Chat with me!')
self.prompt_suggestions = chatbot_config.get('prompt.suggestions', [])
self.verbose = chatbot_config.get('verbose', False)
def run(self, messages: List[Message] = None, share: bool = False, server_name: str = None,
server_port: int = None, concurrency_limit: int = 80, enable_mention: bool = False, **kwargs):
from qwen_agent.gui.gradio import gr, mgr
custom_theme = gr.themes.Default(primary_hue=gr.themes.utils.colors.blue, radius_size=gr.themes.utils.sizes.radius_none)
with gr.Blocks(css=os.path.join(os.path.dirname(__file__), 'assets/appBot.css'), theme=custom_theme) as demo:
history = gr.State([])
with gr.Row(elem_classes='container'):
with gr.Column(scale=4):
chatbot = mgr.Chatbot(
value=convert_history_to_chatbot(messages=messages),
avatar_images=[self.user_config, self.agent_config_list],
height=850, avatar_image_width=80, flushing=False, show_copy_button=True,
latex_delimiters=[{'left': '\\(', 'right': '\\)', 'display': True}, {'left': '\\begin{equation}', 'right': '\\end{equation}', 'display': True}]
)
input_box = mgr.MultimodalInput(placeholder=self.input_placeholder, upload_button_props=dict(visible=True))
with gr.Column(scale=1):
agent_selector = gr.Dropdown(
[(agent.name, i) for i, agent in enumerate(self.agent_list)],
label='Agents', value=0, interactive=True) if len(self.agent_list) > 1 else None
agent_info_block = self._create_agent_info_block()
if self.prompt_suggestions:
gr.Examples(label='Suggested Conversations', examples=self.prompt_suggestions, inputs=[input_box])
if agent_selector:
agent_selector.change(fn=self.change_agent, inputs=[agent_selector], outputs=[agent_selector, agent_info_block])
input_promise = input_box.submit(fn=self.add_text, inputs=[input_box, chatbot, history], outputs=[input_box, chatbot, history])
if len(self.agent_list) > 1 and enable_mention:
input_promise = input_promise.then(self.add_mention, [chatbot, agent_selector], [chatbot, agent_selector]) \
.then(self.agent_run, [chatbot, history, agent_selector], [chatbot, history, agent_selector])
else:
input_promise = input_promise.then(self.agent_run, [chatbot, history], [chatbot, history])
input_promise.then(self.flushed, None, [input_box])
demo.load(None)
demo.queue(default_concurrency_limit=concurrency_limit).launch(share=share, server_name=server_name, server_port=server_port)
def change_agent(self, agent_selector):
yield agent_selector, self._create_agent_info_block(agent_selector), self._create_agent_plugins_block(agent_selector)
def add_text(self, _input, _chatbot, _history):
from qwen_agent.gui.gradio import gr
if _input.text == "/clear":
_chatbot.clear()
_history.clear()
yield gr.update(interactive=False, value=""), _chatbot, _history
return
if _history:
gr.Warning("Only the most recent query is retained.", duration=5)
_chatbot.clear()
_history.clear()
_history.append({ROLE: USER, CONTENT: [{'text': _input.text}]})
if self.user_config[NAME]:
_history[-1][NAME] = self.user_config[NAME]
if _input.files:
for file in _input.files:
if file.mime_type.startswith('image/'):
_history[-1][CONTENT].append({IMAGE: f'file://{file.path}'})
else:
_history[-1][CONTENT].append({FILE: file.path})
_chatbot.append([_input, None])
yield gr.update(interactive=False, value=None), _chatbot, _history
def add_mention(self, _chatbot, _agent_selector):
query = _chatbot[-1][0].text
match = re.search(r'@\w+\b', query)
if match:
_agent_selector = self._get_agent_index_by_name(match.group()[1:])
agent_name = self.agent_list[_agent_selector].name
if ('@' + agent_name) not in query and self.agent_hub is None:
_chatbot[-1][0].text = f'@{agent_name} ' + query
yield _chatbot, _agent_selector
def agent_run(self, _chatbot, _history, _agent_selector=None):
if not _history:
yield _chatbot, _history, _agent_selector if _agent_selector else _chatbot, _history
return
if self.verbose:
logger.info(f'agent_run input:\n{_history}')
agent_runner = self.agent_list[_agent_selector or 0] if self.agent_hub is None else self.agent_hub
responses = agent_runner.run(_history, **self.run_kwargs)
for response in responses:
if response[CONTENT] == 'PENDING_USER_INPUT':
logger.info('Waiting for user input!')
break
display_responses = convert_fncall_to_text(response)
if not display_responses or display_responses[-1][CONTENT] is None:
continue
_chatbot.append([None, None] * (len(display_responses) - len(_chatbot)))
for i, rsp in enumerate(display_responses):
_chatbot[-1][1][self._get_agent_index_by_name(rsp[NAME])] = rsp[CONTENT]
if self.verbose:
logger.info(f'agent_run response:\n{responses}')
yield _chatbot, _history, _agent_selector if _agent_selector else _chatbot, _history
def flushed(self):
from qwen_agent.gui.gradio import gr
return gr.update(interactive=True)
def _get_agent_index_by_name(self, agent_name):
try:
return next(i for i, agent in enumerate(self.agent_list) if agent.name.strip() == agent_name.strip())
except StopIteration:
print_traceback()
return 0
def _create_agent_info_block(self, agent_index=0):
from qwen_agent.gui.gradio import gr
agent_config = self.agent_config_list[agent_index]
return gr.HTML(format_cover_html(bot_name=agent_config['name'], bot_description=agent_config['description'], bot_avatar=agent_config['avatar']))
def _create_agent_plugins_block(self, agent_index=0):
from qwen_agent.gui.gradio import gr
agent = self.agent_list[agent_index]
capabilities = list(agent.function_map.keys()) if agent.function_map else []
return gr.CheckboxGroup(label='Plugins', value=capabilities, choices=capabilities, interactive=False)'''