File size: 10,220 Bytes
6e527a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de20500
7993c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a0fa08
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from auto_round import AutoRoundConfig ## must import for auto-round format
import requests
import torch
from PIL import Image
from transformers import AutoProcessor, LlavaForConditionalGeneration


quantized_model_path="OPEA/llama-joycaption-alpha-two-hf-llava-int4-sym-inc"

# Load JoyCaption INT4 Model
processor = AutoProcessor.from_pretrained(quantized_model_path)
model = LlavaForConditionalGeneration.from_pretrained(
    quantized_model_path,
    device_map="auto",
    revision="bc917a8" ## ##AutoGPTQ format
)
model.eval()

image_url = "http://images.cocodataset.org/train2017/000000116003.jpg"
content = "Write a descriptive caption for this image in a formal tone."

# Preparation for inference
with torch.no_grad():
    image = Image.open(requests.get(image_url, stream=True).raw)
    messages = [
        {
            "role": "system",
            "content": "You are a helpful image captioner.",
        },
        {
            "role": "user",
            "content": content,
        },
    ]
    prompt = processor.apply_chat_template(messages, tokenize = False, add_generation_prompt = True)
    assert isinstance(prompt, str)
    inputs = processor(text=[prompt], images=[image], return_tensors="pt").to(model.device)
    inputs['pixel_values'] = inputs['pixel_values'].to(model.dtype)
    
    # Generate the captions
    generate_ids = model.generate(
        **inputs,
        max_new_tokens=50,
        do_sample=False,
        suppress_tokens=None,
        use_cache=True,
        temperature=0.6,
        top_k=None,
        top_p=0.9,
    )[0]
    
    # Trim off the prompt
    generate_ids = generate_ids[inputs['input_ids'].shape[1]:]
    
    # Decode the caption
    caption = processor.tokenizer.decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
    caption = caption.strip()
    print(caption)


'''import os
import re
from typing import List, Optional, Union
from qwen_agent import Agent, MultiAgentHub
from qwen_agent.gui.gradio_utils import format_cover_html
from qwen_agent.gui.utils import convert_fncall_to_text, convert_history_to_chatbot, get_avatar_image
from qwen_agent.llm.schema import CONTENT, IMAGE, FILE, NAME, USER, Message
from qwen_agent.log import logger
from qwen_agent.utils.utils import print_traceback

class WebUI:
    """Chatbot application for managing multiple agents."""

    def __init__(self, agent: Union[Agent, MultiAgentHub, List[Agent]], chatbot_config: Optional[dict] = None):
        """
        Initialize the chatbot application with one or more agents and configuration options.
        """
        chatbot_config = chatbot_config or {}
        self.agent_list = [agent] if not isinstance(agent, list) else agent
        self.agent_hub = None if isinstance(agent, list) else agent

        self.user_config = {
            'name': chatbot_config.get('user.name', 'user'),
            'avatar': chatbot_config.get('user.avatar', get_avatar_image(chatbot_config.get('user.name', 'user')))
        }

        self.agent_config_list = [{
            'name': agent.name,
            'avatar': chatbot_config.get('agent.avatar', os.path.join(os.path.dirname(__file__), 'assets/logo.jpeg')),
            'description': agent.description or "I'm a helpful assistant."
        } for agent in self.agent_list]

        self.input_placeholder = chatbot_config.get('input.placeholder', 'Chat with me!')
        self.prompt_suggestions = chatbot_config.get('prompt.suggestions', [])
        self.verbose = chatbot_config.get('verbose', False)

    def run(self, messages: List[Message] = None, share: bool = False, server_name: str = None, 
            server_port: int = None, concurrency_limit: int = 80, enable_mention: bool = False, **kwargs):

        from qwen_agent.gui.gradio import gr, mgr

        custom_theme = gr.themes.Default(primary_hue=gr.themes.utils.colors.blue, radius_size=gr.themes.utils.sizes.radius_none)

        with gr.Blocks(css=os.path.join(os.path.dirname(__file__), 'assets/appBot.css'), theme=custom_theme) as demo:
            history = gr.State([])

            with gr.Row(elem_classes='container'):
                with gr.Column(scale=4):
                    chatbot = mgr.Chatbot(
                        value=convert_history_to_chatbot(messages=messages),
                        avatar_images=[self.user_config, self.agent_config_list],
                        height=850, avatar_image_width=80, flushing=False, show_copy_button=True,
                        latex_delimiters=[{'left': '\\(', 'right': '\\)', 'display': True}, {'left': '\\begin{equation}', 'right': '\\end{equation}', 'display': True}]
                    )

                    input_box = mgr.MultimodalInput(placeholder=self.input_placeholder, upload_button_props=dict(visible=True))

                with gr.Column(scale=1):
                    agent_selector = gr.Dropdown(
                        [(agent.name, i) for i, agent in enumerate(self.agent_list)],
                        label='Agents', value=0, interactive=True) if len(self.agent_list) > 1 else None

                    agent_info_block = self._create_agent_info_block()

                    if self.prompt_suggestions:
                        gr.Examples(label='Suggested Conversations', examples=self.prompt_suggestions, inputs=[input_box])

                if agent_selector:
                    agent_selector.change(fn=self.change_agent, inputs=[agent_selector], outputs=[agent_selector, agent_info_block])

                input_promise = input_box.submit(fn=self.add_text, inputs=[input_box, chatbot, history], outputs=[input_box, chatbot, history])

                if len(self.agent_list) > 1 and enable_mention:
                    input_promise = input_promise.then(self.add_mention, [chatbot, agent_selector], [chatbot, agent_selector]) \
                        .then(self.agent_run, [chatbot, history, agent_selector], [chatbot, history, agent_selector])
                else:
                    input_promise = input_promise.then(self.agent_run, [chatbot, history], [chatbot, history])

                input_promise.then(self.flushed, None, [input_box])

            demo.load(None)

        demo.queue(default_concurrency_limit=concurrency_limit).launch(share=share, server_name=server_name, server_port=server_port)

    def change_agent(self, agent_selector):
        yield agent_selector, self._create_agent_info_block(agent_selector), self._create_agent_plugins_block(agent_selector)

    def add_text(self, _input, _chatbot, _history):
        from qwen_agent.gui.gradio import gr
        if _input.text == "/clear":
            _chatbot.clear()
            _history.clear()
            yield gr.update(interactive=False, value=""), _chatbot, _history
            return

        if _history:
            gr.Warning("Only the most recent query is retained.", duration=5)
            _chatbot.clear()
            _history.clear()

        _history.append({ROLE: USER, CONTENT: [{'text': _input.text}]})
        if self.user_config[NAME]:
            _history[-1][NAME] = self.user_config[NAME]

        if _input.files:
            for file in _input.files:
                if file.mime_type.startswith('image/'):
                    _history[-1][CONTENT].append({IMAGE: f'file://{file.path}'})
                else:
                    _history[-1][CONTENT].append({FILE: file.path})

        _chatbot.append([_input, None])
        yield gr.update(interactive=False, value=None), _chatbot, _history

    def add_mention(self, _chatbot, _agent_selector):
        query = _chatbot[-1][0].text
        match = re.search(r'@\w+\b', query)
        if match:
            _agent_selector = self._get_agent_index_by_name(match.group()[1:])
        agent_name = self.agent_list[_agent_selector].name
        if ('@' + agent_name) not in query and self.agent_hub is None:
            _chatbot[-1][0].text = f'@{agent_name} ' + query

        yield _chatbot, _agent_selector

    def agent_run(self, _chatbot, _history, _agent_selector=None):
        if not _history:
            yield _chatbot, _history, _agent_selector if _agent_selector else _chatbot, _history
            return

        if self.verbose:
            logger.info(f'agent_run input:\n{_history}')

        agent_runner = self.agent_list[_agent_selector or 0] if self.agent_hub is None else self.agent_hub
        responses = agent_runner.run(_history, **self.run_kwargs)
        
        for response in responses:
            if response[CONTENT] == 'PENDING_USER_INPUT':
                logger.info('Waiting for user input!')
                break
            display_responses = convert_fncall_to_text(response)
            if not display_responses or display_responses[-1][CONTENT] is None:
                continue

            _chatbot.append([None, None] * (len(display_responses) - len(_chatbot)))
            for i, rsp in enumerate(display_responses):
                _chatbot[-1][1][self._get_agent_index_by_name(rsp[NAME])] = rsp[CONTENT]

        if self.verbose:
            logger.info(f'agent_run response:\n{responses}')

        yield _chatbot, _history, _agent_selector if _agent_selector else _chatbot, _history

    def flushed(self):
        from qwen_agent.gui.gradio import gr
        return gr.update(interactive=True)

    def _get_agent_index_by_name(self, agent_name):
        try:
            return next(i for i, agent in enumerate(self.agent_list) if agent.name.strip() == agent_name.strip())
        except StopIteration:
            print_traceback()
            return 0

    def _create_agent_info_block(self, agent_index=0):
        from qwen_agent.gui.gradio import gr
        agent_config = self.agent_config_list[agent_index]
        return gr.HTML(format_cover_html(bot_name=agent_config['name'], bot_description=agent_config['description'], bot_avatar=agent_config['avatar']))

    def _create_agent_plugins_block(self, agent_index=0):
        from qwen_agent.gui.gradio import gr
        agent = self.agent_list[agent_index]
        capabilities = list(agent.function_map.keys()) if agent.function_map else []
        return gr.CheckboxGroup(label='Plugins', value=capabilities, choices=capabilities, interactive=False)'''