Spaces:
Runtime error
Runtime error
import spaces | |
import contextlib | |
import gc | |
import json | |
import logging | |
import math | |
import os | |
import random | |
import shutil | |
import sys | |
import time | |
import itertools | |
import copy | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
from PIL import Image, ImageDraw | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch.utils.data import Dataset | |
from torchvision import transforms | |
from tqdm.auto import tqdm | |
import accelerate | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import ProjectConfiguration, set_seed | |
from datasets import load_dataset | |
from huggingface_hub import create_repo, upload_folder | |
from packaging import version | |
from safetensors.torch import load_model | |
from peft import LoraConfig | |
import gradio as gr | |
import pandas as pd | |
import transformers | |
from transformers import ( | |
AutoTokenizer, | |
PretrainedConfig, | |
CLIPVisionModelWithProjection, | |
CLIPImageProcessor, | |
CLIPProcessor, | |
) | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
PixArtTransformer2DModel, | |
CausalSparseDiTModel, | |
CausalSparseDiTControlModel, | |
CobraPixArtAlphaPipeline, | |
UniPCMultistepScheduler, | |
) | |
from cobra_utils.utils import * | |
from huggingface_hub import snapshot_download | |
article = r""" | |
If Cobra is helpful, please help to ⭐ the <a href='https://github.com/zhuang2002/Cobra' target='_blank'>Github Repo</a>. Thanks! [](https://github.com/zhuang2002/Cobra) | |
--- | |
📧 **Contact** | |
<br> | |
If you have any questions, please feel free to reach me out at <b>[email protected]</b>. | |
📝 **Citation** | |
<br> | |
If our work is useful for your research, please consider citing: | |
```bibtex | |
@misc{zhuang2025cobra, | |
title={Cobra: Efficient Line Art COlorization with BRoAder References}, | |
author={Junhao Zhuang, Lingen Li, Xuan Ju, Zhaoyang Zhang, Chun Yuan and Ying Shan}, | |
year={2025}, | |
eprint={****.***}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CV}, | |
url={https://arxiv.org}, | |
} | |
``` | |
""" | |
model_global_path = snapshot_download(repo_id="JunhaoZhuang/Cobra", cache_dir='./Cobra/', repo_type="model") | |
print(model_global_path) | |
examples = [ | |
[ | |
"./examples/shadow/example0/input.png", | |
["./examples/shadow/example0/reference_image_0.png", | |
"./examples/shadow/example0/reference_image_1.png", | |
"./examples/shadow/example0/reference_image_2.png", | |
"./examples/shadow/example0/reference_image_3.png"], | |
"line + shadow", # style | |
1, # seed | |
10, # step | |
20, # top k | |
], | |
[ | |
"./examples/shadow/example1/input.png", | |
["./examples/shadow/example1/reference_image_0.png", | |
"./examples/shadow/example1/reference_image_1.png", | |
"./examples/shadow/example1/reference_image_2.png", | |
"./examples/shadow/example1/reference_image_3.png", | |
"./examples/shadow/example1/reference_image_4.png", | |
"./examples/shadow/example1/reference_image_5.png"], | |
"line + shadow", # style | |
1, # seed | |
10, # step | |
20, # top k | |
], | |
[ | |
"./examples/shadow/example2/input.png", | |
["./examples/shadow/example2/reference_image_0.png"], | |
"line + shadow", # style | |
4, # seed | |
10, # step | |
3, # top k | |
], | |
[ | |
"./examples/line/example2/input.png", | |
["./examples/line/example2/reference_image_0.png", | |
"./examples/line/example2/reference_image_1.png", | |
"./examples/line/example2/reference_image_2.png", | |
"./examples/line/example2/reference_image_3.png"], | |
"line", # style | |
1, # seed | |
10, # step | |
20, # top k | |
], | |
[ | |
"./examples/line/example0/input.png", | |
["./examples/line/example0/reference_image_0.png", | |
"./examples/line/example0/reference_image_1.png", | |
"./examples/line/example0/reference_image_2.png"], | |
"line", # style | |
0, # seed | |
10, # step | |
6, # top k | |
], | |
[ | |
"./examples/line/example1/input.png", | |
["./examples/line/example1/reference_image_0.png",], | |
"line", # style | |
0, # seed | |
10, # step | |
3, # top k | |
], | |
[ | |
"./examples/line/example3/input.png", | |
["./examples/line/example3/reference_image_0.png",], | |
"line", # style | |
4, # seed | |
10, # step | |
3, # top k | |
],] | |
ratio_list = [[800, 800], [768, 896], [704, 928], [672, 960], [640, 1024], [608, 1056], [576, 1088], [576, 1184]] | |
ratio_list += [[896, 768], [928, 704], [960, 672], [1024, 640], [1056, 608], [1088, 576], [1184, 576]] | |
def get_rate(image): | |
input_rate = image.size[0] / image.size[1] | |
min_diff = float('inf') | |
best_idx = 0 | |
for i, ratio in enumerate(ratio_list): | |
ratio_rate = ratio[0] / ratio[1] | |
diff = abs(input_rate - ratio_rate) | |
if diff < min_diff: | |
min_diff = diff | |
best_idx = i | |
return ratio_list[best_idx] | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
]) | |
weight_dtype = torch.float16 | |
# line model | |
line_model_path = os.path.join(model_global_path, 'LE', 'erika.pth') | |
line_model = res_skip() | |
line_model.load_state_dict(torch.load(line_model_path)) | |
line_model.eval() | |
line_model.cuda() | |
# image encoder | |
image_processor = CLIPImageProcessor() | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained(os.path.join(model_global_path, 'image_encoder')).to('cuda') | |
# os.path.join(model_global_path, 'image_encoder') | |
# model_sketch = create_model_sketch('default').to('cuda') # create a model given opt.model and other options | |
# model_sketch.eval() | |
global pipeline | |
global MultiResNetModel | |
global cur_style | |
cur_style = 'line + shadow' | |
weight_dtype = torch.float16 | |
block_out_channels = [128, 128, 256, 512, 512] | |
MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels)) | |
MultiResNetModel.load_state_dict(torch.load(os.path.join(model_global_path, 'shadow_GSRP', 'MultiResNetModel.bin'), map_location='cpu'), strict=True) | |
MultiResNetModel.to('cuda', dtype=weight_dtype) | |
# transformer | |
transform = transforms.Compose([ | |
transforms.ToTensor(), # 将 PIL 图像转换为 Tensor | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # 归一化 | |
]) | |
# seed = 43 | |
lora_rank = 128 | |
pretrained_model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS" | |
transformer = PixArtTransformer2DModel.from_pretrained( | |
pretrained_model_name_or_path, subfolder="transformer", revision=None, variant=None | |
) | |
pixart_config = get_pixart_config() | |
causal_dit = CausalSparseDiTModel(num_attention_heads=pixart_config.get("num_attention_heads"), | |
attention_head_dim=pixart_config.get("attention_head_dim"), | |
in_channels=pixart_config.get("in_channels"), | |
out_channels=pixart_config.get("out_channels"), | |
num_layers=pixart_config.get("num_layers"), | |
dropout=pixart_config.get("dropout"), | |
norm_num_groups=pixart_config.get("norm_num_groups"), | |
cross_attention_dim=pixart_config.get("cross_attention_dim"), | |
attention_bias=pixart_config.get("attention_bias"), | |
sample_size=pixart_config.get("sample_size"), | |
patch_size=pixart_config.get("patch_size"), | |
activation_fn=pixart_config.get("activation_fn"), | |
num_embeds_ada_norm=pixart_config.get("num_embeds_ada_norm"), | |
upcast_attention=pixart_config.get("upcast_attention"), | |
norm_type=pixart_config.get("norm_type"), | |
norm_elementwise_affine=pixart_config.get("norm_elementwise_affine"), | |
norm_eps=pixart_config.get("norm_eps"), | |
caption_channels=pixart_config.get("caption_channels"), | |
attention_type=pixart_config.get("attention_type")) | |
causal_dit = init_causal_dit(causal_dit, transformer) | |
print('loaded causal_dit') | |
controlnet = CausalSparseDiTControlModel(num_attention_heads=pixart_config.get("num_attention_heads"), | |
attention_head_dim=pixart_config.get("attention_head_dim"), | |
in_channels=pixart_config.get("in_channels"), | |
cond_chanels = 9, | |
out_channels=pixart_config.get("out_channels"), | |
num_layers=pixart_config.get("num_layers"), | |
dropout=pixart_config.get("dropout"), | |
norm_num_groups=pixart_config.get("norm_num_groups"), | |
cross_attention_dim=pixart_config.get("cross_attention_dim"), | |
attention_bias=pixart_config.get("attention_bias"), | |
sample_size=pixart_config.get("sample_size"), | |
patch_size=pixart_config.get("patch_size"), | |
activation_fn=pixart_config.get("activation_fn"), | |
num_embeds_ada_norm=pixart_config.get("num_embeds_ada_norm"), | |
upcast_attention=pixart_config.get("upcast_attention"), | |
norm_type=pixart_config.get("norm_type"), | |
norm_elementwise_affine=pixart_config.get("norm_elementwise_affine"), | |
norm_eps=pixart_config.get("norm_eps"), | |
caption_channels=pixart_config.get("caption_channels"), | |
attention_type=pixart_config.get("attention_type") | |
) | |
# controlnet = init_controlnet(controlnet, causal_dit) | |
del transformer | |
transformer_lora_config = LoraConfig( | |
r=lora_rank, | |
lora_alpha=lora_rank, | |
# use_dora=True, | |
init_lora_weights="gaussian", | |
target_modules=["to_k", | |
"to_q", | |
"to_v", | |
"to_out.0", | |
"proj_in", | |
"proj_out", | |
"ff.net.0.proj", | |
"ff.net.2", | |
"proj", | |
"linear", | |
"linear_1", | |
"linear_2"],#ff.net.0.proj ff.net.2 | |
) | |
causal_dit.add_adapter(transformer_lora_config) | |
lora_state_dict = torch.load(os.path.join(model_global_path, 'shadow_ckpt', 'transformer_lora_pos.bin'), map_location='cpu') | |
causal_dit.load_state_dict(lora_state_dict, strict=False) | |
controlnet_state_dict = torch.load(os.path.join(model_global_path, 'shadow_ckpt', 'controlnet.bin'), map_location='cpu') | |
controlnet.load_state_dict(controlnet_state_dict, strict=True) | |
causal_dit.to('cuda', dtype=weight_dtype) | |
controlnet.to('cuda', dtype=weight_dtype) | |
pipeline = CobraPixArtAlphaPipeline.from_pretrained( | |
pretrained_model_name_or_path, | |
transformer=causal_dit, | |
controlnet=controlnet, | |
safety_checker=None, | |
revision=None, | |
variant=None, | |
torch_dtype=weight_dtype, | |
) | |
pipeline = pipeline.to("cuda") | |
print('loaded pipeline') | |
def change_ckpt(style): | |
weight_dtype = torch.float16 | |
if style == 'line': | |
MultiResNetModel_path = os.path.join(model_global_path, 'line_GSRP', 'MultiResNetModel.bin') | |
causal_dit_lora_path = os.path.join(model_global_path, 'line_ckpt', 'transformer_lora_pos.bin') | |
controlnet_path = os.path.join(model_global_path, 'line_ckpt', 'controlnet.bin') | |
elif style == 'line + shadow': | |
MultiResNetModel_path = os.path.join(model_global_path, 'shadow_GSRP', 'MultiResNetModel.bin') | |
causal_dit_lora_path = os.path.join(model_global_path, 'shadow_ckpt', 'transformer_lora_pos.bin') | |
controlnet_path = os.path.join(model_global_path, 'shadow_ckpt', 'controlnet.bin') | |
else: | |
raise ValueError("Invalid style: {}".format(style)) | |
global pipeline | |
global MultiResNetModel | |
global cur_style | |
MultiResNetModel.load_state_dict(torch.load(MultiResNetModel_path, map_location='cpu'), strict=True) | |
MultiResNetModel.to('cuda', dtype=weight_dtype) | |
lora_state_dict = torch.load(causal_dit_lora_path, map_location='cpu') | |
pipeline.transformer.load_state_dict(lora_state_dict, strict=False) | |
controlnet_state_dict = torch.load(controlnet_path, map_location='cpu') | |
pipeline.controlnet.load_state_dict(controlnet_state_dict, strict=True) | |
pipeline.transformer.to('cuda', dtype=weight_dtype) | |
pipeline.controlnet.to('cuda', dtype=weight_dtype) | |
print('loaded {} ckpt'.format(style)) | |
return style | |
def fix_random_seeds(seed): | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(seed) | |
torch.cuda.manual_seed_all(seed) | |
def process_multi_images(files): | |
images = [Image.open(file.name) for file in files] | |
imgs = [] | |
for i, img in enumerate(images): | |
imgs.append(img) | |
return imgs | |
def extract_lines(image): | |
global line_model | |
line_model.cuda() | |
src = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY) | |
rows = int(np.ceil(src.shape[0] / 16)) * 16 | |
cols = int(np.ceil(src.shape[1] / 16)) * 16 | |
patch = np.ones((1, 1, rows, cols), dtype="float32") | |
patch[0, 0, 0:src.shape[0], 0:src.shape[1]] = src | |
tensor = torch.from_numpy(patch).cuda() | |
with torch.no_grad(): | |
y = line_model(tensor) | |
yc = y.cpu().numpy()[0, 0, :, :] | |
yc[yc > 255] = 255 | |
yc[yc < 0] = 0 | |
outimg = yc[0:src.shape[0], 0:src.shape[1]] | |
outimg = outimg.astype(np.uint8) | |
outimg = Image.fromarray(outimg) | |
torch.cuda.empty_cache() | |
return outimg | |
def extract_line_image(query_image_, resolution): | |
tar_width, tar_height = resolution | |
query_image = query_image_.resize((tar_width, tar_height)) | |
query_image = query_image.convert('L').convert('RGB') | |
extracted_line = extract_lines(query_image) | |
extracted_line = extracted_line.convert('L').convert('RGB') | |
torch.cuda.empty_cache() | |
return extracted_line, Image.new('RGB', (tar_width, tar_height), 'black') | |
def extract_sketch_line_image(query_image_, input_style): | |
resolution = get_rate(query_image_) | |
extracted_line, hint_mask = extract_line_image(query_image_, resolution) | |
extracted_sketch = extracted_line | |
extracted_sketch_line = Image.blend(extracted_sketch, extracted_line, 0.5) | |
extracted_sketch_line_ori = copy.deepcopy(extracted_sketch_line) | |
extracted_sketch_line_np = np.array(extracted_sketch_line) | |
# extracted_sketch_line_np[extracted_sketch_line_np < 236] = 0 | |
# extracted_sketch_line_np[extracted_sketch_line_np >= 236] = 255 | |
extracted_sketch_line = Image.fromarray(np.uint8(extracted_sketch_line_np)) | |
if input_style == 'line + shadow': | |
print('line + shadow sketch') | |
black_rate = 74 | |
black_value = 18 | |
gary_rate = 155 | |
up_bound = 145 | |
ori_np = np.array(extracted_sketch_line_ori) | |
query_image_np = np.array(query_image_.resize(resolution).convert('L').convert('RGB')) | |
extracted_sketch_line_np = np.array(extracted_sketch_line.convert('L').convert('RGB')) | |
ori_np[query_image_np <= black_rate] = black_value | |
ori_np[(ori_np > gary_rate) & (query_image_np < up_bound) & (query_image_np > black_rate)] = gary_rate | |
extracted_sketch_line_ori = Image.fromarray(np.uint8(ori_np)) | |
extracted_sketch_line_np[query_image_np <= black_rate] = black_value | |
extracted_sketch_line_np[(extracted_sketch_line_np > gary_rate) & (query_image_np < up_bound) & (query_image_np > black_rate)] = gary_rate | |
extracted_sketch_line = Image.fromarray(np.uint8(extracted_sketch_line_np)) | |
return extracted_sketch_line.convert('RGB'), extracted_sketch_line.convert('RGB'), hint_mask, query_image_, extracted_sketch_line_ori.convert('RGB'), resolution | |
def colorize_image(input_style, extracted_line, reference_images, resolution, seed, num_inference_steps, top_k, hint_mask=None, hint_color=None, query_image_origin=None, extracted_image_ori=None): | |
if extracted_line is None: | |
gr.Info("Please preprocess the image first") | |
raise ValueError("Please preprocess the image first") | |
reference_images = process_multi_images(reference_images) | |
fix_random_seeds(seed) | |
global pipeline | |
global MultiResNetModel | |
global cur_style | |
if input_style != cur_style: | |
gr.Info("Loading the model...") | |
change_ckpt(input_style) | |
cur_style = input_style | |
tar_width, tar_height = resolution | |
gr.Info("Image retrieval in progress...") | |
query_image_bw = extracted_line.resize((tar_width, tar_height)) | |
query_image = query_image_bw.convert('RGB') | |
query_image_origin = query_image_origin.resize((tar_width, tar_height)) | |
query_image_vae = extracted_image_ori.resize((int(tar_width*1.5), int(tar_height*1.5))) | |
reference_images = [process_image(ref_image, tar_width, tar_height) for ref_image in reference_images] | |
query_patches_pil = process_image_Q_varres(query_image_origin, tar_width, tar_height) | |
reference_patches_pil = [] | |
for reference_image in reference_images: | |
reference_patches_pil += process_image_ref_varres(reference_image, tar_width, tar_height) | |
with torch.no_grad(): | |
clip_img = image_processor(images=query_patches_pil, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype) | |
query_embeddings = image_encoder(clip_img).image_embeds | |
reference_patches_pil_gray = [rimg.convert('RGB').convert('RGB') for rimg in reference_patches_pil] | |
clip_img = image_processor(images=reference_patches_pil_gray, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype) | |
reference_embeddings = image_encoder(clip_img).image_embeds | |
cosine_similarities = F.cosine_similarity(query_embeddings.unsqueeze(1), reference_embeddings.unsqueeze(0), dim=-1) | |
len_ref = len(reference_patches_pil) | |
# print(cosine_similarities) | |
sorted_indices = torch.argsort(cosine_similarities, descending=True, dim=1).tolist() | |
top_k_indices = [cur_sortlist[:top_k] for cur_sortlist in sorted_indices] | |
available_ref_patches = [[],[],[],[]] | |
for i in range(len(top_k_indices)): | |
for j in range(top_k): | |
available_ref_patches[i].append(reference_patches_pil[top_k_indices[i][j]].resize((tar_width//2, tar_height//2)).convert('RGB')) | |
flat_available_ref_patches = [item for sublist in available_ref_patches for item in sublist] | |
# 正方形拼接 flat_available_ref_patches | |
grid_N = int(np.ceil(np.sqrt(len(flat_available_ref_patches)))) | |
small_tar_width = tar_width//grid_N | |
small_tar_height = tar_height//grid_N | |
grid_img = Image.new('RGB', (grid_N*small_tar_width, grid_N*small_tar_height), 'black') | |
for i in range(len(flat_available_ref_patches)): | |
grid_img.paste(flat_available_ref_patches[i].resize((small_tar_width, small_tar_height)), (i%grid_N*small_tar_width, int(i/grid_N)*small_tar_height)) | |
# grid_img 添加文字"Reference images" | |
draw = ImageDraw.Draw(grid_img) | |
draw.text((0, 0), "Reference Images", fill='red', font_size=50) | |
gr.Info("Model inference in progress...") | |
generator = torch.Generator(device='cuda').manual_seed(seed) | |
hint_mask = hint_mask.resize((tar_width//8, tar_height//8)).convert('RGB') | |
hint_color = hint_color.convert('RGB') | |
colorized_image = pipeline( | |
cond_input=query_image_bw.convert('RGB'), | |
cond_refs=available_ref_patches, | |
hint_mask=hint_mask, | |
hint_color=hint_color, | |
num_inference_steps=num_inference_steps, | |
generator = generator, | |
)[0][0] | |
gr.Info("Post-processing image...") | |
with torch.no_grad(): | |
up_img = colorized_image.resize(query_image_vae.size) | |
test_low_color = transform(up_img).unsqueeze(0).to('cuda', dtype=weight_dtype) | |
query_image_vae_ = transform(query_image_vae).unsqueeze(0).to('cuda', dtype=weight_dtype) | |
h_color, hidden_list_color = pipeline.vae._encode(test_low_color,return_dict = False, hidden_flag = True) | |
h_bw, hidden_list_bw = pipeline.vae._encode(query_image_vae_, return_dict = False, hidden_flag = True) | |
hidden_list_double = [torch.cat((hidden_list_color[hidden_idx], hidden_list_bw[hidden_idx]), dim = 1) for hidden_idx in range(len(hidden_list_color))] | |
hidden_list = MultiResNetModel(hidden_list_double) | |
output = pipeline.vae._decode(h_color.sample(),return_dict = False, hidden_list = hidden_list)[0] | |
output[output > 1] = 1 | |
output[output < -1] = -1 | |
high_res_image = Image.fromarray(((output[0] * 0.5 + 0.5).permute(1, 2, 0).detach().cpu().numpy() * 255).astype(np.uint8)).convert("RGB") | |
gr.Info("Colorization complete!") | |
torch.cuda.empty_cache() | |
output_gallery = [high_res_image, query_image_bw, hint_mask, hint_color, grid_img] | |
return output_gallery | |
# Function to get color value from reference image | |
def get_color_value(reference_image, evt: gr.SelectData): | |
if reference_image is None: | |
return "Please upload a reference image first." | |
x, y = evt.index | |
color_value = reference_image[y, x] | |
return f"Get Color value: {color_value}", color_value | |
# Function to draw a square on the line drawing image | |
def draw_square(line_drawing_image_pil, hint_mask, color_value, evt: gr.SelectData): | |
line_drawing_image = np.array(line_drawing_image_pil) | |
# line_drawing_image = np.array(Image.new('RGB', line_drawing_image_pil.size, 'black')) | |
hint_mask = np.array(hint_mask) | |
if line_drawing_image is None: | |
return "Please upload a line drawing image first." | |
if color_value is None: | |
return "Please pick a color from the reference image first." | |
x, y = evt.index | |
# Calculate square boundaries | |
start_x = max(0, x - 8) | |
start_y = max(0, y - 8) | |
end_x = min(line_drawing_image.shape[1], x + 8) | |
end_y = min(line_drawing_image.shape[0], y + 8) | |
# Draw the square | |
line_drawing_image[start_y:end_y, start_x:end_x] = color_value | |
line_drawing_image_pil = Image.fromarray(np.uint8(line_drawing_image)) | |
hint_mask[start_y:end_y, start_x:end_x] = 255 | |
hint_mask_pil = Image.fromarray(np.uint8(hint_mask)) | |
return line_drawing_image_pil, hint_mask_pil | |
with gr.Blocks() as demo: | |
gr.HTML( | |
""" | |
<div style="text-align: center;"> | |
<h1 style="text-align: center; font-size: 3em;">🎨 Cobra:</h1> | |
<h3 style="text-align: center; font-size: 1.8em;">Efficient Line Art COlorization with BRoAder References</h3> | |
<p style="text-align: center; font-weight: bold;"> | |
<a href="https://zhuang2002.github.io/Cobra/">Project Page</a> | | |
<a href="https://arxiv.org">ArXiv Preprint</a> | | |
<a href="https://github.com/Zhuang2002/Cobra">GitHub Repository</a> | |
</p> | |
<p style="text-align: center; font-weight: bold;"> | |
NOTE: Each time you switch the input style, the corresponding model will be reloaded, which may take some time. Please be patient. | |
</p> | |
<p style="text-align: left; font-size: 1.1em;"> | |
Welcome to the demo of <strong>Cobra</strong>. Follow the steps below to explore the capabilities of our model: | |
</p> | |
</div> | |
<div style="text-align: left; margin: 0 auto;"> | |
<ol style="font-size: 1.1em;"> | |
<li>Choose your input style: either line + shadow or line only.</li> | |
<li>Upload your image: Click the 'Upload' button to select the image you want to colorize.</li> | |
<li>Preprocess the image: Click the 'Preprocess' button to extract the line art from your image.</li> | |
<li>(Optional) Obtain color values and add color hints: Upload an image to the left area and click to get color values; then, add color hints to the line art on the right.</li> | |
<li>Upload reference images: Upload several reference images to help guide the colorization process.</li> | |
<li>(Optional) Set inference parameters: Adjust the inference settings as needed.</li> | |
<li>Run: Click the <b>Colorize</b> button to start the process.</li> | |
</ol> | |
<p> | |
⏱️ <b>ZeroGPU Time Limit</b>: Hugging Face ZeroGPU has an inference time limit of 180 seconds. You may need to log in with a free account to use this demo. Large sampling steps might lead to timeout (GPU Abort). In that case, please consider logging in with a Pro account or running it on your local machine. | |
</p> | |
</div> | |
<div style="text-align: center;"> | |
<p style="text-align: center; font-weight: bold;"> | |
注意:每次切换输入样式时,相应的模型将被重新加载,可能需要一些时间。请耐心等待。 | |
</p> | |
<p style="text-align: left; font-size: 1.1em;"> | |
欢迎使用 <strong>Cobra</strong> 演示。请按照以下步骤探索我们模型的能力: | |
</p> | |
</div> | |
<div style="text-align: left; margin: 0 auto;"> | |
<ol style="font-size: 1.1em;"> | |
<li>选择输入样式:线条+阴影或仅线条。</li> | |
<li>上传您的图像:点击“上传”按钮选择您想要上色的图像。</li> | |
<li>预处理图像:点击“预处理”按钮从您的图像中提取线稿。</li> | |
<li>(可选)获取颜色值并添加颜色提示:上传一张图像到左侧区域,点击获取颜色值;然后,为右侧的线稿添加颜色提示。</li> | |
<li>上传参考图像:上传多个参考图像以帮助引导上色过程。</li> | |
<li>(可选)设置推理参数:根据需要调整推理设置。</li> | |
<li>运行:点击 <b>上色</b> 按钮开始处理。</li> | |
</ol> | |
<p> | |
⏱️ <b>ZeroGPU时间限制</b>:Hugging Face ZeroGPU 的推理时间限制为 180 秒。您可能需要使用免费帐户登录以使用此演示。大采样步骤可能会导致超时(GPU 中止)。在这种情况下,请考虑使用专业帐户登录或在本地计算机上运行。 | |
</p> | |
</div> | |
""" | |
) | |
# extracted_line = gr.State() | |
# example_loading = gr.State(value=None) | |
hint_mask = gr.State() | |
hint_color = gr.State() | |
query_image_origin = gr.State() | |
resolution = gr.State() | |
extracted_image_ori = gr.State() | |
style = gr.State() | |
# updated_mask = gr.State() | |
# model_name = gr.Textbox(label="Model Name", value=None) | |
# style = gr.Dropdown(label="Model Name", choices=["line + shadow","line"], value="line + shadow") | |
with gr.Column(): | |
gr.Markdown("<h2 style='text-align: center;'>Load Model</h2>") | |
with gr.Row(): | |
model_name = gr.Textbox(label="Model Name", value=None) | |
with gr.Column(): | |
style = gr.Dropdown(label="Model List", choices=["line + shadow","line"], value="line + shadow") | |
change_ckpt_button = gr.Button("Load Model") | |
change_ckpt_button.click(change_ckpt, inputs=[style], outputs=[model_name]) | |
# model_name = gr.Textbox(label="Model Name", value=None) | |
# 添加文字 英文 线稿提取 | |
gr.Markdown("<h2 style='text-align: center;'>Line Drawing Extraction</h2>") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(type="pil", label="Image to Colorize") | |
# resolution = gr.Radio(["800x800", "640x1024", "1024x640"], label="Select Resolution(Width*Height)", value="640x1024") | |
extract_button = gr.Button("Preprocess (Decolorize)") | |
extracted_image = gr.Image(type="pil", label="Decolorized Result") | |
gr.Markdown("<h2 style='text-align: center;'>Color Selection 🎨 (Left) and Hint Placement 💡 (Right) - Click with Mouse 🖱️</h2>") | |
with gr.Row(): | |
with gr.Column(): | |
get_color_img = gr.Image(label="Upload an image to extract colors", type="numpy") | |
color_value_output = gr.Textbox(label="Color Value") | |
color_value_state = gr.State() | |
get_color_img.select( | |
get_color_value, | |
[get_color_img], | |
[color_value_output, color_value_state] | |
) | |
with gr.Column(): | |
hint_color = gr.Image(label="Line Drawing Image", type="pil") | |
# updated_image = gr.Image(label="Updated Image", type="pil") | |
hint_color.select( | |
draw_square, | |
[hint_color, hint_mask, color_value_state], | |
[hint_color, hint_mask] | |
) | |
gr.Markdown("<h2 style='text-align: center;'>Retrieval and Colorization</h2>") | |
with gr.Row(): | |
reference_images = gr.Files(label="Reference Images (Upload multiple)", file_count="multiple") | |
with gr.Column(): | |
output_gallery = gr.Gallery(label="Colorization Results", type="pil") | |
seed = gr.Slider(label="Random Seed", minimum=0, maximum=100000, value=0, step=1) | |
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=100, value=10, step=1) | |
colorize_button = gr.Button("Colorize") | |
top_k = gr.Slider(label="Top K (Total Reference Images: 4K) ", minimum=1, maximum=50, value=3, step=1) | |
extract_button.click( | |
extract_sketch_line_image, | |
inputs=[input_image, model_name], | |
outputs=[extracted_image, | |
hint_color, | |
hint_mask, | |
query_image_origin, | |
extracted_image_ori, | |
resolution | |
] | |
) | |
colorize_button.click( | |
colorize_image, | |
inputs=[model_name, extracted_image, reference_images, resolution, seed, num_inference_steps, top_k, hint_mask, hint_color, query_image_origin, extracted_image_ori], | |
outputs=output_gallery | |
) | |
with gr.Column(): | |
gr.Markdown("### Quick Examples") | |
gr.Examples( | |
examples=examples, | |
inputs=[input_image, reference_images, model_name, seed, num_inference_steps, top_k], | |
label="Examples", | |
examples_per_page=8, | |
) | |
gr.HTML('<a href="https://github.com/zhuang2002/Cobra"><img src="https://img.shields.io/github/stars/zhuang2002/Cobra" alt="GitHub Stars"></a>') | |
gr.Markdown(article) | |
demo.launch() |