import spaces import contextlib import gc import json import logging import math import os import random import shutil import sys import time import itertools import copy from pathlib import Path import cv2 import numpy as np from PIL import Image, ImageDraw import torch import torch.nn.functional as F import torch.utils.checkpoint from torch.utils.data import Dataset from torchvision import transforms from tqdm.auto import tqdm import accelerate from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import ProjectConfiguration, set_seed from datasets import load_dataset from huggingface_hub import create_repo, upload_folder from packaging import version from safetensors.torch import load_model from peft import LoraConfig import gradio as gr import pandas as pd import transformers from transformers import ( AutoTokenizer, PretrainedConfig, CLIPVisionModelWithProjection, CLIPImageProcessor, CLIPProcessor, ) import diffusers from diffusers import ( AutoencoderKL, DDPMScheduler, PixArtTransformer2DModel, CausalSparseDiTModel, CausalSparseDiTControlModel, CobraPixArtAlphaPipeline, UniPCMultistepScheduler, ) from cobra_utils.utils import * from huggingface_hub import snapshot_download article = r""" If Cobra is helpful, please help to ⭐ the Github Repo. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/zhuang2002/Cobra)](https://github.com/zhuang2002/Cobra) --- 📧 **Contact**
If you have any questions, please feel free to reach me out at zhuangjh23@mails.tsinghua.edu.cn. 📝 **Citation**
If our work is useful for your research, please consider citing: ```bibtex @misc{zhuang2025cobra, title={Cobra: Efficient Line Art COlorization with BRoAder References}, author={Junhao Zhuang, Lingen Li, Xuan Ju, Zhaoyang Zhang, Chun Yuan and Ying Shan}, year={2025}, eprint={****.***}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org}, } ``` """ model_global_path = snapshot_download(repo_id="JunhaoZhuang/Cobra", cache_dir='./Cobra/', repo_type="model") print(model_global_path) examples = [ [ "./examples/shadow/example0/input.png", ["./examples/shadow/example0/reference_image_0.png", "./examples/shadow/example0/reference_image_1.png", "./examples/shadow/example0/reference_image_2.png", "./examples/shadow/example0/reference_image_3.png"], "line + shadow", # style 1, # seed 10, # step 20, # top k ], [ "./examples/shadow/example1/input.png", ["./examples/shadow/example1/reference_image_0.png", "./examples/shadow/example1/reference_image_1.png", "./examples/shadow/example1/reference_image_2.png", "./examples/shadow/example1/reference_image_3.png", "./examples/shadow/example1/reference_image_4.png", "./examples/shadow/example1/reference_image_5.png"], "line + shadow", # style 1, # seed 10, # step 20, # top k ], [ "./examples/shadow/example2/input.png", ["./examples/shadow/example2/reference_image_0.png"], "line + shadow", # style 4, # seed 10, # step 3, # top k ], [ "./examples/line/example2/input.png", ["./examples/line/example2/reference_image_0.png", "./examples/line/example2/reference_image_1.png", "./examples/line/example2/reference_image_2.png", "./examples/line/example2/reference_image_3.png"], "line", # style 1, # seed 10, # step 20, # top k ], [ "./examples/line/example0/input.png", ["./examples/line/example0/reference_image_0.png", "./examples/line/example0/reference_image_1.png", "./examples/line/example0/reference_image_2.png"], "line", # style 0, # seed 10, # step 6, # top k ], [ "./examples/line/example1/input.png", ["./examples/line/example1/reference_image_0.png",], "line", # style 0, # seed 10, # step 3, # top k ], [ "./examples/line/example3/input.png", ["./examples/line/example3/reference_image_0.png",], "line", # style 4, # seed 10, # step 3, # top k ],] ratio_list = [[800, 800], [768, 896], [704, 928], [672, 960], [640, 1024], [608, 1056], [576, 1088], [576, 1184]] ratio_list += [[896, 768], [928, 704], [960, 672], [1024, 640], [1056, 608], [1088, 576], [1184, 576]] def get_rate(image): input_rate = image.size[0] / image.size[1] min_diff = float('inf') best_idx = 0 for i, ratio in enumerate(ratio_list): ratio_rate = ratio[0] / ratio[1] diff = abs(input_rate - ratio_rate) if diff < min_diff: min_diff = diff best_idx = i return ratio_list[best_idx] transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) weight_dtype = torch.float16 # line model line_model_path = os.path.join(model_global_path, 'LE', 'erika.pth') line_model = res_skip() line_model.load_state_dict(torch.load(line_model_path)) line_model.eval() line_model.cuda() # image encoder image_processor = CLIPImageProcessor() image_encoder = CLIPVisionModelWithProjection.from_pretrained(os.path.join(model_global_path, 'image_encoder')).to('cuda') # os.path.join(model_global_path, 'image_encoder') # model_sketch = create_model_sketch('default').to('cuda') # create a model given opt.model and other options # model_sketch.eval() global pipeline global MultiResNetModel global cur_style cur_style = 'line + shadow' weight_dtype = torch.float16 block_out_channels = [128, 128, 256, 512, 512] MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels)) MultiResNetModel.load_state_dict(torch.load(os.path.join(model_global_path, 'shadow_GSRP', 'MultiResNetModel.bin'), map_location='cpu'), strict=True) MultiResNetModel.to('cuda', dtype=weight_dtype) # transformer transform = transforms.Compose([ transforms.ToTensor(), # 将 PIL 图像转换为 Tensor transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) # 归一化 ]) # seed = 43 lora_rank = 128 pretrained_model_name_or_path = "PixArt-alpha/PixArt-XL-2-1024-MS" transformer = PixArtTransformer2DModel.from_pretrained( pretrained_model_name_or_path, subfolder="transformer", revision=None, variant=None ) pixart_config = get_pixart_config() causal_dit = CausalSparseDiTModel(num_attention_heads=pixart_config.get("num_attention_heads"), attention_head_dim=pixart_config.get("attention_head_dim"), in_channels=pixart_config.get("in_channels"), out_channels=pixart_config.get("out_channels"), num_layers=pixart_config.get("num_layers"), dropout=pixart_config.get("dropout"), norm_num_groups=pixart_config.get("norm_num_groups"), cross_attention_dim=pixart_config.get("cross_attention_dim"), attention_bias=pixart_config.get("attention_bias"), sample_size=pixart_config.get("sample_size"), patch_size=pixart_config.get("patch_size"), activation_fn=pixart_config.get("activation_fn"), num_embeds_ada_norm=pixart_config.get("num_embeds_ada_norm"), upcast_attention=pixart_config.get("upcast_attention"), norm_type=pixart_config.get("norm_type"), norm_elementwise_affine=pixart_config.get("norm_elementwise_affine"), norm_eps=pixart_config.get("norm_eps"), caption_channels=pixart_config.get("caption_channels"), attention_type=pixart_config.get("attention_type")) causal_dit = init_causal_dit(causal_dit, transformer) print('loaded causal_dit') controlnet = CausalSparseDiTControlModel(num_attention_heads=pixart_config.get("num_attention_heads"), attention_head_dim=pixart_config.get("attention_head_dim"), in_channels=pixart_config.get("in_channels"), cond_chanels = 9, out_channels=pixart_config.get("out_channels"), num_layers=pixart_config.get("num_layers"), dropout=pixart_config.get("dropout"), norm_num_groups=pixart_config.get("norm_num_groups"), cross_attention_dim=pixart_config.get("cross_attention_dim"), attention_bias=pixart_config.get("attention_bias"), sample_size=pixart_config.get("sample_size"), patch_size=pixart_config.get("patch_size"), activation_fn=pixart_config.get("activation_fn"), num_embeds_ada_norm=pixart_config.get("num_embeds_ada_norm"), upcast_attention=pixart_config.get("upcast_attention"), norm_type=pixart_config.get("norm_type"), norm_elementwise_affine=pixart_config.get("norm_elementwise_affine"), norm_eps=pixart_config.get("norm_eps"), caption_channels=pixart_config.get("caption_channels"), attention_type=pixart_config.get("attention_type") ) # controlnet = init_controlnet(controlnet, causal_dit) del transformer transformer_lora_config = LoraConfig( r=lora_rank, lora_alpha=lora_rank, # use_dora=True, init_lora_weights="gaussian", target_modules=["to_k", "to_q", "to_v", "to_out.0", "proj_in", "proj_out", "ff.net.0.proj", "ff.net.2", "proj", "linear", "linear_1", "linear_2"],#ff.net.0.proj ff.net.2 ) causal_dit.add_adapter(transformer_lora_config) lora_state_dict = torch.load(os.path.join(model_global_path, 'shadow_ckpt', 'transformer_lora_pos.bin'), map_location='cpu') causal_dit.load_state_dict(lora_state_dict, strict=False) controlnet_state_dict = torch.load(os.path.join(model_global_path, 'shadow_ckpt', 'controlnet.bin'), map_location='cpu') controlnet.load_state_dict(controlnet_state_dict, strict=True) causal_dit.to('cuda', dtype=weight_dtype) controlnet.to('cuda', dtype=weight_dtype) pipeline = CobraPixArtAlphaPipeline.from_pretrained( pretrained_model_name_or_path, transformer=causal_dit, controlnet=controlnet, safety_checker=None, revision=None, variant=None, torch_dtype=weight_dtype, ) pipeline = pipeline.to("cuda") print('loaded pipeline') @spaces.GPU def change_ckpt(style): weight_dtype = torch.float16 if style == 'line': MultiResNetModel_path = os.path.join(model_global_path, 'line_GSRP', 'MultiResNetModel.bin') causal_dit_lora_path = os.path.join(model_global_path, 'line_ckpt', 'transformer_lora_pos.bin') controlnet_path = os.path.join(model_global_path, 'line_ckpt', 'controlnet.bin') elif style == 'line + shadow': MultiResNetModel_path = os.path.join(model_global_path, 'shadow_GSRP', 'MultiResNetModel.bin') causal_dit_lora_path = os.path.join(model_global_path, 'shadow_ckpt', 'transformer_lora_pos.bin') controlnet_path = os.path.join(model_global_path, 'shadow_ckpt', 'controlnet.bin') else: raise ValueError("Invalid style: {}".format(style)) global pipeline global MultiResNetModel global cur_style MultiResNetModel.load_state_dict(torch.load(MultiResNetModel_path, map_location='cpu'), strict=True) MultiResNetModel.to('cuda', dtype=weight_dtype) lora_state_dict = torch.load(causal_dit_lora_path, map_location='cpu') pipeline.transformer.load_state_dict(lora_state_dict, strict=False) controlnet_state_dict = torch.load(controlnet_path, map_location='cpu') pipeline.controlnet.load_state_dict(controlnet_state_dict, strict=True) pipeline.transformer.to('cuda', dtype=weight_dtype) pipeline.controlnet.to('cuda', dtype=weight_dtype) print('loaded {} ckpt'.format(style)) return style @spaces.GPU def fix_random_seeds(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) def process_multi_images(files): images = [Image.open(file.name) for file in files] imgs = [] for i, img in enumerate(images): imgs.append(img) return imgs @spaces.GPU def extract_lines(image): global line_model line_model.cuda() src = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY) rows = int(np.ceil(src.shape[0] / 16)) * 16 cols = int(np.ceil(src.shape[1] / 16)) * 16 patch = np.ones((1, 1, rows, cols), dtype="float32") patch[0, 0, 0:src.shape[0], 0:src.shape[1]] = src tensor = torch.from_numpy(patch).cuda() with torch.no_grad(): y = line_model(tensor) yc = y.cpu().numpy()[0, 0, :, :] yc[yc > 255] = 255 yc[yc < 0] = 0 outimg = yc[0:src.shape[0], 0:src.shape[1]] outimg = outimg.astype(np.uint8) outimg = Image.fromarray(outimg) torch.cuda.empty_cache() return outimg @spaces.GPU def extract_line_image(query_image_, resolution): tar_width, tar_height = resolution query_image = query_image_.resize((tar_width, tar_height)) query_image = query_image.convert('L').convert('RGB') extracted_line = extract_lines(query_image) extracted_line = extracted_line.convert('L').convert('RGB') torch.cuda.empty_cache() return extracted_line, Image.new('RGB', (tar_width, tar_height), 'black') @spaces.GPU def extract_sketch_line_image(query_image_, input_style): resolution = get_rate(query_image_) extracted_line, hint_mask = extract_line_image(query_image_, resolution) extracted_sketch = extracted_line extracted_sketch_line = Image.blend(extracted_sketch, extracted_line, 0.5) extracted_sketch_line_ori = copy.deepcopy(extracted_sketch_line) extracted_sketch_line_np = np.array(extracted_sketch_line) # extracted_sketch_line_np[extracted_sketch_line_np < 236] = 0 # extracted_sketch_line_np[extracted_sketch_line_np >= 236] = 255 extracted_sketch_line = Image.fromarray(np.uint8(extracted_sketch_line_np)) if input_style == 'line + shadow': print('line + shadow sketch') black_rate = 74 black_value = 18 gary_rate = 155 up_bound = 145 ori_np = np.array(extracted_sketch_line_ori) query_image_np = np.array(query_image_.resize(resolution).convert('L').convert('RGB')) extracted_sketch_line_np = np.array(extracted_sketch_line.convert('L').convert('RGB')) ori_np[query_image_np <= black_rate] = black_value ori_np[(ori_np > gary_rate) & (query_image_np < up_bound) & (query_image_np > black_rate)] = gary_rate extracted_sketch_line_ori = Image.fromarray(np.uint8(ori_np)) extracted_sketch_line_np[query_image_np <= black_rate] = black_value extracted_sketch_line_np[(extracted_sketch_line_np > gary_rate) & (query_image_np < up_bound) & (query_image_np > black_rate)] = gary_rate extracted_sketch_line = Image.fromarray(np.uint8(extracted_sketch_line_np)) return extracted_sketch_line.convert('RGB'), extracted_sketch_line.convert('RGB'), hint_mask, query_image_, extracted_sketch_line_ori.convert('RGB'), resolution @spaces.GPU(duration=180) def colorize_image(input_style, extracted_line, reference_images, resolution, seed, num_inference_steps, top_k, hint_mask=None, hint_color=None, query_image_origin=None, extracted_image_ori=None): if extracted_line is None: gr.Info("Please preprocess the image first") raise ValueError("Please preprocess the image first") reference_images = process_multi_images(reference_images) fix_random_seeds(seed) global pipeline global MultiResNetModel global cur_style if input_style != cur_style: gr.Info("Loading the model...") change_ckpt(input_style) cur_style = input_style tar_width, tar_height = resolution gr.Info("Image retrieval in progress...") query_image_bw = extracted_line.resize((tar_width, tar_height)) query_image = query_image_bw.convert('RGB') query_image_origin = query_image_origin.resize((tar_width, tar_height)) query_image_vae = extracted_image_ori.resize((int(tar_width*1.5), int(tar_height*1.5))) reference_images = [process_image(ref_image, tar_width, tar_height) for ref_image in reference_images] query_patches_pil = process_image_Q_varres(query_image_origin, tar_width, tar_height) reference_patches_pil = [] for reference_image in reference_images: reference_patches_pil += process_image_ref_varres(reference_image, tar_width, tar_height) with torch.no_grad(): clip_img = image_processor(images=query_patches_pil, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype) query_embeddings = image_encoder(clip_img).image_embeds reference_patches_pil_gray = [rimg.convert('RGB').convert('RGB') for rimg in reference_patches_pil] clip_img = image_processor(images=reference_patches_pil_gray, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype) reference_embeddings = image_encoder(clip_img).image_embeds cosine_similarities = F.cosine_similarity(query_embeddings.unsqueeze(1), reference_embeddings.unsqueeze(0), dim=-1) len_ref = len(reference_patches_pil) # print(cosine_similarities) sorted_indices = torch.argsort(cosine_similarities, descending=True, dim=1).tolist() top_k_indices = [cur_sortlist[:top_k] for cur_sortlist in sorted_indices] available_ref_patches = [[],[],[],[]] for i in range(len(top_k_indices)): for j in range(top_k): available_ref_patches[i].append(reference_patches_pil[top_k_indices[i][j]].resize((tar_width//2, tar_height//2)).convert('RGB')) flat_available_ref_patches = [item for sublist in available_ref_patches for item in sublist] # 正方形拼接 flat_available_ref_patches grid_N = int(np.ceil(np.sqrt(len(flat_available_ref_patches)))) small_tar_width = tar_width//grid_N small_tar_height = tar_height//grid_N grid_img = Image.new('RGB', (grid_N*small_tar_width, grid_N*small_tar_height), 'black') for i in range(len(flat_available_ref_patches)): grid_img.paste(flat_available_ref_patches[i].resize((small_tar_width, small_tar_height)), (i%grid_N*small_tar_width, int(i/grid_N)*small_tar_height)) # grid_img 添加文字"Reference images" draw = ImageDraw.Draw(grid_img) draw.text((0, 0), "Reference Images", fill='red', font_size=50) gr.Info("Model inference in progress...") generator = torch.Generator(device='cuda').manual_seed(seed) hint_mask = hint_mask.resize((tar_width//8, tar_height//8)).convert('RGB') hint_color = hint_color.convert('RGB') colorized_image = pipeline( cond_input=query_image_bw.convert('RGB'), cond_refs=available_ref_patches, hint_mask=hint_mask, hint_color=hint_color, num_inference_steps=num_inference_steps, generator = generator, )[0][0] gr.Info("Post-processing image...") with torch.no_grad(): up_img = colorized_image.resize(query_image_vae.size) test_low_color = transform(up_img).unsqueeze(0).to('cuda', dtype=weight_dtype) query_image_vae_ = transform(query_image_vae).unsqueeze(0).to('cuda', dtype=weight_dtype) h_color, hidden_list_color = pipeline.vae._encode(test_low_color,return_dict = False, hidden_flag = True) h_bw, hidden_list_bw = pipeline.vae._encode(query_image_vae_, return_dict = False, hidden_flag = True) hidden_list_double = [torch.cat((hidden_list_color[hidden_idx], hidden_list_bw[hidden_idx]), dim = 1) for hidden_idx in range(len(hidden_list_color))] hidden_list = MultiResNetModel(hidden_list_double) output = pipeline.vae._decode(h_color.sample(),return_dict = False, hidden_list = hidden_list)[0] output[output > 1] = 1 output[output < -1] = -1 high_res_image = Image.fromarray(((output[0] * 0.5 + 0.5).permute(1, 2, 0).detach().cpu().numpy() * 255).astype(np.uint8)).convert("RGB") gr.Info("Colorization complete!") torch.cuda.empty_cache() output_gallery = [high_res_image, query_image_bw, hint_mask, hint_color, grid_img] return output_gallery # Function to get color value from reference image def get_color_value(reference_image, evt: gr.SelectData): if reference_image is None: return "Please upload a reference image first." x, y = evt.index color_value = reference_image[y, x] return f"Get Color value: {color_value}", color_value # Function to draw a square on the line drawing image def draw_square(line_drawing_image_pil, hint_mask, color_value, evt: gr.SelectData): line_drawing_image = np.array(line_drawing_image_pil) # line_drawing_image = np.array(Image.new('RGB', line_drawing_image_pil.size, 'black')) hint_mask = np.array(hint_mask) if line_drawing_image is None: return "Please upload a line drawing image first." if color_value is None: return "Please pick a color from the reference image first." x, y = evt.index # Calculate square boundaries start_x = max(0, x - 8) start_y = max(0, y - 8) end_x = min(line_drawing_image.shape[1], x + 8) end_y = min(line_drawing_image.shape[0], y + 8) # Draw the square line_drawing_image[start_y:end_y, start_x:end_x] = color_value line_drawing_image_pil = Image.fromarray(np.uint8(line_drawing_image)) hint_mask[start_y:end_y, start_x:end_x] = 255 hint_mask_pil = Image.fromarray(np.uint8(hint_mask)) return line_drawing_image_pil, hint_mask_pil with gr.Blocks() as demo: gr.HTML( """

🎨 Cobra:

Efficient Line Art COlorization with BRoAder References

Project Page | ArXiv Preprint | GitHub Repository

NOTE: Each time you switch the input style, the corresponding model will be reloaded, which may take some time. Please be patient.

Welcome to the demo of Cobra. Follow the steps below to explore the capabilities of our model:

  1. Choose your input style: either line + shadow or line only.
  2. Upload your image: Click the 'Upload' button to select the image you want to colorize.
  3. Preprocess the image: Click the 'Preprocess' button to extract the line art from your image.
  4. (Optional) Obtain color values and add color hints: Upload an image to the left area and click to get color values; then, add color hints to the line art on the right.
  5. Upload reference images: Upload several reference images to help guide the colorization process.
  6. (Optional) Set inference parameters: Adjust the inference settings as needed.
  7. Run: Click the Colorize button to start the process.

⏱️ ZeroGPU Time Limit: Hugging Face ZeroGPU has an inference time limit of 180 seconds. You may need to log in with a free account to use this demo. Large sampling steps might lead to timeout (GPU Abort). In that case, please consider logging in with a Pro account or running it on your local machine.

注意:每次切换输入样式时,相应的模型将被重新加载,可能需要一些时间。请耐心等待。

欢迎使用 Cobra 演示。请按照以下步骤探索我们模型的能力:

  1. 选择输入样式:线条+阴影或仅线条。
  2. 上传您的图像:点击“上传”按钮选择您想要上色的图像。
  3. 预处理图像:点击“预处理”按钮从您的图像中提取线稿。
  4. (可选)获取颜色值并添加颜色提示:上传一张图像到左侧区域,点击获取颜色值;然后,为右侧的线稿添加颜色提示。
  5. 上传参考图像:上传多个参考图像以帮助引导上色过程。
  6. (可选)设置推理参数:根据需要调整推理设置。
  7. 运行:点击 上色 按钮开始处理。

⏱️ ZeroGPU时间限制:Hugging Face ZeroGPU 的推理时间限制为 180 秒。您可能需要使用免费帐户登录以使用此演示。大采样步骤可能会导致超时(GPU 中止)。在这种情况下,请考虑使用专业帐户登录或在本地计算机上运行。

""" ) # extracted_line = gr.State() # example_loading = gr.State(value=None) hint_mask = gr.State() hint_color = gr.State() query_image_origin = gr.State() resolution = gr.State() extracted_image_ori = gr.State() style = gr.State() # updated_mask = gr.State() # model_name = gr.Textbox(label="Model Name", value=None) # style = gr.Dropdown(label="Model Name", choices=["line + shadow","line"], value="line + shadow") with gr.Column(): gr.Markdown("

Load Model

") with gr.Row(): model_name = gr.Textbox(label="Model Name", value=None) with gr.Column(): style = gr.Dropdown(label="Model List", choices=["line + shadow","line"], value="line + shadow") change_ckpt_button = gr.Button("Load Model") change_ckpt_button.click(change_ckpt, inputs=[style], outputs=[model_name]) # model_name = gr.Textbox(label="Model Name", value=None) # 添加文字 英文 线稿提取 gr.Markdown("

Line Drawing Extraction

") with gr.Row(): with gr.Column(): input_image = gr.Image(type="pil", label="Image to Colorize") # resolution = gr.Radio(["800x800", "640x1024", "1024x640"], label="Select Resolution(Width*Height)", value="640x1024") extract_button = gr.Button("Preprocess (Decolorize)") extracted_image = gr.Image(type="pil", label="Decolorized Result") gr.Markdown("

Color Selection 🎨 (Left) and Hint Placement 💡 (Right) - Click with Mouse 🖱️

") with gr.Row(): with gr.Column(): get_color_img = gr.Image(label="Upload an image to extract colors", type="numpy") color_value_output = gr.Textbox(label="Color Value") color_value_state = gr.State() get_color_img.select( get_color_value, [get_color_img], [color_value_output, color_value_state] ) with gr.Column(): hint_color = gr.Image(label="Line Drawing Image", type="pil") # updated_image = gr.Image(label="Updated Image", type="pil") hint_color.select( draw_square, [hint_color, hint_mask, color_value_state], [hint_color, hint_mask] ) gr.Markdown("

Retrieval and Colorization

") with gr.Row(): reference_images = gr.Files(label="Reference Images (Upload multiple)", file_count="multiple") with gr.Column(): output_gallery = gr.Gallery(label="Colorization Results", type="pil") seed = gr.Slider(label="Random Seed", minimum=0, maximum=100000, value=0, step=1) num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=100, value=10, step=1) colorize_button = gr.Button("Colorize") top_k = gr.Slider(label="Top K (Total Reference Images: 4K) ", minimum=1, maximum=50, value=3, step=1) extract_button.click( extract_sketch_line_image, inputs=[input_image, model_name], outputs=[extracted_image, hint_color, hint_mask, query_image_origin, extracted_image_ori, resolution ] ) colorize_button.click( colorize_image, inputs=[model_name, extracted_image, reference_images, resolution, seed, num_inference_steps, top_k, hint_mask, hint_color, query_image_origin, extracted_image_ori], outputs=output_gallery ) with gr.Column(): gr.Markdown("### Quick Examples") gr.Examples( examples=examples, inputs=[input_image, reference_images, model_name, seed, num_inference_steps, top_k], label="Examples", examples_per_page=8, ) gr.HTML('GitHub Stars') gr.Markdown(article) demo.launch()