Spaces:
Running
on
Zero
Running
on
Zero
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: | |
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: | |
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import ast | |
import base64 | |
import copy | |
import glob | |
import io | |
import json | |
import logging | |
import math | |
import os | |
import pathlib | |
import pickle | |
import random | |
import re | |
import time | |
from dataclasses import dataclass, field | |
from typing import Dict, List, Optional, Sequence | |
import numpy as np | |
import soundfile as sf | |
import tokenizers | |
import torch | |
import transformers | |
import whisper | |
from packaging import version | |
from PIL import Image | |
from safetensors.torch import load_file as safetensor_load_file | |
from scipy.signal import resample | |
from torch.utils.data import Dataset | |
from egogpt import conversation as conversation_lib | |
from egogpt.constants import ( | |
DEFAULT_IMAGE_TOKEN, | |
DEFAULT_SPEECH_TOKEN, | |
IGNORE_INDEX, | |
IMAGE_TOKEN_INDEX, | |
SPEECH_TOKEN_INDEX, | |
) | |
from egogpt.mm_utils import ( | |
process_anyres_image, | |
process_highres_image, | |
process_highres_image_crop_split, | |
) | |
from egogpt.model import * | |
from egogpt.train.llava_trainer import LLaVATrainer | |
from egogpt.utils import process_video_with_decord, process_video_with_decord_byframe | |
local_rank = None | |
IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse( | |
"0.14" | |
) | |
def rank0_print(*args): | |
if local_rank == 0: | |
print(*args) | |
class ModelArguments: | |
model_name_or_path: Optional[str] = field(default="facebook/opt-125m") | |
version: Optional[str] = field(default="v0") | |
freeze_backbone: bool = field(default=False) | |
tune_mm_mlp_adapter: bool = field(default=False) | |
tune_speech_generator_only: bool = field(default=False) | |
speech_encoder: Optional[str] = field(default=None) | |
unfreeze_mm_speech_encoder: bool = field(default=False) | |
mm_vision_select_layer: Optional[int] = field( | |
default=-1 | |
) # default to the last layer | |
pretrain_speech_projector: Optional[str] = field(default=None) | |
speech_projector_type: Optional[str] = field(default="linear") | |
speech_encoder_type: Optional[str] = field(default="whisper") | |
speech_encoder_config: Optional[str] = field( | |
default="models/speech_encoder/large-v3.pt" | |
) | |
speech_encoder_ds_rate: Optional[int] = field(default=5) | |
speech_encoder_hidden_size: Optional[int] = field(default=1280) | |
tune_mm_mlp_adapter: bool = field(default=False) | |
tune_mm_vision_resampler: bool = field(default=False) | |
vision_tower: Optional[str] = field(default=None) | |
unfreeze_mm_vision_tower: bool = field(default=False) | |
unfreeze_language_model: bool = field(default=False) | |
mm_vision_select_layer: Optional[int] = field( | |
default=-1 | |
) # default to the last layer | |
pretrain_mm_mlp_adapter: Optional[str] = field(default=None) | |
mm_projector_type: Optional[str] = field(default="linear") | |
mm_use_im_start_end: bool = field(default=False) | |
mm_use_im_patch_token: bool = field(default=True) | |
mm_patch_merge_type: Optional[str] = field(default="flat") | |
mm_vision_select_feature: Optional[str] = field(default="patch") | |
mm_resampler_type: Optional[str] = field(default=None) | |
mm_mask_drop_mode: str = field(default="fixed") | |
mm_mask_drop_skip_percentage: float = field(default=0.0) | |
mm_mask_drop_ratio: float = field(default=0.25) | |
mm_mask_drop_ratio_upper: Optional[float] = field(default=None) | |
mm_mask_drop_ratio_lower: Optional[float] = field(default=None) | |
mm_spatial_pool_stride: Optional[int] = field(default=None) | |
mm_spatial_pool_mode: str = field(default="bilinear") | |
mm_spatial_pool_out_channels: Optional[int] = field(default=None) | |
mm_perceiver_depth: Optional[int] = field(default=3) | |
mm_perceiver_latents: Optional[int] = field(default=32) | |
mm_perceiver_ff_mult: Optional[float] = field(default=4) | |
mm_perceiver_pretrained: Optional[str] = field(default=None) | |
mm_qformer_depth: Optional[int] = field(default=3) | |
mm_qformer_latents: Optional[int] = field(default=32) | |
mm_qformer_pretrained: Optional[str] = field(default=None) | |
rope_scaling_factor: Optional[float] = field(default=None) | |
rope_scaling_type: Optional[str] = field(default=None) | |
s2: Optional[bool] = field(default=False) | |
s2_scales: Optional[str] = field(default="336,672,1008") | |
use_pos_skipping: Optional[bool] = field(default=False) | |
pos_skipping_range: Optional[int] = field(default=4096) | |
mm_newline_position: Optional[str] = field(default="grid") | |
delay_load: Optional[bool] = field(default=True) | |
delay_load_audio: Optional[bool] = field(default=True) | |
add_faster_video: Optional[bool] = field(default=False) | |
faster_token_stride: Optional[int] = field(default=10) | |
class DataArguments: | |
data_path: str = field( | |
default=None, metadata={"help": "Path to the training data."} | |
) | |
lazy_preprocess: bool = False | |
is_multimodal: bool = False | |
image_aspect_ratio: str = "square" | |
image_grid_pinpoints: Optional[str] = field(default=None) | |
image_crop_resolution: Optional[int] = field(default=None) | |
image_split_resolution: Optional[int] = field(default=None) | |
video_fps: Optional[int] = field(default=1) | |
frames_upbound: Optional[int] = field(default=100) | |
force_sample: bool = False | |
class TrainingArguments(transformers.TrainingArguments): | |
cache_dir: Optional[str] = field(default=None) | |
optim: str = field(default="adamw_torch") | |
remove_unused_columns: bool = field(default=False) | |
freeze_mm_mlp_adapter: bool = field(default=False) | |
mpt_attn_impl: Optional[str] = field(default="triton") | |
model_max_length: int = field( | |
default=512, | |
metadata={ | |
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)." | |
}, | |
) | |
double_quant: bool = field( | |
default=True, | |
metadata={ | |
"help": "Compress the quantization statistics through double quantization." | |
}, | |
) | |
quant_type: str = field( | |
default="nf4", | |
metadata={ | |
"help": "Quantization data type to use. Should be one of `fp4` or `nf4`." | |
}, | |
) | |
bits: int = field(default=16, metadata={"help": "How many bits to use."}) | |
lora_enable: bool = field(default=False) | |
lora_r: int = 64 | |
lora_alpha: int = 16 | |
lora_dropout: float = 0.05 | |
lora_weight_path: str = "" | |
lora_bias: str = "none" | |
speech_projector_lr: Optional[float] = None | |
gradient_checkpointing: bool = field(default=True) | |
mm_speech_encoder_lr: Optional[float] = None | |
diffusion_head_lr: Optional[float] = None | |
group_by_varlen: bool = field(default=False) | |
group_by_modality_length: bool = field(default=False) | |
group_by_modality_length_auto: bool = field(default=False) | |
min_lr_ratio: float = field(default=0.0) | |
sample_independently: bool = field(default=False) | |
freeze_mm_mlp_adapter: bool = field(default=False) | |
mm_projector_lr: Optional[float] = None | |
mm_vision_tower_lr: Optional[float] = None | |
freeze_mm_vision_resampler: bool = field(default=False) | |
def maybe_zero_3(param, ignore_status=False, name=None): | |
from deepspeed import zero | |
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus | |
if hasattr(param, "ds_id"): | |
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: | |
if not ignore_status: | |
logging.warning( | |
f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}" | |
) | |
with zero.GatheredParameters([param]): | |
param = param.data.detach().cpu().clone() | |
else: | |
param = param.detach().cpu().clone() | |
return param | |
# Borrowed from peft.utils.get_peft_model_state_dict | |
def get_peft_state_maybe_zero_3(named_params, bias): | |
if bias == "none": | |
to_return = {k: t for k, t in named_params if "lora_" in k} | |
elif bias == "all": | |
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} | |
elif bias == "lora_only": | |
to_return = {} | |
maybe_lora_bias = {} | |
lora_bias_names = set() | |
for k, t in named_params: | |
if "lora_" in k: | |
to_return[k] = t | |
bias_name = k.split("lora_")[0] + "bias" | |
lora_bias_names.add(bias_name) | |
elif "bias" in k: | |
maybe_lora_bias[k] = t | |
for k, t in maybe_lora_bias: | |
if bias_name in lora_bias_names: | |
to_return[bias_name] = t | |
else: | |
raise NotImplementedError | |
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} | |
return to_return | |
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): | |
to_return = {k: t for k, t in named_params if "lora_" not in k} | |
if require_grad_only: | |
to_return = {k: t for k, t in to_return.items() if t.requires_grad} | |
to_return = { | |
k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items() | |
} | |
return to_return | |
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): | |
to_return = { | |
k: t | |
for k, t in named_params | |
if any(key_match in k for key_match in keys_to_match) | |
} | |
to_return = { | |
k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items() | |
} | |
return to_return | |
def find_all_linear_names(model): | |
cls = torch.nn.Linear | |
lora_module_names = set() | |
multimodal_keywords = ["speech_projector", "speech_encoder"] | |
for name, module in model.named_modules(): | |
if any(mm_keyword in name for mm_keyword in multimodal_keywords): | |
continue | |
if isinstance(module, cls): | |
names = name.split(".") | |
lora_module_names.add(names[0] if len(names) == 1 else names[-1]) | |
if "lm_head" in lora_module_names: # needed for 16-bit | |
lora_module_names.remove("lm_head") | |
return list(lora_module_names) | |
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str): | |
"""Collects the state dict and dump to disk.""" | |
if getattr(trainer.args, "tune_mm_mlp_adapter", False): | |
# Only save Adapter | |
keys_to_match = ["speech_projector"] | |
if getattr(trainer.args, "use_im_start_end", False): | |
keys_to_match.extend(["embed_tokens", "embed_in"]) | |
weight_to_save = get_mm_adapter_state_maybe_zero_3( | |
trainer.model.named_parameters(), keys_to_match | |
) | |
trainer.model.config.save_pretrained(output_dir) | |
current_folder = output_dir.split("/")[-1] | |
parent_folder = os.path.dirname(output_dir) | |
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: | |
if current_folder.startswith("checkpoint-"): | |
speech_projector_folder = os.path.join( | |
parent_folder, "speech_projector" | |
) | |
os.makedirs(speech_projector_folder, exist_ok=True) | |
torch.save( | |
weight_to_save, | |
os.path.join(speech_projector_folder, f"{current_folder}.bin"), | |
) | |
else: | |
torch.save( | |
weight_to_save, os.path.join(output_dir, f"speech_projector.bin") | |
) | |
return | |
if trainer.deepspeed: | |
torch.cuda.synchronize() | |
trainer.save_model(output_dir) | |
return | |
state_dict = trainer.model.state_dict() | |
if trainer.args.should_save: | |
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()} | |
del state_dict | |
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa | |
def smart_tokenizer_and_embedding_resize( | |
special_tokens_dict: Dict, | |
tokenizer: transformers.PreTrainedTokenizer, | |
model: transformers.PreTrainedModel, | |
): | |
"""Resize tokenizer and embedding. | |
Note: This is the unoptimized version that may make your embedding size not be divisible by 64. | |
""" | |
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) | |
model.resize_token_embeddings(len(tokenizer)) | |
if num_new_tokens > 0: | |
input_embeddings = model.get_input_embeddings().weight.data | |
output_embeddings = model.get_output_embeddings().weight.data | |
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True | |
) | |
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( | |
dim=0, keepdim=True | |
) | |
input_embeddings[-num_new_tokens:] = input_embeddings_avg | |
output_embeddings[-num_new_tokens:] = output_embeddings_avg | |
def _tokenize_fn( | |
strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer | |
) -> Dict: | |
"""Tokenize a list of strings.""" | |
tokenized_list = [ | |
tokenizer( | |
text, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
) | |
for text in strings | |
] | |
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list] | |
input_ids_lens = labels_lens = [ | |
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() | |
for tokenized in tokenized_list | |
] | |
return dict( | |
input_ids=input_ids, | |
labels=labels, | |
input_ids_lens=input_ids_lens, | |
labels_lens=labels_lens, | |
) | |
def _mask_targets(target, tokenized_lens, speakers): | |
# cur_idx = 0 | |
cur_idx = tokenized_lens[0] | |
tokenized_lens = tokenized_lens[1:] | |
target[:cur_idx] = IGNORE_INDEX | |
for tokenized_len, speaker in zip(tokenized_lens, speakers): | |
if speaker == "human": | |
target[cur_idx + 2 : cur_idx + tokenized_len] = IGNORE_INDEX | |
cur_idx += tokenized_len | |
def _add_speaker_and_signal(header, source, get_conversation=True): | |
"""Add speaker and start/end signal on each round.""" | |
BEGIN_SIGNAL = "### " | |
END_SIGNAL = "\n" | |
conversation = header | |
for sentence in source: | |
from_str = sentence["from"] | |
if from_str.lower() == "human": | |
from_str = conversation_lib.default_conversation.roles[0] | |
elif from_str.lower() == "gpt": | |
from_str = conversation_lib.default_conversation.roles[1] | |
else: | |
from_str = "unknown" | |
sentence["value"] = ( | |
BEGIN_SIGNAL + from_str + ": " + sentence["value"] + END_SIGNAL | |
) | |
if get_conversation: | |
conversation += sentence["value"] | |
conversation += BEGIN_SIGNAL | |
return conversation | |
def tokenizer_speech_token( | |
prompt, tokenizer, speech_token_index=SPEECH_TOKEN_INDEX, return_tensors=None | |
): | |
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<speech>")] | |
def insert_separator(X, sep): | |
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] | |
input_ids = [] | |
offset = 0 | |
if ( | |
len(prompt_chunks) > 0 | |
and len(prompt_chunks[0]) > 0 | |
and prompt_chunks[0][0] == tokenizer.bos_token_id | |
): | |
offset = 1 | |
input_ids.append(prompt_chunks[0][0]) | |
for x in insert_separator(prompt_chunks, [speech_token_index] * (offset + 1)): | |
input_ids.extend(x[offset:]) | |
if return_tensors is not None: | |
if return_tensors == "pt": | |
return torch.tensor(input_ids, dtype=torch.long) | |
raise ValueError(f"Unsupported tensor type: {return_tensors}") | |
return input_ids | |
def preprocess_multimodal(sources: Sequence[str], data_args: DataArguments) -> Dict: | |
is_multimodal = data_args.is_multimodal | |
if not is_multimodal: | |
return sources | |
# Add speech and image special tokens to the beginning of the conversation | |
for source in sources: | |
for sentence in source: | |
if DEFAULT_SPEECH_TOKEN in sentence["value"]: | |
sentence["value"] = ( | |
sentence["value"].replace(DEFAULT_SPEECH_TOKEN, "").strip() | |
) | |
sentence["value"] = DEFAULT_SPEECH_TOKEN + "\n" + sentence["value"] | |
sentence["value"] = sentence["value"].strip() | |
if DEFAULT_IMAGE_TOKEN in sentence["value"]: | |
sentence["value"] = ( | |
sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "").strip() | |
) | |
sentence["value"] = DEFAULT_IMAGE_TOKEN + "\n" + sentence["value"] | |
sentence["value"] = sentence["value"].strip() | |
return sources | |
def preprocess_llama_2( | |
sources, tokenizer: transformers.PreTrainedTokenizer, has_speech: bool = False | |
) -> Dict: | |
conv = conversation_lib.default_conversation.copy() | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
# Tokenize conversations | |
if has_speech: | |
input_ids = torch.stack( | |
[ | |
tokenizer_speech_token(prompt, tokenizer, return_tensors="pt") | |
for prompt in conversations | |
], | |
dim=0, | |
) | |
else: | |
input_ids = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets = input_ids.clone() | |
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2 | |
# Mask targets | |
sep = "[/INST] " | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
rounds = conversation.split(conv.sep2) | |
cur_len = 1 | |
target[:cur_len] = IGNORE_INDEX | |
for i, rou in enumerate(rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep | |
if has_speech: | |
round_len = len(tokenizer_speech_token(rou, tokenizer)) | |
instruction_len = len(tokenizer_speech_token(parts[0], tokenizer)) - 2 | |
else: | |
round_len = len(tokenizer(rou).input_ids) | |
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 | |
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
cur_len += round_len | |
target[cur_len:] = IGNORE_INDEX | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_INDEX | |
print( | |
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
f" (ignored)" | |
) | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
) | |
def preprocess_llama_3( | |
sources, tokenizer: transformers.PreTrainedTokenizer, has_speech: bool = False | |
) -> Dict: | |
conv = conversation_lib.default_conversation.copy() | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
assert len(source) == 2, "now only support single-turn conversation" | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
# Tokenize conversations | |
if has_speech: | |
input_ids = torch.stack( | |
[ | |
tokenizer_speech_token(prompt, tokenizer, return_tensors="pt") | |
for prompt in conversations | |
], | |
dim=0, | |
) | |
else: | |
input_ids = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets = input_ids.clone() | |
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_3 | |
# Mask targets | |
sep = "<|start_header_id|>" + conv.roles[1] + "<|end_header_id|>\n\n" | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
cur_len = 1 | |
target[:cur_len] = IGNORE_INDEX | |
parts = conversation.split(sep) | |
parts[0] += sep | |
if has_speech: | |
conversation_len = len(tokenizer_speech_token(conversation, tokenizer)) | |
instruction_len = len(tokenizer_speech_token(parts[0], tokenizer)) - 1 | |
else: | |
conversation_len = len(tokenizer(conversation).input_ids) | |
instruction_len = len(tokenizer(parts[0]).input_ids) - 1 | |
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
cur_len += conversation_len | |
target[cur_len:] = IGNORE_INDEX | |
# if cur_len < tokenizer.model_max_length: | |
# if cur_len != total_len: | |
# target[:] = IGNORE_INDEX | |
# print( | |
# f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
# f" (ignored)" | |
# ) | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
) | |
def preprocess_v1( | |
sources, tokenizer: transformers.PreTrainedTokenizer, has_speech: bool = False | |
) -> Dict: | |
conv = conversation_lib.default_conversation.copy() | |
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} | |
# Apply prompt templates | |
conversations = [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != conv.roles[0]: | |
# Skip the first one if it is not from human | |
source = source[1:] | |
conv.messages = [] | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
assert role == conv.roles[j % 2], f"{i}" | |
conv.append_message(role, sentence["value"]) | |
conversations.append(conv.get_prompt()) | |
# Tokenize conversations | |
if has_speech: | |
input_ids = torch.stack( | |
[ | |
tokenizer_speech_token(prompt, tokenizer, return_tensors="pt") | |
for prompt in conversations | |
], | |
dim=0, | |
) | |
else: | |
input_ids = tokenizer( | |
conversations, | |
return_tensors="pt", | |
padding="longest", | |
max_length=tokenizer.model_max_length, | |
truncation=True, | |
).input_ids | |
targets = input_ids.clone() | |
if conv.sep_style == conversation_lib.SeparatorStyle.TWO: | |
# Mask targets | |
sep = conv.sep + conv.roles[1] + ": " | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
rounds = conversation.split(conv.sep2) | |
cur_len = 1 | |
target[:cur_len] = IGNORE_INDEX | |
for i, rou in enumerate(rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep | |
if has_speech: | |
round_len = len(tokenizer_speech_token(rou, tokenizer)) | |
instruction_len = ( | |
len(tokenizer_speech_token(parts[0], tokenizer)) - 2 | |
) | |
else: | |
round_len = len(tokenizer(rou).input_ids) | |
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 | |
if i != 0 and not tokenizer.legacy and IS_TOKENIZER_GREATER_THAN_0_14: | |
round_len -= 1 | |
instruction_len -= 1 | |
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
cur_len += round_len | |
target[cur_len:] = IGNORE_INDEX | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_INDEX | |
print( | |
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." | |
f" (ignored)" | |
) | |
elif conv.sep_style == conversation_lib.SeparatorStyle.QWEN2: | |
# Mask targets | |
sep = "<|im_start|>assistant\n" | |
for conversation, target in zip(conversations, targets): | |
total_len = int(target.ne(tokenizer.pad_token_id).sum()) | |
raw_rounds = conversation.split("<|im_end|>\n") | |
cur_len = 0 | |
rounds = [] | |
now_str = "" | |
for rou in raw_rounds: | |
if len(rou) > 0: | |
rou = rou + "<|im_end|>\n" | |
if rou.startswith("<|endoftext|>"): | |
rounds[-1] = rounds[-1] + "<|endoftext|>" | |
rou = rou.replace("<|endoftext|>", "") | |
if len(rou.strip()) == 0: | |
continue | |
if "<|im_start|>assistant\n" in rou: | |
now_str += rou | |
rounds.append(now_str) | |
now_str = "" | |
else: | |
now_str += rou | |
for i, rou in enumerate(rounds): | |
if rou == "": | |
break | |
parts = rou.split(sep) | |
if len(parts) != 2: | |
break | |
parts[0] += sep | |
if has_speech: | |
round_len = len(tokenizer_speech_token(rou, tokenizer)) | |
instruction_len = ( | |
len(tokenizer_speech_token(parts[0], tokenizer)) - 2 | |
) | |
else: | |
round_len = len(tokenizer(rou).input_ids) | |
instruction_len = len(tokenizer(parts[0]).input_ids) - 2 | |
try: | |
is_legacy = tokenizer.legacy | |
except: | |
is_legacy = True | |
if i != 0 and not is_legacy and IS_TOKENIZER_GREATER_THAN_0_14: | |
round_len -= 1 | |
instruction_len -= 1 | |
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX | |
cur_len += round_len | |
target[cur_len:] = IGNORE_INDEX | |
if cur_len < tokenizer.model_max_length: | |
if cur_len != total_len: | |
target[:] = IGNORE_INDEX | |
print( | |
f"WARNING: tokenization mismatch for QWEN2: {cur_len} vs. {total_len}." | |
f" (ignored)" | |
) | |
return dict( | |
input_ids=input_ids, | |
labels=targets, | |
) | |
def preprocess_plain( | |
sources: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer, | |
) -> Dict: | |
# add end signal and concatenate together | |
conversations = [] | |
for source in sources: | |
assert len(source) == 2 | |
assert DEFAULT_SPEECH_TOKEN in source[0]["value"] | |
source[0]["value"] = DEFAULT_SPEECH_TOKEN | |
conversation = ( | |
source[0]["value"] | |
+ source[1]["value"] | |
+ conversation_lib.default_conversation.sep | |
) | |
conversations.append(conversation) | |
# tokenize conversations | |
input_ids = [ | |
tokenizer_speech_token(prompt, tokenizer, return_tensors="pt") | |
for prompt in conversations | |
] | |
targets = copy.deepcopy(input_ids) | |
for target, source in zip(targets, sources): | |
tokenized_len = len(tokenizer_speech_token(source[0]["value"], tokenizer)) | |
target[:tokenized_len] = IGNORE_INDEX | |
return dict(input_ids=input_ids, labels=targets) | |
def preprocess_qwen( | |
sources, | |
tokenizer: transformers.PreTrainedTokenizer, | |
has_speech: bool = False, | |
has_image: bool = False, | |
max_len=2048, | |
system_message: str = "You are a helpful assistant.", | |
) -> Dict: | |
def split_text(text, keywords): | |
pattern = "(" + "|".join(map(re.escape, keywords)) + ")" | |
parts = re.split(pattern, text) | |
parts = [part for part in parts if part] | |
return parts | |
roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"} | |
# im_start, im_end = tokenizer.additional_special_tokens_ids | |
im_start = tokenizer("<|im_start|>").input_ids[0] | |
im_end = tokenizer("<|im_end|>").input_ids[0] | |
nl_tokens = tokenizer("\n").input_ids | |
_system = tokenizer("system").input_ids + nl_tokens | |
# Apply prompt templates | |
input_ids, targets = [], [] | |
for i, source in enumerate(sources): | |
if roles[source[0]["from"]] != roles["human"]: | |
source = source[1:] | |
input_id, target = [], [] | |
system = ( | |
[im_start] | |
+ _system | |
+ tokenizer(system_message).input_ids | |
+ [im_end] | |
+ nl_tokens | |
) | |
input_id += system | |
target += [im_start] + [IGNORE_INDEX] * (len(system) - 3) + [im_end] + nl_tokens | |
assert len(input_id) == len(target) | |
for j, sentence in enumerate(source): | |
role = roles[sentence["from"]] | |
splited_sentence = split_text(sentence["value"], ["<speech>", "<image>"]) | |
_input_id = [] | |
for part in splited_sentence: | |
_input_id += tokenizer(role).input_ids + nl_tokens # add prefix | |
if "<speech>" == part: | |
_input_id += [SPEECH_TOKEN_INDEX] | |
elif "<image>" == part: | |
_input_id += [IMAGE_TOKEN_INDEX] | |
else: | |
_input_id += tokenizer(part).input_ids | |
_input_id += [im_end] + nl_tokens # add suffix | |
input_id += _input_id | |
if role == "<|im_start|>user": | |
_target = ( | |
[im_start] | |
+ [IGNORE_INDEX] * (len(_input_id) - 3) | |
+ [im_end] | |
+ nl_tokens | |
) | |
elif role == "<|im_start|>assistant": | |
_target = ( | |
[im_start] | |
+ [IGNORE_INDEX] * len(tokenizer(role).input_ids) | |
+ _input_id[len(tokenizer(role).input_ids) + 1 : -2] | |
+ [im_end] | |
+ nl_tokens | |
) | |
else: | |
raise NotImplementedError | |
target += _target | |
assert len(input_id) == len(target) | |
input_ids.append(input_id) | |
targets.append(target) | |
input_ids = torch.tensor(input_ids, dtype=torch.long) | |
targets = torch.tensor(targets, dtype=torch.long) | |
return dict( | |
input_ids=input_ids, # tensor(bs x seq_len) | |
labels=targets, # tensor(bs x seq_len) | |
) | |
def preprocess( | |
sources: Sequence[str], | |
tokenizer: transformers.PreTrainedTokenizer, | |
has_speech: bool = False, | |
has_image: bool = False, | |
) -> Dict: | |
""" | |
Given a list of sources, each is a conversation list. This transform: | |
1. Add signal '### ' at the beginning each sentence, with end signal '\n'; | |
2. Concatenate conversations together; | |
3. Tokenize the concatenated conversation; | |
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. | |
""" | |
if ( | |
conversation_lib.default_conversation.sep_style | |
== conversation_lib.SeparatorStyle.PLAIN | |
): | |
return preprocess_plain(sources, tokenizer, has_image=has_image) | |
if ( | |
conversation_lib.default_conversation.sep_style | |
== conversation_lib.SeparatorStyle.LLAMA_2 | |
): | |
return preprocess_llama_2( | |
sources, tokenizer, has_speech=has_speech, has_image=has_image | |
) | |
if conversation_lib.default_conversation.version.startswith("v1"): | |
return preprocess_v1( | |
sources, tokenizer, has_speech=has_speech, has_image=has_image | |
) | |
if ( | |
conversation_lib.default_conversation.sep_style | |
== conversation_lib.SeparatorStyle.LLAMA_3 | |
): | |
return preprocess_llama_3( | |
sources, tokenizer, has_speech=has_speech, has_image=has_image | |
) | |
if conversation_lib.default_conversation.version == "qwen": | |
return preprocess_qwen( | |
sources, tokenizer, has_speech=has_speech, has_image=has_image | |
) | |
raise NotImplementedError | |
class LazySupervisedDataset(Dataset): | |
"""Dataset for supervised fine-tuning.""" | |
def __init__( | |
self, | |
data_path: str, | |
tokenizer: transformers.PreTrainedTokenizer, | |
data_args: DataArguments, | |
): | |
super(LazySupervisedDataset, self).__init__() | |
list_data_dict = json.load(open(data_path, "r")) | |
rank0_print("Formatting inputs...Skip in lazy mode") | |
self.tokenizer = tokenizer | |
self.list_data_dict = list_data_dict | |
self.data_args = data_args | |
self.mel_size = 128 | |
def __len__(self): | |
return len(self.list_data_dict) | |
def modality_lengths(self): | |
length_list = [] | |
for sample in self.list_data_dict: | |
cur_len = sum( | |
len(conv["value"].split()) for conv in sample["conversations"] | |
) | |
assert cur_len > 0, f"Conversation length is 0 for {sample}" | |
if "image" in sample or "video" in sample or self.data_args.early_mix_text: | |
length_list.append(cur_len) | |
else: | |
length_list.append(-cur_len) | |
return length_list | |
def process_audio(self, audio_file, start_frame=None, end_frame=None, fps=20): | |
speech, sample_rate = sf.read(audio_file) | |
if start_frame is not None and end_frame is not None: | |
start_sample = start_frame * sample_rate // fps | |
end_sample = end_frame * sample_rate // fps | |
speech = speech[start_sample:end_sample] | |
if sample_rate != 16000: | |
target_length = int(len(speech) * 16000 / sample_rate) | |
speech = resample(speech, target_length) | |
if speech.ndim > 1: | |
speech = np.mean(speech, axis=1) | |
speech = whisper.pad_or_trim(speech.astype(np.float32)) | |
speech = whisper.log_mel_spectrogram(speech, n_mels=self.mel_size).permute(1, 0) | |
speech_length = torch.LongTensor([speech.shape[0]]) | |
return speech, speech_length | |
def process_image(self, image_file, overwrite_image_aspect_ratio=None): | |
processor = self.data_args.image_processor | |
# print(f"\n\nInspecting the image path, folder = {image_folder}, image={image_file}\n\n") | |
try: | |
image = Image.open(image_file).convert("RGB") | |
except Exception as exn: | |
print(f"Failed to open image {image_file}. Exception:", exn) | |
raise exn | |
image_size = image.size | |
image_aspect_ratio = self.data_args.image_aspect_ratio | |
if overwrite_image_aspect_ratio is not None: | |
image_aspect_ratio = overwrite_image_aspect_ratio | |
if image_aspect_ratio == "highres": | |
image = process_highres_image( | |
image, | |
self.data_args.image_processor, | |
self.data_args.image_grid_pinpoints, | |
) | |
elif image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio: | |
image = process_anyres_image( | |
image, | |
self.data_args.image_processor, | |
self.data_args.image_grid_pinpoints, | |
) | |
elif image_aspect_ratio == "crop_split": | |
image = process_highres_image_crop_split(image, self.data_args) | |
elif image_aspect_ratio == "pad": | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
image = expand2square( | |
image, tuple(int(x * 255) for x in processor.image_mean) | |
) | |
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0] | |
else: | |
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0] | |
return image, image_size, "image" | |
def __getitem__(self, i) -> Dict[str, torch.Tensor]: | |
while True: | |
try: | |
sample = self._get_item(i) | |
# print("process sample",i) | |
break | |
except Exception as e: | |
while True: | |
try: | |
i += 1 | |
random_index = i % len(self.list_data_dict) | |
sample = self._get_item(random_index) | |
# print("something error, process sample",random_index) | |
break | |
except Exception as e: | |
# random_index = random.randint(0, len(self.list_data_dict) - 1) | |
continue | |
return sample | |
def _get_item(self, i) -> Dict[str, torch.Tensor]: | |
sources = self.list_data_dict[i] | |
if isinstance(i, int): | |
sources = [sources] | |
assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME | |
if "image" in sources[0]: | |
image_file = self.list_data_dict[i]["image"] | |
if type(image_file) is list: | |
image = [self.process_image(f) for f in image_file] | |
# Handling multi images | |
# overwrite to process with simple pad | |
if len(image_file) > 1: | |
image = [self.process_image(f, "pad") for f in image_file] | |
image = [[im[0], im[1], "image"] for im in image] | |
else: | |
image = [self.process_image(image_file)] | |
if "video" or "audio" in sources[0]: | |
if "video" in sources[0]: | |
video_file = self.list_data_dict[i]["video"] | |
# video_folder = self.data_args.video_folder | |
# video_file = os.path.join(video_folder, video_file) | |
if not os.path.exists(video_file): | |
print("File {} not exist!".format(video_file)) | |
if "start_frame" in self.list_data_dict[i]: | |
start_frame = self.list_data_dict[i]["start_frame"] | |
end_frame = self.list_data_dict[i]["end_frame"] | |
if self.list_data_dict[i].get( | |
"current_observation_frame", None | |
): # Customized for egoplan data | |
current_observation_frame = self.list_data_dict[i][ | |
"current_observation_frame" | |
] | |
else: | |
current_observation_frame = None | |
video = process_video_with_decord_byframe( | |
video_file, | |
start_frame, | |
end_frame, | |
self.data_args, | |
current_observation_frame, | |
) | |
else: | |
( | |
video, | |
video_time, | |
frame_time, | |
num_frames, | |
) = process_video_with_decord(video_file, self.data_args) | |
processor = self.data_args.image_processor | |
processed_video = processor.preprocess(video, return_tensors="pt")[ | |
"pixel_values" | |
] | |
image = [(processed_video, video[0].size, "video")] | |
if "audio" in sources[0]: | |
audio_file = self.list_data_dict[i]["audio"] | |
# audio_folder = self.data_args.audio_folder | |
# audio_file = os.path.join(audio_folder, audio_file) | |
try: | |
if "start_frame" in self.list_data_dict[i]: | |
start_frame = self.list_data_dict[i]["start_frame"] | |
end_frame = self.list_data_dict[i]["end_frame"] | |
else: | |
start_frame = None | |
end_frame = None | |
audio, audio_length = self.process_audio( | |
audio_file, start_frame, end_frame | |
) | |
except Exception as e: | |
print("audio error", e) | |
audio = [torch.zeros(3000, 128)] | |
audio_length = torch.tensor([3000]) | |
audio = [audio] | |
sources = preprocess_multimodal( | |
copy.deepcopy([e["conversations"] for e in sources]), self.data_args | |
) | |
else: | |
sources = copy.deepcopy([e["conversations"] for e in sources]) | |
has_speech = "audio" in self.list_data_dict[i] | |
has_image = ("image" in self.list_data_dict[i]) or ( | |
"video" in self.list_data_dict[i] | |
) | |
data_dict = preprocess( | |
sources, self.tokenizer, has_speech=has_speech, has_image=has_image | |
) | |
if isinstance(i, int): | |
data_dict = dict( | |
input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0] | |
) | |
if "image" or "video" in self.list_data_dict[i]: | |
data_dict["image"] = image | |
# audio exist in the data | |
if "audio" in self.list_data_dict[i]: | |
data_dict["speech"] = audio | |
data_dict["speech_lengths"] = audio_length | |
else: # if no audio, add a dummy audio | |
data_dict["speech"] = [torch.zeros(3000, 128)] | |
data_dict["speech_lengths"] = torch.tensor([3000]) | |
return data_dict | |
class DataCollatorForSupervisedDataset(object): | |
"""Collate examples for supervised fine-tuning.""" | |
tokenizer: transformers.PreTrainedTokenizer | |
def pad_sequence(self, input_ids, batch_first, padding_value): | |
if self.tokenizer.padding_side == "left": | |
input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids] | |
input_ids = torch.nn.utils.rnn.pad_sequence( | |
input_ids, batch_first=batch_first, padding_value=padding_value | |
) | |
if self.tokenizer.padding_side == "left": | |
input_ids = torch.flip(input_ids, [1]) | |
return input_ids | |
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: | |
input_ids, labels = tuple( | |
[instance[key] for instance in instances] for key in ("input_ids", "labels") | |
) | |
input_ids = [ | |
_input_ids[: self.tokenizer.model_max_length] for _input_ids in input_ids | |
] | |
labels = [_labels[: self.tokenizer.model_max_length] for _labels in labels] | |
if self.tokenizer.pad_token_id is None: | |
if "qwen" in self.tokenizer.name_or_path.lower(): | |
# print("Setting pad token to bos token for qwen model.") | |
self.tokenizer.pad_token_id = 151643 | |
else: | |
self.tokenizer.pad_token_id = ( | |
self.tokenizer.eos_token_id | |
) # FIXME: this could only be triggered for llama3 model. | |
input_ids = self.pad_sequence( | |
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id | |
) | |
labels = self.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) | |
batch = dict( | |
input_ids=input_ids, | |
labels=labels, | |
attention_mask=input_ids.ne(self.tokenizer.pad_token_id), | |
) | |
if "speech" in instances[0]: | |
speeches = [instance["speech"] for instance in instances] | |
speeches_lengths = [instance["speech_lengths"] for instance in instances] | |
batch["speech"] = [au for audio_list in speeches for au in audio_list] | |
batch["speech_lengths"] = [ | |
au for audio_list in speeches_lengths for au in audio_list | |
] | |
batch["speech_lengths"] = torch.stack(batch["speech_lengths"]) | |
if all( | |
x is not None and x.shape == speeches[0][0].shape | |
for x in batch["speech"] | |
): | |
batch["speech"] = torch.stack(batch["speech"]) | |
if "image" in instances[0]: | |
images = [instance["image"] for instance in instances] | |
batch["image_sizes"] = [im[1] for im_list in images for im in im_list] | |
batch["modalities"] = [im[2] for im_list in images for im in im_list] | |
images = [im[0] for im_list in images for im in im_list] | |
# if all(x is not None and x.shape == images[0].shape for x in images): | |
# Image: (N, P, C, H, W) | |
# Video: (N, F, C, H, W) | |
# batch["images"] = torch.stack(images) | |
# else: | |
batch["images"] = images | |
return batch | |
def make_supervised_data_module( | |
tokenizer: transformers.PreTrainedTokenizer, data_args | |
) -> Dict: | |
"""Make dataset and collator for supervised fine-tuning.""" | |
train_dataset = LazySupervisedDataset( | |
tokenizer=tokenizer, data_path=data_args.data_path, data_args=data_args | |
) | |
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) | |
return dict( | |
train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator | |
) | |
def train(): | |
global local_rank | |
parser = transformers.HfArgumentParser( | |
(ModelArguments, DataArguments, TrainingArguments) | |
) | |
model_args, data_args, training_args = parser.parse_args_into_dataclasses() | |
local_rank = training_args.local_rank | |
compute_dtype = ( | |
torch.float16 | |
if training_args.fp16 | |
else (torch.bfloat16 if training_args.bf16 else torch.float32) | |
) | |
if "qwen" in model_args.model_name_or_path.lower(): | |
model = EgoGPTQwenForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation="flash_attention_2", | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
) | |
else: | |
model = EgoGPTLlamaForCausalLM.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
attn_implementation="flash_attention_2", | |
torch_dtype=(torch.bfloat16 if training_args.bf16 else None), | |
) | |
model.config.use_cache = False | |
if model_args.freeze_backbone: | |
model.model.requires_grad_(False) | |
if training_args.gradient_checkpointing: | |
if hasattr(model, "enable_input_require_grads"): | |
model.enable_input_require_grads() | |
else: | |
def make_inputs_require_grad(module, input, output): | |
output.requires_grad_(True) | |
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) | |
training_args.gradient_checkpointing_kwargs = {"use_reentrant": True} | |
training_args.ddp_find_unused_parameters = True | |
if training_args.lora_enable: | |
from peft import LoraConfig, get_peft_model | |
lora_config = LoraConfig( | |
r=training_args.lora_r, | |
lora_alpha=training_args.lora_alpha, | |
target_modules=find_all_linear_names(model), | |
lora_dropout=training_args.lora_dropout, | |
bias=training_args.lora_bias, | |
task_type="CAUSAL_LM", | |
use_dora=True, | |
) | |
if training_args.bits == 16: | |
if training_args.bf16: | |
model.to(torch.bfloat16) | |
if training_args.fp16: | |
model.to(torch.float16) | |
rank0_print("Adding LoRA adapters...") | |
model = get_peft_model(model, lora_config) | |
model.to(dtype=compute_dtype, device=training_args.device) | |
if "qwen" in model_args.model_name_or_path.lower(): | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
model_max_length=training_args.model_max_length, | |
padding_side="right", | |
) | |
else: | |
tokenizer = transformers.AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
cache_dir=training_args.cache_dir, | |
model_max_length=training_args.model_max_length, | |
padding_side="right", | |
use_fast=False, | |
) | |
if model_args.version == "v0": | |
if tokenizer.pad_token is None: | |
smart_tokenizer_and_embedding_resize( | |
special_tokens_dict=dict(pad_token="[PAD]"), | |
tokenizer=tokenizer, | |
model=model, | |
) | |
elif model_args.version == "v0.5": | |
tokenizer.pad_token = tokenizer.unk_token | |
else: | |
tokenizer.pad_token = tokenizer.unk_token | |
if model_args.version in conversation_lib.conv_templates: | |
conversation_lib.default_conversation = conversation_lib.conv_templates[ | |
model_args.version | |
] | |
else: | |
conversation_lib.default_conversation = conversation_lib.conv_templates[ | |
"vicuna_v1" | |
] | |
model.get_model().initialize_speech_modules( | |
model_args=model_args, fsdp=training_args.fsdp | |
) | |
speech_encoder = model.get_speech_encoder() | |
speech_encoder.to( | |
dtype=torch.bfloat16 if training_args.bf16 else torch.float16, | |
device=training_args.device, | |
) | |
if model_args.vision_tower is not None: | |
model.get_model().initialize_vision_modules( | |
model_args=model_args, fsdp=training_args.fsdp | |
) | |
# import pdb;pdb.set_trace() | |
vision_tower = model.get_vision_tower() | |
vision_tower.to( | |
dtype=torch.bfloat16 if training_args.bf16 else torch.float16, | |
device=training_args.device, | |
) | |
data_args.image_processor = vision_tower.image_processor | |
model.config.image_aspect_ratio = data_args.image_aspect_ratio | |
if data_args.image_grid_pinpoints is not None: | |
if ( | |
isinstance(data_args.image_grid_pinpoints, str) | |
and "x" in data_args.image_grid_pinpoints | |
): | |
try: | |
patch_size = data_args.image_processor.size[0] | |
except Exception as e: | |
patch_size = data_args.image_processor.size["shortest_edge"] | |
assert patch_size in [ | |
224, | |
336, | |
384, | |
448, | |
512, | |
], "patch_size should be in [224, 336, 384, 448, 512]" | |
# Use regex to extract the range from the input string | |
matches = re.findall(r"\((\d+)x(\d+)\)", data_args.image_grid_pinpoints) | |
range_start = tuple(map(int, matches[0])) | |
range_end = tuple(map(int, matches[-1])) | |
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1]) | |
grid_pinpoints = [ | |
(i, j) | |
for i in range(range_start[0], range_end[0] + 1) | |
for j in range(range_start[1], range_end[1] + 1) | |
] | |
# Multiply all elements by patch_size | |
data_args.image_grid_pinpoints = [ | |
[dim * patch_size for dim in pair] for pair in grid_pinpoints | |
] | |
elif isinstance(data_args.image_grid_pinpoints, str): | |
data_args.image_grid_pinpoints = ast.literal_eval( | |
data_args.image_grid_pinpoints | |
) | |
model.config.image_grid_pinpoints = data_args.image_grid_pinpoints | |
model.config.image_crop_resolution = data_args.image_crop_resolution | |
model.config.image_split_resolution = data_args.image_split_resolution | |
model.config.tokenizer_padding_side = tokenizer.padding_side | |
model.config.tokenizer_model_max_length = tokenizer.model_max_length | |
model.config.mm_newline_position = model_args.mm_newline_position | |
model.config.add_faster_video = model_args.add_faster_video | |
model.config.faster_token_stride = model_args.faster_token_stride | |
model.config.mm_spatial_pool_stride = model_args.mm_spatial_pool_stride | |
data_args.is_multimodal = True | |
model.config.tune_mm_mlp_adapter = ( | |
training_args.tune_mm_mlp_adapter | |
) = model_args.tune_mm_mlp_adapter | |
if model_args.tune_mm_mlp_adapter: | |
model.requires_grad_(False) | |
if model_args.tune_mm_mlp_adapter: | |
for p in model.get_model().speech_projector.parameters(): | |
p.requires_grad = True | |
for p in model.get_model().mm_projector.parameters(): | |
p.requires_grad = True | |
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter | |
if training_args.freeze_mm_mlp_adapter: | |
for p in model.get_model().speech_projector.parameters(): | |
p.requires_grad = False | |
for p in model.get_model().mm_projector.parameters(): | |
p.requires_grad = False | |
model.config.freeze_mm_vision_resampler = training_args.freeze_mm_vision_resampler | |
if training_args.freeze_mm_vision_resampler: | |
for p in model.get_model().vision_resampler.parameters(): | |
p.requires_grad = False | |
model.config.unfreeze_mm_speech_encoder = model_args.unfreeze_mm_speech_encoder | |
if model_args.unfreeze_mm_speech_encoder: | |
speech_encoder.requires_grad_(True) | |
model.config.mm_use_im_start_end = ( | |
data_args.mm_use_im_start_end | |
) = model_args.mm_use_im_start_end | |
model.config.mm_projector_lr = training_args.mm_projector_lr | |
model.config.mm_vision_tower_lr = training_args.mm_vision_tower_lr | |
model.config.speech_projector_lr = training_args.speech_projector_lr | |
model.config.mm_speech_encoder_lr = training_args.mm_speech_encoder_lr | |
model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token | |
training_args.use_im_start_end = model_args.mm_use_im_start_end | |
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args) | |
# test_data = data_module['train_dataset'].__getitem__(0) | |
trainer = LLaVATrainer( | |
model=model, tokenizer=tokenizer, args=training_args, **data_module | |
) | |
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): | |
trainer.train(resume_from_checkpoint=True) | |
else: | |
trainer.train() | |
trainer.save_state() | |
model.config.use_cache = True | |
if training_args.lora_enable: | |
state_dict = get_peft_state_maybe_zero_3( | |
model.named_parameters(), training_args.lora_bias | |
) | |
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( | |
model.named_parameters() | |
) | |
if training_args.local_rank == 0 or training_args.local_rank == -1: | |
model.config.save_pretrained(training_args.output_dir) | |
model.save_pretrained(training_args.output_dir, state_dict=state_dict) | |
torch.save( | |
non_lora_state_dict, | |
os.path.join(training_args.output_dir, "non_lora_trainables.bin"), | |
) | |
else: | |
safe_save_model_for_hf_trainer( | |
trainer=trainer, output_dir=training_args.output_dir | |
) | |
if __name__ == "__main__": | |
import torch | |
print("number of gpus", torch.cuda.device_count()) | |
train() | |