File size: 57,048 Bytes
c62903f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
#    Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.

import ast
import base64
import copy
import glob
import io
import json
import logging
import math
import os
import pathlib
import pickle
import random
import re
import time
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Sequence

import numpy as np
import soundfile as sf
import tokenizers
import torch
import transformers
import whisper
from packaging import version
from PIL import Image
from safetensors.torch import load_file as safetensor_load_file
from scipy.signal import resample
from torch.utils.data import Dataset

from egogpt import conversation as conversation_lib
from egogpt.constants import (
    DEFAULT_IMAGE_TOKEN,
    DEFAULT_SPEECH_TOKEN,
    IGNORE_INDEX,
    IMAGE_TOKEN_INDEX,
    SPEECH_TOKEN_INDEX,
)
from egogpt.mm_utils import (
    process_anyres_image,
    process_highres_image,
    process_highres_image_crop_split,
)
from egogpt.model import *
from egogpt.train.llava_trainer import LLaVATrainer
from egogpt.utils import process_video_with_decord, process_video_with_decord_byframe

local_rank = None
IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse(
    "0.14"
)


def rank0_print(*args):
    if local_rank == 0:
        print(*args)


@dataclass
class ModelArguments:
    model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
    version: Optional[str] = field(default="v0")
    freeze_backbone: bool = field(default=False)
    tune_mm_mlp_adapter: bool = field(default=False)
    tune_speech_generator_only: bool = field(default=False)
    speech_encoder: Optional[str] = field(default=None)
    unfreeze_mm_speech_encoder: bool = field(default=False)
    mm_vision_select_layer: Optional[int] = field(
        default=-1
    )  # default to the last layer
    pretrain_speech_projector: Optional[str] = field(default=None)
    speech_projector_type: Optional[str] = field(default="linear")
    speech_encoder_type: Optional[str] = field(default="whisper")
    speech_encoder_config: Optional[str] = field(
        default="models/speech_encoder/large-v3.pt"
    )
    speech_encoder_ds_rate: Optional[int] = field(default=5)
    speech_encoder_hidden_size: Optional[int] = field(default=1280)
    tune_mm_mlp_adapter: bool = field(default=False)
    tune_mm_vision_resampler: bool = field(default=False)
    vision_tower: Optional[str] = field(default=None)
    unfreeze_mm_vision_tower: bool = field(default=False)
    unfreeze_language_model: bool = field(default=False)
    mm_vision_select_layer: Optional[int] = field(
        default=-1
    )  # default to the last layer
    pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
    mm_projector_type: Optional[str] = field(default="linear")
    mm_use_im_start_end: bool = field(default=False)
    mm_use_im_patch_token: bool = field(default=True)
    mm_patch_merge_type: Optional[str] = field(default="flat")
    mm_vision_select_feature: Optional[str] = field(default="patch")
    mm_resampler_type: Optional[str] = field(default=None)
    mm_mask_drop_mode: str = field(default="fixed")
    mm_mask_drop_skip_percentage: float = field(default=0.0)
    mm_mask_drop_ratio: float = field(default=0.25)
    mm_mask_drop_ratio_upper: Optional[float] = field(default=None)
    mm_mask_drop_ratio_lower: Optional[float] = field(default=None)
    mm_spatial_pool_stride: Optional[int] = field(default=None)
    mm_spatial_pool_mode: str = field(default="bilinear")
    mm_spatial_pool_out_channels: Optional[int] = field(default=None)
    mm_perceiver_depth: Optional[int] = field(default=3)
    mm_perceiver_latents: Optional[int] = field(default=32)
    mm_perceiver_ff_mult: Optional[float] = field(default=4)
    mm_perceiver_pretrained: Optional[str] = field(default=None)
    mm_qformer_depth: Optional[int] = field(default=3)
    mm_qformer_latents: Optional[int] = field(default=32)
    mm_qformer_pretrained: Optional[str] = field(default=None)
    rope_scaling_factor: Optional[float] = field(default=None)
    rope_scaling_type: Optional[str] = field(default=None)

    s2: Optional[bool] = field(default=False)
    s2_scales: Optional[str] = field(default="336,672,1008")

    use_pos_skipping: Optional[bool] = field(default=False)
    pos_skipping_range: Optional[int] = field(default=4096)

    mm_newline_position: Optional[str] = field(default="grid")
    delay_load: Optional[bool] = field(default=True)
    delay_load_audio: Optional[bool] = field(default=True)
    add_faster_video: Optional[bool] = field(default=False)
    faster_token_stride: Optional[int] = field(default=10)


@dataclass
class DataArguments:
    data_path: str = field(
        default=None, metadata={"help": "Path to the training data."}
    )
    lazy_preprocess: bool = False
    is_multimodal: bool = False
    image_aspect_ratio: str = "square"
    image_grid_pinpoints: Optional[str] = field(default=None)
    image_crop_resolution: Optional[int] = field(default=None)
    image_split_resolution: Optional[int] = field(default=None)
    video_fps: Optional[int] = field(default=1)
    frames_upbound: Optional[int] = field(default=100)
    force_sample: bool = False


@dataclass
class TrainingArguments(transformers.TrainingArguments):
    cache_dir: Optional[str] = field(default=None)
    optim: str = field(default="adamw_torch")
    remove_unused_columns: bool = field(default=False)
    freeze_mm_mlp_adapter: bool = field(default=False)
    mpt_attn_impl: Optional[str] = field(default="triton")
    model_max_length: int = field(
        default=512,
        metadata={
            "help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
        },
    )
    double_quant: bool = field(
        default=True,
        metadata={
            "help": "Compress the quantization statistics through double quantization."
        },
    )
    quant_type: str = field(
        default="nf4",
        metadata={
            "help": "Quantization data type to use. Should be one of `fp4` or `nf4`."
        },
    )
    bits: int = field(default=16, metadata={"help": "How many bits to use."})
    lora_enable: bool = field(default=False)
    lora_r: int = 64
    lora_alpha: int = 16
    lora_dropout: float = 0.05
    lora_weight_path: str = ""
    lora_bias: str = "none"
    speech_projector_lr: Optional[float] = None
    gradient_checkpointing: bool = field(default=True)
    mm_speech_encoder_lr: Optional[float] = None
    diffusion_head_lr: Optional[float] = None
    group_by_varlen: bool = field(default=False)
    group_by_modality_length: bool = field(default=False)
    group_by_modality_length_auto: bool = field(default=False)
    min_lr_ratio: float = field(default=0.0)
    sample_independently: bool = field(default=False)
    freeze_mm_mlp_adapter: bool = field(default=False)
    mm_projector_lr: Optional[float] = None
    mm_vision_tower_lr: Optional[float] = None
    freeze_mm_vision_resampler: bool = field(default=False)


def maybe_zero_3(param, ignore_status=False, name=None):
    from deepspeed import zero
    from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus

    if hasattr(param, "ds_id"):
        if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
            if not ignore_status:
                logging.warning(
                    f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}"
                )
        with zero.GatheredParameters([param]):
            param = param.data.detach().cpu().clone()
    else:
        param = param.detach().cpu().clone()
    return param


# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
    if bias == "none":
        to_return = {k: t for k, t in named_params if "lora_" in k}
    elif bias == "all":
        to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
    elif bias == "lora_only":
        to_return = {}
        maybe_lora_bias = {}
        lora_bias_names = set()
        for k, t in named_params:
            if "lora_" in k:
                to_return[k] = t
                bias_name = k.split("lora_")[0] + "bias"
                lora_bias_names.add(bias_name)
            elif "bias" in k:
                maybe_lora_bias[k] = t
        for k, t in maybe_lora_bias:
            if bias_name in lora_bias_names:
                to_return[bias_name] = t
    else:
        raise NotImplementedError
    to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
    return to_return


def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
    to_return = {k: t for k, t in named_params if "lora_" not in k}
    if require_grad_only:
        to_return = {k: t for k, t in to_return.items() if t.requires_grad}
    to_return = {
        k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()
    }
    return to_return


def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
    to_return = {
        k: t
        for k, t in named_params
        if any(key_match in k for key_match in keys_to_match)
    }
    to_return = {
        k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()
    }
    return to_return


def find_all_linear_names(model):
    cls = torch.nn.Linear
    lora_module_names = set()
    multimodal_keywords = ["speech_projector", "speech_encoder"]
    for name, module in model.named_modules():
        if any(mm_keyword in name for mm_keyword in multimodal_keywords):
            continue
        if isinstance(module, cls):
            names = name.split(".")
            lora_module_names.add(names[0] if len(names) == 1 else names[-1])

    if "lm_head" in lora_module_names:  # needed for 16-bit
        lora_module_names.remove("lm_head")
    return list(lora_module_names)


def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
    """Collects the state dict and dump to disk."""

    if getattr(trainer.args, "tune_mm_mlp_adapter", False):
        # Only save Adapter
        keys_to_match = ["speech_projector"]
        if getattr(trainer.args, "use_im_start_end", False):
            keys_to_match.extend(["embed_tokens", "embed_in"])

        weight_to_save = get_mm_adapter_state_maybe_zero_3(
            trainer.model.named_parameters(), keys_to_match
        )
        trainer.model.config.save_pretrained(output_dir)

        current_folder = output_dir.split("/")[-1]
        parent_folder = os.path.dirname(output_dir)
        if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
            if current_folder.startswith("checkpoint-"):
                speech_projector_folder = os.path.join(
                    parent_folder, "speech_projector"
                )
                os.makedirs(speech_projector_folder, exist_ok=True)
                torch.save(
                    weight_to_save,
                    os.path.join(speech_projector_folder, f"{current_folder}.bin"),
                )
            else:
                torch.save(
                    weight_to_save, os.path.join(output_dir, f"speech_projector.bin")
                )
        return

    if trainer.deepspeed:
        torch.cuda.synchronize()
        trainer.save_model(output_dir)
        return

    state_dict = trainer.model.state_dict()
    if trainer.args.should_save:
        cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
        del state_dict
        trainer._save(output_dir, state_dict=cpu_state_dict)  # noqa


def smart_tokenizer_and_embedding_resize(
    special_tokens_dict: Dict,
    tokenizer: transformers.PreTrainedTokenizer,
    model: transformers.PreTrainedModel,
):
    """Resize tokenizer and embedding.

    Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
    """
    num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
    model.resize_token_embeddings(len(tokenizer))

    if num_new_tokens > 0:
        input_embeddings = model.get_input_embeddings().weight.data
        output_embeddings = model.get_output_embeddings().weight.data

        input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
            dim=0, keepdim=True
        )
        output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
            dim=0, keepdim=True
        )

        input_embeddings[-num_new_tokens:] = input_embeddings_avg
        output_embeddings[-num_new_tokens:] = output_embeddings_avg


def _tokenize_fn(
    strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer
) -> Dict:
    """Tokenize a list of strings."""
    tokenized_list = [
        tokenizer(
            text,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        )
        for text in strings
    ]
    input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
    input_ids_lens = labels_lens = [
        tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
        for tokenized in tokenized_list
    ]
    return dict(
        input_ids=input_ids,
        labels=labels,
        input_ids_lens=input_ids_lens,
        labels_lens=labels_lens,
    )


def _mask_targets(target, tokenized_lens, speakers):
    # cur_idx = 0
    cur_idx = tokenized_lens[0]
    tokenized_lens = tokenized_lens[1:]
    target[:cur_idx] = IGNORE_INDEX
    for tokenized_len, speaker in zip(tokenized_lens, speakers):
        if speaker == "human":
            target[cur_idx + 2 : cur_idx + tokenized_len] = IGNORE_INDEX
        cur_idx += tokenized_len


def _add_speaker_and_signal(header, source, get_conversation=True):
    """Add speaker and start/end signal on each round."""
    BEGIN_SIGNAL = "### "
    END_SIGNAL = "\n"
    conversation = header
    for sentence in source:
        from_str = sentence["from"]
        if from_str.lower() == "human":
            from_str = conversation_lib.default_conversation.roles[0]
        elif from_str.lower() == "gpt":
            from_str = conversation_lib.default_conversation.roles[1]
        else:
            from_str = "unknown"
        sentence["value"] = (
            BEGIN_SIGNAL + from_str + ": " + sentence["value"] + END_SIGNAL
        )
        if get_conversation:
            conversation += sentence["value"]
    conversation += BEGIN_SIGNAL
    return conversation


def tokenizer_speech_token(
    prompt, tokenizer, speech_token_index=SPEECH_TOKEN_INDEX, return_tensors=None
):
    prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<speech>")]

    def insert_separator(X, sep):
        return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]

    input_ids = []
    offset = 0
    if (
        len(prompt_chunks) > 0
        and len(prompt_chunks[0]) > 0
        and prompt_chunks[0][0] == tokenizer.bos_token_id
    ):
        offset = 1
        input_ids.append(prompt_chunks[0][0])

    for x in insert_separator(prompt_chunks, [speech_token_index] * (offset + 1)):
        input_ids.extend(x[offset:])

    if return_tensors is not None:
        if return_tensors == "pt":
            return torch.tensor(input_ids, dtype=torch.long)
        raise ValueError(f"Unsupported tensor type: {return_tensors}")
    return input_ids


def preprocess_multimodal(sources: Sequence[str], data_args: DataArguments) -> Dict:
    is_multimodal = data_args.is_multimodal
    if not is_multimodal:
        return sources
    # Add speech and image special tokens to the beginning of the conversation
    for source in sources:
        for sentence in source:
            if DEFAULT_SPEECH_TOKEN in sentence["value"]:
                sentence["value"] = (
                    sentence["value"].replace(DEFAULT_SPEECH_TOKEN, "").strip()
                )
                sentence["value"] = DEFAULT_SPEECH_TOKEN + "\n" + sentence["value"]
                sentence["value"] = sentence["value"].strip()
            if DEFAULT_IMAGE_TOKEN in sentence["value"]:
                sentence["value"] = (
                    sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "").strip()
                )
                sentence["value"] = DEFAULT_IMAGE_TOKEN + "\n" + sentence["value"]
                sentence["value"] = sentence["value"].strip()
    return sources


def preprocess_llama_2(
    sources, tokenizer: transformers.PreTrainedTokenizer, has_speech: bool = False
) -> Dict:
    conv = conversation_lib.default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    # Apply prompt templates
    conversations = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())

    # Tokenize conversations

    if has_speech:
        input_ids = torch.stack(
            [
                tokenizer_speech_token(prompt, tokenizer, return_tensors="pt")
                for prompt in conversations
            ],
            dim=0,
        )
    else:
        input_ids = tokenizer(
            conversations,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        ).input_ids

    targets = input_ids.clone()

    assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2

    # Mask targets
    sep = "[/INST] "
    for conversation, target in zip(conversations, targets):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())

        rounds = conversation.split(conv.sep2)
        cur_len = 1
        target[:cur_len] = IGNORE_INDEX
        for i, rou in enumerate(rounds):
            if rou == "":
                break

            parts = rou.split(sep)
            if len(parts) != 2:
                break
            parts[0] += sep

            if has_speech:
                round_len = len(tokenizer_speech_token(rou, tokenizer))
                instruction_len = len(tokenizer_speech_token(parts[0], tokenizer)) - 2
            else:
                round_len = len(tokenizer(rou).input_ids)
                instruction_len = len(tokenizer(parts[0]).input_ids) - 2

            target[cur_len : cur_len + instruction_len] = IGNORE_INDEX

            cur_len += round_len
        target[cur_len:] = IGNORE_INDEX

        if cur_len < tokenizer.model_max_length:
            if cur_len != total_len:
                target[:] = IGNORE_INDEX
                print(
                    f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
                    f" (ignored)"
                )

    return dict(
        input_ids=input_ids,
        labels=targets,
    )


def preprocess_llama_3(
    sources, tokenizer: transformers.PreTrainedTokenizer, has_speech: bool = False
) -> Dict:
    conv = conversation_lib.default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    # Apply prompt templates
    conversations = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        assert len(source) == 2, "now only support single-turn conversation"

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())

    # Tokenize conversations

    if has_speech:
        input_ids = torch.stack(
            [
                tokenizer_speech_token(prompt, tokenizer, return_tensors="pt")
                for prompt in conversations
            ],
            dim=0,
        )
    else:
        input_ids = tokenizer(
            conversations,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        ).input_ids

    targets = input_ids.clone()

    assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_3

    # Mask targets
    sep = "<|start_header_id|>" + conv.roles[1] + "<|end_header_id|>\n\n"
    for conversation, target in zip(conversations, targets):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())

        cur_len = 1
        target[:cur_len] = IGNORE_INDEX
        parts = conversation.split(sep)
        parts[0] += sep

        if has_speech:
            conversation_len = len(tokenizer_speech_token(conversation, tokenizer))
            instruction_len = len(tokenizer_speech_token(parts[0], tokenizer)) - 1
        else:
            conversation_len = len(tokenizer(conversation).input_ids)
            instruction_len = len(tokenizer(parts[0]).input_ids) - 1

        target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
        cur_len += conversation_len
        target[cur_len:] = IGNORE_INDEX

        # if cur_len < tokenizer.model_max_length:
        #     if cur_len != total_len:
        #         target[:] = IGNORE_INDEX
        #         print(
        #             f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
        #             f" (ignored)"
        #         )

    return dict(
        input_ids=input_ids,
        labels=targets,
    )


def preprocess_v1(
    sources, tokenizer: transformers.PreTrainedTokenizer, has_speech: bool = False
) -> Dict:
    conv = conversation_lib.default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    # Apply prompt templates
    conversations = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())

    # Tokenize conversations

    if has_speech:
        input_ids = torch.stack(
            [
                tokenizer_speech_token(prompt, tokenizer, return_tensors="pt")
                for prompt in conversations
            ],
            dim=0,
        )
    else:
        input_ids = tokenizer(
            conversations,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        ).input_ids

    targets = input_ids.clone()

    if conv.sep_style == conversation_lib.SeparatorStyle.TWO:
        # Mask targets
        sep = conv.sep + conv.roles[1] + ": "
        for conversation, target in zip(conversations, targets):
            total_len = int(target.ne(tokenizer.pad_token_id).sum())

            rounds = conversation.split(conv.sep2)
            cur_len = 1
            target[:cur_len] = IGNORE_INDEX
            for i, rou in enumerate(rounds):
                if rou == "":
                    break

                parts = rou.split(sep)
                if len(parts) != 2:
                    break
                parts[0] += sep

                if has_speech:
                    round_len = len(tokenizer_speech_token(rou, tokenizer))
                    instruction_len = (
                        len(tokenizer_speech_token(parts[0], tokenizer)) - 2
                    )
                else:
                    round_len = len(tokenizer(rou).input_ids)
                    instruction_len = len(tokenizer(parts[0]).input_ids) - 2

                if i != 0 and not tokenizer.legacy and IS_TOKENIZER_GREATER_THAN_0_14:
                    round_len -= 1
                    instruction_len -= 1

                target[cur_len : cur_len + instruction_len] = IGNORE_INDEX

                cur_len += round_len
            target[cur_len:] = IGNORE_INDEX

            if cur_len < tokenizer.model_max_length:
                if cur_len != total_len:
                    target[:] = IGNORE_INDEX
                    print(
                        f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
                        f" (ignored)"
                    )

    elif conv.sep_style == conversation_lib.SeparatorStyle.QWEN2:
        # Mask targets
        sep = "<|im_start|>assistant\n"
        for conversation, target in zip(conversations, targets):
            total_len = int(target.ne(tokenizer.pad_token_id).sum())

            raw_rounds = conversation.split("<|im_end|>\n")
            cur_len = 0
            rounds = []
            now_str = ""
            for rou in raw_rounds:
                if len(rou) > 0:
                    rou = rou + "<|im_end|>\n"
                    if rou.startswith("<|endoftext|>"):
                        rounds[-1] = rounds[-1] + "<|endoftext|>"
                        rou = rou.replace("<|endoftext|>", "")
                        if len(rou.strip()) == 0:
                            continue
                    if "<|im_start|>assistant\n" in rou:
                        now_str += rou
                        rounds.append(now_str)
                        now_str = ""
                    else:
                        now_str += rou

            for i, rou in enumerate(rounds):
                if rou == "":
                    break

                parts = rou.split(sep)
                if len(parts) != 2:
                    break
                parts[0] += sep

                if has_speech:
                    round_len = len(tokenizer_speech_token(rou, tokenizer))
                    instruction_len = (
                        len(tokenizer_speech_token(parts[0], tokenizer)) - 2
                    )
                else:
                    round_len = len(tokenizer(rou).input_ids)
                    instruction_len = len(tokenizer(parts[0]).input_ids) - 2

                try:
                    is_legacy = tokenizer.legacy
                except:
                    is_legacy = True

                if i != 0 and not is_legacy and IS_TOKENIZER_GREATER_THAN_0_14:
                    round_len -= 1
                    instruction_len -= 1

                target[cur_len : cur_len + instruction_len] = IGNORE_INDEX

                cur_len += round_len
            target[cur_len:] = IGNORE_INDEX

            if cur_len < tokenizer.model_max_length:
                if cur_len != total_len:
                    target[:] = IGNORE_INDEX
                    print(
                        f"WARNING: tokenization mismatch for QWEN2: {cur_len} vs. {total_len}."
                        f" (ignored)"
                    )

    return dict(
        input_ids=input_ids,
        labels=targets,
    )


def preprocess_plain(
    sources: Sequence[str],
    tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
    # add end signal and concatenate together
    conversations = []
    for source in sources:
        assert len(source) == 2
        assert DEFAULT_SPEECH_TOKEN in source[0]["value"]
        source[0]["value"] = DEFAULT_SPEECH_TOKEN
        conversation = (
            source[0]["value"]
            + source[1]["value"]
            + conversation_lib.default_conversation.sep
        )
        conversations.append(conversation)
    # tokenize conversations
    input_ids = [
        tokenizer_speech_token(prompt, tokenizer, return_tensors="pt")
        for prompt in conversations
    ]
    targets = copy.deepcopy(input_ids)
    for target, source in zip(targets, sources):
        tokenized_len = len(tokenizer_speech_token(source[0]["value"], tokenizer))
        target[:tokenized_len] = IGNORE_INDEX

    return dict(input_ids=input_ids, labels=targets)


def preprocess_qwen(
    sources,
    tokenizer: transformers.PreTrainedTokenizer,
    has_speech: bool = False,
    has_image: bool = False,
    max_len=2048,
    system_message: str = "You are a helpful assistant.",
) -> Dict:
    def split_text(text, keywords):
        pattern = "(" + "|".join(map(re.escape, keywords)) + ")"
        parts = re.split(pattern, text)
        parts = [part for part in parts if part]
        return parts

    roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"}

    # im_start, im_end = tokenizer.additional_special_tokens_ids

    im_start = tokenizer("<|im_start|>").input_ids[0]
    im_end = tokenizer("<|im_end|>").input_ids[0]
    nl_tokens = tokenizer("\n").input_ids
    _system = tokenizer("system").input_ids + nl_tokens

    # Apply prompt templates
    input_ids, targets = [], []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != roles["human"]:
            source = source[1:]

        input_id, target = [], []
        system = (
            [im_start]
            + _system
            + tokenizer(system_message).input_ids
            + [im_end]
            + nl_tokens
        )
        input_id += system
        target += [im_start] + [IGNORE_INDEX] * (len(system) - 3) + [im_end] + nl_tokens
        assert len(input_id) == len(target)
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            splited_sentence = split_text(sentence["value"], ["<speech>", "<image>"])
            _input_id = []
            for part in splited_sentence:
                _input_id += tokenizer(role).input_ids + nl_tokens  # add prefix
                if "<speech>" == part:
                    _input_id += [SPEECH_TOKEN_INDEX]
                elif "<image>" == part:
                    _input_id += [IMAGE_TOKEN_INDEX]
                else:
                    _input_id += tokenizer(part).input_ids
            _input_id += [im_end] + nl_tokens  # add suffix
            input_id += _input_id
            if role == "<|im_start|>user":
                _target = (
                    [im_start]
                    + [IGNORE_INDEX] * (len(_input_id) - 3)
                    + [im_end]
                    + nl_tokens
                )
            elif role == "<|im_start|>assistant":
                _target = (
                    [im_start]
                    + [IGNORE_INDEX] * len(tokenizer(role).input_ids)
                    + _input_id[len(tokenizer(role).input_ids) + 1 : -2]
                    + [im_end]
                    + nl_tokens
                )
            else:
                raise NotImplementedError
            target += _target
        assert len(input_id) == len(target)
        input_ids.append(input_id)
        targets.append(target)
    input_ids = torch.tensor(input_ids, dtype=torch.long)
    targets = torch.tensor(targets, dtype=torch.long)

    return dict(
        input_ids=input_ids,  # tensor(bs x seq_len)
        labels=targets,  # tensor(bs x seq_len)
    )


def preprocess(
    sources: Sequence[str],
    tokenizer: transformers.PreTrainedTokenizer,
    has_speech: bool = False,
    has_image: bool = False,
) -> Dict:
    """
    Given a list of sources, each is a conversation list. This transform:
    1. Add signal '### ' at the beginning each sentence, with end signal '\n';
    2. Concatenate conversations together;
    3. Tokenize the concatenated conversation;
    4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
    """
    if (
        conversation_lib.default_conversation.sep_style
        == conversation_lib.SeparatorStyle.PLAIN
    ):
        return preprocess_plain(sources, tokenizer, has_image=has_image)
    if (
        conversation_lib.default_conversation.sep_style
        == conversation_lib.SeparatorStyle.LLAMA_2
    ):
        return preprocess_llama_2(
            sources, tokenizer, has_speech=has_speech, has_image=has_image
        )
    if conversation_lib.default_conversation.version.startswith("v1"):
        return preprocess_v1(
            sources, tokenizer, has_speech=has_speech, has_image=has_image
        )
    if (
        conversation_lib.default_conversation.sep_style
        == conversation_lib.SeparatorStyle.LLAMA_3
    ):
        return preprocess_llama_3(
            sources, tokenizer, has_speech=has_speech, has_image=has_image
        )
    if conversation_lib.default_conversation.version == "qwen":
        return preprocess_qwen(
            sources, tokenizer, has_speech=has_speech, has_image=has_image
        )
    raise NotImplementedError


class LazySupervisedDataset(Dataset):
    """Dataset for supervised fine-tuning."""

    def __init__(
        self,
        data_path: str,
        tokenizer: transformers.PreTrainedTokenizer,
        data_args: DataArguments,
    ):
        super(LazySupervisedDataset, self).__init__()
        list_data_dict = json.load(open(data_path, "r"))

        rank0_print("Formatting inputs...Skip in lazy mode")
        self.tokenizer = tokenizer
        self.list_data_dict = list_data_dict
        self.data_args = data_args
        self.mel_size = 128

    def __len__(self):
        return len(self.list_data_dict)

    @property
    def modality_lengths(self):
        length_list = []
        for sample in self.list_data_dict:
            cur_len = sum(
                len(conv["value"].split()) for conv in sample["conversations"]
            )
            assert cur_len > 0, f"Conversation length is 0 for {sample}"
            if "image" in sample or "video" in sample or self.data_args.early_mix_text:
                length_list.append(cur_len)
            else:
                length_list.append(-cur_len)
        return length_list

    def process_audio(self, audio_file, start_frame=None, end_frame=None, fps=20):
        speech, sample_rate = sf.read(audio_file)
        if start_frame is not None and end_frame is not None:
            start_sample = start_frame * sample_rate // fps
            end_sample = end_frame * sample_rate // fps
            speech = speech[start_sample:end_sample]
        if sample_rate != 16000:
            target_length = int(len(speech) * 16000 / sample_rate)
            speech = resample(speech, target_length)
        if speech.ndim > 1:
            speech = np.mean(speech, axis=1)
        speech = whisper.pad_or_trim(speech.astype(np.float32))
        speech = whisper.log_mel_spectrogram(speech, n_mels=self.mel_size).permute(1, 0)
        speech_length = torch.LongTensor([speech.shape[0]])
        return speech, speech_length

    def process_image(self, image_file, overwrite_image_aspect_ratio=None):
        processor = self.data_args.image_processor
        # print(f"\n\nInspecting the image path, folder = {image_folder}, image={image_file}\n\n")
        try:
            image = Image.open(image_file).convert("RGB")
        except Exception as exn:
            print(f"Failed to open image {image_file}. Exception:", exn)
            raise exn

        image_size = image.size
        image_aspect_ratio = self.data_args.image_aspect_ratio
        if overwrite_image_aspect_ratio is not None:
            image_aspect_ratio = overwrite_image_aspect_ratio
        if image_aspect_ratio == "highres":
            image = process_highres_image(
                image,
                self.data_args.image_processor,
                self.data_args.image_grid_pinpoints,
            )
        elif image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio:
            image = process_anyres_image(
                image,
                self.data_args.image_processor,
                self.data_args.image_grid_pinpoints,
            )
        elif image_aspect_ratio == "crop_split":
            image = process_highres_image_crop_split(image, self.data_args)
        elif image_aspect_ratio == "pad":

            def expand2square(pil_img, background_color):
                width, height = pil_img.size
                if width == height:
                    return pil_img
                elif width > height:
                    result = Image.new(pil_img.mode, (width, width), background_color)
                    result.paste(pil_img, (0, (width - height) // 2))
                    return result
                else:
                    result = Image.new(pil_img.mode, (height, height), background_color)
                    result.paste(pil_img, ((height - width) // 2, 0))
                    return result

            image = expand2square(
                image, tuple(int(x * 255) for x in processor.image_mean)
            )
            image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
        else:
            image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
        return image, image_size, "image"

    def __getitem__(self, i) -> Dict[str, torch.Tensor]:
        while True:
            try:
                sample = self._get_item(i)
                # print("process sample",i)
                break
            except Exception as e:
                while True:
                    try:
                        i += 1
                        random_index = i % len(self.list_data_dict)
                        sample = self._get_item(random_index)
                        # print("something error, process sample",random_index)
                        break
                    except Exception as e:
                        # random_index = random.randint(0, len(self.list_data_dict) - 1)
                        continue
        return sample

    def _get_item(self, i) -> Dict[str, torch.Tensor]:
        sources = self.list_data_dict[i]
        if isinstance(i, int):
            sources = [sources]
        assert len(sources) == 1, "Don't know why it is wrapped to a list"  # FIXME
        if "image" in sources[0]:
            image_file = self.list_data_dict[i]["image"]
            if type(image_file) is list:
                image = [self.process_image(f) for f in image_file]
                # Handling multi images
                # overwrite to process with simple pad
                if len(image_file) > 1:
                    image = [self.process_image(f, "pad") for f in image_file]
                    image = [[im[0], im[1], "image"] for im in image]
            else:
                image = [self.process_image(image_file)]

        if "video" or "audio" in sources[0]:
            if "video" in sources[0]:
                video_file = self.list_data_dict[i]["video"]
                # video_folder = self.data_args.video_folder
                # video_file = os.path.join(video_folder, video_file)
                if not os.path.exists(video_file):
                    print("File {} not exist!".format(video_file))
                if "start_frame" in self.list_data_dict[i]:
                    start_frame = self.list_data_dict[i]["start_frame"]
                    end_frame = self.list_data_dict[i]["end_frame"]
                    if self.list_data_dict[i].get(
                        "current_observation_frame", None
                    ):  # Customized for egoplan data
                        current_observation_frame = self.list_data_dict[i][
                            "current_observation_frame"
                        ]
                    else:
                        current_observation_frame = None
                    video = process_video_with_decord_byframe(
                        video_file,
                        start_frame,
                        end_frame,
                        self.data_args,
                        current_observation_frame,
                    )
                else:
                    (
                        video,
                        video_time,
                        frame_time,
                        num_frames,
                    ) = process_video_with_decord(video_file, self.data_args)
                processor = self.data_args.image_processor
                processed_video = processor.preprocess(video, return_tensors="pt")[
                    "pixel_values"
                ]
                image = [(processed_video, video[0].size, "video")]

            if "audio" in sources[0]:
                audio_file = self.list_data_dict[i]["audio"]
                # audio_folder = self.data_args.audio_folder
                # audio_file = os.path.join(audio_folder, audio_file)
                try:
                    if "start_frame" in self.list_data_dict[i]:
                        start_frame = self.list_data_dict[i]["start_frame"]
                        end_frame = self.list_data_dict[i]["end_frame"]
                    else:
                        start_frame = None
                        end_frame = None
                    audio, audio_length = self.process_audio(
                        audio_file, start_frame, end_frame
                    )
                except Exception as e:
                    print("audio error", e)
                    audio = [torch.zeros(3000, 128)]
                    audio_length = torch.tensor([3000])
                audio = [audio]
            sources = preprocess_multimodal(
                copy.deepcopy([e["conversations"] for e in sources]), self.data_args
            )
        else:
            sources = copy.deepcopy([e["conversations"] for e in sources])
        has_speech = "audio" in self.list_data_dict[i]
        has_image = ("image" in self.list_data_dict[i]) or (
            "video" in self.list_data_dict[i]
        )
        data_dict = preprocess(
            sources, self.tokenizer, has_speech=has_speech, has_image=has_image
        )
        if isinstance(i, int):
            data_dict = dict(
                input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0]
            )

        if "image" or "video" in self.list_data_dict[i]:
            data_dict["image"] = image
        # audio exist in the data
        if "audio" in self.list_data_dict[i]:
            data_dict["speech"] = audio
            data_dict["speech_lengths"] = audio_length
        else:  # if no audio, add a dummy audio
            data_dict["speech"] = [torch.zeros(3000, 128)]
            data_dict["speech_lengths"] = torch.tensor([3000])
        return data_dict


@dataclass
class DataCollatorForSupervisedDataset(object):
    """Collate examples for supervised fine-tuning."""

    tokenizer: transformers.PreTrainedTokenizer

    def pad_sequence(self, input_ids, batch_first, padding_value):
        if self.tokenizer.padding_side == "left":
            input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids]
        input_ids = torch.nn.utils.rnn.pad_sequence(
            input_ids, batch_first=batch_first, padding_value=padding_value
        )
        if self.tokenizer.padding_side == "left":
            input_ids = torch.flip(input_ids, [1])
        return input_ids

    def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
        input_ids, labels = tuple(
            [instance[key] for instance in instances] for key in ("input_ids", "labels")
        )
        input_ids = [
            _input_ids[: self.tokenizer.model_max_length] for _input_ids in input_ids
        ]
        labels = [_labels[: self.tokenizer.model_max_length] for _labels in labels]
        if self.tokenizer.pad_token_id is None:
            if "qwen" in self.tokenizer.name_or_path.lower():
                # print("Setting pad token to bos token for qwen model.")
                self.tokenizer.pad_token_id = 151643
            else:
                self.tokenizer.pad_token_id = (
                    self.tokenizer.eos_token_id
                )  # FIXME: this could only be triggered for llama3 model.
        input_ids = self.pad_sequence(
            input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
        )
        labels = self.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)

        batch = dict(
            input_ids=input_ids,
            labels=labels,
            attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
        )
        if "speech" in instances[0]:
            speeches = [instance["speech"] for instance in instances]
            speeches_lengths = [instance["speech_lengths"] for instance in instances]
            batch["speech"] = [au for audio_list in speeches for au in audio_list]

            batch["speech_lengths"] = [
                au for audio_list in speeches_lengths for au in audio_list
            ]
            batch["speech_lengths"] = torch.stack(batch["speech_lengths"])

            if all(
                x is not None and x.shape == speeches[0][0].shape
                for x in batch["speech"]
            ):
                batch["speech"] = torch.stack(batch["speech"])

        if "image" in instances[0]:
            images = [instance["image"] for instance in instances]

            batch["image_sizes"] = [im[1] for im_list in images for im in im_list]
            batch["modalities"] = [im[2] for im_list in images for im in im_list]
            images = [im[0] for im_list in images for im in im_list]

            # if all(x is not None and x.shape == images[0].shape for x in images):
            # Image: (N, P, C, H, W)
            # Video: (N, F, C, H, W)
            #     batch["images"] = torch.stack(images)
            # else:
            batch["images"] = images
        return batch


def make_supervised_data_module(
    tokenizer: transformers.PreTrainedTokenizer, data_args
) -> Dict:
    """Make dataset and collator for supervised fine-tuning."""
    train_dataset = LazySupervisedDataset(
        tokenizer=tokenizer, data_path=data_args.data_path, data_args=data_args
    )
    data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
    return dict(
        train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator
    )


def train():
    global local_rank

    parser = transformers.HfArgumentParser(
        (ModelArguments, DataArguments, TrainingArguments)
    )
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()
    local_rank = training_args.local_rank
    compute_dtype = (
        torch.float16
        if training_args.fp16
        else (torch.bfloat16 if training_args.bf16 else torch.float32)
    )

    if "qwen" in model_args.model_name_or_path.lower():
        model = EgoGPTQwenForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=training_args.cache_dir,
            attn_implementation="flash_attention_2",
            torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
        )
    else:
        model = EgoGPTLlamaForCausalLM.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=training_args.cache_dir,
            attn_implementation="flash_attention_2",
            torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
        )

    model.config.use_cache = False

    if model_args.freeze_backbone:
        model.model.requires_grad_(False)

    if training_args.gradient_checkpointing:
        if hasattr(model, "enable_input_require_grads"):
            model.enable_input_require_grads()
        else:

            def make_inputs_require_grad(module, input, output):
                output.requires_grad_(True)

            model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

        training_args.gradient_checkpointing_kwargs = {"use_reentrant": True}
        training_args.ddp_find_unused_parameters = True

    if training_args.lora_enable:
        from peft import LoraConfig, get_peft_model

        lora_config = LoraConfig(
            r=training_args.lora_r,
            lora_alpha=training_args.lora_alpha,
            target_modules=find_all_linear_names(model),
            lora_dropout=training_args.lora_dropout,
            bias=training_args.lora_bias,
            task_type="CAUSAL_LM",
            use_dora=True,
        )
        if training_args.bits == 16:
            if training_args.bf16:
                model.to(torch.bfloat16)
            if training_args.fp16:
                model.to(torch.float16)
        rank0_print("Adding LoRA adapters...")
        model = get_peft_model(model, lora_config)
        model.to(dtype=compute_dtype, device=training_args.device)

    if "qwen" in model_args.model_name_or_path.lower():
        tokenizer = transformers.AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=training_args.cache_dir,
            model_max_length=training_args.model_max_length,
            padding_side="right",
        )
    else:
        tokenizer = transformers.AutoTokenizer.from_pretrained(
            model_args.model_name_or_path,
            cache_dir=training_args.cache_dir,
            model_max_length=training_args.model_max_length,
            padding_side="right",
            use_fast=False,
        )

    if model_args.version == "v0":
        if tokenizer.pad_token is None:
            smart_tokenizer_and_embedding_resize(
                special_tokens_dict=dict(pad_token="[PAD]"),
                tokenizer=tokenizer,
                model=model,
            )
    elif model_args.version == "v0.5":
        tokenizer.pad_token = tokenizer.unk_token
    else:
        tokenizer.pad_token = tokenizer.unk_token
        if model_args.version in conversation_lib.conv_templates:
            conversation_lib.default_conversation = conversation_lib.conv_templates[
                model_args.version
            ]
        else:
            conversation_lib.default_conversation = conversation_lib.conv_templates[
                "vicuna_v1"
            ]

    model.get_model().initialize_speech_modules(
        model_args=model_args, fsdp=training_args.fsdp
    )
    speech_encoder = model.get_speech_encoder()
    speech_encoder.to(
        dtype=torch.bfloat16 if training_args.bf16 else torch.float16,
        device=training_args.device,
    )

    if model_args.vision_tower is not None:
        model.get_model().initialize_vision_modules(
            model_args=model_args, fsdp=training_args.fsdp
        )
        # import pdb;pdb.set_trace()
        vision_tower = model.get_vision_tower()
        vision_tower.to(
            dtype=torch.bfloat16 if training_args.bf16 else torch.float16,
            device=training_args.device,
        )

        data_args.image_processor = vision_tower.image_processor
        model.config.image_aspect_ratio = data_args.image_aspect_ratio
        if data_args.image_grid_pinpoints is not None:
            if (
                isinstance(data_args.image_grid_pinpoints, str)
                and "x" in data_args.image_grid_pinpoints
            ):
                try:
                    patch_size = data_args.image_processor.size[0]
                except Exception as e:
                    patch_size = data_args.image_processor.size["shortest_edge"]

                assert patch_size in [
                    224,
                    336,
                    384,
                    448,
                    512,
                ], "patch_size should be in [224, 336, 384, 448, 512]"
                # Use regex to extract the range from the input string
                matches = re.findall(r"\((\d+)x(\d+)\)", data_args.image_grid_pinpoints)
                range_start = tuple(map(int, matches[0]))
                range_end = tuple(map(int, matches[-1]))
                # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
                grid_pinpoints = [
                    (i, j)
                    for i in range(range_start[0], range_end[0] + 1)
                    for j in range(range_start[1], range_end[1] + 1)
                ]
                # Multiply all elements by patch_size
                data_args.image_grid_pinpoints = [
                    [dim * patch_size for dim in pair] for pair in grid_pinpoints
                ]
            elif isinstance(data_args.image_grid_pinpoints, str):
                data_args.image_grid_pinpoints = ast.literal_eval(
                    data_args.image_grid_pinpoints
                )

        model.config.image_grid_pinpoints = data_args.image_grid_pinpoints
        model.config.image_crop_resolution = data_args.image_crop_resolution
        model.config.image_split_resolution = data_args.image_split_resolution
        model.config.tokenizer_padding_side = tokenizer.padding_side
        model.config.tokenizer_model_max_length = tokenizer.model_max_length
        model.config.mm_newline_position = model_args.mm_newline_position
        model.config.add_faster_video = model_args.add_faster_video
        model.config.faster_token_stride = model_args.faster_token_stride
        model.config.mm_spatial_pool_stride = model_args.mm_spatial_pool_stride

    data_args.is_multimodal = True

    model.config.tune_mm_mlp_adapter = (
        training_args.tune_mm_mlp_adapter
    ) = model_args.tune_mm_mlp_adapter
    if model_args.tune_mm_mlp_adapter:
        model.requires_grad_(False)
    if model_args.tune_mm_mlp_adapter:
        for p in model.get_model().speech_projector.parameters():
            p.requires_grad = True
        for p in model.get_model().mm_projector.parameters():
            p.requires_grad = True

    model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
    if training_args.freeze_mm_mlp_adapter:
        for p in model.get_model().speech_projector.parameters():
            p.requires_grad = False
        for p in model.get_model().mm_projector.parameters():
            p.requires_grad = False

    model.config.freeze_mm_vision_resampler = training_args.freeze_mm_vision_resampler
    if training_args.freeze_mm_vision_resampler:
        for p in model.get_model().vision_resampler.parameters():
            p.requires_grad = False
    model.config.unfreeze_mm_speech_encoder = model_args.unfreeze_mm_speech_encoder
    if model_args.unfreeze_mm_speech_encoder:
        speech_encoder.requires_grad_(True)

    model.config.mm_use_im_start_end = (
        data_args.mm_use_im_start_end
    ) = model_args.mm_use_im_start_end
    model.config.mm_projector_lr = training_args.mm_projector_lr
    model.config.mm_vision_tower_lr = training_args.mm_vision_tower_lr
    model.config.speech_projector_lr = training_args.speech_projector_lr
    model.config.mm_speech_encoder_lr = training_args.mm_speech_encoder_lr
    model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token
    training_args.use_im_start_end = model_args.mm_use_im_start_end

    data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)

    # test_data = data_module['train_dataset'].__getitem__(0)
    trainer = LLaVATrainer(
        model=model, tokenizer=tokenizer, args=training_args, **data_module
    )

    if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
        trainer.train(resume_from_checkpoint=True)
    else:
        trainer.train()
    trainer.save_state()

    model.config.use_cache = True

    if training_args.lora_enable:
        state_dict = get_peft_state_maybe_zero_3(
            model.named_parameters(), training_args.lora_bias
        )
        non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
            model.named_parameters()
        )
        if training_args.local_rank == 0 or training_args.local_rank == -1:
            model.config.save_pretrained(training_args.output_dir)
            model.save_pretrained(training_args.output_dir, state_dict=state_dict)
            torch.save(
                non_lora_state_dict,
                os.path.join(training_args.output_dir, "non_lora_trainables.bin"),
            )
    else:
        safe_save_model_for_hf_trainer(
            trainer=trainer, output_dir=training_args.output_dir
        )


if __name__ == "__main__":
    import torch

    print("number of gpus", torch.cuda.device_count())
    train()