Spaces:
Running
on
Zero
Running
on
Zero
File size: 57,048 Bytes
c62903f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 |
# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright:
# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright:
# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ast
import base64
import copy
import glob
import io
import json
import logging
import math
import os
import pathlib
import pickle
import random
import re
import time
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Sequence
import numpy as np
import soundfile as sf
import tokenizers
import torch
import transformers
import whisper
from packaging import version
from PIL import Image
from safetensors.torch import load_file as safetensor_load_file
from scipy.signal import resample
from torch.utils.data import Dataset
from egogpt import conversation as conversation_lib
from egogpt.constants import (
DEFAULT_IMAGE_TOKEN,
DEFAULT_SPEECH_TOKEN,
IGNORE_INDEX,
IMAGE_TOKEN_INDEX,
SPEECH_TOKEN_INDEX,
)
from egogpt.mm_utils import (
process_anyres_image,
process_highres_image,
process_highres_image_crop_split,
)
from egogpt.model import *
from egogpt.train.llava_trainer import LLaVATrainer
from egogpt.utils import process_video_with_decord, process_video_with_decord_byframe
local_rank = None
IS_TOKENIZER_GREATER_THAN_0_14 = version.parse(tokenizers.__version__) >= version.parse(
"0.14"
)
def rank0_print(*args):
if local_rank == 0:
print(*args)
@dataclass
class ModelArguments:
model_name_or_path: Optional[str] = field(default="facebook/opt-125m")
version: Optional[str] = field(default="v0")
freeze_backbone: bool = field(default=False)
tune_mm_mlp_adapter: bool = field(default=False)
tune_speech_generator_only: bool = field(default=False)
speech_encoder: Optional[str] = field(default=None)
unfreeze_mm_speech_encoder: bool = field(default=False)
mm_vision_select_layer: Optional[int] = field(
default=-1
) # default to the last layer
pretrain_speech_projector: Optional[str] = field(default=None)
speech_projector_type: Optional[str] = field(default="linear")
speech_encoder_type: Optional[str] = field(default="whisper")
speech_encoder_config: Optional[str] = field(
default="models/speech_encoder/large-v3.pt"
)
speech_encoder_ds_rate: Optional[int] = field(default=5)
speech_encoder_hidden_size: Optional[int] = field(default=1280)
tune_mm_mlp_adapter: bool = field(default=False)
tune_mm_vision_resampler: bool = field(default=False)
vision_tower: Optional[str] = field(default=None)
unfreeze_mm_vision_tower: bool = field(default=False)
unfreeze_language_model: bool = field(default=False)
mm_vision_select_layer: Optional[int] = field(
default=-1
) # default to the last layer
pretrain_mm_mlp_adapter: Optional[str] = field(default=None)
mm_projector_type: Optional[str] = field(default="linear")
mm_use_im_start_end: bool = field(default=False)
mm_use_im_patch_token: bool = field(default=True)
mm_patch_merge_type: Optional[str] = field(default="flat")
mm_vision_select_feature: Optional[str] = field(default="patch")
mm_resampler_type: Optional[str] = field(default=None)
mm_mask_drop_mode: str = field(default="fixed")
mm_mask_drop_skip_percentage: float = field(default=0.0)
mm_mask_drop_ratio: float = field(default=0.25)
mm_mask_drop_ratio_upper: Optional[float] = field(default=None)
mm_mask_drop_ratio_lower: Optional[float] = field(default=None)
mm_spatial_pool_stride: Optional[int] = field(default=None)
mm_spatial_pool_mode: str = field(default="bilinear")
mm_spatial_pool_out_channels: Optional[int] = field(default=None)
mm_perceiver_depth: Optional[int] = field(default=3)
mm_perceiver_latents: Optional[int] = field(default=32)
mm_perceiver_ff_mult: Optional[float] = field(default=4)
mm_perceiver_pretrained: Optional[str] = field(default=None)
mm_qformer_depth: Optional[int] = field(default=3)
mm_qformer_latents: Optional[int] = field(default=32)
mm_qformer_pretrained: Optional[str] = field(default=None)
rope_scaling_factor: Optional[float] = field(default=None)
rope_scaling_type: Optional[str] = field(default=None)
s2: Optional[bool] = field(default=False)
s2_scales: Optional[str] = field(default="336,672,1008")
use_pos_skipping: Optional[bool] = field(default=False)
pos_skipping_range: Optional[int] = field(default=4096)
mm_newline_position: Optional[str] = field(default="grid")
delay_load: Optional[bool] = field(default=True)
delay_load_audio: Optional[bool] = field(default=True)
add_faster_video: Optional[bool] = field(default=False)
faster_token_stride: Optional[int] = field(default=10)
@dataclass
class DataArguments:
data_path: str = field(
default=None, metadata={"help": "Path to the training data."}
)
lazy_preprocess: bool = False
is_multimodal: bool = False
image_aspect_ratio: str = "square"
image_grid_pinpoints: Optional[str] = field(default=None)
image_crop_resolution: Optional[int] = field(default=None)
image_split_resolution: Optional[int] = field(default=None)
video_fps: Optional[int] = field(default=1)
frames_upbound: Optional[int] = field(default=100)
force_sample: bool = False
@dataclass
class TrainingArguments(transformers.TrainingArguments):
cache_dir: Optional[str] = field(default=None)
optim: str = field(default="adamw_torch")
remove_unused_columns: bool = field(default=False)
freeze_mm_mlp_adapter: bool = field(default=False)
mpt_attn_impl: Optional[str] = field(default="triton")
model_max_length: int = field(
default=512,
metadata={
"help": "Maximum sequence length. Sequences will be right padded (and possibly truncated)."
},
)
double_quant: bool = field(
default=True,
metadata={
"help": "Compress the quantization statistics through double quantization."
},
)
quant_type: str = field(
default="nf4",
metadata={
"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."
},
)
bits: int = field(default=16, metadata={"help": "How many bits to use."})
lora_enable: bool = field(default=False)
lora_r: int = 64
lora_alpha: int = 16
lora_dropout: float = 0.05
lora_weight_path: str = ""
lora_bias: str = "none"
speech_projector_lr: Optional[float] = None
gradient_checkpointing: bool = field(default=True)
mm_speech_encoder_lr: Optional[float] = None
diffusion_head_lr: Optional[float] = None
group_by_varlen: bool = field(default=False)
group_by_modality_length: bool = field(default=False)
group_by_modality_length_auto: bool = field(default=False)
min_lr_ratio: float = field(default=0.0)
sample_independently: bool = field(default=False)
freeze_mm_mlp_adapter: bool = field(default=False)
mm_projector_lr: Optional[float] = None
mm_vision_tower_lr: Optional[float] = None
freeze_mm_vision_resampler: bool = field(default=False)
def maybe_zero_3(param, ignore_status=False, name=None):
from deepspeed import zero
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus
if hasattr(param, "ds_id"):
if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
if not ignore_status:
logging.warning(
f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}"
)
with zero.GatheredParameters([param]):
param = param.data.detach().cpu().clone()
else:
param = param.detach().cpu().clone()
return param
# Borrowed from peft.utils.get_peft_model_state_dict
def get_peft_state_maybe_zero_3(named_params, bias):
if bias == "none":
to_return = {k: t for k, t in named_params if "lora_" in k}
elif bias == "all":
to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k}
elif bias == "lora_only":
to_return = {}
maybe_lora_bias = {}
lora_bias_names = set()
for k, t in named_params:
if "lora_" in k:
to_return[k] = t
bias_name = k.split("lora_")[0] + "bias"
lora_bias_names.add(bias_name)
elif "bias" in k:
maybe_lora_bias[k] = t
for k, t in maybe_lora_bias:
if bias_name in lora_bias_names:
to_return[bias_name] = t
else:
raise NotImplementedError
to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()}
return to_return
def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True):
to_return = {k: t for k, t in named_params if "lora_" not in k}
if require_grad_only:
to_return = {k: t for k, t in to_return.items() if t.requires_grad}
to_return = {
k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()
}
return to_return
def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
to_return = {
k: t
for k, t in named_params
if any(key_match in k for key_match in keys_to_match)
}
to_return = {
k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()
}
return to_return
def find_all_linear_names(model):
cls = torch.nn.Linear
lora_module_names = set()
multimodal_keywords = ["speech_projector", "speech_encoder"]
for name, module in model.named_modules():
if any(mm_keyword in name for mm_keyword in multimodal_keywords):
continue
if isinstance(module, cls):
names = name.split(".")
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names: # needed for 16-bit
lora_module_names.remove("lm_head")
return list(lora_module_names)
def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, output_dir: str):
"""Collects the state dict and dump to disk."""
if getattr(trainer.args, "tune_mm_mlp_adapter", False):
# Only save Adapter
keys_to_match = ["speech_projector"]
if getattr(trainer.args, "use_im_start_end", False):
keys_to_match.extend(["embed_tokens", "embed_in"])
weight_to_save = get_mm_adapter_state_maybe_zero_3(
trainer.model.named_parameters(), keys_to_match
)
trainer.model.config.save_pretrained(output_dir)
current_folder = output_dir.split("/")[-1]
parent_folder = os.path.dirname(output_dir)
if trainer.args.local_rank == 0 or trainer.args.local_rank == -1:
if current_folder.startswith("checkpoint-"):
speech_projector_folder = os.path.join(
parent_folder, "speech_projector"
)
os.makedirs(speech_projector_folder, exist_ok=True)
torch.save(
weight_to_save,
os.path.join(speech_projector_folder, f"{current_folder}.bin"),
)
else:
torch.save(
weight_to_save, os.path.join(output_dir, f"speech_projector.bin")
)
return
if trainer.deepspeed:
torch.cuda.synchronize()
trainer.save_model(output_dir)
return
state_dict = trainer.model.state_dict()
if trainer.args.should_save:
cpu_state_dict = {key: value.cpu() for key, value in state_dict.items()}
del state_dict
trainer._save(output_dir, state_dict=cpu_state_dict) # noqa
def smart_tokenizer_and_embedding_resize(
special_tokens_dict: Dict,
tokenizer: transformers.PreTrainedTokenizer,
model: transformers.PreTrainedModel,
):
"""Resize tokenizer and embedding.
Note: This is the unoptimized version that may make your embedding size not be divisible by 64.
"""
num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict)
model.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = model.get_input_embeddings().weight.data
output_embeddings = model.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True
)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True
)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
def _tokenize_fn(
strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer
) -> Dict:
"""Tokenize a list of strings."""
tokenized_list = [
tokenizer(
text,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
)
for text in strings
]
input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
input_ids_lens = labels_lens = [
tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item()
for tokenized in tokenized_list
]
return dict(
input_ids=input_ids,
labels=labels,
input_ids_lens=input_ids_lens,
labels_lens=labels_lens,
)
def _mask_targets(target, tokenized_lens, speakers):
# cur_idx = 0
cur_idx = tokenized_lens[0]
tokenized_lens = tokenized_lens[1:]
target[:cur_idx] = IGNORE_INDEX
for tokenized_len, speaker in zip(tokenized_lens, speakers):
if speaker == "human":
target[cur_idx + 2 : cur_idx + tokenized_len] = IGNORE_INDEX
cur_idx += tokenized_len
def _add_speaker_and_signal(header, source, get_conversation=True):
"""Add speaker and start/end signal on each round."""
BEGIN_SIGNAL = "### "
END_SIGNAL = "\n"
conversation = header
for sentence in source:
from_str = sentence["from"]
if from_str.lower() == "human":
from_str = conversation_lib.default_conversation.roles[0]
elif from_str.lower() == "gpt":
from_str = conversation_lib.default_conversation.roles[1]
else:
from_str = "unknown"
sentence["value"] = (
BEGIN_SIGNAL + from_str + ": " + sentence["value"] + END_SIGNAL
)
if get_conversation:
conversation += sentence["value"]
conversation += BEGIN_SIGNAL
return conversation
def tokenizer_speech_token(
prompt, tokenizer, speech_token_index=SPEECH_TOKEN_INDEX, return_tensors=None
):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<speech>")]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if (
len(prompt_chunks) > 0
and len(prompt_chunks[0]) > 0
and prompt_chunks[0][0] == tokenizer.bos_token_id
):
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [speech_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == "pt":
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f"Unsupported tensor type: {return_tensors}")
return input_ids
def preprocess_multimodal(sources: Sequence[str], data_args: DataArguments) -> Dict:
is_multimodal = data_args.is_multimodal
if not is_multimodal:
return sources
# Add speech and image special tokens to the beginning of the conversation
for source in sources:
for sentence in source:
if DEFAULT_SPEECH_TOKEN in sentence["value"]:
sentence["value"] = (
sentence["value"].replace(DEFAULT_SPEECH_TOKEN, "").strip()
)
sentence["value"] = DEFAULT_SPEECH_TOKEN + "\n" + sentence["value"]
sentence["value"] = sentence["value"].strip()
if DEFAULT_IMAGE_TOKEN in sentence["value"]:
sentence["value"] = (
sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "").strip()
)
sentence["value"] = DEFAULT_IMAGE_TOKEN + "\n" + sentence["value"]
sentence["value"] = sentence["value"].strip()
return sources
def preprocess_llama_2(
sources, tokenizer: transformers.PreTrainedTokenizer, has_speech: bool = False
) -> Dict:
conv = conversation_lib.default_conversation.copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"
conv.append_message(role, sentence["value"])
conversations.append(conv.get_prompt())
# Tokenize conversations
if has_speech:
input_ids = torch.stack(
[
tokenizer_speech_token(prompt, tokenizer, return_tensors="pt")
for prompt in conversations
],
dim=0,
)
else:
input_ids = tokenizer(
conversations,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2
# Mask targets
sep = "[/INST] "
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
rounds = conversation.split(conv.sep2)
cur_len = 1
target[:cur_len] = IGNORE_INDEX
for i, rou in enumerate(rounds):
if rou == "":
break
parts = rou.split(sep)
if len(parts) != 2:
break
parts[0] += sep
if has_speech:
round_len = len(tokenizer_speech_token(rou, tokenizer))
instruction_len = len(tokenizer_speech_token(parts[0], tokenizer)) - 2
else:
round_len = len(tokenizer(rou).input_ids)
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
cur_len += round_len
target[cur_len:] = IGNORE_INDEX
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_INDEX
print(
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
f" (ignored)"
)
return dict(
input_ids=input_ids,
labels=targets,
)
def preprocess_llama_3(
sources, tokenizer: transformers.PreTrainedTokenizer, has_speech: bool = False
) -> Dict:
conv = conversation_lib.default_conversation.copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
assert len(source) == 2, "now only support single-turn conversation"
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"
conv.append_message(role, sentence["value"])
conversations.append(conv.get_prompt())
# Tokenize conversations
if has_speech:
input_ids = torch.stack(
[
tokenizer_speech_token(prompt, tokenizer, return_tensors="pt")
for prompt in conversations
],
dim=0,
)
else:
input_ids = tokenizer(
conversations,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_3
# Mask targets
sep = "<|start_header_id|>" + conv.roles[1] + "<|end_header_id|>\n\n"
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
cur_len = 1
target[:cur_len] = IGNORE_INDEX
parts = conversation.split(sep)
parts[0] += sep
if has_speech:
conversation_len = len(tokenizer_speech_token(conversation, tokenizer))
instruction_len = len(tokenizer_speech_token(parts[0], tokenizer)) - 1
else:
conversation_len = len(tokenizer(conversation).input_ids)
instruction_len = len(tokenizer(parts[0]).input_ids) - 1
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
cur_len += conversation_len
target[cur_len:] = IGNORE_INDEX
# if cur_len < tokenizer.model_max_length:
# if cur_len != total_len:
# target[:] = IGNORE_INDEX
# print(
# f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
# f" (ignored)"
# )
return dict(
input_ids=input_ids,
labels=targets,
)
def preprocess_v1(
sources, tokenizer: transformers.PreTrainedTokenizer, has_speech: bool = False
) -> Dict:
conv = conversation_lib.default_conversation.copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"
conv.append_message(role, sentence["value"])
conversations.append(conv.get_prompt())
# Tokenize conversations
if has_speech:
input_ids = torch.stack(
[
tokenizer_speech_token(prompt, tokenizer, return_tensors="pt")
for prompt in conversations
],
dim=0,
)
else:
input_ids = tokenizer(
conversations,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
if conv.sep_style == conversation_lib.SeparatorStyle.TWO:
# Mask targets
sep = conv.sep + conv.roles[1] + ": "
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
rounds = conversation.split(conv.sep2)
cur_len = 1
target[:cur_len] = IGNORE_INDEX
for i, rou in enumerate(rounds):
if rou == "":
break
parts = rou.split(sep)
if len(parts) != 2:
break
parts[0] += sep
if has_speech:
round_len = len(tokenizer_speech_token(rou, tokenizer))
instruction_len = (
len(tokenizer_speech_token(parts[0], tokenizer)) - 2
)
else:
round_len = len(tokenizer(rou).input_ids)
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
if i != 0 and not tokenizer.legacy and IS_TOKENIZER_GREATER_THAN_0_14:
round_len -= 1
instruction_len -= 1
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
cur_len += round_len
target[cur_len:] = IGNORE_INDEX
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_INDEX
print(
f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}."
f" (ignored)"
)
elif conv.sep_style == conversation_lib.SeparatorStyle.QWEN2:
# Mask targets
sep = "<|im_start|>assistant\n"
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
raw_rounds = conversation.split("<|im_end|>\n")
cur_len = 0
rounds = []
now_str = ""
for rou in raw_rounds:
if len(rou) > 0:
rou = rou + "<|im_end|>\n"
if rou.startswith("<|endoftext|>"):
rounds[-1] = rounds[-1] + "<|endoftext|>"
rou = rou.replace("<|endoftext|>", "")
if len(rou.strip()) == 0:
continue
if "<|im_start|>assistant\n" in rou:
now_str += rou
rounds.append(now_str)
now_str = ""
else:
now_str += rou
for i, rou in enumerate(rounds):
if rou == "":
break
parts = rou.split(sep)
if len(parts) != 2:
break
parts[0] += sep
if has_speech:
round_len = len(tokenizer_speech_token(rou, tokenizer))
instruction_len = (
len(tokenizer_speech_token(parts[0], tokenizer)) - 2
)
else:
round_len = len(tokenizer(rou).input_ids)
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
try:
is_legacy = tokenizer.legacy
except:
is_legacy = True
if i != 0 and not is_legacy and IS_TOKENIZER_GREATER_THAN_0_14:
round_len -= 1
instruction_len -= 1
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
cur_len += round_len
target[cur_len:] = IGNORE_INDEX
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_INDEX
print(
f"WARNING: tokenization mismatch for QWEN2: {cur_len} vs. {total_len}."
f" (ignored)"
)
return dict(
input_ids=input_ids,
labels=targets,
)
def preprocess_plain(
sources: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
# add end signal and concatenate together
conversations = []
for source in sources:
assert len(source) == 2
assert DEFAULT_SPEECH_TOKEN in source[0]["value"]
source[0]["value"] = DEFAULT_SPEECH_TOKEN
conversation = (
source[0]["value"]
+ source[1]["value"]
+ conversation_lib.default_conversation.sep
)
conversations.append(conversation)
# tokenize conversations
input_ids = [
tokenizer_speech_token(prompt, tokenizer, return_tensors="pt")
for prompt in conversations
]
targets = copy.deepcopy(input_ids)
for target, source in zip(targets, sources):
tokenized_len = len(tokenizer_speech_token(source[0]["value"], tokenizer))
target[:tokenized_len] = IGNORE_INDEX
return dict(input_ids=input_ids, labels=targets)
def preprocess_qwen(
sources,
tokenizer: transformers.PreTrainedTokenizer,
has_speech: bool = False,
has_image: bool = False,
max_len=2048,
system_message: str = "You are a helpful assistant.",
) -> Dict:
def split_text(text, keywords):
pattern = "(" + "|".join(map(re.escape, keywords)) + ")"
parts = re.split(pattern, text)
parts = [part for part in parts if part]
return parts
roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"}
# im_start, im_end = tokenizer.additional_special_tokens_ids
im_start = tokenizer("<|im_start|>").input_ids[0]
im_end = tokenizer("<|im_end|>").input_ids[0]
nl_tokens = tokenizer("\n").input_ids
_system = tokenizer("system").input_ids + nl_tokens
# Apply prompt templates
input_ids, targets = [], []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != roles["human"]:
source = source[1:]
input_id, target = [], []
system = (
[im_start]
+ _system
+ tokenizer(system_message).input_ids
+ [im_end]
+ nl_tokens
)
input_id += system
target += [im_start] + [IGNORE_INDEX] * (len(system) - 3) + [im_end] + nl_tokens
assert len(input_id) == len(target)
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
splited_sentence = split_text(sentence["value"], ["<speech>", "<image>"])
_input_id = []
for part in splited_sentence:
_input_id += tokenizer(role).input_ids + nl_tokens # add prefix
if "<speech>" == part:
_input_id += [SPEECH_TOKEN_INDEX]
elif "<image>" == part:
_input_id += [IMAGE_TOKEN_INDEX]
else:
_input_id += tokenizer(part).input_ids
_input_id += [im_end] + nl_tokens # add suffix
input_id += _input_id
if role == "<|im_start|>user":
_target = (
[im_start]
+ [IGNORE_INDEX] * (len(_input_id) - 3)
+ [im_end]
+ nl_tokens
)
elif role == "<|im_start|>assistant":
_target = (
[im_start]
+ [IGNORE_INDEX] * len(tokenizer(role).input_ids)
+ _input_id[len(tokenizer(role).input_ids) + 1 : -2]
+ [im_end]
+ nl_tokens
)
else:
raise NotImplementedError
target += _target
assert len(input_id) == len(target)
input_ids.append(input_id)
targets.append(target)
input_ids = torch.tensor(input_ids, dtype=torch.long)
targets = torch.tensor(targets, dtype=torch.long)
return dict(
input_ids=input_ids, # tensor(bs x seq_len)
labels=targets, # tensor(bs x seq_len)
)
def preprocess(
sources: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
has_speech: bool = False,
has_image: bool = False,
) -> Dict:
"""
Given a list of sources, each is a conversation list. This transform:
1. Add signal '### ' at the beginning each sentence, with end signal '\n';
2. Concatenate conversations together;
3. Tokenize the concatenated conversation;
4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
"""
if (
conversation_lib.default_conversation.sep_style
== conversation_lib.SeparatorStyle.PLAIN
):
return preprocess_plain(sources, tokenizer, has_image=has_image)
if (
conversation_lib.default_conversation.sep_style
== conversation_lib.SeparatorStyle.LLAMA_2
):
return preprocess_llama_2(
sources, tokenizer, has_speech=has_speech, has_image=has_image
)
if conversation_lib.default_conversation.version.startswith("v1"):
return preprocess_v1(
sources, tokenizer, has_speech=has_speech, has_image=has_image
)
if (
conversation_lib.default_conversation.sep_style
== conversation_lib.SeparatorStyle.LLAMA_3
):
return preprocess_llama_3(
sources, tokenizer, has_speech=has_speech, has_image=has_image
)
if conversation_lib.default_conversation.version == "qwen":
return preprocess_qwen(
sources, tokenizer, has_speech=has_speech, has_image=has_image
)
raise NotImplementedError
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(
self,
data_path: str,
tokenizer: transformers.PreTrainedTokenizer,
data_args: DataArguments,
):
super(LazySupervisedDataset, self).__init__()
list_data_dict = json.load(open(data_path, "r"))
rank0_print("Formatting inputs...Skip in lazy mode")
self.tokenizer = tokenizer
self.list_data_dict = list_data_dict
self.data_args = data_args
self.mel_size = 128
def __len__(self):
return len(self.list_data_dict)
@property
def modality_lengths(self):
length_list = []
for sample in self.list_data_dict:
cur_len = sum(
len(conv["value"].split()) for conv in sample["conversations"]
)
assert cur_len > 0, f"Conversation length is 0 for {sample}"
if "image" in sample or "video" in sample or self.data_args.early_mix_text:
length_list.append(cur_len)
else:
length_list.append(-cur_len)
return length_list
def process_audio(self, audio_file, start_frame=None, end_frame=None, fps=20):
speech, sample_rate = sf.read(audio_file)
if start_frame is not None and end_frame is not None:
start_sample = start_frame * sample_rate // fps
end_sample = end_frame * sample_rate // fps
speech = speech[start_sample:end_sample]
if sample_rate != 16000:
target_length = int(len(speech) * 16000 / sample_rate)
speech = resample(speech, target_length)
if speech.ndim > 1:
speech = np.mean(speech, axis=1)
speech = whisper.pad_or_trim(speech.astype(np.float32))
speech = whisper.log_mel_spectrogram(speech, n_mels=self.mel_size).permute(1, 0)
speech_length = torch.LongTensor([speech.shape[0]])
return speech, speech_length
def process_image(self, image_file, overwrite_image_aspect_ratio=None):
processor = self.data_args.image_processor
# print(f"\n\nInspecting the image path, folder = {image_folder}, image={image_file}\n\n")
try:
image = Image.open(image_file).convert("RGB")
except Exception as exn:
print(f"Failed to open image {image_file}. Exception:", exn)
raise exn
image_size = image.size
image_aspect_ratio = self.data_args.image_aspect_ratio
if overwrite_image_aspect_ratio is not None:
image_aspect_ratio = overwrite_image_aspect_ratio
if image_aspect_ratio == "highres":
image = process_highres_image(
image,
self.data_args.image_processor,
self.data_args.image_grid_pinpoints,
)
elif image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio:
image = process_anyres_image(
image,
self.data_args.image_processor,
self.data_args.image_grid_pinpoints,
)
elif image_aspect_ratio == "crop_split":
image = process_highres_image_crop_split(image, self.data_args)
elif image_aspect_ratio == "pad":
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = expand2square(
image, tuple(int(x * 255) for x in processor.image_mean)
)
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
else:
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
return image, image_size, "image"
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
while True:
try:
sample = self._get_item(i)
# print("process sample",i)
break
except Exception as e:
while True:
try:
i += 1
random_index = i % len(self.list_data_dict)
sample = self._get_item(random_index)
# print("something error, process sample",random_index)
break
except Exception as e:
# random_index = random.randint(0, len(self.list_data_dict) - 1)
continue
return sample
def _get_item(self, i) -> Dict[str, torch.Tensor]:
sources = self.list_data_dict[i]
if isinstance(i, int):
sources = [sources]
assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
if "image" in sources[0]:
image_file = self.list_data_dict[i]["image"]
if type(image_file) is list:
image = [self.process_image(f) for f in image_file]
# Handling multi images
# overwrite to process with simple pad
if len(image_file) > 1:
image = [self.process_image(f, "pad") for f in image_file]
image = [[im[0], im[1], "image"] for im in image]
else:
image = [self.process_image(image_file)]
if "video" or "audio" in sources[0]:
if "video" in sources[0]:
video_file = self.list_data_dict[i]["video"]
# video_folder = self.data_args.video_folder
# video_file = os.path.join(video_folder, video_file)
if not os.path.exists(video_file):
print("File {} not exist!".format(video_file))
if "start_frame" in self.list_data_dict[i]:
start_frame = self.list_data_dict[i]["start_frame"]
end_frame = self.list_data_dict[i]["end_frame"]
if self.list_data_dict[i].get(
"current_observation_frame", None
): # Customized for egoplan data
current_observation_frame = self.list_data_dict[i][
"current_observation_frame"
]
else:
current_observation_frame = None
video = process_video_with_decord_byframe(
video_file,
start_frame,
end_frame,
self.data_args,
current_observation_frame,
)
else:
(
video,
video_time,
frame_time,
num_frames,
) = process_video_with_decord(video_file, self.data_args)
processor = self.data_args.image_processor
processed_video = processor.preprocess(video, return_tensors="pt")[
"pixel_values"
]
image = [(processed_video, video[0].size, "video")]
if "audio" in sources[0]:
audio_file = self.list_data_dict[i]["audio"]
# audio_folder = self.data_args.audio_folder
# audio_file = os.path.join(audio_folder, audio_file)
try:
if "start_frame" in self.list_data_dict[i]:
start_frame = self.list_data_dict[i]["start_frame"]
end_frame = self.list_data_dict[i]["end_frame"]
else:
start_frame = None
end_frame = None
audio, audio_length = self.process_audio(
audio_file, start_frame, end_frame
)
except Exception as e:
print("audio error", e)
audio = [torch.zeros(3000, 128)]
audio_length = torch.tensor([3000])
audio = [audio]
sources = preprocess_multimodal(
copy.deepcopy([e["conversations"] for e in sources]), self.data_args
)
else:
sources = copy.deepcopy([e["conversations"] for e in sources])
has_speech = "audio" in self.list_data_dict[i]
has_image = ("image" in self.list_data_dict[i]) or (
"video" in self.list_data_dict[i]
)
data_dict = preprocess(
sources, self.tokenizer, has_speech=has_speech, has_image=has_image
)
if isinstance(i, int):
data_dict = dict(
input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0]
)
if "image" or "video" in self.list_data_dict[i]:
data_dict["image"] = image
# audio exist in the data
if "audio" in self.list_data_dict[i]:
data_dict["speech"] = audio
data_dict["speech_lengths"] = audio_length
else: # if no audio, add a dummy audio
data_dict["speech"] = [torch.zeros(3000, 128)]
data_dict["speech_lengths"] = torch.tensor([3000])
return data_dict
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def pad_sequence(self, input_ids, batch_first, padding_value):
if self.tokenizer.padding_side == "left":
input_ids = [torch.flip(_input_ids, [0]) for _input_ids in input_ids]
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=batch_first, padding_value=padding_value
)
if self.tokenizer.padding_side == "left":
input_ids = torch.flip(input_ids, [1])
return input_ids
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple(
[instance[key] for instance in instances] for key in ("input_ids", "labels")
)
input_ids = [
_input_ids[: self.tokenizer.model_max_length] for _input_ids in input_ids
]
labels = [_labels[: self.tokenizer.model_max_length] for _labels in labels]
if self.tokenizer.pad_token_id is None:
if "qwen" in self.tokenizer.name_or_path.lower():
# print("Setting pad token to bos token for qwen model.")
self.tokenizer.pad_token_id = 151643
else:
self.tokenizer.pad_token_id = (
self.tokenizer.eos_token_id
) # FIXME: this could only be triggered for llama3 model.
input_ids = self.pad_sequence(
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
)
labels = self.pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX)
batch = dict(
input_ids=input_ids,
labels=labels,
attention_mask=input_ids.ne(self.tokenizer.pad_token_id),
)
if "speech" in instances[0]:
speeches = [instance["speech"] for instance in instances]
speeches_lengths = [instance["speech_lengths"] for instance in instances]
batch["speech"] = [au for audio_list in speeches for au in audio_list]
batch["speech_lengths"] = [
au for audio_list in speeches_lengths for au in audio_list
]
batch["speech_lengths"] = torch.stack(batch["speech_lengths"])
if all(
x is not None and x.shape == speeches[0][0].shape
for x in batch["speech"]
):
batch["speech"] = torch.stack(batch["speech"])
if "image" in instances[0]:
images = [instance["image"] for instance in instances]
batch["image_sizes"] = [im[1] for im_list in images for im in im_list]
batch["modalities"] = [im[2] for im_list in images for im in im_list]
images = [im[0] for im_list in images for im in im_list]
# if all(x is not None and x.shape == images[0].shape for x in images):
# Image: (N, P, C, H, W)
# Video: (N, F, C, H, W)
# batch["images"] = torch.stack(images)
# else:
batch["images"] = images
return batch
def make_supervised_data_module(
tokenizer: transformers.PreTrainedTokenizer, data_args
) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
train_dataset = LazySupervisedDataset(
tokenizer=tokenizer, data_path=data_args.data_path, data_args=data_args
)
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
return dict(
train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator
)
def train():
global local_rank
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments)
)
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
local_rank = training_args.local_rank
compute_dtype = (
torch.float16
if training_args.fp16
else (torch.bfloat16 if training_args.bf16 else torch.float32)
)
if "qwen" in model_args.model_name_or_path.lower():
model = EgoGPTQwenForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
attn_implementation="flash_attention_2",
torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
)
else:
model = EgoGPTLlamaForCausalLM.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
attn_implementation="flash_attention_2",
torch_dtype=(torch.bfloat16 if training_args.bf16 else None),
)
model.config.use_cache = False
if model_args.freeze_backbone:
model.model.requires_grad_(False)
if training_args.gradient_checkpointing:
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
training_args.gradient_checkpointing_kwargs = {"use_reentrant": True}
training_args.ddp_find_unused_parameters = True
if training_args.lora_enable:
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=training_args.lora_r,
lora_alpha=training_args.lora_alpha,
target_modules=find_all_linear_names(model),
lora_dropout=training_args.lora_dropout,
bias=training_args.lora_bias,
task_type="CAUSAL_LM",
use_dora=True,
)
if training_args.bits == 16:
if training_args.bf16:
model.to(torch.bfloat16)
if training_args.fp16:
model.to(torch.float16)
rank0_print("Adding LoRA adapters...")
model = get_peft_model(model, lora_config)
model.to(dtype=compute_dtype, device=training_args.device)
if "qwen" in model_args.model_name_or_path.lower():
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
)
else:
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=training_args.cache_dir,
model_max_length=training_args.model_max_length,
padding_side="right",
use_fast=False,
)
if model_args.version == "v0":
if tokenizer.pad_token is None:
smart_tokenizer_and_embedding_resize(
special_tokens_dict=dict(pad_token="[PAD]"),
tokenizer=tokenizer,
model=model,
)
elif model_args.version == "v0.5":
tokenizer.pad_token = tokenizer.unk_token
else:
tokenizer.pad_token = tokenizer.unk_token
if model_args.version in conversation_lib.conv_templates:
conversation_lib.default_conversation = conversation_lib.conv_templates[
model_args.version
]
else:
conversation_lib.default_conversation = conversation_lib.conv_templates[
"vicuna_v1"
]
model.get_model().initialize_speech_modules(
model_args=model_args, fsdp=training_args.fsdp
)
speech_encoder = model.get_speech_encoder()
speech_encoder.to(
dtype=torch.bfloat16 if training_args.bf16 else torch.float16,
device=training_args.device,
)
if model_args.vision_tower is not None:
model.get_model().initialize_vision_modules(
model_args=model_args, fsdp=training_args.fsdp
)
# import pdb;pdb.set_trace()
vision_tower = model.get_vision_tower()
vision_tower.to(
dtype=torch.bfloat16 if training_args.bf16 else torch.float16,
device=training_args.device,
)
data_args.image_processor = vision_tower.image_processor
model.config.image_aspect_ratio = data_args.image_aspect_ratio
if data_args.image_grid_pinpoints is not None:
if (
isinstance(data_args.image_grid_pinpoints, str)
and "x" in data_args.image_grid_pinpoints
):
try:
patch_size = data_args.image_processor.size[0]
except Exception as e:
patch_size = data_args.image_processor.size["shortest_edge"]
assert patch_size in [
224,
336,
384,
448,
512,
], "patch_size should be in [224, 336, 384, 448, 512]"
# Use regex to extract the range from the input string
matches = re.findall(r"\((\d+)x(\d+)\)", data_args.image_grid_pinpoints)
range_start = tuple(map(int, matches[0]))
range_end = tuple(map(int, matches[-1]))
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
grid_pinpoints = [
(i, j)
for i in range(range_start[0], range_end[0] + 1)
for j in range(range_start[1], range_end[1] + 1)
]
# Multiply all elements by patch_size
data_args.image_grid_pinpoints = [
[dim * patch_size for dim in pair] for pair in grid_pinpoints
]
elif isinstance(data_args.image_grid_pinpoints, str):
data_args.image_grid_pinpoints = ast.literal_eval(
data_args.image_grid_pinpoints
)
model.config.image_grid_pinpoints = data_args.image_grid_pinpoints
model.config.image_crop_resolution = data_args.image_crop_resolution
model.config.image_split_resolution = data_args.image_split_resolution
model.config.tokenizer_padding_side = tokenizer.padding_side
model.config.tokenizer_model_max_length = tokenizer.model_max_length
model.config.mm_newline_position = model_args.mm_newline_position
model.config.add_faster_video = model_args.add_faster_video
model.config.faster_token_stride = model_args.faster_token_stride
model.config.mm_spatial_pool_stride = model_args.mm_spatial_pool_stride
data_args.is_multimodal = True
model.config.tune_mm_mlp_adapter = (
training_args.tune_mm_mlp_adapter
) = model_args.tune_mm_mlp_adapter
if model_args.tune_mm_mlp_adapter:
model.requires_grad_(False)
if model_args.tune_mm_mlp_adapter:
for p in model.get_model().speech_projector.parameters():
p.requires_grad = True
for p in model.get_model().mm_projector.parameters():
p.requires_grad = True
model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter
if training_args.freeze_mm_mlp_adapter:
for p in model.get_model().speech_projector.parameters():
p.requires_grad = False
for p in model.get_model().mm_projector.parameters():
p.requires_grad = False
model.config.freeze_mm_vision_resampler = training_args.freeze_mm_vision_resampler
if training_args.freeze_mm_vision_resampler:
for p in model.get_model().vision_resampler.parameters():
p.requires_grad = False
model.config.unfreeze_mm_speech_encoder = model_args.unfreeze_mm_speech_encoder
if model_args.unfreeze_mm_speech_encoder:
speech_encoder.requires_grad_(True)
model.config.mm_use_im_start_end = (
data_args.mm_use_im_start_end
) = model_args.mm_use_im_start_end
model.config.mm_projector_lr = training_args.mm_projector_lr
model.config.mm_vision_tower_lr = training_args.mm_vision_tower_lr
model.config.speech_projector_lr = training_args.speech_projector_lr
model.config.mm_speech_encoder_lr = training_args.mm_speech_encoder_lr
model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token
training_args.use_im_start_end = model_args.mm_use_im_start_end
data_module = make_supervised_data_module(tokenizer=tokenizer, data_args=data_args)
# test_data = data_module['train_dataset'].__getitem__(0)
trainer = LLaVATrainer(
model=model, tokenizer=tokenizer, args=training_args, **data_module
)
if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")):
trainer.train(resume_from_checkpoint=True)
else:
trainer.train()
trainer.save_state()
model.config.use_cache = True
if training_args.lora_enable:
state_dict = get_peft_state_maybe_zero_3(
model.named_parameters(), training_args.lora_bias
)
non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3(
model.named_parameters()
)
if training_args.local_rank == 0 or training_args.local_rank == -1:
model.config.save_pretrained(training_args.output_dir)
model.save_pretrained(training_args.output_dir, state_dict=state_dict)
torch.save(
non_lora_state_dict,
os.path.join(training_args.output_dir, "non_lora_trainables.bin"),
)
else:
safe_save_model_for_hf_trainer(
trainer=trainer, output_dir=training_args.output_dir
)
if __name__ == "__main__":
import torch
print("number of gpus", torch.cuda.device_count())
train()
|