Spaces:
Paused
Paused
File size: 27,669 Bytes
ec27d4d f12e9dc ec27d4d f8dca01 ec27d4d b0c2331 eacfbe2 2fe79f5 eacfbe2 f56283f eacfbe2 352aa0e ec27d4d eacfbe2 e79c9c5 eacfbe2 ec27d4d 2b35bda ec27d4d f56283f ec27d4d f56283f ec27d4d f56283f ec27d4d 2fe79f5 f56283f eacfbe2 bf59705 eacfbe2 bf59705 eacfbe2 b0c2331 eacfbe2 ec27d4d f56283f ec27d4d 98d2781 ec27d4d 98d2781 ec27d4d 98d2781 ec27d4d 98d2781 ec27d4d 98d2781 ec27d4d f56283f e656c37 f56283f 2b35bda f56283f e656c37 f56283f 989a3f5 f56283f e656c37 f56283f 2b35bda f56283f ec27d4d eacfbe2 ec27d4d eacfbe2 352aa0e aef3d4f 1881cc0 ec27d4d 5f26e89 ec27d4d 5f26e89 ec27d4d 2b35bda f56283f ec27d4d f56283f 98d2781 f56283f e656c37 f56283f 2b35bda f56283f e656c37 f56283f 2b35bda f56283f 98d2781 f56283f ec27d4d 5f26e89 ec27d4d f56283f 2b35bda f56283f 4763326 ec27d4d f56283f e656c37 f56283f 2b35bda f56283f eacfbe2 f56283f e656c37 f56283f eacfbe2 f56283f eacfbe2 f56283f ec27d4d f56283f ec27d4d f56283f eacfbe2 ec27d4d f56283f 2b35bda ec27d4d 98d2781 ec27d4d 989a3f5 eacfbe2 989a3f5 ec27d4d b0c2331 f8dca01 b0c2331 f8dca01 b0c2331 ec27d4d b0c2331 ec27d4d f8dca01 b0c2331 f8dca01 98d2781 ec27d4d 98d2781 ec27d4d de2c35e b0c2331 f56283f e656c37 f56283f 2b35bda f56283f e656c37 f56283f 989a3f5 eacfbe2 989a3f5 eacfbe2 989a3f5 eacfbe2 989a3f5 eacfbe2 989a3f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 |
import os
os.environ["HOME"] = "/root"
os.environ["HF_HOME"] = "/tmp/hf_cache"
import logging
import threading
import tempfile
import uuid
import torch
import numpy as np
import soundfile as sf
import torchaudio
import wave
import time
from fastapi import FastAPI, HTTPException, UploadFile, File, Form, BackgroundTasks
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from typing import Dict, Any, Optional, Tuple
from datetime import datetime, timedelta
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("talklas-api")
app = FastAPI(title="Talklas API")
# Mount a directory to serve audio files
AUDIO_DIR = "/tmp/audio_output" # Use /tmp for temporary files
os.makedirs(AUDIO_DIR, exist_ok=True)
app.mount("/audio_output", StaticFiles(directory=AUDIO_DIR), name="audio_output")
# Global variables to track application state
models_loaded = False
loading_in_progress = False
loading_thread = None
model_status = {
"stt": "not_loaded",
"mt": "not_loaded",
"tts": "not_loaded"
}
error_message = None
current_tts_language = "tgl" # Track the current TTS language
# Model instances
stt_processor = None
stt_model = None
mt_model = None
mt_tokenizer = None
tts_model = None
tts_tokenizer = None
# Define the valid languages and mappings
LANGUAGE_MAPPING = {
"English": "eng",
"Tagalog": "tgl",
"Cebuano": "ceb",
"Ilocano": "ilo",
"Waray": "war",
"Pangasinan": "pag"
}
NLLB_LANGUAGE_CODES = {
"eng": "eng_Latn",
"tgl": "tgl_Latn",
"ceb": "ceb_Latn",
"ilo": "ilo_Latn",
"war": "war_Latn",
"pag": "pag_Latn"
}
# Function to save PCM data as a WAV file
def save_pcm_to_wav(pcm_data: list, sample_rate: int, output_path: str):
# Convert pcm_data to a NumPy array of 16-bit integers
pcm_array = np.array(pcm_data, dtype=np.int16)
with wave.open(output_path, 'wb') as wav_file:
# Set WAV parameters: 1 channel (mono), 2 bytes per sample (16-bit), sample rate
wav_file.setnchannels(1)
wav_file.setsampwidth(2) # 16-bit audio
wav_file.setframerate(sample_rate)
# Write the 16-bit PCM data as bytes (little-endian)
wav_file.writeframes(pcm_array.tobytes())
# Function to detect speech using an energy-based approach
def detect_speech(waveform: torch.Tensor, sample_rate: int, threshold: float = 0.01, min_speech_duration: float = 0.5) -> bool:
"""
Detects if the audio contains speech using an energy-based approach.
Returns True if speech is detected, False otherwise.
"""
# Convert waveform to numpy array
waveform_np = waveform.numpy()
if waveform_np.ndim > 1:
waveform_np = waveform_np.mean(axis=0) # Convert stereo to mono
# Compute RMS energy
rms = np.sqrt(np.mean(waveform_np**2))
logger.info(f"RMS energy: {rms}")
# Check if RMS energy exceeds the threshold
if rms < threshold:
logger.info("No speech detected: RMS energy below threshold")
return False
# Optionally, check for minimum speech duration (requires more sophisticated VAD)
# For now, we assume if RMS is above threshold, there is speech
return True
# Function to clean up old audio files
def cleanup_old_audio_files():
logger.info("Starting cleanup of old audio files...")
expiration_time = datetime.now() - timedelta(minutes=10) # Files older than 10 minutes
for filename in os.listdir(AUDIO_DIR):
file_path = os.path.join(AUDIO_DIR, filename)
if os.path.isfile(file_path):
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
if file_mtime < expiration_time:
try:
os.unlink(file_path)
logger.info(f"Deleted old audio file: {file_path}")
except Exception as e:
logger.error(f"Error deleting file {file_path}: {str(e)}")
# Background task to periodically clean up audio files
def schedule_cleanup():
while True:
cleanup_old_audio_files()
time.sleep(300) # Run every 5 minutes (300 seconds)
# Function to load models in background
def load_models_task():
global models_loaded, loading_in_progress, model_status, error_message
global stt_processor, stt_model, mt_model, mt_tokenizer, tts_model, tts_tokenizer
try:
loading_in_progress = True
# Load STT model (MMS with fallback to Whisper)
logger.info("Starting to load STT model...")
from transformers import AutoProcessor, AutoModelForCTC, WhisperProcessor, WhisperForConditionalGeneration
try:
logger.info("Loading MMS STT model...")
model_status["stt"] = "loading"
stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
device = "cuda" if torch.cuda.is_available() else "cpu"
stt_model.to(device)
logger.info("MMS STT model loaded successfully")
model_status["stt"] = "loaded_mms"
except Exception as mms_error:
logger.error(f"Failed to load MMS STT model: {str(mms_error)}")
logger.info("Falling back to Whisper STT model...")
try:
stt_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
stt_model.to(device)
logger.info("Whisper STT model loaded successfully as fallback")
model_status["stt"] = "loaded_whisper"
except Exception as whisper_error:
logger.error(f"Failed to load Whisper STT model: {str(whisper_error)}")
model_status["stt"] = "failed"
error_message = f"STT model loading failed: MMS error: {str(mms_error)}, Whisper error: {str(whisper_error)}"
return
# Load MT model
logger.info("Starting to load MT model...")
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
try:
logger.info("Loading NLLB-200-distilled-600M model...")
model_status["mt"] = "loading"
mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
mt_model.to(device)
logger.info("MT model loaded successfully")
model_status["mt"] = "loaded"
except Exception as e:
logger.error(f"Failed to load MT model: {str(e)}")
model_status["mt"] = "failed"
error_message = f"MT model loading failed: {str(e)}"
return
# Load TTS model (default to Tagalog, will be updated dynamically)
logger.info("Starting to load TTS model...")
from transformers import VitsModel, AutoTokenizer
try:
logger.info("Loading MMS-TTS model for Tagalog...")
model_status["tts"] = "loading"
tts_model = VitsModel.from_pretrained("facebook/mms-tts-tgl")
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tgl")
tts_model.to(device)
logger.info("TTS model loaded successfully")
model_status["tts"] = "loaded"
except Exception as e:
logger.error(f"Failed to load TTS model for Tagalog: {str(e)}")
# Fallback to English TTS if the target language fails
try:
logger.info("Falling back to MMS-TTS English model...")
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
tts_model.to(device)
logger.info("Fallback TTS model loaded successfully")
model_status["tts"] = "loaded (fallback)"
current_tts_language = "eng"
except Exception as e2:
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
model_status["tts"] = "failed"
error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})"
return
models_loaded = True
logger.info("Model loading completed successfully")
except Exception as e:
error_message = str(e)
logger.error(f"Error in model loading task: {str(e)}")
finally:
loading_in_progress = False
# Start loading models in background
def start_model_loading():
global loading_thread, loading_in_progress
if not loading_in_progress and not models_loaded:
loading_in_progress = True
loading_thread = threading.Thread(target=load_models_task)
loading_thread.daemon = True
loading_thread.start()
# Start the background cleanup task
def start_cleanup_task():
cleanup_thread = threading.Thread(target=schedule_cleanup)
cleanup_thread.daemon = True
cleanup_thread.start()
# Start the background processes when the app starts
@app.on_event("startup")
async def startup_event():
logger.info("Application starting up...")
start_model_loading()
start_cleanup_task()
@app.get("/")
async def root():
"""Root endpoint for default health check"""
logger.info("Root endpoint requested")
return {"status": "healthy"}
@app.get("/health")
async def health_check():
"""Health check endpoint that always returns successfully"""
global models_loaded, loading_in_progress, model_status, error_message
logger.info("Health check requested")
return {
"status": "healthy",
"models_loaded": models_loaded,
"loading_in_progress": loading_in_progress,
"model_status": model_status,
"error": error_message
}
@app.post("/update-languages")
async def update_languages(source_lang: str = Form(...), target_lang: str = Form(...)):
global stt_processor, stt_model, tts_model, tts_tokenizer, current_tts_language
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
raise HTTPException(status_code=400, detail="Invalid language selected")
source_code = LANGUAGE_MAPPING[source_lang]
target_code = LANGUAGE_MAPPING[target_lang]
# Update the STT model based on the source language (MMS or Whisper)
try:
logger.info("Updating STT model for source language...")
from transformers import AutoProcessor, AutoModelForCTC, WhisperProcessor, WhisperForConditionalGeneration
device = "cuda" if torch.cuda.is_available() else "cpu"
try:
logger.info(f"Loading MMS STT model for {source_code}...")
stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
stt_model.to(device)
# Set the target language for MMS
if source_code in stt_processor.tokenizer.vocab.keys():
stt_processor.tokenizer.set_target_lang(source_code)
stt_model.load_adapter(source_code)
logger.info(f"MMS STT model updated to {source_code}")
model_status["stt"] = "loaded_mms"
else:
logger.warning(f"Language {source_code} not supported by MMS, using default")
model_status["stt"] = "loaded_mms_default"
except Exception as mms_error:
logger.error(f"Failed to load MMS STT model for {source_code}: {str(mms_error)}")
logger.info("Falling back to Whisper STT model...")
try:
stt_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
stt_model.to(device)
logger.info("Whisper STT model loaded successfully as fallback")
model_status["stt"] = "loaded_whisper"
except Exception as whisper_error:
logger.error(f"Failed to load Whisper STT model: {str(whisper_error)}")
model_status["stt"] = "failed"
error_message = f"STT model update failed: MMS error: {str(mms_error)}, Whisper error: {str(whisper_error)}"
return {"status": "failed", "error": error_message}
except Exception as e:
logger.error(f"Error updating STT model: {str(e)}")
model_status["stt"] = "failed"
error_message = f"STT model update failed: {str(e)}"
return {"status": "failed", "error": error_message}
# Update the TTS model based on the target language
try:
logger.info(f"Loading MMS-TTS model for {target_code}...")
from transformers import VitsModel, AutoTokenizer
tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}")
tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}")
tts_model.to(device)
current_tts_language = target_code
logger.info(f"TTS model updated to {target_code}")
model_status["tts"] = "loaded"
except Exception as e:
logger.error(f"Failed to load TTS model for {target_code}: {str(e)}")
try:
logger.info("Falling back to MMS-TTS English model...")
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
tts_model.to(device)
current_tts_language = "eng"
logger.info("Fallback TTS model loaded successfully")
model_status["tts"] = "loaded (fallback)"
except Exception as e2:
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
model_status["tts"] = "failed"
error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})"
return {"status": "failed", "error": error_message}
logger.info(f"Updating languages: {source_lang} β {target_lang}")
return {"status": f"Languages updated to {source_lang} β {target_lang}"}
@app.post("/translate-text")
async def translate_text(text: str = Form(...), source_lang: str = Form(...), target_lang: str = Form(...)):
"""Endpoint to translate text and convert to speech"""
global mt_model, mt_tokenizer, tts_model, tts_tokenizer, current_tts_language
if not text:
raise HTTPException(status_code=400, detail="No text provided")
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
raise HTTPException(status_code=400, detail="Invalid language selected")
logger.info(f"Translate-text requested: {text} from {source_lang} to {target_lang}")
request_id = str(uuid.uuid4())
# Translate the text
source_code = LANGUAGE_MAPPING[source_lang]
target_code = LANGUAGE_MAPPING[target_lang]
translated_text = "Translation not available"
if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None:
try:
source_nllb_code = NLLB_LANGUAGE_CODES[source_code]
target_nllb_code = NLLB_LANGUAGE_CODES[target_code]
mt_tokenizer.src_lang = source_nllb_code
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = mt_tokenizer(text, return_tensors="pt").to(device)
with torch.no_grad():
generated_tokens = mt_model.generate(
**inputs,
forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code),
max_length=448
)
translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
logger.info(f"Translation completed: {translated_text}")
except Exception as e:
logger.error(f"Error during translation: {str(e)}")
translated_text = f"Translation failed: {str(e)}"
else:
logger.warning("MT model not loaded, skipping translation")
# Update TTS model if the target language doesn't match the current TTS language
if current_tts_language != target_code:
try:
logger.info(f"Updating TTS model for {target_code}...")
from transformers import VitsModel, AutoTokenizer
tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}")
tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}")
tts_model.to(device)
current_tts_language = target_code
logger.info(f"TTS model updated to {target_code}")
model_status["tts"] = "loaded"
except Exception as e:
logger.error(f"Failed to load TTS model for {target_code}: {str(e)}")
try:
logger.info("Falling back to MMS-TTS English model...")
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
tts_model.to(device)
current_tts_language = "eng"
logger.info("Fallback TTS model loaded successfully")
model_status["tts"] = "loaded (fallback)"
except Exception as e2:
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
model_status["tts"] = "failed"
# Convert translated text to speech
output_audio_url = None
if model_status["tts"].startswith("loaded") and tts_model is not None and tts_tokenizer is not None:
try:
inputs = tts_tokenizer(translated_text, return_tensors="pt").to(device)
with torch.no_grad():
output = tts_model(**inputs)
speech = output.waveform.cpu().numpy().squeeze()
speech = (speech * 32767).astype(np.int16)
sample_rate = tts_model.config.sampling_rate
# Save the audio as a WAV file
output_filename = f"{request_id}.wav"
output_path = os.path.join(AUDIO_DIR, output_filename)
save_pcm_to_wav(speech.tolist(), sample_rate, output_path)
logger.info(f"Saved synthesized audio to {output_path}")
# Generate a URL to the WAV file
output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}"
logger.info("TTS conversion completed")
except Exception as e:
logger.error(f"Error during TTS conversion: {str(e)}")
output_audio_url = None
return {
"request_id": request_id,
"status": "completed",
"message": "Translation and TTS completed (or partially completed).",
"source_text": text,
"translated_text": translated_text,
"output_audio": output_audio_url
}
@app.post("/translate-audio")
async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form(...)):
"""Endpoint to transcribe, translate, and convert audio to speech"""
global stt_processor, stt_model, mt_model, mt_tokenizer, tts_model, tts_tokenizer, current_tts_language
if not audio:
raise HTTPException(status_code=400, detail="No audio file provided")
if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
raise HTTPException(status_code=400, detail="Invalid language selected")
logger.info(f"Translate-audio requested: {audio.filename} from {source_lang} to {target_lang}")
request_id = str(uuid.uuid4())
# Check if STT model is loaded
if model_status["stt"] not in ["loaded_mms", "loaded_mms_default", "loaded_whisper"] or stt_processor is None or stt_model is None:
logger.warning("STT model not loaded, returning placeholder response")
return {
"request_id": request_id,
"status": "processing",
"message": "STT model not loaded yet. Please try again later.",
"source_text": "Transcription not available",
"translated_text": "Translation not available",
"output_audio": None
}
# Save the uploaded audio to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
temp_file.write(await audio.read())
temp_path = temp_file.name
transcription = "Transcription not available"
translated_text = "Translation not available"
output_audio_url = None
try:
# Step 1: Load and resample the audio using torchaudio
logger.info(f"Reading audio file: {temp_path}")
waveform, sample_rate = torchaudio.load(temp_path)
logger.info(f"Audio loaded: sample_rate={sample_rate}, waveform_shape={waveform.shape}")
# Resample to 16 kHz if needed (required by Whisper and MMS models)
if sample_rate != 16000:
logger.info(f"Resampling audio from {sample_rate} Hz to 16000 Hz")
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
waveform = resampler(waveform)
sample_rate = 16000
# Step 2: Detect speech
if not detect_speech(waveform, sample_rate):
return {
"request_id": request_id,
"status": "failed",
"message": "No speech detected in the audio.",
"source_text": "No speech detected",
"translated_text": "No translation available",
"output_audio": None
}
# Step 3: Transcribe the audio (STT)
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
inputs = stt_processor(waveform.numpy(), sampling_rate=16000, return_tensors="pt").to(device)
logger.info("Audio processed, generating transcription...")
with torch.no_grad():
if model_status["stt"] == "loaded_whisper":
# Whisper model
generated_ids = stt_model.generate(**inputs, language="en")
transcription = stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
else:
# MMS model
logits = stt_model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = stt_processor.batch_decode(predicted_ids)[0]
logger.info(f"Transcription completed: {transcription}")
# Step 4: Translate the transcribed text (MT)
source_code = LANGUAGE_MAPPING[source_lang]
target_code = LANGUAGE_MAPPING[target_lang]
if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None:
try:
source_nllb_code = NLLB_LANGUAGE_CODES[source_code]
target_nllb_code = NLLB_LANGUAGE_CODES[target_code]
mt_tokenizer.src_lang = source_nllb_code
inputs = mt_tokenizer(transcription, return_tensors="pt").to(device)
with torch.no_grad():
generated_tokens = mt_model.generate(
**inputs,
forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code),
max_length=448
)
translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
logger.info(f"Translation completed: {translated_text}")
except Exception as e:
logger.error(f"Error during translation: {str(e)}")
translated_text = f"Translation failed: {str(e)}"
else:
logger.warning("MT model not loaded, skipping translation")
# Step 5: Update TTS model if the target language doesn't match the current TTS language
if current_tts_language != target_code:
try:
logger.info(f"Updating TTS model for {target_code}...")
from transformers import VitsModel, AutoTokenizer
tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}")
tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}")
tts_model.to(device)
current_tts_language = target_code
logger.info(f"TTS model updated to {target_code}")
model_status["tts"] = "loaded"
except Exception as e:
logger.error(f"Failed to load TTS model for {target_code}: {str(e)}")
try:
logger.info("Falling back to MMS-TTS English model...")
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
tts_model.to(device)
current_tts_language = "eng"
logger.info("Fallback TTS model loaded successfully")
model_status["tts"] = "loaded (fallback)"
except Exception as e2:
logger.error(f"Failed to load fallback TTS model: {str(e2)}")
model_status["tts"] = "failed"
# Step 6: Convert translated text to speech (TTS)
if model_status["tts"].startswith("loaded") and tts_model is not None and tts_tokenizer is not None:
try:
inputs = tts_tokenizer(translated_text, return_tensors="pt").to(device)
with torch.no_grad():
output = tts_model(**inputs)
speech = output.waveform.cpu().numpy().squeeze()
speech = (speech * 32767).astype(np.int16)
sample_rate = tts_model.config.sampling_rate
# Save the audio as a WAV file
output_filename = f"{request_id}.wav"
output_path = os.path.join(AUDIO_DIR, output_filename)
save_pcm_to_wav(speech.tolist(), sample_rate, output_path)
logger.info(f"Saved synthesized audio to {output_path}")
# Generate a URL to the WAV file
output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}"
logger.info("TTS conversion completed")
except Exception as e:
logger.error(f"Error during TTS conversion: {str(e)}")
output_audio_url = None
return {
"request_id": request_id,
"status": "completed",
"message": "Transcription, translation, and TTS completed (or partially completed).",
"source_text": transcription,
"translated_text": translated_text,
"output_audio": output_audio_url
}
except Exception as e:
logger.error(f"Error during processing: {str(e)}")
return {
"request_id": request_id,
"status": "failed",
"message": f"Processing failed: {str(e)}",
"source_text": transcription,
"translated_text": translated_text,
"output_audio": output_audio_url
}
finally:
logger.info(f"Cleaning up temporary file: {temp_path}")
os.unlink(temp_path)
if __name__ == "__main__":
import uvicorn
logger.info("Starting Uvicorn server...")
uvicorn.run(app, host="0.0.0.0", port=8000, workers=1) |