File size: 27,669 Bytes
ec27d4d
 
 
 
f12e9dc
ec27d4d
 
 
f8dca01
ec27d4d
 
b0c2331
eacfbe2
 
 
2fe79f5
eacfbe2
f56283f
eacfbe2
352aa0e
 
 
ec27d4d
 
 
 
eacfbe2
e79c9c5
eacfbe2
 
 
ec27d4d
 
 
 
 
 
 
 
 
 
2b35bda
ec27d4d
f56283f
ec27d4d
 
f56283f
 
 
 
ec27d4d
f56283f
ec27d4d
 
 
 
 
 
 
 
2fe79f5
f56283f
 
 
 
 
 
 
 
 
eacfbe2
 
bf59705
 
 
eacfbe2
 
 
 
 
bf59705
 
eacfbe2
b0c2331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eacfbe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec27d4d
 
f56283f
 
ec27d4d
 
 
 
98d2781
ec27d4d
98d2781
ec27d4d
 
98d2781
ec27d4d
98d2781
 
ec27d4d
 
98d2781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec27d4d
f56283f
 
 
 
 
 
 
 
e656c37
f56283f
 
 
 
 
 
 
 
 
2b35bda
f56283f
 
 
 
 
 
 
e656c37
f56283f
 
 
 
989a3f5
f56283f
 
 
 
e656c37
f56283f
 
 
2b35bda
f56283f
 
 
 
 
ec27d4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eacfbe2
 
 
 
 
 
 
ec27d4d
 
 
 
eacfbe2
352aa0e
aef3d4f
 
 
 
 
 
1881cc0
 
ec27d4d
 
5f26e89
ec27d4d
 
 
 
 
 
 
5f26e89
ec27d4d
 
2b35bda
f56283f
ec27d4d
 
f56283f
 
 
 
98d2781
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f56283f
 
 
 
 
e656c37
f56283f
2b35bda
f56283f
 
 
 
 
 
 
e656c37
f56283f
2b35bda
f56283f
 
 
 
 
 
98d2781
f56283f
ec27d4d
 
5f26e89
ec27d4d
 
f56283f
2b35bda
f56283f
4763326
 
ec27d4d
 
 
 
 
f56283f
 
 
 
 
 
 
 
 
 
 
 
e656c37
f56283f
 
 
 
 
 
 
 
 
 
 
 
 
 
2b35bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f56283f
eacfbe2
f56283f
 
e656c37
f56283f
 
 
 
eacfbe2
 
 
 
 
 
 
 
 
 
f56283f
 
 
eacfbe2
f56283f
ec27d4d
 
f56283f
 
ec27d4d
f56283f
eacfbe2
ec27d4d
 
 
 
f56283f
2b35bda
ec27d4d
 
 
 
 
 
 
 
 
 
98d2781
ec27d4d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
989a3f5
 
eacfbe2
989a3f5
ec27d4d
b0c2331
f8dca01
b0c2331
f8dca01
b0c2331
 
ec27d4d
 
b0c2331
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec27d4d
f8dca01
b0c2331
f8dca01
98d2781
ec27d4d
98d2781
 
 
 
 
 
 
 
 
ec27d4d
de2c35e
b0c2331
f56283f
 
 
 
 
 
 
 
e656c37
f56283f
 
 
 
 
 
 
 
 
 
 
 
 
 
2b35bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f56283f
 
e656c37
f56283f
 
989a3f5
 
eacfbe2
 
 
 
 
 
 
 
 
 
989a3f5
 
 
eacfbe2
989a3f5
 
 
 
 
 
 
eacfbe2
989a3f5
 
 
 
 
 
 
 
 
eacfbe2
989a3f5
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
import os
os.environ["HOME"] = "/root"
os.environ["HF_HOME"] = "/tmp/hf_cache"

import logging
import threading
import tempfile
import uuid
import torch
import numpy as np
import soundfile as sf
import torchaudio
import wave
import time
from fastapi import FastAPI, HTTPException, UploadFile, File, Form, BackgroundTasks
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from typing import Dict, Any, Optional, Tuple
from datetime import datetime, timedelta

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("talklas-api")

app = FastAPI(title="Talklas API")

# Mount a directory to serve audio files
AUDIO_DIR = "/tmp/audio_output"  # Use /tmp for temporary files
os.makedirs(AUDIO_DIR, exist_ok=True)
app.mount("/audio_output", StaticFiles(directory=AUDIO_DIR), name="audio_output")

# Global variables to track application state
models_loaded = False
loading_in_progress = False
loading_thread = None
model_status = {
    "stt": "not_loaded",
    "mt": "not_loaded",
    "tts": "not_loaded"
}
error_message = None
current_tts_language = "tgl"  # Track the current TTS language

# Model instances
stt_processor = None
stt_model = None
mt_model = None
mt_tokenizer = None
tts_model = None
tts_tokenizer = None

# Define the valid languages and mappings
LANGUAGE_MAPPING = {
    "English": "eng",
    "Tagalog": "tgl",
    "Cebuano": "ceb",
    "Ilocano": "ilo",
    "Waray": "war",
    "Pangasinan": "pag"
}

NLLB_LANGUAGE_CODES = {
    "eng": "eng_Latn",
    "tgl": "tgl_Latn",
    "ceb": "ceb_Latn",
    "ilo": "ilo_Latn",
    "war": "war_Latn",
    "pag": "pag_Latn"
}

# Function to save PCM data as a WAV file
def save_pcm_to_wav(pcm_data: list, sample_rate: int, output_path: str):
    # Convert pcm_data to a NumPy array of 16-bit integers
    pcm_array = np.array(pcm_data, dtype=np.int16)
    
    with wave.open(output_path, 'wb') as wav_file:
        # Set WAV parameters: 1 channel (mono), 2 bytes per sample (16-bit), sample rate
        wav_file.setnchannels(1)
        wav_file.setsampwidth(2)  # 16-bit audio
        wav_file.setframerate(sample_rate)
        # Write the 16-bit PCM data as bytes (little-endian)
        wav_file.writeframes(pcm_array.tobytes())

# Function to detect speech using an energy-based approach
def detect_speech(waveform: torch.Tensor, sample_rate: int, threshold: float = 0.01, min_speech_duration: float = 0.5) -> bool:
    """
    Detects if the audio contains speech using an energy-based approach.
    Returns True if speech is detected, False otherwise.
    """
    # Convert waveform to numpy array
    waveform_np = waveform.numpy()
    if waveform_np.ndim > 1:
        waveform_np = waveform_np.mean(axis=0)  # Convert stereo to mono

    # Compute RMS energy
    rms = np.sqrt(np.mean(waveform_np**2))
    logger.info(f"RMS energy: {rms}")

    # Check if RMS energy exceeds the threshold
    if rms < threshold:
        logger.info("No speech detected: RMS energy below threshold")
        return False

    # Optionally, check for minimum speech duration (requires more sophisticated VAD)
    # For now, we assume if RMS is above threshold, there is speech
    return True

# Function to clean up old audio files
def cleanup_old_audio_files():
    logger.info("Starting cleanup of old audio files...")
    expiration_time = datetime.now() - timedelta(minutes=10)  # Files older than 10 minutes
    for filename in os.listdir(AUDIO_DIR):
        file_path = os.path.join(AUDIO_DIR, filename)
        if os.path.isfile(file_path):
            file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
            if file_mtime < expiration_time:
                try:
                    os.unlink(file_path)
                    logger.info(f"Deleted old audio file: {file_path}")
                except Exception as e:
                    logger.error(f"Error deleting file {file_path}: {str(e)}")

# Background task to periodically clean up audio files
def schedule_cleanup():
    while True:
        cleanup_old_audio_files()
        time.sleep(300)  # Run every 5 minutes (300 seconds)

# Function to load models in background
def load_models_task():
    global models_loaded, loading_in_progress, model_status, error_message
    global stt_processor, stt_model, mt_model, mt_tokenizer, tts_model, tts_tokenizer
    
    try:
        loading_in_progress = True
        
        # Load STT model (MMS with fallback to Whisper)
        logger.info("Starting to load STT model...")
        from transformers import AutoProcessor, AutoModelForCTC, WhisperProcessor, WhisperForConditionalGeneration
        
        try:
            logger.info("Loading MMS STT model...")
            model_status["stt"] = "loading"
            stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
            stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
            device = "cuda" if torch.cuda.is_available() else "cpu"
            stt_model.to(device)
            logger.info("MMS STT model loaded successfully")
            model_status["stt"] = "loaded_mms"
        except Exception as mms_error:
            logger.error(f"Failed to load MMS STT model: {str(mms_error)}")
            logger.info("Falling back to Whisper STT model...")
            try:
                stt_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
                stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
                stt_model.to(device)
                logger.info("Whisper STT model loaded successfully as fallback")
                model_status["stt"] = "loaded_whisper"
            except Exception as whisper_error:
                logger.error(f"Failed to load Whisper STT model: {str(whisper_error)}")
                model_status["stt"] = "failed"
                error_message = f"STT model loading failed: MMS error: {str(mms_error)}, Whisper error: {str(whisper_error)}"
                return

        # Load MT model
        logger.info("Starting to load MT model...")
        from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
        
        try:
            logger.info("Loading NLLB-200-distilled-600M model...")
            model_status["mt"] = "loading"
            mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
            mt_tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
            mt_model.to(device)
            logger.info("MT model loaded successfully")
            model_status["mt"] = "loaded"
        except Exception as e:
            logger.error(f"Failed to load MT model: {str(e)}")
            model_status["mt"] = "failed"
            error_message = f"MT model loading failed: {str(e)}"
            return

        # Load TTS model (default to Tagalog, will be updated dynamically)
        logger.info("Starting to load TTS model...")
        from transformers import VitsModel, AutoTokenizer
        
        try:
            logger.info("Loading MMS-TTS model for Tagalog...")
            model_status["tts"] = "loading"
            tts_model = VitsModel.from_pretrained("facebook/mms-tts-tgl")
            tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-tgl")
            tts_model.to(device)
            logger.info("TTS model loaded successfully")
            model_status["tts"] = "loaded"
        except Exception as e:
            logger.error(f"Failed to load TTS model for Tagalog: {str(e)}")
            # Fallback to English TTS if the target language fails
            try:
                logger.info("Falling back to MMS-TTS English model...")
                tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
                tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
                tts_model.to(device)
                logger.info("Fallback TTS model loaded successfully")
                model_status["tts"] = "loaded (fallback)"
                current_tts_language = "eng"
            except Exception as e2:
                logger.error(f"Failed to load fallback TTS model: {str(e2)}")
                model_status["tts"] = "failed"
                error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})"
                return
        
        models_loaded = True
        logger.info("Model loading completed successfully")
        
    except Exception as e:
        error_message = str(e)
        logger.error(f"Error in model loading task: {str(e)}")
    finally:
        loading_in_progress = False

# Start loading models in background
def start_model_loading():
    global loading_thread, loading_in_progress
    if not loading_in_progress and not models_loaded:
        loading_in_progress = True
        loading_thread = threading.Thread(target=load_models_task)
        loading_thread.daemon = True
        loading_thread.start()

# Start the background cleanup task
def start_cleanup_task():
    cleanup_thread = threading.Thread(target=schedule_cleanup)
    cleanup_thread.daemon = True
    cleanup_thread.start()

# Start the background processes when the app starts
@app.on_event("startup")
async def startup_event():
    logger.info("Application starting up...")
    start_model_loading()
    start_cleanup_task()

@app.get("/")
async def root():
    """Root endpoint for default health check"""
    logger.info("Root endpoint requested")
    return {"status": "healthy"}

@app.get("/health")
async def health_check():
    """Health check endpoint that always returns successfully"""
    global models_loaded, loading_in_progress, model_status, error_message
    logger.info("Health check requested")
    return {
        "status": "healthy",
        "models_loaded": models_loaded,
        "loading_in_progress": loading_in_progress,
        "model_status": model_status,
        "error": error_message
    }

@app.post("/update-languages")
async def update_languages(source_lang: str = Form(...), target_lang: str = Form(...)):
    global stt_processor, stt_model, tts_model, tts_tokenizer, current_tts_language
    
    if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
        raise HTTPException(status_code=400, detail="Invalid language selected")
    
    source_code = LANGUAGE_MAPPING[source_lang]
    target_code = LANGUAGE_MAPPING[target_lang]
    
    # Update the STT model based on the source language (MMS or Whisper)
    try:
        logger.info("Updating STT model for source language...")
        from transformers import AutoProcessor, AutoModelForCTC, WhisperProcessor, WhisperForConditionalGeneration
        device = "cuda" if torch.cuda.is_available() else "cpu"
        
        try:
            logger.info(f"Loading MMS STT model for {source_code}...")
            stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
            stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
            stt_model.to(device)
            # Set the target language for MMS
            if source_code in stt_processor.tokenizer.vocab.keys():
                stt_processor.tokenizer.set_target_lang(source_code)
                stt_model.load_adapter(source_code)
                logger.info(f"MMS STT model updated to {source_code}")
                model_status["stt"] = "loaded_mms"
            else:
                logger.warning(f"Language {source_code} not supported by MMS, using default")
                model_status["stt"] = "loaded_mms_default"
        except Exception as mms_error:
            logger.error(f"Failed to load MMS STT model for {source_code}: {str(mms_error)}")
            logger.info("Falling back to Whisper STT model...")
            try:
                stt_processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
                stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
                stt_model.to(device)
                logger.info("Whisper STT model loaded successfully as fallback")
                model_status["stt"] = "loaded_whisper"
            except Exception as whisper_error:
                logger.error(f"Failed to load Whisper STT model: {str(whisper_error)}")
                model_status["stt"] = "failed"
                error_message = f"STT model update failed: MMS error: {str(mms_error)}, Whisper error: {str(whisper_error)}"
                return {"status": "failed", "error": error_message}
    except Exception as e:
        logger.error(f"Error updating STT model: {str(e)}")
        model_status["stt"] = "failed"
        error_message = f"STT model update failed: {str(e)}"
        return {"status": "failed", "error": error_message}
    
    # Update the TTS model based on the target language
    try:
        logger.info(f"Loading MMS-TTS model for {target_code}...")
        from transformers import VitsModel, AutoTokenizer
        tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}")
        tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}")
        tts_model.to(device)
        current_tts_language = target_code
        logger.info(f"TTS model updated to {target_code}")
        model_status["tts"] = "loaded"
    except Exception as e:
        logger.error(f"Failed to load TTS model for {target_code}: {str(e)}")
        try:
            logger.info("Falling back to MMS-TTS English model...")
            tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
            tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
            tts_model.to(device)
            current_tts_language = "eng"
            logger.info("Fallback TTS model loaded successfully")
            model_status["tts"] = "loaded (fallback)"
        except Exception as e2:
            logger.error(f"Failed to load fallback TTS model: {str(e2)}")
            model_status["tts"] = "failed"
            error_message = f"TTS model loading failed: {str(e)} (fallback also failed: {str(e2)})"
            return {"status": "failed", "error": error_message}
    
    logger.info(f"Updating languages: {source_lang} β†’ {target_lang}")
    return {"status": f"Languages updated to {source_lang} β†’ {target_lang}"}

@app.post("/translate-text")
async def translate_text(text: str = Form(...), source_lang: str = Form(...), target_lang: str = Form(...)):
    """Endpoint to translate text and convert to speech"""
    global mt_model, mt_tokenizer, tts_model, tts_tokenizer, current_tts_language
    
    if not text:
        raise HTTPException(status_code=400, detail="No text provided")
    if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
        raise HTTPException(status_code=400, detail="Invalid language selected")
    
    logger.info(f"Translate-text requested: {text} from {source_lang} to {target_lang}")
    request_id = str(uuid.uuid4())
    
    # Translate the text
    source_code = LANGUAGE_MAPPING[source_lang]
    target_code = LANGUAGE_MAPPING[target_lang]
    translated_text = "Translation not available"
    
    if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None:
        try:
            source_nllb_code = NLLB_LANGUAGE_CODES[source_code]
            target_nllb_code = NLLB_LANGUAGE_CODES[target_code]
            mt_tokenizer.src_lang = source_nllb_code
            device = "cuda" if torch.cuda.is_available() else "cpu"
            inputs = mt_tokenizer(text, return_tensors="pt").to(device)
            with torch.no_grad():
                generated_tokens = mt_model.generate(
                    **inputs,
                    forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code),
                    max_length=448
                )
            translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
            logger.info(f"Translation completed: {translated_text}")
        except Exception as e:
            logger.error(f"Error during translation: {str(e)}")
            translated_text = f"Translation failed: {str(e)}"
    else:
        logger.warning("MT model not loaded, skipping translation")

    # Update TTS model if the target language doesn't match the current TTS language
    if current_tts_language != target_code:
        try:
            logger.info(f"Updating TTS model for {target_code}...")
            from transformers import VitsModel, AutoTokenizer
            tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}")
            tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}")
            tts_model.to(device)
            current_tts_language = target_code
            logger.info(f"TTS model updated to {target_code}")
            model_status["tts"] = "loaded"
        except Exception as e:
            logger.error(f"Failed to load TTS model for {target_code}: {str(e)}")
            try:
                logger.info("Falling back to MMS-TTS English model...")
                tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
                tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
                tts_model.to(device)
                current_tts_language = "eng"
                logger.info("Fallback TTS model loaded successfully")
                model_status["tts"] = "loaded (fallback)"
            except Exception as e2:
                logger.error(f"Failed to load fallback TTS model: {str(e2)}")
                model_status["tts"] = "failed"

    # Convert translated text to speech
    output_audio_url = None
    if model_status["tts"].startswith("loaded") and tts_model is not None and tts_tokenizer is not None:
        try:
            inputs = tts_tokenizer(translated_text, return_tensors="pt").to(device)
            with torch.no_grad():
                output = tts_model(**inputs)
            speech = output.waveform.cpu().numpy().squeeze()
            speech = (speech * 32767).astype(np.int16)
            sample_rate = tts_model.config.sampling_rate

            # Save the audio as a WAV file
            output_filename = f"{request_id}.wav"
            output_path = os.path.join(AUDIO_DIR, output_filename)
            save_pcm_to_wav(speech.tolist(), sample_rate, output_path)
            logger.info(f"Saved synthesized audio to {output_path}")

            # Generate a URL to the WAV file
            output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}"
            logger.info("TTS conversion completed")
        except Exception as e:
            logger.error(f"Error during TTS conversion: {str(e)}")
            output_audio_url = None
    
    return {
        "request_id": request_id,
        "status": "completed",
        "message": "Translation and TTS completed (or partially completed).",
        "source_text": text,
        "translated_text": translated_text,
        "output_audio": output_audio_url
    }

@app.post("/translate-audio")
async def translate_audio(audio: UploadFile = File(...), source_lang: str = Form(...), target_lang: str = Form(...)):
    """Endpoint to transcribe, translate, and convert audio to speech"""
    global stt_processor, stt_model, mt_model, mt_tokenizer, tts_model, tts_tokenizer, current_tts_language
    
    if not audio:
        raise HTTPException(status_code=400, detail="No audio file provided")
    if source_lang not in LANGUAGE_MAPPING or target_lang not in LANGUAGE_MAPPING:
        raise HTTPException(status_code=400, detail="Invalid language selected")
    
    logger.info(f"Translate-audio requested: {audio.filename} from {source_lang} to {target_lang}")
    request_id = str(uuid.uuid4())
    
    # Check if STT model is loaded
    if model_status["stt"] not in ["loaded_mms", "loaded_mms_default", "loaded_whisper"] or stt_processor is None or stt_model is None:
        logger.warning("STT model not loaded, returning placeholder response")
        return {
            "request_id": request_id,
            "status": "processing",
            "message": "STT model not loaded yet. Please try again later.",
            "source_text": "Transcription not available",
            "translated_text": "Translation not available",
            "output_audio": None
        }
    
    # Save the uploaded audio to a temporary file
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_file:
        temp_file.write(await audio.read())
        temp_path = temp_file.name
    
    transcription = "Transcription not available"
    translated_text = "Translation not available"
    output_audio_url = None
    
    try:
        # Step 1: Load and resample the audio using torchaudio
        logger.info(f"Reading audio file: {temp_path}")
        waveform, sample_rate = torchaudio.load(temp_path)
        logger.info(f"Audio loaded: sample_rate={sample_rate}, waveform_shape={waveform.shape}")

        # Resample to 16 kHz if needed (required by Whisper and MMS models)
        if sample_rate != 16000:
            logger.info(f"Resampling audio from {sample_rate} Hz to 16000 Hz")
            resampler = torchaudio.transforms.Resample(sample_rate, 16000)
            waveform = resampler(waveform)
            sample_rate = 16000

        # Step 2: Detect speech
        if not detect_speech(waveform, sample_rate):
            return {
                "request_id": request_id,
                "status": "failed",
                "message": "No speech detected in the audio.",
                "source_text": "No speech detected",
                "translated_text": "No translation available",
                "output_audio": None
            }

        # Step 3: Transcribe the audio (STT)
        device = "cuda" if torch.cuda.is_available() else "cpu"
        logger.info(f"Using device: {device}")
        inputs = stt_processor(waveform.numpy(), sampling_rate=16000, return_tensors="pt").to(device)
        logger.info("Audio processed, generating transcription...")
        
        with torch.no_grad():
            if model_status["stt"] == "loaded_whisper":
                # Whisper model
                generated_ids = stt_model.generate(**inputs, language="en")
                transcription = stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
            else:
                # MMS model
                logits = stt_model(**inputs).logits
                predicted_ids = torch.argmax(logits, dim=-1)
                transcription = stt_processor.batch_decode(predicted_ids)[0]
        logger.info(f"Transcription completed: {transcription}")

        # Step 4: Translate the transcribed text (MT)
        source_code = LANGUAGE_MAPPING[source_lang]
        target_code = LANGUAGE_MAPPING[target_lang]
        
        if model_status["mt"] == "loaded" and mt_model is not None and mt_tokenizer is not None:
            try:
                source_nllb_code = NLLB_LANGUAGE_CODES[source_code]
                target_nllb_code = NLLB_LANGUAGE_CODES[target_code]
                mt_tokenizer.src_lang = source_nllb_code
                inputs = mt_tokenizer(transcription, return_tensors="pt").to(device)
                with torch.no_grad():
                    generated_tokens = mt_model.generate(
                        **inputs,
                        forced_bos_token_id=mt_tokenizer.convert_tokens_to_ids(target_nllb_code),
                        max_length=448
                    )
                translated_text = mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
                logger.info(f"Translation completed: {translated_text}")
            except Exception as e:
                logger.error(f"Error during translation: {str(e)}")
                translated_text = f"Translation failed: {str(e)}"
        else:
            logger.warning("MT model not loaded, skipping translation")

        # Step 5: Update TTS model if the target language doesn't match the current TTS language
        if current_tts_language != target_code:
            try:
                logger.info(f"Updating TTS model for {target_code}...")
                from transformers import VitsModel, AutoTokenizer
                tts_model = VitsModel.from_pretrained(f"facebook/mms-tts-{target_code}")
                tts_tokenizer = AutoTokenizer.from_pretrained(f"facebook/mms-tts-{target_code}")
                tts_model.to(device)
                current_tts_language = target_code
                logger.info(f"TTS model updated to {target_code}")
                model_status["tts"] = "loaded"
            except Exception as e:
                logger.error(f"Failed to load TTS model for {target_code}: {str(e)}")
                try:
                    logger.info("Falling back to MMS-TTS English model...")
                    tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
                    tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
                    tts_model.to(device)
                    current_tts_language = "eng"
                    logger.info("Fallback TTS model loaded successfully")
                    model_status["tts"] = "loaded (fallback)"
                except Exception as e2:
                    logger.error(f"Failed to load fallback TTS model: {str(e2)}")
                    model_status["tts"] = "failed"

        # Step 6: Convert translated text to speech (TTS)
        if model_status["tts"].startswith("loaded") and tts_model is not None and tts_tokenizer is not None:
            try:
                inputs = tts_tokenizer(translated_text, return_tensors="pt").to(device)
                with torch.no_grad():
                    output = tts_model(**inputs)
                speech = output.waveform.cpu().numpy().squeeze()
                speech = (speech * 32767).astype(np.int16)
                sample_rate = tts_model.config.sampling_rate

                # Save the audio as a WAV file
                output_filename = f"{request_id}.wav"
                output_path = os.path.join(AUDIO_DIR, output_filename)
                save_pcm_to_wav(speech.tolist(), sample_rate, output_path)
                logger.info(f"Saved synthesized audio to {output_path}")

                # Generate a URL to the WAV file
                output_audio_url = f"https://jerich-talklasapp.hf.space/audio_output/{output_filename}"
                logger.info("TTS conversion completed")
            except Exception as e:
                logger.error(f"Error during TTS conversion: {str(e)}")
                output_audio_url = None
        
        return {
            "request_id": request_id,
            "status": "completed",
            "message": "Transcription, translation, and TTS completed (or partially completed).",
            "source_text": transcription,
            "translated_text": translated_text,
            "output_audio": output_audio_url
        }
    except Exception as e:
        logger.error(f"Error during processing: {str(e)}")
        return {
            "request_id": request_id,
            "status": "failed",
            "message": f"Processing failed: {str(e)}",
            "source_text": transcription,
            "translated_text": translated_text,
            "output_audio": output_audio_url
        }
    finally:
        logger.info(f"Cleaning up temporary file: {temp_path}")
        os.unlink(temp_path)

if __name__ == "__main__":
    import uvicorn
    logger.info("Starting Uvicorn server...")
    uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)