Spaces:
Paused
Paused
API integration for the Talklas pipeline
Browse files
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
import os
|
2 |
import torch
|
|
|
3 |
import numpy as np
|
4 |
import soundfile as sf
|
5 |
-
from fastapi import FastAPI, File, UploadFile, HTTPException
|
6 |
-
from fastapi.responses import JSONResponse
|
7 |
-
from pydantic import BaseModel
|
8 |
from transformers import (
|
9 |
AutoModelForSeq2SeqLM,
|
10 |
AutoTokenizer,
|
@@ -15,11 +13,18 @@ from transformers import (
|
|
15 |
WhisperForConditionalGeneration
|
16 |
)
|
17 |
from typing import Optional, Tuple, Dict, List
|
|
|
|
|
18 |
import base64
|
19 |
import io
|
|
|
20 |
|
21 |
-
# Your existing TalklasTranslator class (unchanged)
|
22 |
class TalklasTranslator:
|
|
|
|
|
|
|
|
|
|
|
23 |
LANGUAGE_MAPPING = {
|
24 |
"English": "eng",
|
25 |
"Tagalog": "tgl",
|
@@ -50,34 +55,45 @@ class TalklasTranslator:
|
|
50 |
self.sample_rate = 16000
|
51 |
|
52 |
print(f"Initializing Talklas Translator on {self.device}")
|
|
|
|
|
53 |
self._initialize_stt_model()
|
54 |
self._initialize_mt_model()
|
55 |
self._initialize_tts_model()
|
56 |
|
57 |
def _initialize_stt_model(self):
|
|
|
58 |
try:
|
59 |
print("Loading STT model...")
|
60 |
try:
|
|
|
61 |
self.stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
|
62 |
self.stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
|
|
|
|
|
63 |
if self.source_lang in self.stt_processor.tokenizer.vocab.keys():
|
64 |
self.stt_processor.tokenizer.set_target_lang(self.source_lang)
|
65 |
self.stt_model.load_adapter(self.source_lang)
|
66 |
print(f"Loaded MMS STT model for {self.source_lang}")
|
67 |
else:
|
68 |
print(f"Language {self.source_lang} not in MMS, using default")
|
|
|
69 |
except Exception as mms_error:
|
70 |
print(f"MMS loading failed: {mms_error}")
|
|
|
71 |
print("Loading Whisper as fallback...")
|
72 |
self.stt_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
73 |
self.stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
74 |
print("Loaded Whisper STT model")
|
|
|
75 |
self.stt_model.to(self.device)
|
|
|
76 |
except Exception as e:
|
77 |
print(f"STT model initialization failed: {e}")
|
78 |
raise RuntimeError("Could not initialize STT model")
|
79 |
|
80 |
def _initialize_mt_model(self):
|
|
|
81 |
try:
|
82 |
print("Loading NLLB Translation model...")
|
83 |
self.mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
@@ -89,6 +105,7 @@ class TalklasTranslator:
|
|
89 |
raise
|
90 |
|
91 |
def _initialize_tts_model(self):
|
|
|
92 |
try:
|
93 |
print("Loading TTS model...")
|
94 |
try:
|
@@ -100,78 +117,102 @@ class TalklasTranslator:
|
|
100 |
print("Falling back to English TTS")
|
101 |
self.tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
102 |
self.tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
|
|
103 |
self.tts_model.to(self.device)
|
104 |
except Exception as e:
|
105 |
print(f"TTS model initialization failed: {e}")
|
106 |
raise
|
107 |
|
108 |
def update_languages(self, source_lang: str, target_lang: str) -> str:
|
|
|
109 |
if source_lang == self.source_lang and target_lang == self.target_lang:
|
110 |
return "Languages already set"
|
|
|
111 |
self.source_lang = source_lang
|
112 |
self.target_lang = target_lang
|
|
|
|
|
113 |
self._initialize_stt_model()
|
114 |
self._initialize_tts_model()
|
|
|
115 |
return f"Languages updated to {source_lang} → {target_lang}"
|
116 |
|
117 |
def speech_to_text(self, audio_path: str) -> str:
|
|
|
118 |
try:
|
119 |
waveform, sample_rate = sf.read(audio_path)
|
|
|
120 |
if sample_rate != 16000:
|
121 |
import librosa
|
122 |
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
|
|
123 |
inputs = self.stt_processor(
|
124 |
waveform,
|
125 |
sampling_rate=16000,
|
126 |
return_tensors="pt"
|
127 |
).to(self.device)
|
|
|
128 |
with torch.no_grad():
|
129 |
-
if isinstance(self.stt_model, WhisperForConditionalGeneration):
|
130 |
generated_ids = self.stt_model.generate(**inputs)
|
131 |
transcription = self.stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
132 |
-
else:
|
133 |
logits = self.stt_model(**inputs).logits
|
134 |
predicted_ids = torch.argmax(logits, dim=-1)
|
135 |
transcription = self.stt_processor.batch_decode(predicted_ids)[0]
|
|
|
136 |
return transcription
|
|
|
137 |
except Exception as e:
|
138 |
print(f"Speech recognition failed: {e}")
|
139 |
raise RuntimeError("Speech recognition failed")
|
140 |
|
141 |
def translate_text(self, text: str) -> str:
|
|
|
142 |
try:
|
143 |
source_code = self.NLLB_LANGUAGE_CODES[self.source_lang]
|
144 |
target_code = self.NLLB_LANGUAGE_CODES[self.target_lang]
|
|
|
145 |
self.mt_tokenizer.src_lang = source_code
|
146 |
inputs = self.mt_tokenizer(text, return_tensors="pt").to(self.device)
|
|
|
147 |
with torch.no_grad():
|
148 |
generated_tokens = self.mt_model.generate(
|
149 |
**inputs,
|
150 |
forced_bos_token_id=self.mt_tokenizer.convert_tokens_to_ids(target_code),
|
151 |
max_length=448
|
152 |
)
|
|
|
153 |
return self.mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
|
|
154 |
except Exception as e:
|
155 |
print(f"Translation failed: {e}")
|
156 |
raise RuntimeError("Text translation failed")
|
157 |
|
158 |
def text_to_speech(self, text: str) -> Tuple[int, np.ndarray]:
|
|
|
159 |
try:
|
160 |
inputs = self.tts_tokenizer(text, return_tensors="pt").to(self.device)
|
|
|
161 |
with torch.no_grad():
|
162 |
output = self.tts_model(**inputs)
|
|
|
163 |
speech = output.waveform.cpu().numpy().squeeze()
|
164 |
speech = (speech * 32767).astype(np.int16)
|
|
|
165 |
return self.tts_model.config.sampling_rate, speech
|
|
|
166 |
except Exception as e:
|
167 |
print(f"Speech synthesis failed: {e}")
|
168 |
raise RuntimeError("Speech synthesis failed")
|
169 |
|
170 |
def translate_speech(self, audio_path: str) -> Dict:
|
|
|
171 |
try:
|
172 |
source_text = self.speech_to_text(audio_path)
|
173 |
translated_text = self.translate_text(source_text)
|
174 |
sample_rate, audio = self.text_to_speech(translated_text)
|
|
|
175 |
return {
|
176 |
"source_text": source_text,
|
177 |
"translated_text": translated_text,
|
@@ -187,9 +228,11 @@ class TalklasTranslator:
|
|
187 |
}
|
188 |
|
189 |
def translate_text_only(self, text: str) -> Dict:
|
|
|
190 |
try:
|
191 |
translated_text = self.translate_text(text)
|
192 |
sample_rate, audio = self.text_to_speech(translated_text)
|
|
|
193 |
return {
|
194 |
"source_text": text,
|
195 |
"translated_text": translated_text,
|
@@ -213,88 +256,293 @@ class TranslatorSingleton:
|
|
213 |
cls._instance = TalklasTranslator()
|
214 |
return cls._instance
|
215 |
|
216 |
-
|
217 |
-
|
|
|
|
|
|
|
218 |
|
219 |
-
|
220 |
-
source_lang
|
221 |
-
target_lang
|
222 |
-
text: Optional[str] = None
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
-
|
232 |
-
audio_path = f"temp_{file.filename}"
|
233 |
-
with open(audio_path, "wb") as f:
|
234 |
-
f.write(await file.read())
|
235 |
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
|
238 |
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
|
239 |
-
translator = TranslatorSingleton.get_instance()
|
240 |
translator.update_languages(source_code, target_code)
|
241 |
-
|
242 |
# Process the audio
|
243 |
-
results = translator.translate_speech(
|
244 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
# Clean up temporary file
|
246 |
-
os.
|
247 |
-
|
248 |
-
|
249 |
-
sample_rate, audio = results["output_audio"]
|
250 |
-
buffer = io.BytesIO()
|
251 |
-
sf.write(buffer, audio, sample_rate, format="wav")
|
252 |
-
audio_base64 = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
253 |
-
|
254 |
-
return JSONResponse(content={
|
255 |
"source_text": results["source_text"],
|
256 |
"translated_text": results["translated_text"],
|
257 |
"audio_base64": audio_base64,
|
258 |
"sample_rate": sample_rate,
|
259 |
-
"
|
260 |
})
|
|
|
261 |
except Exception as e:
|
262 |
-
|
|
|
|
|
|
|
263 |
|
264 |
-
@app.
|
265 |
-
|
|
|
266 |
try:
|
267 |
-
|
268 |
-
if not
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
|
|
277 |
translator.update_languages(source_code, target_code)
|
278 |
-
|
279 |
# Process the text
|
280 |
-
results = translator.translate_text_only(
|
281 |
-
|
282 |
-
# Convert audio to base64 for
|
283 |
-
sample_rate,
|
284 |
-
|
285 |
-
sf.write(
|
286 |
-
audio_base64 = base64.b64encode(
|
287 |
-
|
288 |
-
return
|
289 |
"source_text": results["source_text"],
|
290 |
"translated_text": results["translated_text"],
|
291 |
"audio_base64": audio_base64,
|
292 |
"sample_rate": sample_rate,
|
293 |
-
"
|
294 |
})
|
|
|
295 |
except Exception as e:
|
296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
|
|
298 |
if __name__ == "__main__":
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
+
import gradio as gr
|
4 |
import numpy as np
|
5 |
import soundfile as sf
|
|
|
|
|
|
|
6 |
from transformers import (
|
7 |
AutoModelForSeq2SeqLM,
|
8 |
AutoTokenizer,
|
|
|
13 |
WhisperForConditionalGeneration
|
14 |
)
|
15 |
from typing import Optional, Tuple, Dict, List
|
16 |
+
from flask import Flask, request, jsonify
|
17 |
+
from flask_cors import CORS
|
18 |
import base64
|
19 |
import io
|
20 |
+
import tempfile
|
21 |
|
|
|
22 |
class TalklasTranslator:
|
23 |
+
"""
|
24 |
+
Speech-to-Speech translation pipeline for Philippine languages.
|
25 |
+
Uses MMS/Whisper for STT, NLLB for MT, and MMS for TTS.
|
26 |
+
"""
|
27 |
+
|
28 |
LANGUAGE_MAPPING = {
|
29 |
"English": "eng",
|
30 |
"Tagalog": "tgl",
|
|
|
55 |
self.sample_rate = 16000
|
56 |
|
57 |
print(f"Initializing Talklas Translator on {self.device}")
|
58 |
+
|
59 |
+
# Initialize models
|
60 |
self._initialize_stt_model()
|
61 |
self._initialize_mt_model()
|
62 |
self._initialize_tts_model()
|
63 |
|
64 |
def _initialize_stt_model(self):
|
65 |
+
"""Initialize speech-to-text model with fallback to Whisper"""
|
66 |
try:
|
67 |
print("Loading STT model...")
|
68 |
try:
|
69 |
+
# Try loading MMS model first
|
70 |
self.stt_processor = AutoProcessor.from_pretrained("facebook/mms-1b-all")
|
71 |
self.stt_model = AutoModelForCTC.from_pretrained("facebook/mms-1b-all")
|
72 |
+
|
73 |
+
# Set language if available
|
74 |
if self.source_lang in self.stt_processor.tokenizer.vocab.keys():
|
75 |
self.stt_processor.tokenizer.set_target_lang(self.source_lang)
|
76 |
self.stt_model.load_adapter(self.source_lang)
|
77 |
print(f"Loaded MMS STT model for {self.source_lang}")
|
78 |
else:
|
79 |
print(f"Language {self.source_lang} not in MMS, using default")
|
80 |
+
|
81 |
except Exception as mms_error:
|
82 |
print(f"MMS loading failed: {mms_error}")
|
83 |
+
# Fallback to Whisper
|
84 |
print("Loading Whisper as fallback...")
|
85 |
self.stt_processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
86 |
self.stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
87 |
print("Loaded Whisper STT model")
|
88 |
+
|
89 |
self.stt_model.to(self.device)
|
90 |
+
|
91 |
except Exception as e:
|
92 |
print(f"STT model initialization failed: {e}")
|
93 |
raise RuntimeError("Could not initialize STT model")
|
94 |
|
95 |
def _initialize_mt_model(self):
|
96 |
+
"""Initialize machine translation model"""
|
97 |
try:
|
98 |
print("Loading NLLB Translation model...")
|
99 |
self.mt_model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M")
|
|
|
105 |
raise
|
106 |
|
107 |
def _initialize_tts_model(self):
|
108 |
+
"""Initialize text-to-speech model"""
|
109 |
try:
|
110 |
print("Loading TTS model...")
|
111 |
try:
|
|
|
117 |
print("Falling back to English TTS")
|
118 |
self.tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
119 |
self.tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
120 |
+
|
121 |
self.tts_model.to(self.device)
|
122 |
except Exception as e:
|
123 |
print(f"TTS model initialization failed: {e}")
|
124 |
raise
|
125 |
|
126 |
def update_languages(self, source_lang: str, target_lang: str) -> str:
|
127 |
+
"""Update languages and reinitialize models if needed"""
|
128 |
if source_lang == self.source_lang and target_lang == self.target_lang:
|
129 |
return "Languages already set"
|
130 |
+
|
131 |
self.source_lang = source_lang
|
132 |
self.target_lang = target_lang
|
133 |
+
|
134 |
+
# Only reinitialize models that depend on language
|
135 |
self._initialize_stt_model()
|
136 |
self._initialize_tts_model()
|
137 |
+
|
138 |
return f"Languages updated to {source_lang} → {target_lang}"
|
139 |
|
140 |
def speech_to_text(self, audio_path: str) -> str:
|
141 |
+
"""Convert speech to text using loaded STT model"""
|
142 |
try:
|
143 |
waveform, sample_rate = sf.read(audio_path)
|
144 |
+
|
145 |
if sample_rate != 16000:
|
146 |
import librosa
|
147 |
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
148 |
+
|
149 |
inputs = self.stt_processor(
|
150 |
waveform,
|
151 |
sampling_rate=16000,
|
152 |
return_tensors="pt"
|
153 |
).to(self.device)
|
154 |
+
|
155 |
with torch.no_grad():
|
156 |
+
if isinstance(self.stt_model, WhisperForConditionalGeneration): # Whisper model
|
157 |
generated_ids = self.stt_model.generate(**inputs)
|
158 |
transcription = self.stt_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
159 |
+
else: # MMS model (Wav2Vec2ForCTC)
|
160 |
logits = self.stt_model(**inputs).logits
|
161 |
predicted_ids = torch.argmax(logits, dim=-1)
|
162 |
transcription = self.stt_processor.batch_decode(predicted_ids)[0]
|
163 |
+
|
164 |
return transcription
|
165 |
+
|
166 |
except Exception as e:
|
167 |
print(f"Speech recognition failed: {e}")
|
168 |
raise RuntimeError("Speech recognition failed")
|
169 |
|
170 |
def translate_text(self, text: str) -> str:
|
171 |
+
"""Translate text using NLLB model"""
|
172 |
try:
|
173 |
source_code = self.NLLB_LANGUAGE_CODES[self.source_lang]
|
174 |
target_code = self.NLLB_LANGUAGE_CODES[self.target_lang]
|
175 |
+
|
176 |
self.mt_tokenizer.src_lang = source_code
|
177 |
inputs = self.mt_tokenizer(text, return_tensors="pt").to(self.device)
|
178 |
+
|
179 |
with torch.no_grad():
|
180 |
generated_tokens = self.mt_model.generate(
|
181 |
**inputs,
|
182 |
forced_bos_token_id=self.mt_tokenizer.convert_tokens_to_ids(target_code),
|
183 |
max_length=448
|
184 |
)
|
185 |
+
|
186 |
return self.mt_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
|
187 |
+
|
188 |
except Exception as e:
|
189 |
print(f"Translation failed: {e}")
|
190 |
raise RuntimeError("Text translation failed")
|
191 |
|
192 |
def text_to_speech(self, text: str) -> Tuple[int, np.ndarray]:
|
193 |
+
"""Convert text to speech"""
|
194 |
try:
|
195 |
inputs = self.tts_tokenizer(text, return_tensors="pt").to(self.device)
|
196 |
+
|
197 |
with torch.no_grad():
|
198 |
output = self.tts_model(**inputs)
|
199 |
+
|
200 |
speech = output.waveform.cpu().numpy().squeeze()
|
201 |
speech = (speech * 32767).astype(np.int16)
|
202 |
+
|
203 |
return self.tts_model.config.sampling_rate, speech
|
204 |
+
|
205 |
except Exception as e:
|
206 |
print(f"Speech synthesis failed: {e}")
|
207 |
raise RuntimeError("Speech synthesis failed")
|
208 |
|
209 |
def translate_speech(self, audio_path: str) -> Dict:
|
210 |
+
"""Full speech-to-speech translation"""
|
211 |
try:
|
212 |
source_text = self.speech_to_text(audio_path)
|
213 |
translated_text = self.translate_text(source_text)
|
214 |
sample_rate, audio = self.text_to_speech(translated_text)
|
215 |
+
|
216 |
return {
|
217 |
"source_text": source_text,
|
218 |
"translated_text": translated_text,
|
|
|
228 |
}
|
229 |
|
230 |
def translate_text_only(self, text: str) -> Dict:
|
231 |
+
"""Text-to-speech translation"""
|
232 |
try:
|
233 |
translated_text = self.translate_text(text)
|
234 |
sample_rate, audio = self.text_to_speech(translated_text)
|
235 |
+
|
236 |
return {
|
237 |
"source_text": text,
|
238 |
"translated_text": translated_text,
|
|
|
256 |
cls._instance = TalklasTranslator()
|
257 |
return cls._instance
|
258 |
|
259 |
+
def process_audio(audio_path, source_lang, target_lang):
|
260 |
+
"""Process audio through the full translation pipeline"""
|
261 |
+
# Validate input
|
262 |
+
if not audio_path:
|
263 |
+
return None, "No audio provided", "No translation available", "Please provide audio input"
|
264 |
|
265 |
+
# Update languages
|
266 |
+
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
|
267 |
+
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
|
|
|
268 |
|
269 |
+
translator = TranslatorSingleton.get_instance()
|
270 |
+
status = translator.update_languages(source_code, target_code)
|
271 |
+
|
272 |
+
# Process the audio
|
273 |
+
results = translator.translate_speech(audio_path)
|
274 |
+
|
275 |
+
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
|
276 |
+
|
277 |
+
def process_text(text, source_lang, target_lang):
|
278 |
+
"""Process text through the translation pipeline"""
|
279 |
+
# Validate input
|
280 |
+
if not text:
|
281 |
+
return None, "No text provided", "No translation available", "Please provide text input"
|
282 |
+
|
283 |
+
# Update languages
|
284 |
+
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
|
285 |
+
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
|
286 |
+
|
287 |
+
translator = TranslatorSingleton.get_instance()
|
288 |
+
status = translator.update_languages(source_code, target_code)
|
289 |
+
|
290 |
+
# Process the text
|
291 |
+
results = translator.translate_text_only(text)
|
292 |
|
293 |
+
return results["output_audio"], results["source_text"], results["translated_text"], results["performance"]
|
|
|
|
|
|
|
294 |
|
295 |
+
def create_gradio_interface():
|
296 |
+
"""Create and launch Gradio interface"""
|
297 |
+
# Define language options
|
298 |
+
languages = list(TalklasTranslator.LANGUAGE_MAPPING.keys())
|
299 |
+
|
300 |
+
# Define the interface
|
301 |
+
demo = gr.Blocks(title="Talklas - Speech & Text Translation")
|
302 |
+
|
303 |
+
with demo:
|
304 |
+
gr.Markdown("# Talklas: Speech-to-Speech Translation System")
|
305 |
+
gr.Markdown("### Translate between Philippine Languages and English")
|
306 |
+
|
307 |
+
with gr.Row():
|
308 |
+
with gr.Column():
|
309 |
+
source_lang = gr.Dropdown(
|
310 |
+
choices=languages,
|
311 |
+
value="English",
|
312 |
+
label="Source Language"
|
313 |
+
)
|
314 |
+
|
315 |
+
target_lang = gr.Dropdown(
|
316 |
+
choices=languages,
|
317 |
+
value="Tagalog",
|
318 |
+
label="Target Language"
|
319 |
+
)
|
320 |
+
|
321 |
+
language_status = gr.Textbox(label="Language Status")
|
322 |
+
update_btn = gr.Button("Update Languages")
|
323 |
+
|
324 |
+
with gr.Tabs():
|
325 |
+
with gr.TabItem("Audio Input"):
|
326 |
+
with gr.Row():
|
327 |
+
with gr.Column():
|
328 |
+
gr.Markdown("### Audio Input")
|
329 |
+
audio_input = gr.Audio(
|
330 |
+
type="filepath",
|
331 |
+
label="Upload Audio File"
|
332 |
+
)
|
333 |
+
audio_translate_btn = gr.Button("Translate Audio", variant="primary")
|
334 |
+
|
335 |
+
with gr.Column():
|
336 |
+
gr.Markdown("### Output")
|
337 |
+
audio_output = gr.Audio(
|
338 |
+
label="Translated Speech",
|
339 |
+
type="numpy",
|
340 |
+
autoplay=True
|
341 |
+
)
|
342 |
+
|
343 |
+
with gr.TabItem("Text Input"):
|
344 |
+
with gr.Row():
|
345 |
+
with gr.Column():
|
346 |
+
gr.Markdown("### Text Input")
|
347 |
+
text_input = gr.Textbox(
|
348 |
+
label="Enter text to translate",
|
349 |
+
lines=3
|
350 |
+
)
|
351 |
+
text_translate_btn = gr.Button("Translate Text", variant="primary")
|
352 |
+
|
353 |
+
with gr.Column():
|
354 |
+
gr.Markdown("### Output")
|
355 |
+
text_output = gr.Audio(
|
356 |
+
label="Translated Speech",
|
357 |
+
type="numpy",
|
358 |
+
autoplay=True
|
359 |
+
)
|
360 |
+
|
361 |
+
with gr.Row():
|
362 |
+
with gr.Column():
|
363 |
+
source_text = gr.Textbox(label="Source Text")
|
364 |
+
translated_text = gr.Textbox(label="Translated Text")
|
365 |
+
performance_info = gr.Textbox(label="Performance Metrics")
|
366 |
+
|
367 |
+
# Set up events
|
368 |
+
update_btn.click(
|
369 |
+
lambda source_lang, target_lang: TranslatorSingleton.get_instance().update_languages(
|
370 |
+
TalklasTranslator.LANGUAGE_MAPPING[source_lang],
|
371 |
+
TalklasTranslator.LANGUAGE_MAPPING[target_lang]
|
372 |
+
),
|
373 |
+
inputs=[source_lang, target_lang],
|
374 |
+
outputs=[language_status]
|
375 |
+
)
|
376 |
+
|
377 |
+
# Audio translate button click
|
378 |
+
audio_translate_btn.click(
|
379 |
+
process_audio,
|
380 |
+
inputs=[audio_input, source_lang, target_lang],
|
381 |
+
outputs=[audio_output, source_text, translated_text, performance_info]
|
382 |
+
).then(
|
383 |
+
None,
|
384 |
+
None,
|
385 |
+
None,
|
386 |
+
js="""() => {
|
387 |
+
const audioElements = document.querySelectorAll('audio');
|
388 |
+
if (audioElements.length > 0) {
|
389 |
+
const lastAudio = audioElements[audioElements.length - 1];
|
390 |
+
lastAudio.play().catch(error => {
|
391 |
+
console.warn('Autoplay failed:', error);
|
392 |
+
alert('Audio may require user interaction to play');
|
393 |
+
});
|
394 |
+
}
|
395 |
+
}"""
|
396 |
+
)
|
397 |
+
|
398 |
+
# Text translate button click
|
399 |
+
text_translate_btn.click(
|
400 |
+
process_text,
|
401 |
+
inputs=[text_input, source_lang, target_lang],
|
402 |
+
outputs=[text_output, source_text, translated_text, performance_info]
|
403 |
+
).then(
|
404 |
+
None,
|
405 |
+
None,
|
406 |
+
None,
|
407 |
+
js="""() => {
|
408 |
+
const audioElements = document.querySelectorAll('audio');
|
409 |
+
if (audioElements.length > 0) {
|
410 |
+
const lastAudio = audioElements[audioElements.length - 1];
|
411 |
+
lastAudio.play().catch(error => {
|
412 |
+
console.warn('Autoplay failed:', error);
|
413 |
+
alert('Audio may require user interaction to play');
|
414 |
+
});
|
415 |
+
}
|
416 |
+
}"""
|
417 |
+
)
|
418 |
+
|
419 |
+
return demo
|
420 |
+
|
421 |
+
# Create Flask app
|
422 |
+
app = Flask(__name__)
|
423 |
+
CORS(app) # This allows cross-origin requests
|
424 |
+
|
425 |
+
# Initialize the translator singleton
|
426 |
+
translator_instance = None
|
427 |
+
|
428 |
+
def get_translator():
|
429 |
+
global translator_instance
|
430 |
+
if translator_instance is None:
|
431 |
+
translator_instance = TalklasTranslator()
|
432 |
+
return translator_instance
|
433 |
+
|
434 |
+
@app.route('/api/translate-speech', methods=['POST'])
|
435 |
+
def api_translate_speech():
|
436 |
+
"""API endpoint for speech-to-speech translation"""
|
437 |
+
try:
|
438 |
+
# Check if required data is in the request
|
439 |
+
if 'audio' not in request.files:
|
440 |
+
return jsonify({
|
441 |
+
"error": "No audio file provided"
|
442 |
+
}), 400
|
443 |
+
|
444 |
+
audio_file = request.files['audio']
|
445 |
+
source_lang = request.form.get('source_lang', 'English')
|
446 |
+
target_lang = request.form.get('target_lang', 'Tagalog')
|
447 |
+
|
448 |
+
# Save temporary audio file
|
449 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio:
|
450 |
+
audio_file.save(temp_audio.name)
|
451 |
+
temp_audio_path = temp_audio.name
|
452 |
+
|
453 |
+
# Get translator and update languages
|
454 |
+
translator = get_translator()
|
455 |
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
|
456 |
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
|
|
|
457 |
translator.update_languages(source_code, target_code)
|
458 |
+
|
459 |
# Process the audio
|
460 |
+
results = translator.translate_speech(temp_audio_path)
|
461 |
+
|
462 |
+
# Convert audio to base64 for transmission
|
463 |
+
sample_rate, audio_data = results["output_audio"]
|
464 |
+
audio_bytes = io.BytesIO()
|
465 |
+
sf.write(audio_bytes, audio_data, sample_rate, format='WAV')
|
466 |
+
audio_base64 = base64.b64encode(audio_bytes.getvalue()).decode('utf-8')
|
467 |
+
|
468 |
# Clean up temporary file
|
469 |
+
os.unlink(temp_audio_path)
|
470 |
+
|
471 |
+
return jsonify({
|
|
|
|
|
|
|
|
|
|
|
|
|
472 |
"source_text": results["source_text"],
|
473 |
"translated_text": results["translated_text"],
|
474 |
"audio_base64": audio_base64,
|
475 |
"sample_rate": sample_rate,
|
476 |
+
"status": "success"
|
477 |
})
|
478 |
+
|
479 |
except Exception as e:
|
480 |
+
return jsonify({
|
481 |
+
"error": str(e),
|
482 |
+
"status": "error"
|
483 |
+
}), 500
|
484 |
|
485 |
+
@app.route('/api/translate-text', methods=['POST'])
|
486 |
+
def api_translate_text():
|
487 |
+
"""API endpoint for text-to-speech translation"""
|
488 |
try:
|
489 |
+
data = request.json
|
490 |
+
if not data or 'text' not in data:
|
491 |
+
return jsonify({
|
492 |
+
"error": "No text provided"
|
493 |
+
}), 400
|
494 |
+
|
495 |
+
text = data['text']
|
496 |
+
source_lang = data.get('source_lang', 'English')
|
497 |
+
target_lang = data.get('target_lang', 'Tagalog')
|
498 |
+
|
499 |
+
# Get translator and update languages
|
500 |
+
translator = get_translator()
|
501 |
+
source_code = TalklasTranslator.LANGUAGE_MAPPING[source_lang]
|
502 |
+
target_code = TalklasTranslator.LANGUAGE_MAPPING[target_lang]
|
503 |
translator.update_languages(source_code, target_code)
|
504 |
+
|
505 |
# Process the text
|
506 |
+
results = translator.translate_text_only(text)
|
507 |
+
|
508 |
+
# Convert audio to base64 for transmission
|
509 |
+
sample_rate, audio_data = results["output_audio"]
|
510 |
+
audio_bytes = io.BytesIO()
|
511 |
+
sf.write(audio_bytes, audio_data, sample_rate, format='WAV')
|
512 |
+
audio_base64 = base64.b64encode(audio_bytes.getvalue()).decode('utf-8')
|
513 |
+
|
514 |
+
return jsonify({
|
515 |
"source_text": results["source_text"],
|
516 |
"translated_text": results["translated_text"],
|
517 |
"audio_base64": audio_base64,
|
518 |
"sample_rate": sample_rate,
|
519 |
+
"status": "success"
|
520 |
})
|
521 |
+
|
522 |
except Exception as e:
|
523 |
+
return jsonify({
|
524 |
+
"error": str(e),
|
525 |
+
"status": "error"
|
526 |
+
}), 500
|
527 |
+
|
528 |
+
@app.route('/api/languages', methods=['GET'])
|
529 |
+
def get_languages():
|
530 |
+
"""Return available languages"""
|
531 |
+
return jsonify({
|
532 |
+
"languages": list(TalklasTranslator.LANGUAGE_MAPPING.keys())
|
533 |
+
})
|
534 |
+
|
535 |
+
# Keep the Gradio interface for users who directly access the Hugging Face space
|
536 |
+
def create_gradio_interface():
|
537 |
+
# Your existing Gradio interface code
|
538 |
+
# ...
|
539 |
|
540 |
+
# Run both the API server and Gradio
|
541 |
if __name__ == "__main__":
|
542 |
+
# Launch Gradio in a separate thread
|
543 |
+
import threading
|
544 |
+
demo = create_gradio_interface()
|
545 |
+
threading.Thread(target=demo.launch, kwargs={"share": True, "debug": False}).start()
|
546 |
+
|
547 |
+
# Run the Flask server
|
548 |
+
app.run(host='0.0.0.0', port=7860)
|