P4-CySec / app.py
IronWolfAI's picture
Update app.py
b4f5699 verified
import os
import logging
from datasets import load_dataset
from peft import LoraConfig
import torch
import transformers
from trl import SFTTrainer
# Hyper-parameters and configurations
training_config = {
"output_dir": "./results",
"per_device_train_batch_size": 4,
"gradient_accumulation_steps": 4,
"learning_rate": 2e-5,
"num_train_epochs": 1,
"fp16": True,
"logging_dir": "./logs",
"report_to": "none",
}
peft_config = {
"r": 16, # LoRA rank
"lora_alpha": 64, # LoRA alpha
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"], # Target modules for LoRA
"bias": "none",
"task_type": "CAUSAL_LM",
}
train_conf = training_config # Rename to match the original script's variable name
peft_conf = LoraConfig(**peft_config)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
handlers=[logging.StreamHandler()],
)
log_level = logging.INFO # Set log level, you can adjust this based on your preference
logger = logging.getLogger(__name__)
logger.setLevel(log_level)
# Model Loading and Tokenizer Configuration
checkpoint_path = "microsoft/Phi-4-mini-instruct"
model_kwargs = dict(
use_cache=False,
trust_remote_code=True,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
device_map=None,
)
model = transformers.AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint_path)
# Data Processing
def apply_chat_template(example):
messages = example["messages"]
# Assuming a function that converts chat messages into text for the model
example["text"] = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
return example
train_dataset, test_dataset = load_dataset("HuggingFaceH4/ultrachat_200k", split=["train_sft", "test_sft"])
column_names = list(train_dataset.features)
processed_train_dataset = train_dataset.map(
apply_chat_template,
num_proc=10,
remove_columns=column_names,
)
# Training
trainer = SFTTrainer(
model=model,
args=train_conf,
peft_config=peft_conf,
train_dataset=processed_train_dataset,
eval_dataset=test_dataset, # Assuming you want to evaluate on the test set after training
max_seq_length=2048,
dataset_text_field="text",
tokenizer=tokenizer,
packing=True,
)
train_result = trainer.train()
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation (assuming evaluation after training, otherwise comment out)
metrics = trainer.evaluate()
metrics["eval_samples"] = len(test_dataset)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Save model
trainer.save_model(train_conf["output_dir"])