Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,45 +1,95 @@
|
|
1 |
import os
|
|
|
2 |
from datasets import load_dataset
|
|
|
3 |
import torch
|
4 |
-
|
5 |
from trl import SFTTrainer
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
#
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
)
|
|
|
|
|
32 |
|
33 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
trainer = SFTTrainer(
|
35 |
model=model,
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
tokenizer=tokenizer,
|
|
|
39 |
)
|
40 |
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
# Save
|
45 |
-
trainer.save_model("
|
|
|
1 |
import os
|
2 |
+
import logging
|
3 |
from datasets import load_dataset
|
4 |
+
from peft import LoraConfig
|
5 |
import torch
|
6 |
+
import transformers
|
7 |
from trl import SFTTrainer
|
8 |
|
9 |
+
# Hyper-parameters and configurations
|
10 |
+
training_config = {
|
11 |
+
"output_dir": "./results",
|
12 |
+
"per_device_train_batch_size": 4,
|
13 |
+
"gradient_accumulation_steps": 4,
|
14 |
+
"learning_rate": 2e-5,
|
15 |
+
"num_train_epochs": 1,
|
16 |
+
"fp16": True,
|
17 |
+
"logging_dir": "./logs",
|
18 |
+
"report_to": "none",
|
19 |
+
}
|
20 |
+
|
21 |
+
peft_config = {
|
22 |
+
"r": 16, # LoRA rank
|
23 |
+
"lora_alpha": 64, # LoRA alpha
|
24 |
+
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj"], # Target modules for LoRA
|
25 |
+
"bias": "none",
|
26 |
+
"task_type": "CAUSAL_LM",
|
27 |
+
}
|
28 |
+
|
29 |
+
train_conf = training_config # Rename to match the original script's variable name
|
30 |
+
peft_conf = LoraConfig(**peft_config)
|
31 |
+
|
32 |
+
# Setup logging
|
33 |
+
logging.basicConfig(
|
34 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
35 |
+
datefmt="%Y-%m-%d %H:%M:%S",
|
36 |
+
handlers=[logging.StreamHandler()],
|
37 |
+
)
|
38 |
+
log_level = logging.INFO # Set log level, you can adjust this based on your preference
|
39 |
+
logger = logging.getLogger(__name__)
|
40 |
+
logger.setLevel(log_level)
|
41 |
+
|
42 |
+
# Model Loading and Tokenizer Configuration
|
43 |
+
checkpoint_path = "microsoft/Phi-4-mini-instruct"
|
44 |
+
model_kwargs = dict(
|
45 |
+
use_cache=False,
|
46 |
+
trust_remote_code=True,
|
47 |
+
attn_implementation="flash_attention_2",
|
48 |
+
torch_dtype=torch.bfloat16,
|
49 |
+
device_map=None,
|
50 |
)
|
51 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
|
52 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(checkpoint_path)
|
53 |
|
54 |
+
# Data Processing
|
55 |
+
def apply_chat_template(example):
|
56 |
+
messages = example["messages"]
|
57 |
+
# Assuming a function that converts chat messages into text for the model
|
58 |
+
example["text"] = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
|
59 |
+
return example
|
60 |
+
|
61 |
+
train_dataset, test_dataset = load_dataset("HuggingFaceH4/ultrachat_200k", split=["train_sft", "test_sft"])
|
62 |
+
column_names = list(train_dataset.features)
|
63 |
+
processed_train_dataset = train_dataset.map(
|
64 |
+
apply_chat_template,
|
65 |
+
num_proc=10,
|
66 |
+
remove_columns=column_names,
|
67 |
+
)
|
68 |
+
|
69 |
+
# Training
|
70 |
trainer = SFTTrainer(
|
71 |
model=model,
|
72 |
+
args=train_conf,
|
73 |
+
peft_config=peft_conf,
|
74 |
+
train_dataset=processed_train_dataset,
|
75 |
+
eval_dataset=test_dataset, # Assuming you want to evaluate on the test set after training
|
76 |
+
max_seq_length=2048,
|
77 |
+
dataset_text_field="text",
|
78 |
tokenizer=tokenizer,
|
79 |
+
packing=True,
|
80 |
)
|
81 |
|
82 |
+
train_result = trainer.train()
|
83 |
+
metrics = train_result.metrics
|
84 |
+
trainer.log_metrics("train", metrics)
|
85 |
+
trainer.save_metrics("train", metrics)
|
86 |
+
trainer.save_state()
|
87 |
+
|
88 |
+
# Evaluation (assuming evaluation after training, otherwise comment out)
|
89 |
+
metrics = trainer.evaluate()
|
90 |
+
metrics["eval_samples"] = len(test_dataset)
|
91 |
+
trainer.log_metrics("eval", metrics)
|
92 |
+
trainer.save_metrics("eval", metrics)
|
93 |
|
94 |
+
# Save model
|
95 |
+
trainer.save_model(train_conf["output_dir"])
|