Spaces:
No application file
No application file
import gradio as gr | |
from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: | |
https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("damo-vilab/modelscope-text-to-video-synthesis") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# NOTE: Video models don't usually use "streaming" generation, so we'll just call once | |
payload = { | |
"inputs": message, | |
"parameters": { | |
"max_new_tokens": max_tokens, | |
"temperature": temperature, | |
"top_p": top_p, | |
} | |
} | |
# Post directly to the model | |
response = client.post(json=payload) | |
video_url = response.get("video", None) | |
if video_url: | |
yield video_url | |
else: | |
yield "Failed to generate video." | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: | |
https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are generating a creative video.", label="System message"), | |
gr.Slider(minimum=1, maximum=1000, value=250, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.9, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |