import gradio as gr from huggingface_hub import InferenceClient """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("damo-vilab/modelscope-text-to-video-synthesis") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # NOTE: Video models don't usually use "streaming" generation, so we'll just call once payload = { "inputs": message, "parameters": { "max_new_tokens": max_tokens, "temperature": temperature, "top_p": top_p, } } # Post directly to the model response = client.post(json=payload) video_url = response.get("video", None) if video_url: yield video_url else: yield "Failed to generate video." """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are generating a creative video.", label="System message"), gr.Slider(minimum=1, maximum=1000, value=250, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()