IAMTFRMZA's picture
Update app.py
d69e46f verified
raw
history blame
6.36 kB
import gradio as gr
import os, time, re, json, base64, asyncio, threading, uuid, io
import numpy as np
import soundfile as sf
from pydub import AudioSegment
from openai import OpenAI
from websockets import connect, Data, ClientConnection
from dotenv import load_dotenv
# ============ Load Secrets ============
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID")
client = OpenAI(api_key=OPENAI_API_KEY)
HEADERS = {"Authorization": f"Bearer {OPENAI_API_KEY}", "OpenAI-Beta": "realtime=v1"}
WS_URI = "wss://api.openai.com/v1/realtime?intent=transcription"
connections = {}
# ============ WebSocket Client ============
class WebSocketClient:
def __init__(self, uri, headers, client_id):
self.uri, self.headers, self.client_id = uri, headers, client_id
self.websocket = None
self.queue = asyncio.Queue(maxsize=10)
self.transcript = ""
async def connect(self):
self.websocket = await connect(self.uri, additional_headers=self.headers)
with open("openai_transcription_settings.json", "r") as f:
await self.websocket.send(f.read())
await asyncio.gather(self.receive_messages(), self.send_audio_chunks())
def run(self):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(self.connect())
async def send_audio_chunks(self):
while True:
sr, arr = await self.queue.get()
if arr.ndim > 1: arr = arr.mean(axis=1)
arr = (arr / np.max(np.abs(arr))) if np.max(np.abs(arr)) > 0 else arr
int16 = (arr * 32767).astype(np.int16)
buf = io.BytesIO(); sf.write(buf, int16, sr, format='WAV', subtype='PCM_16')
audio = AudioSegment.from_file(buf, format="wav").set_frame_rate(24000)
out = io.BytesIO(); audio.export(out, format="wav"); out.seek(0)
await self.websocket.send(json.dumps({
"type": "input_audio_buffer.append",
"audio": base64.b64encode(out.read()).decode()
}))
async def receive_messages(self):
async for msg in self.websocket:
data = json.loads(msg)
if data["type"] == "conversation.item.input_audio_transcription.delta":
self.transcript += data["delta"]
def enqueue_audio_chunk(self, sr, arr):
if not self.queue.full():
asyncio.run_coroutine_threadsafe(self.queue.put((sr, arr)), asyncio.get_event_loop())
def create_ws():
cid = str(uuid.uuid4())
client = WebSocketClient(WS_URI, HEADERS, cid)
threading.Thread(target=client.run, daemon=True).start()
connections[cid] = client
return cid
def send_audio(chunk, cid):
if cid not in connections: return "Connecting..."
sr, arr = chunk
connections[cid].enqueue_audio_chunk(sr, arr)
return connections[cid].transcript
def clear_transcript(cid):
if cid in connections: connections[cid].transcript = ""
return ""
# ============ Chat Assistant ============
def handle_chat(user_input, history, thread_id, image_url):
if not OPENAI_API_KEY or not ASSISTANT_ID:
return "❌ Missing secrets!", history, thread_id, image_url
try:
if thread_id is None:
thread = client.beta.threads.create()
thread_id = thread.id
client.beta.threads.messages.create(thread_id=thread_id, role="user", content=user_input)
run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=ASSISTANT_ID)
while True:
status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
if status.status == "completed": break
time.sleep(1)
msgs = client.beta.threads.messages.list(thread_id=thread_id)
for msg in reversed(msgs.data):
if msg.role == "assistant":
content = msg.content[0].text.value
history.append((user_input, content))
match = re.search(
r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png',
content
)
if match: image_url = match.group(0)
break
return "", history, thread_id, image_url
except Exception as e:
return f"❌ {e}", history, thread_id, image_url
# ============ Gradio UI ============
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# πŸ“„ Document AI Assistant")
# STATES
chat_state = gr.State([])
thread_state = gr.State()
image_state = gr.State()
client_id = gr.State()
voice_enabled = gr.State(False)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
image_display = gr.Image(label="πŸ–ΌοΈ Document", type="filepath", show_download_button=False)
with gr.Column(scale=1.4):
chat = gr.Chatbot(label="πŸ’¬ Chat", height=460)
with gr.Row():
user_prompt = gr.Textbox(placeholder="Ask your question...", show_label=False, scale=6)
mic_toggle_btn = gr.Button("πŸŽ™οΈ", scale=1)
send_btn = gr.Button("Send", variant="primary", scale=2)
with gr.Accordion("🎀 Voice Transcription", open=False) as voice_section:
with gr.Row():
voice_input = gr.Audio(label="Mic", streaming=True)
voice_transcript = gr.Textbox(label="Transcript", lines=2, interactive=False)
clear_btn = gr.Button("🧹 Clear Transcript")
# FUNCTIONAL CONNECTIONS
def toggle_voice(curr):
return not curr, gr.update(visible=not curr)
mic_toggle_btn.click(fn=toggle_voice, inputs=voice_enabled, outputs=[voice_enabled, voice_section])
send_btn.click(fn=handle_chat,
inputs=[user_prompt, chat_state, thread_state, image_state],
outputs=[user_prompt, chat, thread_state, image_state])
image_state.change(fn=lambda x: x, inputs=image_state, outputs=image_display)
voice_input.stream(fn=send_audio, inputs=[voice_input, client_id], outputs=voice_transcript, stream_every=0.5)
clear_btn.click(fn=clear_transcript, inputs=[client_id], outputs=voice_transcript)
app.load(fn=create_ws, outputs=[client_id])
app.launch()