File size: 6,355 Bytes
9457397
fa361c9
b106fa1
 
9457397
fa361c9
dbf9e7a
fa361c9
f5736a5
d69e46f
fa361c9
 
 
 
 
 
 
2e95bed
 
d69e46f
9457397
fa361c9
 
 
9457397
e4de5ab
9457397
 
fa361c9
 
 
 
9457397
 
fa361c9
 
 
9457397
 
 
fa361c9
 
 
 
 
 
 
d69e46f
 
 
 
9457397
 
fa361c9
 
 
 
9457397
fa361c9
9457397
fa361c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a70fff
 
d69e46f
fa361c9
 
dbf9e7a
eb248c8
fa361c9
 
 
 
2e95bed
fa361c9
 
2e95bed
fa361c9
 
 
 
 
 
 
 
 
 
d69e46f
 
 
 
dbf9e7a
fa361c9
 
 
 
 
 
 
d69e46f
dbf9e7a
fa361c9
 
dbf9e7a
fa361c9
 
 
 
d69e46f
fa361c9
d69e46f
fa361c9
d69e46f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbf9e7a
 
fa361c9
dbf9e7a
 
d69e46f
fa361c9
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import gradio as gr
import os, time, re, json, base64, asyncio, threading, uuid, io
import numpy as np
import soundfile as sf
from pydub import AudioSegment
from openai import OpenAI
from websockets import connect, Data, ClientConnection
from dotenv import load_dotenv

# ============ Load Secrets ============
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID")
client = OpenAI(api_key=OPENAI_API_KEY)

HEADERS = {"Authorization": f"Bearer {OPENAI_API_KEY}", "OpenAI-Beta": "realtime=v1"}
WS_URI = "wss://api.openai.com/v1/realtime?intent=transcription"
connections = {}

# ============ WebSocket Client ============
class WebSocketClient:
    def __init__(self, uri, headers, client_id):
        self.uri, self.headers, self.client_id = uri, headers, client_id
        self.websocket = None
        self.queue = asyncio.Queue(maxsize=10)
        self.transcript = ""

    async def connect(self):
        self.websocket = await connect(self.uri, additional_headers=self.headers)
        with open("openai_transcription_settings.json", "r") as f:
            await self.websocket.send(f.read())
        await asyncio.gather(self.receive_messages(), self.send_audio_chunks())

    def run(self):
        loop = asyncio.new_event_loop()
        asyncio.set_event_loop(loop)
        loop.run_until_complete(self.connect())

    async def send_audio_chunks(self):
        while True:
            sr, arr = await self.queue.get()
            if arr.ndim > 1: arr = arr.mean(axis=1)
            arr = (arr / np.max(np.abs(arr))) if np.max(np.abs(arr)) > 0 else arr
            int16 = (arr * 32767).astype(np.int16)
            buf = io.BytesIO(); sf.write(buf, int16, sr, format='WAV', subtype='PCM_16')
            audio = AudioSegment.from_file(buf, format="wav").set_frame_rate(24000)
            out = io.BytesIO(); audio.export(out, format="wav"); out.seek(0)
            await self.websocket.send(json.dumps({
                "type": "input_audio_buffer.append",
                "audio": base64.b64encode(out.read()).decode()
            }))

    async def receive_messages(self):
        async for msg in self.websocket:
            data = json.loads(msg)
            if data["type"] == "conversation.item.input_audio_transcription.delta":
                self.transcript += data["delta"]

    def enqueue_audio_chunk(self, sr, arr):
        if not self.queue.full():
            asyncio.run_coroutine_threadsafe(self.queue.put((sr, arr)), asyncio.get_event_loop())

def create_ws():
    cid = str(uuid.uuid4())
    client = WebSocketClient(WS_URI, HEADERS, cid)
    threading.Thread(target=client.run, daemon=True).start()
    connections[cid] = client
    return cid

def send_audio(chunk, cid):
    if cid not in connections: return "Connecting..."
    sr, arr = chunk
    connections[cid].enqueue_audio_chunk(sr, arr)
    return connections[cid].transcript

def clear_transcript(cid):
    if cid in connections: connections[cid].transcript = ""
    return ""

# ============ Chat Assistant ============
def handle_chat(user_input, history, thread_id, image_url):
    if not OPENAI_API_KEY or not ASSISTANT_ID:
        return "❌ Missing secrets!", history, thread_id, image_url

    try:
        if thread_id is None:
            thread = client.beta.threads.create()
            thread_id = thread.id

        client.beta.threads.messages.create(thread_id=thread_id, role="user", content=user_input)
        run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=ASSISTANT_ID)

        while True:
            status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
            if status.status == "completed": break
            time.sleep(1)

        msgs = client.beta.threads.messages.list(thread_id=thread_id)
        for msg in reversed(msgs.data):
            if msg.role == "assistant":
                content = msg.content[0].text.value
                history.append((user_input, content))
                match = re.search(
                    r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png',
                    content
                )
                if match: image_url = match.group(0)
                break

        return "", history, thread_id, image_url

    except Exception as e:
        return f"❌ {e}", history, thread_id, image_url

# ============ Gradio UI ============
with gr.Blocks(theme=gr.themes.Soft()) as app:
    gr.Markdown("# 📄 Document AI Assistant")

    # STATES
    chat_state = gr.State([])
    thread_state = gr.State()
    image_state = gr.State()
    client_id = gr.State()
    voice_enabled = gr.State(False)

    with gr.Row(equal_height=True):
        with gr.Column(scale=1):
            image_display = gr.Image(label="🖼️ Document", type="filepath", show_download_button=False)

        with gr.Column(scale=1.4):
            chat = gr.Chatbot(label="💬 Chat", height=460)

            with gr.Row():
                user_prompt = gr.Textbox(placeholder="Ask your question...", show_label=False, scale=6)
                mic_toggle_btn = gr.Button("🎙️", scale=1)
                send_btn = gr.Button("Send", variant="primary", scale=2)

            with gr.Accordion("🎤 Voice Transcription", open=False) as voice_section:
                with gr.Row():
                    voice_input = gr.Audio(label="Mic", streaming=True)
                    voice_transcript = gr.Textbox(label="Transcript", lines=2, interactive=False)
                clear_btn = gr.Button("🧹 Clear Transcript")

    # FUNCTIONAL CONNECTIONS
    def toggle_voice(curr):
        return not curr, gr.update(visible=not curr)

    mic_toggle_btn.click(fn=toggle_voice, inputs=voice_enabled, outputs=[voice_enabled, voice_section])
    send_btn.click(fn=handle_chat,
                   inputs=[user_prompt, chat_state, thread_state, image_state],
                   outputs=[user_prompt, chat, thread_state, image_state])
    image_state.change(fn=lambda x: x, inputs=image_state, outputs=image_display)
    voice_input.stream(fn=send_audio, inputs=[voice_input, client_id], outputs=voice_transcript, stream_every=0.5)
    clear_btn.click(fn=clear_transcript, inputs=[client_id], outputs=voice_transcript)
    app.load(fn=create_ws, outputs=[client_id])

app.launch()