Spaces:
Sleeping
Sleeping
File size: 6,355 Bytes
9457397 fa361c9 b106fa1 9457397 fa361c9 dbf9e7a fa361c9 f5736a5 d69e46f fa361c9 2e95bed d69e46f 9457397 fa361c9 9457397 e4de5ab 9457397 fa361c9 9457397 fa361c9 9457397 fa361c9 d69e46f 9457397 fa361c9 9457397 fa361c9 9457397 fa361c9 6a70fff d69e46f fa361c9 dbf9e7a eb248c8 fa361c9 2e95bed fa361c9 2e95bed fa361c9 d69e46f dbf9e7a fa361c9 d69e46f dbf9e7a fa361c9 dbf9e7a fa361c9 d69e46f fa361c9 d69e46f fa361c9 d69e46f dbf9e7a fa361c9 dbf9e7a d69e46f fa361c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
import os, time, re, json, base64, asyncio, threading, uuid, io
import numpy as np
import soundfile as sf
from pydub import AudioSegment
from openai import OpenAI
from websockets import connect, Data, ClientConnection
from dotenv import load_dotenv
# ============ Load Secrets ============
load_dotenv()
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
ASSISTANT_ID = os.getenv("ASSISTANT_ID")
client = OpenAI(api_key=OPENAI_API_KEY)
HEADERS = {"Authorization": f"Bearer {OPENAI_API_KEY}", "OpenAI-Beta": "realtime=v1"}
WS_URI = "wss://api.openai.com/v1/realtime?intent=transcription"
connections = {}
# ============ WebSocket Client ============
class WebSocketClient:
def __init__(self, uri, headers, client_id):
self.uri, self.headers, self.client_id = uri, headers, client_id
self.websocket = None
self.queue = asyncio.Queue(maxsize=10)
self.transcript = ""
async def connect(self):
self.websocket = await connect(self.uri, additional_headers=self.headers)
with open("openai_transcription_settings.json", "r") as f:
await self.websocket.send(f.read())
await asyncio.gather(self.receive_messages(), self.send_audio_chunks())
def run(self):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
loop.run_until_complete(self.connect())
async def send_audio_chunks(self):
while True:
sr, arr = await self.queue.get()
if arr.ndim > 1: arr = arr.mean(axis=1)
arr = (arr / np.max(np.abs(arr))) if np.max(np.abs(arr)) > 0 else arr
int16 = (arr * 32767).astype(np.int16)
buf = io.BytesIO(); sf.write(buf, int16, sr, format='WAV', subtype='PCM_16')
audio = AudioSegment.from_file(buf, format="wav").set_frame_rate(24000)
out = io.BytesIO(); audio.export(out, format="wav"); out.seek(0)
await self.websocket.send(json.dumps({
"type": "input_audio_buffer.append",
"audio": base64.b64encode(out.read()).decode()
}))
async def receive_messages(self):
async for msg in self.websocket:
data = json.loads(msg)
if data["type"] == "conversation.item.input_audio_transcription.delta":
self.transcript += data["delta"]
def enqueue_audio_chunk(self, sr, arr):
if not self.queue.full():
asyncio.run_coroutine_threadsafe(self.queue.put((sr, arr)), asyncio.get_event_loop())
def create_ws():
cid = str(uuid.uuid4())
client = WebSocketClient(WS_URI, HEADERS, cid)
threading.Thread(target=client.run, daemon=True).start()
connections[cid] = client
return cid
def send_audio(chunk, cid):
if cid not in connections: return "Connecting..."
sr, arr = chunk
connections[cid].enqueue_audio_chunk(sr, arr)
return connections[cid].transcript
def clear_transcript(cid):
if cid in connections: connections[cid].transcript = ""
return ""
# ============ Chat Assistant ============
def handle_chat(user_input, history, thread_id, image_url):
if not OPENAI_API_KEY or not ASSISTANT_ID:
return "❌ Missing secrets!", history, thread_id, image_url
try:
if thread_id is None:
thread = client.beta.threads.create()
thread_id = thread.id
client.beta.threads.messages.create(thread_id=thread_id, role="user", content=user_input)
run = client.beta.threads.runs.create(thread_id=thread_id, assistant_id=ASSISTANT_ID)
while True:
status = client.beta.threads.runs.retrieve(thread_id=thread_id, run_id=run.id)
if status.status == "completed": break
time.sleep(1)
msgs = client.beta.threads.messages.list(thread_id=thread_id)
for msg in reversed(msgs.data):
if msg.role == "assistant":
content = msg.content[0].text.value
history.append((user_input, content))
match = re.search(
r'https://raw\.githubusercontent\.com/AndrewLORTech/surgical-pathology-manual/main/[\w\-/]*\.png',
content
)
if match: image_url = match.group(0)
break
return "", history, thread_id, image_url
except Exception as e:
return f"❌ {e}", history, thread_id, image_url
# ============ Gradio UI ============
with gr.Blocks(theme=gr.themes.Soft()) as app:
gr.Markdown("# 📄 Document AI Assistant")
# STATES
chat_state = gr.State([])
thread_state = gr.State()
image_state = gr.State()
client_id = gr.State()
voice_enabled = gr.State(False)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
image_display = gr.Image(label="🖼️ Document", type="filepath", show_download_button=False)
with gr.Column(scale=1.4):
chat = gr.Chatbot(label="💬 Chat", height=460)
with gr.Row():
user_prompt = gr.Textbox(placeholder="Ask your question...", show_label=False, scale=6)
mic_toggle_btn = gr.Button("🎙️", scale=1)
send_btn = gr.Button("Send", variant="primary", scale=2)
with gr.Accordion("🎤 Voice Transcription", open=False) as voice_section:
with gr.Row():
voice_input = gr.Audio(label="Mic", streaming=True)
voice_transcript = gr.Textbox(label="Transcript", lines=2, interactive=False)
clear_btn = gr.Button("🧹 Clear Transcript")
# FUNCTIONAL CONNECTIONS
def toggle_voice(curr):
return not curr, gr.update(visible=not curr)
mic_toggle_btn.click(fn=toggle_voice, inputs=voice_enabled, outputs=[voice_enabled, voice_section])
send_btn.click(fn=handle_chat,
inputs=[user_prompt, chat_state, thread_state, image_state],
outputs=[user_prompt, chat, thread_state, image_state])
image_state.change(fn=lambda x: x, inputs=image_state, outputs=image_display)
voice_input.stream(fn=send_audio, inputs=[voice_input, client_id], outputs=voice_transcript, stream_every=0.5)
clear_btn.click(fn=clear_transcript, inputs=[client_id], outputs=voice_transcript)
app.load(fn=create_ws, outputs=[client_id])
app.launch()
|