Spaces:
Restarting
Restarting
metadata
title: Detection and Plagiarism Check
emoji: π΅οΈββοΈ
colorFrom: indigo
colorTo: blue
sdk: docker
app_file: Dockerfile
pinned: false
Detection and Plagiarism Check API π΅οΈββοΈ
This API uses advanced AI models to evaluate essays for:
- AI Content Detection: Identifies if the content was written by an AI.
- Internal Plagiarism Detection: Detects repetitive patterns and similarities within the text.
Endpoints
GET /health
Check the API health and model loading status.
Response:
{
"model_loaded": true,
"hub_accessible": true,
"pdf_processing": true
}
π POST /analyze
Upload a PDF essay for comprehensive analysis.
Request:
Content-Type: multipart/form-data
Body: file (PDF document)
**Response:**
{
"analysis": {
"ai_detection": {
"human_written": 47.22,
"ai_generated": 52.78
},
"plagiarism_score": 0
},
"status": "success"
}
## Usage Examples
### Using cURL:
curl -X 'POST' \
'https://essay-grader-detection-and-plagiarism-check.hf.space/analyze' \
-H 'accept: application/json' \
-H 'Content-Type: multipart/form-data' \
-F 'file=@your_essay.pdf'
### Using Python Requests:
import requests
url = "https://essay-grader-detection-and-plagiarism-check.hf.space/analyze"
files = {"file": open("your_essay.pdf", "rb")}
response = requests.post(url, files=files)
result = response.json()
print(result)
### Technical Stack
AI Content Detection: RoBERTa-based custom fine-tuned model.
Internal Plagiarism Detection: SentenceTransformers (semantic similarity analysis).
PDF Text Extraction: PyPDF2.
Framework: FastAPI.
Deployment: Docker + Hugging Face Spaces.
Credits:
Created by: Christian Mpambira (BED-COM-22-20)