|
import gradio as gr |
|
from transformers import pipeline |
|
from langdetect import detect |
|
from huggingface_hub import InferenceClient |
|
import pandas as pd |
|
import os |
|
import asyncio |
|
import nltk |
|
from nltk.tokenize import sent_tokenize |
|
|
|
|
|
try: |
|
nltk.download('punkt_tab', download_dir='/usr/local/share/nltk_data') |
|
except Exception as e: |
|
raise Exception(f"Erreur lors du téléchargement de punkt_tab : {str(e)}. Veuillez vérifier votre connexion réseau et les permissions du répertoire /usr/local/share/nltk_data.") |
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
|
|
async def call_zephyr_api(prompt, mode, hf_token=HF_TOKEN): |
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token) |
|
try: |
|
if mode == "Rapide": |
|
max_new_tokens = 50 |
|
temperature = 0.3 |
|
elif mode == "Équilibré": |
|
max_new_tokens = 100 |
|
temperature = 0.5 |
|
else: |
|
max_new_tokens = 150 |
|
temperature = 0.7 |
|
response = await asyncio.to_thread(client.text_generation, prompt, max_new_tokens=max_new_tokens, temperature=temperature) |
|
return response |
|
except Exception as e: |
|
raise gr.Error(f"❌ Erreur d'appel API Hugging Face : {str(e)}") |
|
|
|
|
|
classifier = pipeline("sentiment-analysis", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis") |
|
|
|
|
|
translator_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en") |
|
translator_to_fr = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr") |
|
|
|
|
|
def safe_translate_to_fr(text, max_length=512): |
|
try: |
|
sentences = sent_tokenize(text) |
|
translated_sentences = [] |
|
for sentence in sentences: |
|
translated = translator_to_fr(sentence, max_length=max_length)[0]['translation_text'] |
|
translated_sentences.append(translated) |
|
return " ".join(translated_sentences) |
|
except Exception as e: |
|
return f"Erreur de traduction : {str(e)}" |
|
|
|
|
|
def suggest_model(text): |
|
word_count = len(text.split()) |
|
if word_count < 50: |
|
return "Rapide" |
|
elif word_count <= 200: |
|
return "Équilibré" |
|
else: |
|
return "Précis" |
|
|
|
|
|
def create_sentiment_gauge(sentiment, score): |
|
score_percentage = score * 100 |
|
color = "#A9A9A9" |
|
if sentiment.lower() == "positive": |
|
color = "#2E8B57" |
|
elif sentiment.lower() == "negative": |
|
color = "#DC143C" |
|
|
|
html = f""" |
|
<div style='width: 100%; max-width: 300px; margin: 10px 0;'> |
|
<div style='background-color: #D3D3D3; border-radius: 5px; height: 20px; position: relative;'> |
|
<div style='background-color: {color}; width: {score_percentage}%; height: 100%; border-radius: 5px;'></div> |
|
<span style='position: absolute; top: 0; left: 50%; transform: translateX(-50%); font-weight: bold;'>{score_percentage:.1f}%</span> |
|
</div> |
|
<div style='text-align: center; margin-top: 5px;'>Sentiment : {sentiment}</div> |
|
</div> |
|
""" |
|
return html |
|
|
|
|
|
async def full_analysis(text, mode, detail_mode, count, history): |
|
if not text: |
|
yield "Entrez une phrase.", "", "", "", 0, history, "", "Aucune analyse effectuée." |
|
return |
|
|
|
yield "Analyse en cours... (Étape 1 : Détection de la langue)", "", "", "", count, history, "", "Détection de la langue" |
|
|
|
try: |
|
lang = detect(text) |
|
except: |
|
lang = "unknown" |
|
|
|
if lang != "en": |
|
text_en = translator_to_en(text, max_length=512)[0]['translation_text'] |
|
else: |
|
text_en = text |
|
|
|
yield "Analyse en cours... (Étape 2 : Analyse du sentiment)", "", "", "", count, history, "", "Analyse du sentiment" |
|
|
|
result = await asyncio.to_thread(classifier, text_en) |
|
result = result[0] |
|
sentiment_output = f"Sentiment prédictif : {result['label']} (Score: {result['score']:.2f})" |
|
sentiment_gauge = create_sentiment_gauge(result['label'], result['score']) |
|
|
|
yield "Analyse en cours... (Étape 3 : Explication IA)", "", "", "", count, history, "", "Génération de l'explication" |
|
|
|
explanation_prompt = f"""<|system|> |
|
You are a professional financial analyst AI with expertise in economic forecasting. |
|
</s> |
|
<|user|> |
|
Given the following question about a potential economic event: "{text}" |
|
|
|
The predicted sentiment for this event is: {result['label'].lower()}. |
|
|
|
Assume the event happens. Explain why this event would likely have a {result['label'].lower()} economic impact. |
|
</s> |
|
<|assistant|>""" |
|
explanation_en = await call_zephyr_api(explanation_prompt, mode) |
|
|
|
yield "Analyse en cours... (Étape 4 : Traduction en français)", "", "", "", count, history, "", "Traduction en français" |
|
|
|
explanation_fr = safe_translate_to_fr(explanation_en) |
|
|
|
count += 1 |
|
history.append({ |
|
"Texte": text, |
|
"Sentiment": result['label'], |
|
"Score": f"{result['score']:.2f}", |
|
"Explication_EN": explanation_en, |
|
"Explication_FR": explanation_fr |
|
}) |
|
|
|
yield sentiment_output, text, explanation_en, explanation_fr, count, history, sentiment_gauge, "✅ Analyse terminée." |
|
|
|
|
|
def download_history(history): |
|
if not history: |
|
return None |
|
df = pd.DataFrame(history) |
|
file_path = "/tmp/analysis_history.csv" |
|
df.to_csv(file_path, index=False) |
|
return file_path |
|
|
|
|
|
def launch_app(): |
|
custom_css = """ |
|
/* CSS restauré à la version précédente, avant les changements esthétiques non demandés */ |
|
body { |
|
background: linear-gradient(135deg, #0A1D37 0%, #1A3C34 100%); |
|
font-family: 'Inter', sans-serif; |
|
color: #E0E0E0; |
|
padding: 20px; |
|
} |
|
.gr-box { |
|
background: #2A4A43 !important; |
|
border: 1px solid #FFD700 !important; |
|
border-radius: 12px !important; |
|
padding: 20px !important; |
|
box-shadow: 0px 4px 12px rgba(255, 215, 0, 0.4); |
|
} |
|
.gr-button { |
|
background: linear-gradient(90deg, #FFD700, #D4AF37); |
|
color: #0A1D37; |
|
font-weight: bold; |
|
border: none; |
|
border-radius: 8px; |
|
padding: 12px 24px; |
|
transition: transform 0.2s; |
|
} |
|
.gr-button:hover { |
|
transform: translateY(-2px); |
|
box-shadow: 0 6px 12px rgba(255, 215, 0, 0.5); |
|
} |
|
""" |
|
|
|
with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as iface: |
|
gr.Markdown("# 📈 Analyse Financière Premium avec IA") |
|
gr.Markdown("**Posez une question économique.** L'IA analyse et explique l'impact.") |
|
|
|
count = gr.State(0) |
|
history = gr.State([]) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
input_text = gr.Textbox(lines=4, label="Votre question économique") |
|
with gr.Column(scale=1): |
|
mode_selector = gr.Dropdown(choices=["Rapide", "Équilibré", "Précis"], value="Équilibré", label="Mode de réponse") |
|
detail_mode_selector = gr.Dropdown(choices=["Normal", "Expert"], value="Normal", label="Niveau de détail") |
|
|
|
analyze_btn = gr.Button("Analyser") |
|
download_btn = gr.Button("Télécharger l'historique") |
|
|
|
with gr.Row(): |
|
sentiment_output = gr.Textbox(label="Sentiment prédictif") |
|
displayed_prompt = gr.Textbox(label="Votre question", interactive=False) |
|
explanation_output_en = gr.Textbox(label="Explication en anglais") |
|
explanation_output_fr = gr.Textbox(label="Explication en français") |
|
sentiment_gauge = gr.HTML() |
|
progress_message = gr.Textbox(label="Progression", interactive=False) |
|
|
|
download_file = gr.File(label="Fichier CSV") |
|
|
|
input_text.change(lambda t: gr.update(value=suggest_model(t)), inputs=[input_text], outputs=[mode_selector]) |
|
|
|
analyze_btn.click( |
|
full_analysis, |
|
inputs=[input_text, mode_selector, detail_mode_selector, count, history], |
|
outputs=[sentiment_output, displayed_prompt, explanation_output_en, explanation_output_fr, count, history, sentiment_gauge, progress_message] |
|
) |
|
|
|
download_btn.click( |
|
download_history, |
|
inputs=[history], |
|
outputs=[download_file] |
|
) |
|
|
|
iface.launch(share=True) |
|
|
|
if __name__ == "__main__": |
|
launch_app() |