File size: 8,608 Bytes
12fb52c 73da356 12fb52c e5b4007 8775026 12fb52c 9bdae24 e5b4007 73da356 12fb52c aa38f56 e5b4007 38d62de 9bdae24 e5b4007 d4108c0 12fb52c 9bdae24 9cf77d0 9bdae24 8775026 12fb52c 8775026 9bdae24 9cf77d0 8775026 9cf77d0 8775026 9bdae24 12fb52c 9bdae24 c09849c 9cf77d0 e5b4007 c09849c e5b4007 c09849c 9cf77d0 c09849c 9cf77d0 c09849c 9cf77d0 e5b4007 12fb52c 8c2b49e 78d147f 12fb52c 9cf77d0 e5b4007 12fb52c e5b4007 c09849c 9cf77d0 c09849c e5b4007 c09849c 12fb52c 9cf77d0 e5b4007 c09849c e5b4007 d4108c0 c09849c 12fb52c e5b4007 d4108c0 9cf77d0 d4108c0 e5b4007 9cf77d0 e5b4007 8c2b49e 12fb52c 9cf77d0 12fb52c 9cf77d0 12fb52c 9cf77d0 12fb52c 38d62de 9cf77d0 38d62de 8c2b49e 9bdae24 9cf77d0 38d62de 8c2b49e e5b4007 9cf77d0 38d62de 9cf77d0 38d62de 9cf77d0 e5b4007 38d62de 9cf77d0 12fb52c 9cf77d0 e5b4007 9cf77d0 12fb52c 9cf77d0 12fb52c 9cf77d0 12fb52c 8c2b49e 12fb52c e5b4007 12fb52c 9bdae24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import gradio as gr
from transformers import pipeline
from langdetect import detect
from huggingface_hub import InferenceClient
import pandas as pd
import os
import asyncio
import nltk
from nltk.tokenize import sent_tokenize
# Téléchargement de punkt_tab avec gestion d'erreur
try:
nltk.download('punkt_tab', download_dir='/usr/local/share/nltk_data')
except Exception as e:
raise Exception(f"Erreur lors du téléchargement de punkt_tab : {str(e)}. Veuillez vérifier votre connexion réseau et les permissions du répertoire /usr/local/share/nltk_data.")
HF_TOKEN = os.getenv("HF_TOKEN")
# Fonction pour appeler l'API Zephyr avec des paramètres ajustés
async def call_zephyr_api(prompt, mode, hf_token=HF_TOKEN):
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
try:
if mode == "Rapide":
max_new_tokens = 50
temperature = 0.3
elif mode == "Équilibré":
max_new_tokens = 100
temperature = 0.5
else: # Précis
max_new_tokens = 150
temperature = 0.7
response = await asyncio.to_thread(client.text_generation, prompt, max_new_tokens=max_new_tokens, temperature=temperature)
return response
except Exception as e:
raise gr.Error(f"❌ Erreur d'appel API Hugging Face : {str(e)}")
# Chargement du modèle de sentiment pour analyser les réponses
classifier = pipeline("sentiment-analysis", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis")
# Modèles de traduction
translator_to_en = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
translator_to_fr = pipeline("translation", model="Helsinki-NLP/opus-mt-en-fr")
# Traduction en français avec Helsinki-NLP
def safe_translate_to_fr(text, max_length=512):
try:
sentences = sent_tokenize(text)
translated_sentences = []
for sentence in sentences:
translated = translator_to_fr(sentence, max_length=max_length)[0]['translation_text']
translated_sentences.append(translated)
return " ".join(translated_sentences)
except Exception as e:
return f"Erreur de traduction : {str(e)}"
# Fonction pour suggérer le meilleur modèle
def suggest_model(text):
word_count = len(text.split())
if word_count < 50:
return "Rapide"
elif word_count <= 200:
return "Équilibré"
else:
return "Précis"
# Fonction pour créer une jauge de sentiment
def create_sentiment_gauge(sentiment, score):
score_percentage = score * 100
color = "#A9A9A9"
if sentiment.lower() == "positive":
color = "#2E8B57"
elif sentiment.lower() == "negative":
color = "#DC143C"
html = f"""
<div style='width: 100%; max-width: 300px; margin: 10px 0;'>
<div style='background-color: #D3D3D3; border-radius: 5px; height: 20px; position: relative;'>
<div style='background-color: {color}; width: {score_percentage}%; height: 100%; border-radius: 5px;'></div>
<span style='position: absolute; top: 0; left: 50%; transform: translateX(-50%); font-weight: bold;'>{score_percentage:.1f}%</span>
</div>
<div style='text-align: center; margin-top: 5px;'>Sentiment : {sentiment}</div>
</div>
"""
return html
# Fonction d'analyse
async def full_analysis(text, mode, detail_mode, count, history):
if not text:
yield "Entrez une phrase.", "", "", "", 0, history, "", "Aucune analyse effectuée."
return
yield "Analyse en cours... (Étape 1 : Détection de la langue)", "", "", "", count, history, "", "Détection de la langue"
try:
lang = detect(text)
except:
lang = "unknown"
if lang != "en":
text_en = translator_to_en(text, max_length=512)[0]['translation_text']
else:
text_en = text
yield "Analyse en cours... (Étape 2 : Analyse du sentiment)", "", "", "", count, history, "", "Analyse du sentiment"
result = await asyncio.to_thread(classifier, text_en)
result = result[0]
sentiment_output = f"Sentiment prédictif : {result['label']} (Score: {result['score']:.2f})"
sentiment_gauge = create_sentiment_gauge(result['label'], result['score'])
yield "Analyse en cours... (Étape 3 : Explication IA)", "", "", "", count, history, "", "Génération de l'explication"
explanation_prompt = f"""<|system|>
You are a professional financial analyst AI with expertise in economic forecasting.
</s>
<|user|>
Given the following question about a potential economic event: "{text}"
The predicted sentiment for this event is: {result['label'].lower()}.
Assume the event happens. Explain why this event would likely have a {result['label'].lower()} economic impact.
</s>
<|assistant|>"""
explanation_en = await call_zephyr_api(explanation_prompt, mode)
yield "Analyse en cours... (Étape 4 : Traduction en français)", "", "", "", count, history, "", "Traduction en français"
explanation_fr = safe_translate_to_fr(explanation_en)
count += 1
history.append({
"Texte": text,
"Sentiment": result['label'],
"Score": f"{result['score']:.2f}",
"Explication_EN": explanation_en,
"Explication_FR": explanation_fr
})
yield sentiment_output, text, explanation_en, explanation_fr, count, history, sentiment_gauge, "✅ Analyse terminée."
# Historique CSV
def download_history(history):
if not history:
return None
df = pd.DataFrame(history)
file_path = "/tmp/analysis_history.csv"
df.to_csv(file_path, index=False)
return file_path
# Lancement Gradio avec l'interface restaurée
def launch_app():
custom_css = """
/* CSS restauré à la version précédente, avant les changements esthétiques non demandés */
body {
background: linear-gradient(135deg, #0A1D37 0%, #1A3C34 100%);
font-family: 'Inter', sans-serif;
color: #E0E0E0;
padding: 20px;
}
.gr-box {
background: #2A4A43 !important;
border: 1px solid #FFD700 !important;
border-radius: 12px !important;
padding: 20px !important;
box-shadow: 0px 4px 12px rgba(255, 215, 0, 0.4);
}
.gr-button {
background: linear-gradient(90deg, #FFD700, #D4AF37);
color: #0A1D37;
font-weight: bold;
border: none;
border-radius: 8px;
padding: 12px 24px;
transition: transform 0.2s;
}
.gr-button:hover {
transform: translateY(-2px);
box-shadow: 0 6px 12px rgba(255, 215, 0, 0.5);
}
"""
with gr.Blocks(theme=gr.themes.Base(), css=custom_css) as iface:
gr.Markdown("# 📈 Analyse Financière Premium avec IA")
gr.Markdown("**Posez une question économique.** L'IA analyse et explique l'impact.")
count = gr.State(0)
history = gr.State([])
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(lines=4, label="Votre question économique")
with gr.Column(scale=1):
mode_selector = gr.Dropdown(choices=["Rapide", "Équilibré", "Précis"], value="Équilibré", label="Mode de réponse")
detail_mode_selector = gr.Dropdown(choices=["Normal", "Expert"], value="Normal", label="Niveau de détail")
analyze_btn = gr.Button("Analyser")
download_btn = gr.Button("Télécharger l'historique")
with gr.Row():
sentiment_output = gr.Textbox(label="Sentiment prédictif")
displayed_prompt = gr.Textbox(label="Votre question", interactive=False)
explanation_output_en = gr.Textbox(label="Explication en anglais")
explanation_output_fr = gr.Textbox(label="Explication en français")
sentiment_gauge = gr.HTML()
progress_message = gr.Textbox(label="Progression", interactive=False)
download_file = gr.File(label="Fichier CSV")
input_text.change(lambda t: gr.update(value=suggest_model(t)), inputs=[input_text], outputs=[mode_selector])
analyze_btn.click(
full_analysis,
inputs=[input_text, mode_selector, detail_mode_selector, count, history],
outputs=[sentiment_output, displayed_prompt, explanation_output_en, explanation_output_fr, count, history, sentiment_gauge, progress_message]
)
download_btn.click(
download_history,
inputs=[history],
outputs=[download_file]
)
iface.launch(share=True)
if __name__ == "__main__":
launch_app() |