DinoFrog commited on
Commit
aa38f56
·
verified ·
1 Parent(s): c09849c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -9
app.py CHANGED
@@ -7,11 +7,21 @@ import os
7
 
8
  HF_TOKEN = os.getenv("HF_TOKEN")
9
 
10
- # Fonction pour appeler l'API Zephyr
11
- def call_zephyr_api(prompt, hf_token=HF_TOKEN):
12
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
13
  try:
14
- response = client.text_generation(prompt, max_new_tokens=300)
 
 
 
 
 
 
 
 
 
 
15
  return response
16
  except Exception as e:
17
  raise gr.Error(f"❌ Erreur d'appel API Hugging Face : {str(e)}")
@@ -84,14 +94,14 @@ Given the following question about a potential economic event: "{text}"
84
  Assume the event happens (e.g., if the question is "Will the Federal Reserve raise interest rates?", assume they do raise rates). What would be the likely economic impact of this event? Provide a concise explanation in one paragraph, focusing on the potential positive or negative effects on the economy. Do not repeat the question or the prompt in your response.
85
  </s>
86
  <|assistant|>"""
87
- prediction_response = call_zephyr_api(prediction_prompt)
88
 
89
  # Étape 2 : Analyser le sentiment de la réponse de Zephyr
90
  result = classifier(prediction_response)[0]
91
  sentiment_output = f"Sentiment prédictif : {result['label']} (Score: {result['score']:.2f})"
92
  sentiment_gauge = create_sentiment_gauge(result['label'], result['score'])
93
 
94
- # Étape 3 : Générer une explication détaillée
95
  explanation_prompt = f"""<|system|>
96
  You are a professional financial analyst AI.
97
  </s>
@@ -102,10 +112,10 @@ Based on your prediction of the economic impact, which is: "{prediction_response
102
 
103
  The predicted sentiment for this impact is: {result['label'].lower()}.
104
 
105
- Now, explain why the sentiment is {result['label'].lower()} using a logical, fact-based explanation. Base your reasoning only on the predicted economic impact. Respond only with your financial analysis in one clear paragraph. Write in a clear and professional tone.
106
  </s>
107
  <|assistant|>"""
108
- explanation_en = call_zephyr_api(explanation_prompt)
109
  explanation_fr = translator_to_fr(explanation_en, max_length=512)[0]['translation_text']
110
 
111
  count += 1
@@ -144,12 +154,12 @@ def launch_app():
144
  mode_selector = gr.Dropdown(
145
  choices=["Rapide", "Équilibré", "Précis"],
146
  value="Équilibré",
147
- label="Mode recommandé selon la taille"
148
  )
149
  detail_mode_selector = gr.Dropdown(
150
  choices=["Normal", "Expert"],
151
  value="Normal",
152
- label="Niveau de détail"
153
  )
154
 
155
  analyze_btn = gr.Button("Analyser")
 
7
 
8
  HF_TOKEN = os.getenv("HF_TOKEN")
9
 
10
+ # Fonction pour appeler l'API Zephyr avec des paramètres ajustés
11
+ def call_zephyr_api(prompt, mode, hf_token=HF_TOKEN):
12
  client = InferenceClient("HuggingFaceH4/zephyr-7b-beta", token=hf_token)
13
  try:
14
+ # Ajuster les paramètres en fonction du mode
15
+ if mode == "Rapide":
16
+ max_new_tokens = 100 # Réponse courte
17
+ temperature = 0.5 # Moins de créativité
18
+ elif mode == "Équilibré":
19
+ max_new_tokens = 200 # Réponse moyenne
20
+ temperature = 0.7 # Créativité modérée
21
+ else: # Précis
22
+ max_new_tokens = 300 # Réponse longue
23
+ temperature = 0.9 # Plus de créativité
24
+ response = client.text_generation(prompt, max_new_tokens=max_new_tokens, temperature=temperature)
25
  return response
26
  except Exception as e:
27
  raise gr.Error(f"❌ Erreur d'appel API Hugging Face : {str(e)}")
 
94
  Assume the event happens (e.g., if the question is "Will the Federal Reserve raise interest rates?", assume they do raise rates). What would be the likely economic impact of this event? Provide a concise explanation in one paragraph, focusing on the potential positive or negative effects on the economy. Do not repeat the question or the prompt in your response.
95
  </s>
96
  <|assistant|>"""
97
+ prediction_response = call_zephyr_api(prediction_prompt, mode)
98
 
99
  # Étape 2 : Analyser le sentiment de la réponse de Zephyr
100
  result = classifier(prediction_response)[0]
101
  sentiment_output = f"Sentiment prédictif : {result['label']} (Score: {result['score']:.2f})"
102
  sentiment_gauge = create_sentiment_gauge(result['label'], result['score'])
103
 
104
+ # Étape 3 : Générer une explication détaillée en fonction du niveau de détail
105
  explanation_prompt = f"""<|system|>
106
  You are a professional financial analyst AI.
107
  </s>
 
112
 
113
  The predicted sentiment for this impact is: {result['label'].lower()}.
114
 
115
+ Now, explain why the sentiment is {result['label'].lower()} using a logical, fact-based explanation. Base your reasoning only on the predicted economic impact. Respond only with your financial analysis in one clear paragraph. Write in a clear and professional tone. {"Use simple language for a general audience." if detail_mode == "Normal" else "Use detailed financial terminology for an expert audience."}
116
  </s>
117
  <|assistant|>"""
118
+ explanation_en = call_zephyr_api(explanation_prompt, mode)
119
  explanation_fr = translator_to_fr(explanation_en, max_length=512)[0]['translation_text']
120
 
121
  count += 1
 
154
  mode_selector = gr.Dropdown(
155
  choices=["Rapide", "Équilibré", "Précis"],
156
  value="Équilibré",
157
+ label="Mode (longueur et style de réponse)"
158
  )
159
  detail_mode_selector = gr.Dropdown(
160
  choices=["Normal", "Expert"],
161
  value="Normal",
162
+ label="Niveau de détail (simplicité ou technicité)"
163
  )
164
 
165
  analyze_btn = gr.Button("Analyser")