Didier's picture
Update vlm.py
8e4b55b verified
"""
File: vlm.py
Description: Vision language model utility functions.
Heavily inspired (i.e. copied) from
https://huggingface.co./spaces/HuggingFaceTB/SmolVLM2/blob/main/app.py
Author: Didier Guillevic
Date: 2025-04-02
"""
from transformers import AutoProcessor, AutoModelForImageTextToText
from transformers import TextIteratorStreamer
from threading import Thread
import re
import time
import torch
import spaces
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
from io import BytesIO
#
# Load the model: HuggingFaceTB/SmolVLM2-2.2B-Instruct
#
model_id = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
model_id,
_attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16
).to(device)
#
# Build messages
#
def build_messages(input_dict: dict, history: list[tuple]):
"""Build messages given message & history from a **multimodal** chat interface.
Args:
input_dict: dictionary with keys: 'text', 'files'
history: list of tuples with (message, response)
Returns:
list of messages (to be sent to the model)
"""
text = input_dict["text"]
images = []
user_content = []
media_queue = []
if history == []:
text = input_dict["text"].strip()
for file in input_dict.get("files", []):
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
media_queue.append({"type": "image", "path": file})
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
media_queue.append({"type": "video", "path": file})
if "<image>" in text or "<video>" in text:
parts = re.split(r'(<image>|<video>)', text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
else:
user_content.append({"type": "text", "text": text})
for media in media_queue:
user_content.append(media)
resulting_messages = [{"role": "user", "content": user_content}]
elif len(history) > 0:
resulting_messages = []
user_content = []
media_queue = []
for hist in history:
if hist["role"] == "user" and isinstance(hist["content"], tuple):
file_name = hist["content"][0]
if file_name.endswith((".png", ".jpg", ".jpeg")):
media_queue.append({"type": "image", "path": file_name})
elif file_name.endswith(".mp4"):
media_queue.append({"type": "video", "path": file_name})
for hist in history:
if hist["role"] == "user" and isinstance(hist["content"], str):
text = hist["content"]
parts = re.split(r'(<image>|<video>)', text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
elif hist["role"] == "assistant":
resulting_messages.append({
"role": "user",
"content": user_content
})
resulting_messages.append({
"role": "assistant",
"content": [{"type": "text", "text": hist["content"]}]
})
user_content = []
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
gr.Error("Please input a text query along the images(s).")
return resulting_messages
#
# Streaming response
#
@spaces.GPU
@torch.inference_mode()
def stream_response(
messages: list[dict],
max_new_tokens: int=1_024,
temperature: float=0.15
):
"""Stream the model's response to the chat interface.
Args:
messages: list of messages to send to the model
"""
# Generate model's response
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device, dtype=torch.bfloat16)
# Generate
streamer = TextIteratorStreamer(
processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=0.9,
do_sample=True
)
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
partial_message = ""
for new_text in streamer:
partial_message += new_text
yield partial_message