Spaces:
Running
on
Zero
Running
on
Zero
""" | |
File: vlm.py | |
Description: Vision language model utility functions. | |
Heavily inspired (i.e. copied) from | |
https://huggingface.co./spaces/HuggingFaceTB/SmolVLM2/blob/main/app.py | |
Author: Didier Guillevic | |
Date: 2025-04-02 | |
""" | |
from transformers import AutoProcessor, AutoModelForImageTextToText | |
from transformers import TextIteratorStreamer | |
from threading import Thread | |
import re | |
import time | |
import torch | |
import spaces | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
from io import BytesIO | |
# | |
# Load the model: HuggingFaceTB/SmolVLM2-2.2B-Instruct | |
# | |
model_id = "HuggingFaceTB/SmolVLM2-2.2B-Instruct" | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
processor = AutoProcessor.from_pretrained(model_id) | |
model = AutoModelForImageTextToText.from_pretrained( | |
model_id, | |
_attn_implementation="flash_attention_2", | |
torch_dtype=torch.bfloat16 | |
).to(device) | |
# | |
# Build messages | |
# | |
def build_messages(input_dict: dict, history: list[tuple]): | |
"""Build messages given message & history from a **multimodal** chat interface. | |
Args: | |
input_dict: dictionary with keys: 'text', 'files' | |
history: list of tuples with (message, response) | |
Returns: | |
list of messages (to be sent to the model) | |
""" | |
text = input_dict["text"] | |
images = [] | |
user_content = [] | |
media_queue = [] | |
if history == []: | |
text = input_dict["text"].strip() | |
for file in input_dict.get("files", []): | |
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")): | |
media_queue.append({"type": "image", "path": file}) | |
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")): | |
media_queue.append({"type": "video", "path": file}) | |
if "<image>" in text or "<video>" in text: | |
parts = re.split(r'(<image>|<video>)', text) | |
for part in parts: | |
if part == "<image>" and media_queue: | |
user_content.append(media_queue.pop(0)) | |
elif part == "<video>" and media_queue: | |
user_content.append(media_queue.pop(0)) | |
elif part.strip(): | |
user_content.append({"type": "text", "text": part.strip()}) | |
else: | |
user_content.append({"type": "text", "text": text}) | |
for media in media_queue: | |
user_content.append(media) | |
resulting_messages = [{"role": "user", "content": user_content}] | |
elif len(history) > 0: | |
resulting_messages = [] | |
user_content = [] | |
media_queue = [] | |
for hist in history: | |
if hist["role"] == "user" and isinstance(hist["content"], tuple): | |
file_name = hist["content"][0] | |
if file_name.endswith((".png", ".jpg", ".jpeg")): | |
media_queue.append({"type": "image", "path": file_name}) | |
elif file_name.endswith(".mp4"): | |
media_queue.append({"type": "video", "path": file_name}) | |
for hist in history: | |
if hist["role"] == "user" and isinstance(hist["content"], str): | |
text = hist["content"] | |
parts = re.split(r'(<image>|<video>)', text) | |
for part in parts: | |
if part == "<image>" and media_queue: | |
user_content.append(media_queue.pop(0)) | |
elif part == "<video>" and media_queue: | |
user_content.append(media_queue.pop(0)) | |
elif part.strip(): | |
user_content.append({"type": "text", "text": part.strip()}) | |
elif hist["role"] == "assistant": | |
resulting_messages.append({ | |
"role": "user", | |
"content": user_content | |
}) | |
resulting_messages.append({ | |
"role": "assistant", | |
"content": [{"type": "text", "text": hist["content"]}] | |
}) | |
user_content = [] | |
if text == "" and not images: | |
gr.Error("Please input a query and optionally image(s).") | |
if text == "" and images: | |
gr.Error("Please input a text query along the images(s).") | |
return resulting_messages | |
# | |
# Streaming response | |
# | |
def stream_response( | |
messages: list[dict], | |
max_new_tokens: int=1_024, | |
temperature: float=0.15 | |
): | |
"""Stream the model's response to the chat interface. | |
Args: | |
messages: list of messages to send to the model | |
""" | |
# Generate model's response | |
inputs = processor.apply_chat_template( | |
messages, | |
add_generation_prompt=True, | |
tokenize=True, | |
return_dict=True, | |
return_tensors="pt", | |
).to(model.device, dtype=torch.bfloat16) | |
# Generate | |
streamer = TextIteratorStreamer( | |
processor, skip_prompt=True, skip_special_tokens=True) | |
generation_args = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=0.9, | |
do_sample=True | |
) | |
thread = Thread(target=model.generate, kwargs=generation_args) | |
thread.start() | |
partial_message = "" | |
for new_text in streamer: | |
partial_message += new_text | |
yield partial_message | |