Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,467 Bytes
c1f96a9 8e4b55b c1f96a9 5d69ad6 c1f96a9 8e4b55b c1f96a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
"""
File: vlm.py
Description: Vision language model utility functions.
Heavily inspired (i.e. copied) from
https://huggingface.co./spaces/HuggingFaceTB/SmolVLM2/blob/main/app.py
Author: Didier Guillevic
Date: 2025-04-02
"""
from transformers import AutoProcessor, AutoModelForImageTextToText
from transformers import TextIteratorStreamer
from threading import Thread
import re
import time
import torch
import spaces
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
from io import BytesIO
#
# Load the model: HuggingFaceTB/SmolVLM2-2.2B-Instruct
#
model_id = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForImageTextToText.from_pretrained(
model_id,
_attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16
).to(device)
#
# Build messages
#
def build_messages(input_dict: dict, history: list[tuple]):
"""Build messages given message & history from a **multimodal** chat interface.
Args:
input_dict: dictionary with keys: 'text', 'files'
history: list of tuples with (message, response)
Returns:
list of messages (to be sent to the model)
"""
text = input_dict["text"]
images = []
user_content = []
media_queue = []
if history == []:
text = input_dict["text"].strip()
for file in input_dict.get("files", []):
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
media_queue.append({"type": "image", "path": file})
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
media_queue.append({"type": "video", "path": file})
if "<image>" in text or "<video>" in text:
parts = re.split(r'(<image>|<video>)', text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
else:
user_content.append({"type": "text", "text": text})
for media in media_queue:
user_content.append(media)
resulting_messages = [{"role": "user", "content": user_content}]
elif len(history) > 0:
resulting_messages = []
user_content = []
media_queue = []
for hist in history:
if hist["role"] == "user" and isinstance(hist["content"], tuple):
file_name = hist["content"][0]
if file_name.endswith((".png", ".jpg", ".jpeg")):
media_queue.append({"type": "image", "path": file_name})
elif file_name.endswith(".mp4"):
media_queue.append({"type": "video", "path": file_name})
for hist in history:
if hist["role"] == "user" and isinstance(hist["content"], str):
text = hist["content"]
parts = re.split(r'(<image>|<video>)', text)
for part in parts:
if part == "<image>" and media_queue:
user_content.append(media_queue.pop(0))
elif part == "<video>" and media_queue:
user_content.append(media_queue.pop(0))
elif part.strip():
user_content.append({"type": "text", "text": part.strip()})
elif hist["role"] == "assistant":
resulting_messages.append({
"role": "user",
"content": user_content
})
resulting_messages.append({
"role": "assistant",
"content": [{"type": "text", "text": hist["content"]}]
})
user_content = []
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
gr.Error("Please input a text query along the images(s).")
return resulting_messages
#
# Streaming response
#
@spaces.GPU
@torch.inference_mode()
def stream_response(
messages: list[dict],
max_new_tokens: int=1_024,
temperature: float=0.15
):
"""Stream the model's response to the chat interface.
Args:
messages: list of messages to send to the model
"""
# Generate model's response
inputs = processor.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device, dtype=torch.bfloat16)
# Generate
streamer = TextIteratorStreamer(
processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(
inputs,
streamer=streamer,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_p=0.9,
do_sample=True
)
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
partial_message = ""
for new_text in streamer:
partial_message += new_text
yield partial_message
|