Spaces:
Running
on
Zero
Running
on
Zero
Create vlm.py
Browse files
vlm.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
File: vlm.py
|
3 |
+
Description: Vision language model utility functions.
|
4 |
+
|
5 |
+
Heavily inspired (i.e. copied) from
|
6 |
+
https://huggingface.co/spaces/HuggingFaceTB/SmolVLM2/blob/main/app.py
|
7 |
+
|
8 |
+
Author: Didier Guillevic
|
9 |
+
Date: 2025-04-02
|
10 |
+
"""
|
11 |
+
|
12 |
+
from transformers import AutoProcessor, AutoModelForImageTextToText
|
13 |
+
from transformers import TextIteratorStreamer
|
14 |
+
from threading import Thread
|
15 |
+
import re
|
16 |
+
import time
|
17 |
+
import torch
|
18 |
+
import spaces
|
19 |
+
import subprocess
|
20 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
21 |
+
|
22 |
+
from io import BytesIO
|
23 |
+
|
24 |
+
#
|
25 |
+
# Load the model: HuggingFaceTB/SmolVLM2-2.2B-Instruct
|
26 |
+
#
|
27 |
+
|
28 |
+
model_id = "HuggingFaceTB/SmolVLM2-2.2B-Instruct"
|
29 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
30 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
31 |
+
model = AutoModelForImageTextToText.from_pretrained(
|
32 |
+
model_id,
|
33 |
+
_attn_implementation="flash_attention_2",
|
34 |
+
torch_dtype=torch.bfloat16
|
35 |
+
).to(device)
|
36 |
+
|
37 |
+
#
|
38 |
+
# Build messages
|
39 |
+
#
|
40 |
+
def build_messages(input_dict: dict, history: list[tuple]):
|
41 |
+
"""Build messages given message & history from a **multimodal** chat interface.
|
42 |
+
Args:
|
43 |
+
input_dict: dictionary with keys: 'text', 'files'
|
44 |
+
history: list of tuples with (message, response)
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
list of messages (to be sent to the model)
|
48 |
+
"""
|
49 |
+
text = input_dict["text"]
|
50 |
+
images = []
|
51 |
+
user_content = []
|
52 |
+
media_queue = []
|
53 |
+
if history == []:
|
54 |
+
text = input_dict["text"].strip()
|
55 |
+
|
56 |
+
for file in input_dict.get("files", []):
|
57 |
+
if file.endswith((".png", ".jpg", ".jpeg", ".gif", ".bmp")):
|
58 |
+
media_queue.append({"type": "image", "path": file})
|
59 |
+
elif file.endswith((".mp4", ".mov", ".avi", ".mkv", ".flv")):
|
60 |
+
media_queue.append({"type": "video", "path": file})
|
61 |
+
|
62 |
+
if "<image>" in text or "<video>" in text:
|
63 |
+
parts = re.split(r'(<image>|<video>)', text)
|
64 |
+
for part in parts:
|
65 |
+
if part == "<image>" and media_queue:
|
66 |
+
user_content.append(media_queue.pop(0))
|
67 |
+
elif part == "<video>" and media_queue:
|
68 |
+
user_content.append(media_queue.pop(0))
|
69 |
+
elif part.strip():
|
70 |
+
user_content.append({"type": "text", "text": part.strip()})
|
71 |
+
else:
|
72 |
+
user_content.append({"type": "text", "text": text})
|
73 |
+
|
74 |
+
for media in media_queue:
|
75 |
+
user_content.append(media)
|
76 |
+
|
77 |
+
resulting_messages = [{"role": "user", "content": user_content}]
|
78 |
+
|
79 |
+
elif len(history) > 0:
|
80 |
+
resulting_messages = []
|
81 |
+
user_content = []
|
82 |
+
media_queue = []
|
83 |
+
for hist in history:
|
84 |
+
if hist["role"] == "user" and isinstance(hist["content"], tuple):
|
85 |
+
file_name = hist["content"][0]
|
86 |
+
if file_name.endswith((".png", ".jpg", ".jpeg")):
|
87 |
+
media_queue.append({"type": "image", "path": file_name})
|
88 |
+
elif file_name.endswith(".mp4"):
|
89 |
+
media_queue.append({"type": "video", "path": file_name})
|
90 |
+
|
91 |
+
|
92 |
+
for hist in history:
|
93 |
+
if hist["role"] == "user" and isinstance(hist["content"], str):
|
94 |
+
text = hist["content"]
|
95 |
+
parts = re.split(r'(<image>|<video>)', text)
|
96 |
+
|
97 |
+
for part in parts:
|
98 |
+
if part == "<image>" and media_queue:
|
99 |
+
user_content.append(media_queue.pop(0))
|
100 |
+
elif part == "<video>" and media_queue:
|
101 |
+
user_content.append(media_queue.pop(0))
|
102 |
+
elif part.strip():
|
103 |
+
user_content.append({"type": "text", "text": part.strip()})
|
104 |
+
|
105 |
+
elif hist["role"] == "assistant":
|
106 |
+
resulting_messages.append({
|
107 |
+
"role": "user",
|
108 |
+
"content": user_content
|
109 |
+
})
|
110 |
+
resulting_messages.append({
|
111 |
+
"role": "assistant",
|
112 |
+
"content": [{"type": "text", "text": hist["content"]}]
|
113 |
+
})
|
114 |
+
user_content = []
|
115 |
+
|
116 |
+
|
117 |
+
if text == "" and not images:
|
118 |
+
gr.Error("Please input a query and optionally image(s).")
|
119 |
+
|
120 |
+
if text == "" and images:
|
121 |
+
gr.Error("Please input a text query along the images(s).")
|
122 |
+
|
123 |
+
return resulting_messages
|
124 |
+
|
125 |
+
#
|
126 |
+
# Streaming response
|
127 |
+
#
|
128 |
+
@spaces.GPU
|
129 |
+
@torch.inference_mode()
|
130 |
+
def stream_response(messages: list[dict]):
|
131 |
+
"""Stream the model's response to the chat interface.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
messages: list of messages to send to the model
|
135 |
+
"""
|
136 |
+
# Generate model's response
|
137 |
+
inputs = processor.apply_chat_template(
|
138 |
+
resulting_messages,
|
139 |
+
add_generation_prompt=True,
|
140 |
+
tokenize=True,
|
141 |
+
return_dict=True,
|
142 |
+
return_tensors="pt",
|
143 |
+
).to(model.device, dtype=torch.bfloat16)
|
144 |
+
|
145 |
+
# Generate
|
146 |
+
streamer = TextIteratorStreamer(
|
147 |
+
processor, skip_prompt=True, skip_special_tokens=True)
|
148 |
+
generation_args = dict(
|
149 |
+
inputs,
|
150 |
+
streamer=streamer,
|
151 |
+
max_new_tokens=2_048,
|
152 |
+
do_sample=True
|
153 |
+
)
|
154 |
+
|
155 |
+
thread = Thread(target=model.generate, kwargs=generation_args)
|
156 |
+
thread.start()
|
157 |
+
|
158 |
+
partial_message = ""
|
159 |
+
for new_text in streamer:
|
160 |
+
partial_message += new_text
|
161 |
+
yield partial_message
|