Spaces:
Sleeping
Sleeping
File size: 4,734 Bytes
2854813 a082340 2854813 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
"""app.py
Smolagents agent given an SQL tool over a SQLite database built with data files
from the Internation Consortium of Investigative Journalism (ICIJ.org).
Agentic framework:
- smolagents
Database:
- SQLite
Generation:
- Mistral
:author: Didier Guillevic
:date: 2025-01-12
"""
import gradio as gr
import icij_utils
import smolagents
import os
#
# Init a SQLite database with the data files from ICIJ.org
#
ICIJ_LEAKS_DB_NAME = 'icij_leaks.db'
ICIJ_LEAKS_DATA_DIR = './icij_data'
# Remove existing database (if present), since we will recreate it below.
icij_db_path = pathlib.Path(ICIJ_LEAKS_DB_NAME)
icij_db_path.unlink(missing_ok=True)
# Load ICIJ data files into an SQLite database
loader = icij_utils.ICIJDataLoader(ICIJ_LEAKS_DB_NAME)
loader.load_all_files(ICIJ_LEAKS_DATA_DIR)
#
# Init an SQLAchemy instane (over the SQLite database)
#
db = icij_utils.ICIJDatabaseConnector(ICIJ_LEAKS_DB_NAME)
schema = db.get_full_database_schema()
#
# Build an SQL tool
#
schema = db.get_full_database_schema()
metadata = icij_utils.ICIJDatabaseMetadata()
tool_description = (
"Tool for querying the ICIJ offshore database containing financial data leaks. "
"This tool can execute SQL queries and return the results. "
"Beware that this tool's output is a string representation of the execution output.\n"
"It can use the following tables:"
)
# Add table documentation
for table, doc in metadata.TABLE_DOCS.items():
tool_description += f"\n\nTable: {table}\n"
tool_description += f"Description: {doc.strip()}\n"
tool_description += "Columns:\n"
# Add column documentation and types
if table in schema:
for col_name, col_type in schema[table].items():
col_doc = metadata.COLUMN_DOCS.get(table, {}).get(col_name, "No documentation available")
#tool_description += f" - {col_name}: {col_type}: {col_doc}\n"
tool_description += f" - {col_name}: {col_type}\n"
# Add source documentation
#tool_description += "\n\nSource IDs:\n"
#for source_id, descrip in metadata.SOURCE_IDS.items():
# tool_description += f"- {source_id}: {descrip}\n"
@smolagents.tool
def sql_tool(query: str) -> str:
"""Description to be set beloiw...
Args:
query: The query to perform. This should be correct SQL.
"""
output = ""
with db.get_engine().connect() as con:
rows = con.execute(sqlalchemy.text(query))
for row in rows:
output += "\n" + str(row)
return output
sql_tool.description = tool_description
#
# language models
#
default_model = smolagents.HfApiModel()
mistral_api_key = os.environ["MISTRAL_API_KEY"]
mistral_model_id = "mistral/codestral-latest"
mistral_model = smolagents.LiteLLMModel(
model_id=mistral_model_id, api_key=mistral_api_key)
#
# Define the agent
#
agent = smolagents.CodeAgent(
tools=[sql_engine],
model=mistral_model
)
def generate_response(query: str) -> str:
"""Generate a response given query.
Args:
Returns:
- the response from the agent having access to a database over the ICIJ
data and a large language model.
"""
agent_output = agent.run(query)
return agent_output
#
# User interface
#
with gr.Blocks() as demo:
gr.Markdown("""
# SQL agent
Database: ICIJ data on offshore financial data leaks.
""")
# Inputs: question
question = gr.Textbox(
label="Question to answer",
placeholder=""
)
# Response
response = gr.Textbox(
label="Response",
placeholder=""
)
# Button
with gr.Row():
response_button = gr.Button("Submit", variant='primary')
clear_button = gr.Button("Clear", variant='secondary')
# Example questions given default provided PDF file
with gr.Accordion("Sample questions", open=False):
gr.Examples(
[
["",],
["",],
],
inputs=[question,],
outputs=[response,],
fn=generate_response,
cache_examples=False,
label="Sample questions"
)
# Documentation
with gr.Accordion("Documentation", open=False):
gr.Markdown("""
- Agentic framework: smolagents
- Data: icij.org
- Database: SQLite, SQLAlchemy
- Generation: Mistral
- Examples: Generated using Claude.ai
""")
# Click actions
response_button.click(
fn=generate_response,
inputs=[question,],
outputs=[response,]
)
clear_button.click(
fn=lambda: ('', ''),
inputs=[],
outputs=[question, response]
)
demo.launch(show_api=False) |