Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +185 -0
- icij_utils.py +307 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""app.py
|
2 |
+
|
3 |
+
Smolagents agent given an SQL tool over a SQLite database built with data files
|
4 |
+
from the Internation Consortium of Investigative Journalism (ICIJ.org).
|
5 |
+
|
6 |
+
Agentic framework:
|
7 |
+
- smolagents
|
8 |
+
|
9 |
+
Database:
|
10 |
+
- SQLite
|
11 |
+
|
12 |
+
Generation:
|
13 |
+
- Mistral
|
14 |
+
|
15 |
+
:author: Didier Guillevic
|
16 |
+
:date: 2025-01-12
|
17 |
+
"""
|
18 |
+
|
19 |
+
import gradio as gr
|
20 |
+
import icij_utils
|
21 |
+
import smolagents
|
22 |
+
import os
|
23 |
+
|
24 |
+
#
|
25 |
+
# Init a SQLite database with the data files from ICIJ.org
|
26 |
+
#
|
27 |
+
ICIJ_LEAKS_DB_NAME = 'icij_leaks.db'
|
28 |
+
ICIJ_LEAKS_DATA_DIR = './icij_data'
|
29 |
+
|
30 |
+
# Remove existing database (if present), since we will recreate it below.
|
31 |
+
icij_db_path = Path(ICIJ_LEAKS_DB_NAME)
|
32 |
+
icij_db_path.unlink(missing_ok=True)
|
33 |
+
|
34 |
+
# Load ICIJ data files into an SQLite database
|
35 |
+
loader = icij_utils.ICIJDataLoader(ICIJ_LEAKS_DB_NAME)
|
36 |
+
loader.load_all_files(ICIJ_LEAKS_DATA_DIR)
|
37 |
+
|
38 |
+
#
|
39 |
+
# Init an SQLAchemy instane (over the SQLite database)
|
40 |
+
#
|
41 |
+
db = icij_utils.ICIJDatabaseConnector(ICIJ_LEAKS_DB_NAME)
|
42 |
+
schema = db.get_full_database_schema()
|
43 |
+
|
44 |
+
#
|
45 |
+
# Build an SQL tool
|
46 |
+
#
|
47 |
+
schema = db.get_full_database_schema()
|
48 |
+
metadata = icij_utils.ICIJDatabaseMetadata()
|
49 |
+
|
50 |
+
tool_description = (
|
51 |
+
"Tool for querying the ICIJ offshore database containing financial data leaks. "
|
52 |
+
"This tool can execute SQL queries and return the results. "
|
53 |
+
"Beware that this tool's output is a string representation of the execution output.\n"
|
54 |
+
"It can use the following tables:"
|
55 |
+
)
|
56 |
+
|
57 |
+
# Add table documentation
|
58 |
+
for table, doc in metadata.TABLE_DOCS.items():
|
59 |
+
tool_description += f"\n\nTable: {table}\n"
|
60 |
+
tool_description += f"Description: {doc.strip()}\n"
|
61 |
+
tool_description += "Columns:\n"
|
62 |
+
|
63 |
+
# Add column documentation and types
|
64 |
+
if table in schema:
|
65 |
+
for col_name, col_type in schema[table].items():
|
66 |
+
col_doc = metadata.COLUMN_DOCS.get(table, {}).get(col_name, "No documentation available")
|
67 |
+
#tool_description += f" - {col_name}: {col_type}: {col_doc}\n"
|
68 |
+
tool_description += f" - {col_name}: {col_type}\n"
|
69 |
+
|
70 |
+
# Add source documentation
|
71 |
+
#tool_description += "\n\nSource IDs:\n"
|
72 |
+
#for source_id, descrip in metadata.SOURCE_IDS.items():
|
73 |
+
# tool_description += f"- {source_id}: {descrip}\n"
|
74 |
+
|
75 |
+
@smolagents.tool
|
76 |
+
def sql_tool(query: str) -> str:
|
77 |
+
"""Description to be set beloiw...
|
78 |
+
|
79 |
+
Args:
|
80 |
+
query: The query to perform. This should be correct SQL.
|
81 |
+
"""
|
82 |
+
output = ""
|
83 |
+
with db.get_engine().connect() as con:
|
84 |
+
rows = con.execute(sqlalchemy.text(query))
|
85 |
+
for row in rows:
|
86 |
+
output += "\n" + str(row)
|
87 |
+
return output
|
88 |
+
|
89 |
+
sql_tool.description = tool_description
|
90 |
+
|
91 |
+
#
|
92 |
+
# language models
|
93 |
+
#
|
94 |
+
default_model = smolagents.HfApiModel()
|
95 |
+
|
96 |
+
mistral_api_key = os.environ["MISTRAL_API_KEY"]
|
97 |
+
mistral_model_id = "mistral/codestral-latest"
|
98 |
+
mistral_model = smolagents.LiteLLMModel(
|
99 |
+
model_id=mistral_model_id, api_key=mistral_api_key)
|
100 |
+
|
101 |
+
#
|
102 |
+
# Define the agent
|
103 |
+
#
|
104 |
+
agent = smolagents.CodeAgent(
|
105 |
+
tools=[sql_engine],
|
106 |
+
model=mistral_model
|
107 |
+
)
|
108 |
+
|
109 |
+
def generate_response(query: str) -> str:
|
110 |
+
"""Generate a response given query.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
- the response from the agent having access to a database over the ICIJ
|
116 |
+
data and a large language model.
|
117 |
+
"""
|
118 |
+
agent_output = agent.run(query)
|
119 |
+
return agent_output
|
120 |
+
|
121 |
+
|
122 |
+
#
|
123 |
+
# User interface
|
124 |
+
#
|
125 |
+
with gr.Blocks() as demo:
|
126 |
+
gr.Markdown("""
|
127 |
+
# SQL agent
|
128 |
+
Database: ICIJ data on offshore financial data leaks.
|
129 |
+
""")
|
130 |
+
|
131 |
+
# Inputs: question
|
132 |
+
question = gr.Textbox(
|
133 |
+
label="Question to answer",
|
134 |
+
placeholder=""
|
135 |
+
)
|
136 |
+
|
137 |
+
# Response
|
138 |
+
response = gr.Textbox(
|
139 |
+
label="Response",
|
140 |
+
placeholder=""
|
141 |
+
)
|
142 |
+
|
143 |
+
# Button
|
144 |
+
with gr.Row():
|
145 |
+
response_button = gr.Button("Submit", variant='primary')
|
146 |
+
clear_button = gr.Button("Clear", variant='secondary')
|
147 |
+
|
148 |
+
# Example questions given default provided PDF file
|
149 |
+
with gr.Accordion("Sample questions", open=False):
|
150 |
+
gr.Examples(
|
151 |
+
[
|
152 |
+
["",],
|
153 |
+
["",],
|
154 |
+
],
|
155 |
+
inputs=[question,],
|
156 |
+
outputs=[response,],
|
157 |
+
fn=generate_response,
|
158 |
+
cache_examples=False,
|
159 |
+
label="Sample questions"
|
160 |
+
)
|
161 |
+
|
162 |
+
# Documentation
|
163 |
+
with gr.Accordion("Documentation", open=False):
|
164 |
+
gr.Markdown("""
|
165 |
+
- Agentic framework: smolagents
|
166 |
+
- Data: icij.org
|
167 |
+
- Database: SQLite, SQLAlchemy
|
168 |
+
- Generation: Mistral
|
169 |
+
- Examples: Generated using Claude.ai
|
170 |
+
""")
|
171 |
+
|
172 |
+
# Click actions
|
173 |
+
response_button.click(
|
174 |
+
fn=generate_response,
|
175 |
+
inputs=[question,],
|
176 |
+
outputs=[response,]
|
177 |
+
)
|
178 |
+
clear_button.click(
|
179 |
+
fn=lambda: ('', ''),
|
180 |
+
inputs=[],
|
181 |
+
outputs=[question, response]
|
182 |
+
)
|
183 |
+
|
184 |
+
|
185 |
+
demo.launch(show_api=False)
|
icij_utils.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""icij_utils.py
|
2 |
+
|
3 |
+
Building an SQL agent over the ICIJ financial data leaks files.
|
4 |
+
|
5 |
+
:author: Didier Guillevic
|
6 |
+
:date: 2025-01-12
|
7 |
+
"""
|
8 |
+
|
9 |
+
import logging
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
import sqlite3
|
15 |
+
import os
|
16 |
+
from pathlib import Path
|
17 |
+
|
18 |
+
from sqlalchemy import create_engine, MetaData, Table, Column, String, Integer, Float
|
19 |
+
from sqlalchemy.ext.declarative import declarative_base
|
20 |
+
from sqlalchemy.orm import sessionmaker
|
21 |
+
|
22 |
+
|
23 |
+
class ICIJDataLoader:
|
24 |
+
def __init__(self, db_path='icij_data.db'):
|
25 |
+
"""Initialize the data loader with database path."""
|
26 |
+
self.db_path = db_path
|
27 |
+
self.table_mappings = {
|
28 |
+
'nodes-addresses.csv': 'addresses',
|
29 |
+
'nodes-entities.csv': 'entities',
|
30 |
+
'nodes-intermediaries.csv': 'intermediaries',
|
31 |
+
'nodes-officers.csv': 'officers',
|
32 |
+
'nodes-others.csv': 'others',
|
33 |
+
'relationships.csv': 'relationships'
|
34 |
+
}
|
35 |
+
|
36 |
+
def create_connection(self):
|
37 |
+
"""Create a database connection."""
|
38 |
+
try:
|
39 |
+
conn = sqlite3.connect(self.db_path)
|
40 |
+
return conn
|
41 |
+
except sqlite3.Error as e:
|
42 |
+
print(f"Error connecting to database: {e}")
|
43 |
+
return None
|
44 |
+
|
45 |
+
def create_table_from_csv(self, csv_path, table_name, conn):
|
46 |
+
"""Create a table based on CSV structure and load data."""
|
47 |
+
try:
|
48 |
+
# Read the first few rows to get column names and types
|
49 |
+
df = pd.read_csv(csv_path, nrows=5)
|
50 |
+
|
51 |
+
# Create table with appropriate columns
|
52 |
+
columns = []
|
53 |
+
for col in df.columns:
|
54 |
+
# Determine SQLite type based on pandas dtype
|
55 |
+
dtype = df[col].dtype
|
56 |
+
if 'int' in str(dtype):
|
57 |
+
sql_type = 'INTEGER'
|
58 |
+
elif 'float' in str(dtype):
|
59 |
+
sql_type = 'REAL'
|
60 |
+
else:
|
61 |
+
sql_type = 'TEXT'
|
62 |
+
columns.append(f'"{col}" {sql_type}')
|
63 |
+
|
64 |
+
# Create table
|
65 |
+
create_table_sql = f'''CREATE TABLE IF NOT EXISTS {table_name}
|
66 |
+
({', '.join(columns)})'''
|
67 |
+
conn.execute(create_table_sql)
|
68 |
+
|
69 |
+
# Load data in chunks to handle large files
|
70 |
+
chunksize = 10000
|
71 |
+
for chunk in pd.read_csv(csv_path, chunksize=chunksize):
|
72 |
+
chunk.to_sql(table_name, conn, if_exists='append', index=False)
|
73 |
+
|
74 |
+
print(f"Successfully loaded {table_name}")
|
75 |
+
return True
|
76 |
+
|
77 |
+
except Exception as e:
|
78 |
+
print(f"Error processing {csv_path}: {e}")
|
79 |
+
return False
|
80 |
+
|
81 |
+
def load_all_files(self, data_directory):
|
82 |
+
"""Load all recognized CSV files from the directory into SQLite."""
|
83 |
+
conn = self.create_connection()
|
84 |
+
if not conn:
|
85 |
+
return False
|
86 |
+
|
87 |
+
try:
|
88 |
+
data_path = Path(data_directory)
|
89 |
+
files_processed = 0
|
90 |
+
|
91 |
+
for csv_file, table_name in self.table_mappings.items():
|
92 |
+
file_path = data_path / csv_file
|
93 |
+
if file_path.exists():
|
94 |
+
print(f"Processing {csv_file}...")
|
95 |
+
if self.create_table_from_csv(file_path, table_name, conn):
|
96 |
+
files_processed += 1
|
97 |
+
|
98 |
+
# Create indexes for better query performance
|
99 |
+
self.create_indexes(conn)
|
100 |
+
|
101 |
+
conn.commit()
|
102 |
+
print(f"Successfully processed {files_processed} files")
|
103 |
+
return True
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
print(f"Error during data loading: {e}")
|
107 |
+
return False
|
108 |
+
|
109 |
+
finally:
|
110 |
+
conn.close()
|
111 |
+
|
112 |
+
def create_indexes(self, conn):
|
113 |
+
"""Create indexes for better query performance."""
|
114 |
+
index_definitions = [
|
115 |
+
'CREATE INDEX IF NOT EXISTS idx_entities_name ON entities(name)',
|
116 |
+
'CREATE INDEX IF NOT EXISTS idx_officers_name ON officers(name)',
|
117 |
+
'CREATE INDEX IF NOT EXISTS idx_relationships_from ON relationships(node_id_start)',
|
118 |
+
'CREATE INDEX IF NOT EXISTS idx_relationships_to ON relationships(node_id_end)'
|
119 |
+
]
|
120 |
+
|
121 |
+
for index_sql in index_definitions:
|
122 |
+
try:
|
123 |
+
conn.execute(index_sql)
|
124 |
+
except sqlite3.Error as e:
|
125 |
+
print(f"Error creating index: {e}")
|
126 |
+
|
127 |
+
|
128 |
+
class ICIJDatabaseConnector:
|
129 |
+
def __init__(self, db_path='icij_leaks.db'):
|
130 |
+
# Create the SQLAlchemy engine
|
131 |
+
self.engine = create_engine(f'sqlite:///{db_path}', echo=False)
|
132 |
+
|
133 |
+
# Create declarative base
|
134 |
+
self.Base = declarative_base()
|
135 |
+
|
136 |
+
# Create session factory
|
137 |
+
self.Session = sessionmaker(bind=self.engine)
|
138 |
+
|
139 |
+
# Initialize metadata
|
140 |
+
self.metadata = MetaData()
|
141 |
+
|
142 |
+
# Reflect existing tables
|
143 |
+
self.metadata.reflect(bind=self.engine)
|
144 |
+
|
145 |
+
def get_engine(self):
|
146 |
+
"""Return the SQLAlchemy engine."""
|
147 |
+
return self.engine
|
148 |
+
|
149 |
+
def get_session(self):
|
150 |
+
"""Create and return a new session."""
|
151 |
+
return self.Session()
|
152 |
+
|
153 |
+
def get_table(self, table_name):
|
154 |
+
"""Get a table by name from the metadata."""
|
155 |
+
return self.metadata.tables.get(table_name)
|
156 |
+
|
157 |
+
def list_tables(self):
|
158 |
+
"""List all available tables in the database."""
|
159 |
+
return list(self.metadata.tables.keys())
|
160 |
+
|
161 |
+
def get_table_schema(self, table_name):
|
162 |
+
"""Get column names and their types for a specific table."""
|
163 |
+
table = self.get_table(table_name)
|
164 |
+
if table is not None:
|
165 |
+
return {column.name: str(column.type) for column in table.columns}
|
166 |
+
return {}
|
167 |
+
|
168 |
+
def get_full_database_schema(self):
|
169 |
+
"""Get the schema for all tables in the database."""
|
170 |
+
schema = {}
|
171 |
+
for table_name in self.list_tables():
|
172 |
+
schema[table_name] = self.get_table_schema(table_name)
|
173 |
+
return schema
|
174 |
+
|
175 |
+
def get_table_columns(self, table_name):
|
176 |
+
"""Get column names for a specific table."""
|
177 |
+
table = self.get_table(table_name)
|
178 |
+
if table is not None:
|
179 |
+
return [column.name for column in table.columns]
|
180 |
+
return []
|
181 |
+
|
182 |
+
def query_table(self, table_name, limit=1):
|
183 |
+
"""Execute a simple query on a table."""
|
184 |
+
table = self.get_table(table_name)
|
185 |
+
if table is not None:
|
186 |
+
stmt = select(table).limit(limit)
|
187 |
+
with self.engine.connect() as connection:
|
188 |
+
result = connection.execute(stmt)
|
189 |
+
return [dict(row) for row in result]
|
190 |
+
return []
|
191 |
+
|
192 |
+
|
193 |
+
class ICIJDatabaseMetadata:
|
194 |
+
"""Holds detailed documentation about the ICIJ database structure."""
|
195 |
+
|
196 |
+
# Comprehensive table documentation
|
197 |
+
TABLE_DOCS = {
|
198 |
+
'entities': (
|
199 |
+
"Contains information about companies, trusts, and other entities mentioned in the leaks. "
|
200 |
+
"These are typically offshore entities created in tax havens."
|
201 |
+
),
|
202 |
+
|
203 |
+
'officers': (
|
204 |
+
"Contains information about people or organizations connected to offshore entities. "
|
205 |
+
"Officers can be directors, shareholders, beneficiaries, or have other roles."
|
206 |
+
),
|
207 |
+
'intermediaries': (
|
208 |
+
"Contains information about professional firms that help create and manage offshore entities. "
|
209 |
+
"These are typically law firms, banks, or corporate service providers."
|
210 |
+
),
|
211 |
+
'addresses': (
|
212 |
+
"Contains physical address information connected to entities, officers, or intermediaries. "
|
213 |
+
"Addresses can be shared between multiple parties."
|
214 |
+
),
|
215 |
+
'others': (
|
216 |
+
"Contains information about miscellaneous parties that don't fit into other categories. "
|
217 |
+
"This includes vessel names, legal cases, events, and other related parties mentioned "
|
218 |
+
"in the leaks that aren't classified as entities, officers, or intermediaries."
|
219 |
+
),
|
220 |
+
'relationships': (
|
221 |
+
"Defines connections between different nodes (entities, officers, intermediaries) in the database. "
|
222 |
+
"Shows how different parties are connected to each other."
|
223 |
+
)
|
224 |
+
}
|
225 |
+
|
226 |
+
# Detailed column documentation for each table
|
227 |
+
COLUMN_DOCS = {
|
228 |
+
'entities': {
|
229 |
+
'name': "Legal name of the offshore entity",
|
230 |
+
'original_name': "Name in original language/character set",
|
231 |
+
'former_name': "Previous names of the entity",
|
232 |
+
'jurisdiction': "Country/region where the entity is registered",
|
233 |
+
'jurisdiction_description': "Detailed description of the jurisdiction",
|
234 |
+
'company_type': "Legal structure of the entity (e.g., corporation, trust)",
|
235 |
+
'address': "Primary registered address",
|
236 |
+
'internal_id': "Unique identifier within the leak data",
|
237 |
+
'incorporation_date': "Date when the entity was created",
|
238 |
+
'inactivation_date': "Date when the entity became inactive",
|
239 |
+
'struck_off_date': "Date when entity was struck from register",
|
240 |
+
'dorm_date': "Date when entity became dormant",
|
241 |
+
'status': "Current status of the entity",
|
242 |
+
'service_provider': "Firm that provided offshore services",
|
243 |
+
'source_id': "Identifier for the leak source"
|
244 |
+
},
|
245 |
+
|
246 |
+
'others': {
|
247 |
+
'name': "Name of the miscellaneous party or item",
|
248 |
+
'type': "Type of the other party (e.g., vessel, legal case)",
|
249 |
+
'incorporation_date': "Date of incorporation or creation if applicable",
|
250 |
+
'jurisdiction': "Jurisdiction associated with the party",
|
251 |
+
'countries': "Countries associated with the party",
|
252 |
+
'status': "Current status",
|
253 |
+
'internal_id': "Unique identifier within the leak data",
|
254 |
+
'address': "Associated address if available",
|
255 |
+
'source_id': "Identifier for the leak source",
|
256 |
+
'valid_until': "Date until which the information is valid"
|
257 |
+
},
|
258 |
+
|
259 |
+
'officers': {
|
260 |
+
'name': "Name of the individual or organization",
|
261 |
+
'country_codes': "Countries connected to the officer",
|
262 |
+
'source_id': "Identifier for the leak source",
|
263 |
+
'valid_until': "Date until which the information is valid",
|
264 |
+
'status': "Current status of the officer",
|
265 |
+
'internal_id': "Unique identifier within the leak data"
|
266 |
+
},
|
267 |
+
|
268 |
+
'intermediaries': {
|
269 |
+
'name': "Name of the professional firm",
|
270 |
+
'internal_id': "Unique identifier within the leak data",
|
271 |
+
'address': "Business address",
|
272 |
+
'status': "Current status",
|
273 |
+
'country_codes': "Countries where intermediary operates",
|
274 |
+
'source_id': "Identifier for the leak source"
|
275 |
+
},
|
276 |
+
|
277 |
+
'addresses': {
|
278 |
+
'address': "Full address text",
|
279 |
+
'name': "Name associated with address",
|
280 |
+
'country_codes': "Country codes for the address",
|
281 |
+
'countries': "Full country names",
|
282 |
+
'source_id': "Identifier for the leak source",
|
283 |
+
'valid_until': "Date until which address is valid",
|
284 |
+
'internal_id': "Unique identifier within the leak data"
|
285 |
+
},
|
286 |
+
|
287 |
+
'relationships': {
|
288 |
+
'from_id': "Internal ID of the source node",
|
289 |
+
'to_id': "Internal ID of the target node",
|
290 |
+
'rel_type': "Type of relationship (e.g., shareholder, director)",
|
291 |
+
'link': "Additional details about the relationship",
|
292 |
+
'start_date': "When the relationship began",
|
293 |
+
'end_date': "When the relationship ended",
|
294 |
+
'source_id': "Identifier for the leak source",
|
295 |
+
'status': "Current status of the relationship"
|
296 |
+
}
|
297 |
+
}
|
298 |
+
|
299 |
+
# Source documentation
|
300 |
+
SOURCE_IDS = {
|
301 |
+
"PANAMA_PAPERS": "Data from Panama Papers leak (2016)",
|
302 |
+
"PARADISE_PAPERS": "Data from Paradise Papers leak (2017)",
|
303 |
+
"BAHAMAS_LEAKS": "Data from Bahamas Leaks (2016)",
|
304 |
+
"OFFSHORE_LEAKS": "Data from Offshore Leaks (2013)",
|
305 |
+
"PANDORA_PAPERS": "Data from Pandora Papers leak (2021)"
|
306 |
+
}
|
307 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
smolagents
|
3 |
+
sqlite3
|
4 |
+
sqlalchemy
|