Chris4K's picture
Update ner_tool.py
7d26c0c verified
import os
from typing import Dict, List, Any, Optional, Union
from smolagents import Tool
class NamedEntityRecognitionTool(Tool):
name = "ner_tool"
description = """
Identifies and labels named entities in text using customizable NER models.
Can recognize entities such as persons, organizations, locations, dates, etc.
Returns a structured analysis of all entities found in the input text.
"""
inputs = {
"text": {
"type": "string",
"description": "The text to analyze for named entities",
},
"model": {
"type": "string",
"description": "The NER model to use (default: 'dslim/bert-base-NER')",
"nullable": True
},
"aggregation": {
"type": "string",
"description": "How to aggregate entities: 'simple' (just list), 'grouped' (by label), or 'detailed' (with confidence scores)",
"nullable": True
},
"min_score": {
"type": "number",
"description": "Minimum confidence score threshold (0.0-1.0) for including entities",
"nullable": True
}
}
output_type = "string"
def __init__(self):
"""Initialize the NER Tool with default settings."""
super().__init__()
self.default_model = "dslim/bert-base-NER"
self.available_models = {
"dslim/bert-base-NER": "Standard NER (English)",
"jean-baptiste/camembert-ner": "French NER",
"Davlan/bert-base-multilingual-cased-ner-hrl": "Multilingual NER",
"Babelscape/wikineural-multilingual-ner": "WikiNeural Multilingual NER",
"flair/ner-english-ontonotes-large": "OntoNotes English (fine-grained)",
"elastic/distilbert-base-cased-finetuned-conll03-english": "CoNLL (fast)"
}
self.entity_colors = {
"PER": "πŸŸ₯ Person",
"PERSON": "πŸŸ₯ Person",
"LOC": "🟨 Location",
"LOCATION": "🟨 Location",
"GPE": "🟨 Location",
"ORG": "🟦 Organization",
"ORGANIZATION": "🟦 Organization",
"MISC": "🟩 Miscellaneous",
"DATE": "πŸŸͺ Date",
"TIME": "πŸŸͺ Time",
"MONEY": "πŸ’° Money",
"PERCENT": "πŸ“Š Percentage",
"PRODUCT": "πŸ›’ Product",
"EVENT": "🎫 Event",
"WORK_OF_ART": "🎨 Work of Art",
"LAW": "βš–οΈ Law",
"LANGUAGE": "πŸ—£οΈ Language",
"FAC": "🏒 Facility",
# Fix for models that don't properly tag entities
"O": "Not an entity",
"UNKNOWN": "πŸ”· Entity"
}
# Pipeline will be lazily loaded
self._pipeline = None
def _load_pipeline(self, model_name: str):
"""Load the NER pipeline with the specified model."""
try:
from transformers import pipeline
import torch
# Try to detect if GPU is available
device = 0 if torch.cuda.is_available() else -1
# For some models, we need special handling
if "dslim/bert-base-NER" in model_name:
# This model works better with a specific aggregation strategy
self._pipeline = pipeline(
"ner",
model=model_name,
aggregation_strategy="first",
device=device
)
else:
self._pipeline = pipeline(
"ner",
model=model_name,
aggregation_strategy="simple",
device=device
)
return True
except Exception as e:
print(f"Error loading model {model_name}: {str(e)}")
try:
# Fall back to default model
from transformers import pipeline
import torch
device = 0 if torch.cuda.is_available() else -1
self._pipeline = pipeline(
"ner",
model=self.default_model,
aggregation_strategy="first",
device=device
)
return True
except Exception as fallback_error:
print(f"Error loading fallback model: {str(fallback_error)}")
return False
def _get_friendly_label(self, label: str) -> str:
"""Convert technical entity labels to friendly descriptions with color indicators."""
# Strip B- or I- prefixes that indicate beginning or inside of entity
clean_label = label.replace("B-", "").replace("I-", "")
# Handle common name and location patterns with heuristics
if clean_label == "UNKNOWN" or clean_label == "O":
# Apply some basic heuristics to detect entity types
# This is a fallback when the model fails to properly tag
text = self._current_entity_text.lower() if hasattr(self, '_current_entity_text') else ""
# Check for capitalized words which might be names or places
if text and text[0].isupper():
# Countries and major cities
countries_and_cities = ["germany", "france", "spain", "italy", "london",
"paris", "berlin", "rome", "new york", "tokyo",
"beijing", "moscow", "canada", "australia", "india",
"china", "japan", "russia", "brazil", "mexico"]
if text.lower() in countries_and_cities:
return self.entity_colors.get("LOC", "🟨 Location")
# Common first names (add more as needed)
common_names = ["john", "mike", "sarah", "david", "michael", "james",
"robert", "mary", "jennifer", "linda", "michael", "william",
"kristof", "chris", "thomas", "daniel", "matthew", "joseph",
"donald", "richard", "charles", "paul", "mark", "kevin"]
name_parts = text.lower().split()
if name_parts and name_parts[0] in common_names:
return self.entity_colors.get("PER", "πŸŸ₯ Person")
return self.entity_colors.get(clean_label, f"πŸ”· {clean_label}")
def forward(self, text: str, model: str = None, aggregation: str = None, min_score: float = None) -> str:
"""
Perform Named Entity Recognition on the input text.
Args:
text: The text to analyze
model: NER model to use (default: dslim/bert-base-NER)
aggregation: How to aggregate results (simple, grouped, detailed)
min_score: Minimum confidence threshold (0.0-1.0)
Returns:
Formatted string with NER analysis results
"""
# Set default values if parameters are None
if model is None:
model = self.default_model
if aggregation is None:
aggregation = "grouped"
if min_score is None:
min_score = 0.8
# Validate model choice
if model not in self.available_models and not model.startswith("dslim/"):
return f"Model '{model}' not recognized. Available models: {', '.join(self.available_models.keys())}"
# Load the model if not already loaded or if different from current
if self._pipeline is None or self._pipeline.model.name_or_path != model:
if not self._load_pipeline(model):
return "Failed to load NER model. Please try a different model."
# Perform NER analysis
try:
entities = self._pipeline(text)
# Filter by confidence score
entities = [e for e in entities if e.get('score', 0) >= min_score]
# Store the text for better heuristics
for entity in entities:
word = entity.get("word", "")
start = entity.get("start", 0)
end = entity.get("end", 0)
# Store the actual text from the input for better entity type detection
entity['actual_text'] = text[start:end]
# Set this for _get_friendly_label to use
self._current_entity_text = text[start:end]
if not entities:
return "No entities were detected in the text with the current settings."
# Process results based on aggregation method
if aggregation == "simple":
return self._format_simple(text, entities)
elif aggregation == "detailed":
return self._format_detailed(text, entities)
else: # default to grouped
return self._format_grouped(text, entities)
except Exception as e:
return f"Error analyzing text: {str(e)}"
def _format_simple(self, text: str, entities: List[Dict[str, Any]]) -> str:
"""Format entities as a simple list."""
# Process word pieces and handle subtoken merging
merged_entities = []
current_entity = None
for entity in sorted(entities, key=lambda e: e.get("start", 0)):
word = entity.get("word", "")
start = entity.get("start", 0)
end = entity.get("end", 0)
label = entity.get("entity", "UNKNOWN")
score = entity.get("score", 0)
# Check if this is a continuation (subtoken)
if word.startswith("##"):
if current_entity:
# Extend the current entity
current_entity["word"] += word.replace("##", "")
current_entity["end"] = end
# Keep the average score
current_entity["score"] = (current_entity["score"] + score) / 2
continue
# Start a new entity
current_entity = {
"word": word,
"start": start,
"end": end,
"entity": label,
"score": score
}
merged_entities.append(current_entity)
result = "Named Entities Found:\n\n"
for entity in merged_entities:
word = entity.get("word", "")
label = entity.get("entity", "UNKNOWN")
score = entity.get("score", 0)
friendly_label = self._get_friendly_label(label)
result += f"β€’ {word} - {friendly_label} (confidence: {score:.2f})\n"
return result
def _format_grouped(self, text: str, entities: List[Dict[str, Any]]) -> str:
"""Format entities grouped by their category."""
# Process word pieces and handle subtoken merging
merged_entities = []
current_entity = None
for entity in sorted(entities, key=lambda e: e.get("start", 0)):
word = entity.get("word", "")
start = entity.get("start", 0)
end = entity.get("end", 0)
label = entity.get("entity", "UNKNOWN")
score = entity.get("score", 0)
# Check if this is a continuation (subtoken)
if word.startswith("##"):
if current_entity:
# Extend the current entity
current_entity["word"] += word.replace("##", "")
current_entity["end"] = end
# Keep the average score
current_entity["score"] = (current_entity["score"] + score) / 2
continue
# Start a new entity
current_entity = {
"word": word,
"start": start,
"end": end,
"entity": label,
"score": score
}
merged_entities.append(current_entity)
# Group entities by their label
grouped = {}
for entity in merged_entities:
word = entity.get("word", "")
label = entity.get("entity", "UNKNOWN").replace("B-", "").replace("I-", "")
if label not in grouped:
grouped[label] = []
grouped[label].append(word)
# Build the result string
result = "Named Entities by Category:\n\n"
for label, words in grouped.items():
friendly_label = self._get_friendly_label(label)
unique_words = list(set(words))
result += f"{friendly_label}: {', '.join(unique_words)}\n"
return result
def _format_detailed(self, text: str, entities: List[Dict[str, Any]]) -> str:
"""Format entities with detailed information including position in text."""
# Process word pieces and handle subtoken merging
merged_entities = []
current_entity = None
for entity in sorted(entities, key=lambda e: e.get("start", 0)):
word = entity.get("word", "")
start = entity.get("start", 0)
end = entity.get("end", 0)
label = entity.get("entity", "UNKNOWN")
score = entity.get("score", 0)
# Check if this is a continuation (subtoken)
if word.startswith("##"):
if current_entity:
# Extend the current entity
current_entity["word"] += word.replace("##", "")
current_entity["end"] = end
# Keep the average score
current_entity["score"] = (current_entity["score"] + score) / 2
continue
# Start a new entity
current_entity = {
"word": word,
"start": start,
"end": end,
"entity": label,
"score": score
}
merged_entities.append(current_entity)
# First, build an entity map to highlight the entire text
character_labels = [None] * len(text)
# Mark each character with its entity
for entity in merged_entities:
start = entity.get("start", 0)
end = entity.get("end", 0)
label = entity.get("entity", "UNKNOWN")
for i in range(start, min(end, len(text))):
character_labels[i] = label
# Build highlighted text sections
highlighted_text = ""
current_label = None
current_segment = ""
for i, char in enumerate(text):
label = character_labels[i]
if label != current_label:
# End the previous segment if any
if current_segment:
if current_label:
clean_label = current_label.replace("B-", "").replace("I-", "")
highlighted_text += f"[{current_segment}]({clean_label}) "
else:
highlighted_text += current_segment + " "
# Start a new segment
current_label = label
current_segment = char
else:
current_segment += char
# Add the final segment
if current_segment:
if current_label:
clean_label = current_label.replace("B-", "").replace("I-", "")
highlighted_text += f"[{current_segment}]({clean_label})"
else:
highlighted_text += current_segment
# Get entity details
entity_details = []
for entity in merged_entities:
word = entity.get("word", "")
label = entity.get("entity", "UNKNOWN")
score = entity.get("score", 0)
friendly_label = self._get_friendly_label(label)
entity_details.append(f"β€’ {word} - {friendly_label} (confidence: {score:.2f})")
# Combine into final result
result = "Entity Analysis:\n\n"
result += "Text with Entities Marked:\n"
result += highlighted_text + "\n\n"
result += "Entity Details:\n"
result += "\n".join(entity_details)
return result
def get_available_models(self) -> Dict[str, str]:
"""Return the dictionary of available models with descriptions."""
return self.available_models
# Example usage:
# ner_tool = NamedEntityRecognitionTool()
# result = ner_tool("Apple Inc. is planning to open a new store in Paris, France next year.", model="dslim/bert-base-NER")
# print(result)