File size: 17,169 Bytes
b04682c c5922b9 b04682c 7d26c0c b04682c c5922b9 b04682c 7d26c0c b04682c 7d26c0c b04682c c5922b9 b04682c 7d26c0c b04682c fb510e6 b04682c 7d26c0c b04682c 7d26c0c b04682c 7d26c0c b04682c d25649c b04682c 7d26c0c b04682c 7d26c0c d25649c b04682c 7d26c0c b04682c 7d26c0c b04682c 28094fc b04682c d25649c b04682c 7d26c0c b04682c c5922b9 b04682c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import os
from typing import Dict, List, Any, Optional, Union
from smolagents import Tool
class NamedEntityRecognitionTool(Tool):
name = "ner_tool"
description = """
Identifies and labels named entities in text using customizable NER models.
Can recognize entities such as persons, organizations, locations, dates, etc.
Returns a structured analysis of all entities found in the input text.
"""
inputs = {
"text": {
"type": "string",
"description": "The text to analyze for named entities",
},
"model": {
"type": "string",
"description": "The NER model to use (default: 'dslim/bert-base-NER')",
"nullable": True
},
"aggregation": {
"type": "string",
"description": "How to aggregate entities: 'simple' (just list), 'grouped' (by label), or 'detailed' (with confidence scores)",
"nullable": True
},
"min_score": {
"type": "number",
"description": "Minimum confidence score threshold (0.0-1.0) for including entities",
"nullable": True
}
}
output_type = "string"
def __init__(self):
"""Initialize the NER Tool with default settings."""
super().__init__()
self.default_model = "dslim/bert-base-NER"
self.available_models = {
"dslim/bert-base-NER": "Standard NER (English)",
"jean-baptiste/camembert-ner": "French NER",
"Davlan/bert-base-multilingual-cased-ner-hrl": "Multilingual NER",
"Babelscape/wikineural-multilingual-ner": "WikiNeural Multilingual NER",
"flair/ner-english-ontonotes-large": "OntoNotes English (fine-grained)",
"elastic/distilbert-base-cased-finetuned-conll03-english": "CoNLL (fast)"
}
self.entity_colors = {
"PER": "π₯ Person",
"PERSON": "π₯ Person",
"LOC": "π¨ Location",
"LOCATION": "π¨ Location",
"GPE": "π¨ Location",
"ORG": "π¦ Organization",
"ORGANIZATION": "π¦ Organization",
"MISC": "π© Miscellaneous",
"DATE": "πͺ Date",
"TIME": "πͺ Time",
"MONEY": "π° Money",
"PERCENT": "π Percentage",
"PRODUCT": "π Product",
"EVENT": "π« Event",
"WORK_OF_ART": "π¨ Work of Art",
"LAW": "βοΈ Law",
"LANGUAGE": "π£οΈ Language",
"FAC": "π’ Facility",
# Fix for models that don't properly tag entities
"O": "Not an entity",
"UNKNOWN": "π· Entity"
}
# Pipeline will be lazily loaded
self._pipeline = None
def _load_pipeline(self, model_name: str):
"""Load the NER pipeline with the specified model."""
try:
from transformers import pipeline
import torch
# Try to detect if GPU is available
device = 0 if torch.cuda.is_available() else -1
# For some models, we need special handling
if "dslim/bert-base-NER" in model_name:
# This model works better with a specific aggregation strategy
self._pipeline = pipeline(
"ner",
model=model_name,
aggregation_strategy="first",
device=device
)
else:
self._pipeline = pipeline(
"ner",
model=model_name,
aggregation_strategy="simple",
device=device
)
return True
except Exception as e:
print(f"Error loading model {model_name}: {str(e)}")
try:
# Fall back to default model
from transformers import pipeline
import torch
device = 0 if torch.cuda.is_available() else -1
self._pipeline = pipeline(
"ner",
model=self.default_model,
aggregation_strategy="first",
device=device
)
return True
except Exception as fallback_error:
print(f"Error loading fallback model: {str(fallback_error)}")
return False
def _get_friendly_label(self, label: str) -> str:
"""Convert technical entity labels to friendly descriptions with color indicators."""
# Strip B- or I- prefixes that indicate beginning or inside of entity
clean_label = label.replace("B-", "").replace("I-", "")
# Handle common name and location patterns with heuristics
if clean_label == "UNKNOWN" or clean_label == "O":
# Apply some basic heuristics to detect entity types
# This is a fallback when the model fails to properly tag
text = self._current_entity_text.lower() if hasattr(self, '_current_entity_text') else ""
# Check for capitalized words which might be names or places
if text and text[0].isupper():
# Countries and major cities
countries_and_cities = ["germany", "france", "spain", "italy", "london",
"paris", "berlin", "rome", "new york", "tokyo",
"beijing", "moscow", "canada", "australia", "india",
"china", "japan", "russia", "brazil", "mexico"]
if text.lower() in countries_and_cities:
return self.entity_colors.get("LOC", "π¨ Location")
# Common first names (add more as needed)
common_names = ["john", "mike", "sarah", "david", "michael", "james",
"robert", "mary", "jennifer", "linda", "michael", "william",
"kristof", "chris", "thomas", "daniel", "matthew", "joseph",
"donald", "richard", "charles", "paul", "mark", "kevin"]
name_parts = text.lower().split()
if name_parts and name_parts[0] in common_names:
return self.entity_colors.get("PER", "π₯ Person")
return self.entity_colors.get(clean_label, f"π· {clean_label}")
def forward(self, text: str, model: str = None, aggregation: str = None, min_score: float = None) -> str:
"""
Perform Named Entity Recognition on the input text.
Args:
text: The text to analyze
model: NER model to use (default: dslim/bert-base-NER)
aggregation: How to aggregate results (simple, grouped, detailed)
min_score: Minimum confidence threshold (0.0-1.0)
Returns:
Formatted string with NER analysis results
"""
# Set default values if parameters are None
if model is None:
model = self.default_model
if aggregation is None:
aggregation = "grouped"
if min_score is None:
min_score = 0.8
# Validate model choice
if model not in self.available_models and not model.startswith("dslim/"):
return f"Model '{model}' not recognized. Available models: {', '.join(self.available_models.keys())}"
# Load the model if not already loaded or if different from current
if self._pipeline is None or self._pipeline.model.name_or_path != model:
if not self._load_pipeline(model):
return "Failed to load NER model. Please try a different model."
# Perform NER analysis
try:
entities = self._pipeline(text)
# Filter by confidence score
entities = [e for e in entities if e.get('score', 0) >= min_score]
# Store the text for better heuristics
for entity in entities:
word = entity.get("word", "")
start = entity.get("start", 0)
end = entity.get("end", 0)
# Store the actual text from the input for better entity type detection
entity['actual_text'] = text[start:end]
# Set this for _get_friendly_label to use
self._current_entity_text = text[start:end]
if not entities:
return "No entities were detected in the text with the current settings."
# Process results based on aggregation method
if aggregation == "simple":
return self._format_simple(text, entities)
elif aggregation == "detailed":
return self._format_detailed(text, entities)
else: # default to grouped
return self._format_grouped(text, entities)
except Exception as e:
return f"Error analyzing text: {str(e)}"
def _format_simple(self, text: str, entities: List[Dict[str, Any]]) -> str:
"""Format entities as a simple list."""
# Process word pieces and handle subtoken merging
merged_entities = []
current_entity = None
for entity in sorted(entities, key=lambda e: e.get("start", 0)):
word = entity.get("word", "")
start = entity.get("start", 0)
end = entity.get("end", 0)
label = entity.get("entity", "UNKNOWN")
score = entity.get("score", 0)
# Check if this is a continuation (subtoken)
if word.startswith("##"):
if current_entity:
# Extend the current entity
current_entity["word"] += word.replace("##", "")
current_entity["end"] = end
# Keep the average score
current_entity["score"] = (current_entity["score"] + score) / 2
continue
# Start a new entity
current_entity = {
"word": word,
"start": start,
"end": end,
"entity": label,
"score": score
}
merged_entities.append(current_entity)
result = "Named Entities Found:\n\n"
for entity in merged_entities:
word = entity.get("word", "")
label = entity.get("entity", "UNKNOWN")
score = entity.get("score", 0)
friendly_label = self._get_friendly_label(label)
result += f"β’ {word} - {friendly_label} (confidence: {score:.2f})\n"
return result
def _format_grouped(self, text: str, entities: List[Dict[str, Any]]) -> str:
"""Format entities grouped by their category."""
# Process word pieces and handle subtoken merging
merged_entities = []
current_entity = None
for entity in sorted(entities, key=lambda e: e.get("start", 0)):
word = entity.get("word", "")
start = entity.get("start", 0)
end = entity.get("end", 0)
label = entity.get("entity", "UNKNOWN")
score = entity.get("score", 0)
# Check if this is a continuation (subtoken)
if word.startswith("##"):
if current_entity:
# Extend the current entity
current_entity["word"] += word.replace("##", "")
current_entity["end"] = end
# Keep the average score
current_entity["score"] = (current_entity["score"] + score) / 2
continue
# Start a new entity
current_entity = {
"word": word,
"start": start,
"end": end,
"entity": label,
"score": score
}
merged_entities.append(current_entity)
# Group entities by their label
grouped = {}
for entity in merged_entities:
word = entity.get("word", "")
label = entity.get("entity", "UNKNOWN").replace("B-", "").replace("I-", "")
if label not in grouped:
grouped[label] = []
grouped[label].append(word)
# Build the result string
result = "Named Entities by Category:\n\n"
for label, words in grouped.items():
friendly_label = self._get_friendly_label(label)
unique_words = list(set(words))
result += f"{friendly_label}: {', '.join(unique_words)}\n"
return result
def _format_detailed(self, text: str, entities: List[Dict[str, Any]]) -> str:
"""Format entities with detailed information including position in text."""
# Process word pieces and handle subtoken merging
merged_entities = []
current_entity = None
for entity in sorted(entities, key=lambda e: e.get("start", 0)):
word = entity.get("word", "")
start = entity.get("start", 0)
end = entity.get("end", 0)
label = entity.get("entity", "UNKNOWN")
score = entity.get("score", 0)
# Check if this is a continuation (subtoken)
if word.startswith("##"):
if current_entity:
# Extend the current entity
current_entity["word"] += word.replace("##", "")
current_entity["end"] = end
# Keep the average score
current_entity["score"] = (current_entity["score"] + score) / 2
continue
# Start a new entity
current_entity = {
"word": word,
"start": start,
"end": end,
"entity": label,
"score": score
}
merged_entities.append(current_entity)
# First, build an entity map to highlight the entire text
character_labels = [None] * len(text)
# Mark each character with its entity
for entity in merged_entities:
start = entity.get("start", 0)
end = entity.get("end", 0)
label = entity.get("entity", "UNKNOWN")
for i in range(start, min(end, len(text))):
character_labels[i] = label
# Build highlighted text sections
highlighted_text = ""
current_label = None
current_segment = ""
for i, char in enumerate(text):
label = character_labels[i]
if label != current_label:
# End the previous segment if any
if current_segment:
if current_label:
clean_label = current_label.replace("B-", "").replace("I-", "")
highlighted_text += f"[{current_segment}]({clean_label}) "
else:
highlighted_text += current_segment + " "
# Start a new segment
current_label = label
current_segment = char
else:
current_segment += char
# Add the final segment
if current_segment:
if current_label:
clean_label = current_label.replace("B-", "").replace("I-", "")
highlighted_text += f"[{current_segment}]({clean_label})"
else:
highlighted_text += current_segment
# Get entity details
entity_details = []
for entity in merged_entities:
word = entity.get("word", "")
label = entity.get("entity", "UNKNOWN")
score = entity.get("score", 0)
friendly_label = self._get_friendly_label(label)
entity_details.append(f"β’ {word} - {friendly_label} (confidence: {score:.2f})")
# Combine into final result
result = "Entity Analysis:\n\n"
result += "Text with Entities Marked:\n"
result += highlighted_text + "\n\n"
result += "Entity Details:\n"
result += "\n".join(entity_details)
return result
def get_available_models(self) -> Dict[str, str]:
"""Return the dictionary of available models with descriptions."""
return self.available_models
# Example usage:
# ner_tool = NamedEntityRecognitionTool()
# result = ner_tool("Apple Inc. is planning to open a new store in Paris, France next year.", model="dslim/bert-base-NER")
# print(result) |