Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,880 Bytes
eaef5b0 a765116 d448add d3df06a 9a49723 7602ef4 d3df06a 216e869 d3df06a db46bfb 1c1b50f db46bfb 1c1b50f db8ba25 db46bfb 216e869 a8a7982 019c404 3168a3e 216e869 73e3afa 5f601de 216e869 a8a7982 9a49723 a8a7982 7602ef4 cf3593c 3e34a93 7602ef4 5607a62 b2b11fc a8a7982 b2b11fc 7602ef4 3e34a93 a765116 7602ef4 a765116 7602ef4 a765116 a8a7982 9a49723 a8a7982 7602ef4 a8a7982 7602ef4 a8a7982 3e34a93 93b1697 7602ef4 b2b11fc 93b1697 7602ef4 a8a7982 7602ef4 a8a7982 3e34a93 93b1697 7602ef4 b2b11fc 93b1697 7602ef4 a8a7982 7602ef4 a8a7982 3e34a93 93b1697 7602ef4 b2b11fc 7602ef4 216e869 7602ef4 5f601de 7602ef4 216e869 5f601de 7602ef4 216e869 7602ef4 216e869 93b1697 a8a7982 3e34a93 7602ef4 f2c044d 7602ef4 f2c044d dfa5d3e 3e34a93 f2c044d a8a7982 9a49723 f2c044d a8a7982 b2b11fc 3e34a93 a8a7982 3e34a93 a8a7982 3e34a93 cc173f9 a8a7982 cc173f9 7602ef4 9a49723 cc173f9 a8a7982 cc173f9 b950350 9a49723 a8a7982 0105281 a8a7982 b2b11fc a8a7982 3e34a93 7602ef4 f2c044d 7602ef4 f2c044d b950350 559ca26 b2b11fc a765116 3e34a93 b2b11fc a765116 3e34a93 93b1697 f2c044d 9a49723 a8a7982 f2c044d a8a7982 89daa1e 7602ef4 f2c044d 7602ef4 f2c044d 17d10a7 a8a7982 b2b11fc a8a7982 3e34a93 cc173f9 9a49723 3e34a93 a8a7982 cc173f9 3e34a93 7602ef4 b2b11fc 3e34a93 cc173f9 cf3593c 9a49723 a8a7982 216e869 7602ef4 216e869 7602ef4 216e869 7602ef4 216e869 b2b11fc a8a7982 7602ef4 a8a7982 3e34a93 7602ef4 f2c044d 7602ef4 f2c044d ecc69bf 216e869 cc173f9 216e869 559ca26 216e869 b2b11fc 7602ef4 9a49723 7602ef4 cc173f9 7602ef4 216e869 7602ef4 216e869 7602ef4 93b1697 216e869 7602ef4 216e869 7602ef4 216e869 93b1697 a8a7982 3e34a93 cc173f9 d9bf0f0 9a49723 a8a7982 1b36a14 a8a7982 d3df06a 93b1697 d3df06a cc173f9 d3df06a cc173f9 d3df06a 9a49723 03cee98 d3df06a a8a7982 d3df06a 03cee98 7602ef4 d3df06a a8a7982 9a49723 d3df06a a8a7982 93b1697 1653c85 93b1697 d3df06a 93b1697 9a49723 93b1697 cc173f9 93b1697 a8a7982 93b1697 9a49723 93b1697 9a49723 d3df06a b2b11fc 93b1697 b2b11fc 93b1697 b2b11fc 93b1697 cc173f9 a8a7982 93b1697 b2b11fc 93b1697 9a49723 d3df06a 93b1697 cc173f9 a8a7982 93b1697 9a49723 93b1697 216e869 7602ef4 216e869 d3df06a 7602ef4 a8a7982 93b1697 216e869 a8a7982 3fe530b 93b1697 216e869 93b1697 eaef5b0 7602ef4 a8a7982 d3df06a 9a49723 d3df06a a8a7982 d3df06a a8a7982 7602ef4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
import os
import re
import torch
import tempfile
import logging
import math
from typing import Tuple, Union, Any
from scipy.io.wavfile import write
from pydub import AudioSegment
from dotenv import load_dotenv
import spaces
import gradio as gr
import numpy as np
# Transformers & Models
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
AutoProcessor,
MusicgenForConditionalGeneration,
)
# Coqui TTS
from TTS.api import TTS
# Diffusers for sound design generation
from diffusers import DiffusionPipeline, AudioLDMPipeline
import diffusers
from packaging import version
# ---------------------------------------------------------------------
# Setup Logging and Environment Variables
# ---------------------------------------------------------------------
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
logging.warning("HF_TOKEN is not set in your environment. Some model downloads might fail.")
# ---------------------------------------------------------------------
# Global Model Caches
# ---------------------------------------------------------------------
LLAMA_PIPELINES: dict[str, Any] = {}
MUSICGEN_MODELS: dict[str, Any] = {}
TTS_MODELS: dict[str, Any] = {}
SOUND_DESIGN_PIPELINES: dict[str, Any] = {}
# ---------------------------------------------------------------------
# Utility Functions
# ---------------------------------------------------------------------
def clean_text(text: str) -> str:
"""
Remove undesired characters that may not be recognized by the model.
Args:
text (str): Input text to be cleaned.
Returns:
str: Cleaned text.
"""
return re.sub(r'\*', '', text)
# ---------------------------------------------------------------------
# Model Helper Functions
# ---------------------------------------------------------------------
def get_llama_pipeline(model_id: str, token: str) -> Any:
"""
Returns a cached LLaMA text-generation pipeline or loads a new one.
Args:
model_id (str): Hugging Face model ID.
token (str): Hugging Face token.
Returns:
Any: A Hugging Face text-generation pipeline.
"""
if model_id in LLAMA_PIPELINES:
return LLAMA_PIPELINES[model_id]
logging.info(f"Loading LLaMA model from {model_id}...")
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
model = AutoModelForCausalLM.from_pretrained(
model_id,
use_auth_token=token,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
)
text_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer)
LLAMA_PIPELINES[model_id] = text_pipeline
return text_pipeline
def get_musicgen_model(model_key: str = "facebook/musicgen-large") -> Tuple[Any, Any]:
"""
Returns a cached MusicGen model and processor, or loads new ones.
Args:
model_key (str): Hugging Face model key (default is 'facebook/musicgen-large').
Returns:
Tuple[Any, Any]: The MusicGen model and its processor.
"""
if model_key in MUSICGEN_MODELS:
return MUSICGEN_MODELS[model_key]
logging.info(f"Loading MusicGen model from {model_key}...")
model = MusicgenForConditionalGeneration.from_pretrained(model_key)
processor = AutoProcessor.from_pretrained(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
MUSICGEN_MODELS[model_key] = (model, processor)
return model, processor
def get_tts_model(model_name: str = "tts_models/en/ljspeech/tacotron2-DDC") -> TTS:
"""
Returns a cached TTS model or loads a new one.
Args:
model_name (str): Identifier for the TTS model.
Returns:
TTS: A Coqui TTS model.
"""
if model_name in TTS_MODELS:
return TTS_MODELS[model_name]
logging.info(f"Loading TTS model: {model_name}...")
tts_model = TTS(model_name)
TTS_MODELS[model_name] = tts_model
return tts_model
def get_sound_design_pipeline(model_name: str, token: str) -> Any:
"""
Returns a cached DiffusionPipeline for sound design, or loads a new one.
Raises an error if diffusers version is less than 0.21.0.
Args:
model_name (str): The model name to load.
token (str): Hugging Face token.
Returns:
Any: A DiffusionPipeline for sound design.
Raises:
ValueError: If diffusers version is lower than 0.21.0.
"""
if version.parse(diffusers.__version__) < version.parse("0.21.0"):
raise ValueError("AudioLDM2 requires diffusers>=0.21.0. Please upgrade your diffusers package.")
if model_name in SOUND_DESIGN_PIPELINES:
return SOUND_DESIGN_PIPELINES[model_name]
logging.info(f"Loading sound design pipeline from {model_name}...")
pipe = DiffusionPipeline.from_pretrained(
model_name,
pipeline_class=AudioLDMPipeline,
use_auth_token=token
)
SOUND_DESIGN_PIPELINES[model_name] = pipe
return pipe
# ---------------------------------------------------------------------
# Script Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_script(user_prompt: str, model_id: str, token: str, duration: int) -> Tuple[str, str, str]:
"""
Generates a voice-over script, sound design suggestions, and music ideas based on the user prompt.
Args:
user_prompt (str): The user-provided concept.
model_id (str): The LLaMA model ID.
token (str): Hugging Face token.
duration (int): The desired duration in seconds.
Returns:
Tuple[str, str, str]: Voice-over script, sound design suggestions, and music suggestions.
"""
try:
text_pipeline = get_llama_pipeline(model_id, token)
system_prompt = (
"You are an expert radio imaging producer specializing in sound design and music. "
f"Based on the user's concept and the selected duration of {duration} seconds, produce the following:\n"
"1. A concise voice-over script. Prefix this section with 'Voice-Over Script:'\n"
"2. Suggestions for sound design. Prefix this section with 'Sound Design Suggestions:'\n"
"3. Music styles or track recommendations. Prefix this section with 'Music Suggestions:'"
)
combined_prompt = f"{system_prompt}\nUser concept: {user_prompt}\nOutput:"
with torch.inference_mode():
result = text_pipeline(
combined_prompt,
max_new_tokens=300,
do_sample=True,
temperature=0.8
)
generated_text = result[0]["generated_text"]
if "Output:" in generated_text:
generated_text = generated_text.split("Output:")[-1].strip()
# Extract sections using regex
pattern = r"Voice-Over Script:\s*(.*?)\s*Sound Design Suggestions:\s*(.*?)\s*Music Suggestions:\s*(.*)"
match = re.search(pattern, generated_text, re.DOTALL)
if match:
voice_script, sound_design, music_suggestions = (grp.strip() for grp in match.groups())
else:
voice_script = "No voice-over script found."
sound_design = "No sound design suggestions found."
music_suggestions = "No music suggestions found."
return voice_script, sound_design, music_suggestions
except Exception as e:
logging.exception("Error generating script")
return f"Error generating script: {e}", "", ""
# ---------------------------------------------------------------------
# Voice-Over Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def generate_voice(script: str, tts_model_name: str = "tts_models/en/ljspeech/tacotron2-DDC") -> Union[str, Any]:
"""
Generates a voice-over audio file from a script using Coqui TTS.
Args:
script (str): The voice-over script.
tts_model_name (str): The TTS model name.
Returns:
Union[str, Any]: The file path to the generated .wav file or an error message.
"""
try:
if not script.strip():
return "Error: No script provided."
cleaned_script = clean_text(script)
tts_model = get_tts_model(tts_model_name)
output_path = os.path.join(tempfile.gettempdir(), "voice_over.wav")
tts_model.tts_to_file(text=cleaned_script, file_path=output_path)
return output_path
except Exception as e:
logging.exception("Error generating voice")
return f"Error generating voice: {e}"
# ---------------------------------------------------------------------
# Music Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=200)
def generate_music(prompt: str, audio_length: int) -> Union[str, Any]:
"""
Generates a music track using the MusicGen model based on the prompt.
Args:
prompt (str): Music suggestion prompt.
audio_length (int): Number of tokens determining audio length.
Returns:
Union[str, Any]: The file path to the generated .wav file or an error message.
"""
try:
if not prompt.strip():
return "Error: No music suggestion provided."
model_key = "facebook/musicgen-large"
musicgen_model, musicgen_processor = get_musicgen_model(model_key)
device = "cuda" if torch.cuda.is_available() else "cpu"
inputs = musicgen_processor(text=[prompt], padding=True, return_tensors="pt").to(device)
with torch.inference_mode():
outputs = musicgen_model.generate(**inputs, max_new_tokens=audio_length)
audio_data = outputs[0, 0].cpu().numpy()
# Normalize audio data to 16-bit integer range
normalized_audio = (audio_data / np.max(np.abs(audio_data)) * 32767).astype("int16")
output_path = os.path.join(tempfile.gettempdir(), "musicgen_large_generated_music.wav")
write(output_path, 44100, normalized_audio)
return output_path
except Exception as e:
logging.exception("Error generating music")
return f"Error generating music: {e}"
# ---------------------------------------------------------------------
# Sound Design Generation Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=200)
def generate_sound_design(prompt: str) -> Union[str, Any]:
"""
Generates a sound design audio file using AudioLDM 2 based on the prompt.
Args:
prompt (str): Sound design prompt.
Returns:
Union[str, Any]: The file path to the generated .wav file or an error message.
"""
try:
if not prompt.strip():
return "Error: No sound design suggestion provided."
pipe = get_sound_design_pipeline("cvssp/audioldm2", HF_TOKEN)
result = pipe(prompt) # Expected to return a dict with key 'audios'
audio_samples = result["audios"][0]
normalized_audio = (audio_samples / np.max(np.abs(audio_samples)) * 32767).astype("int16")
output_path = os.path.join(tempfile.gettempdir(), "sound_design_generated.wav")
write(output_path, 44100, normalized_audio)
return output_path
except Exception as e:
logging.exception("Error generating sound design")
return f"Error generating sound design: {e}"
# ---------------------------------------------------------------------
# Audio Blending Function
# ---------------------------------------------------------------------
@spaces.GPU(duration=100)
def blend_audio(voice_path: str, sound_effect_path: str, music_path: str, ducking: bool, duck_level: int = 10) -> Union[str, Any]:
"""
Blends three audio files (voice, sound design, and music) by:
- Looping/trimming music and sound design to match voice duration.
- Optionally applying ducking to background tracks.
- Overlaying the voice on top of the background.
Args:
voice_path (str): Path to the voice audio file.
sound_effect_path (str): Path to the sound design audio file.
music_path (str): Path to the music audio file.
ducking (bool): Whether to apply ducking.
duck_level (int): Amount of attenuation in dB.
Returns:
Union[str, Any]: The file path to the blended .wav file or an error message.
"""
try:
for path in [voice_path, sound_effect_path, music_path]:
if not os.path.isfile(path):
return f"Error: Missing audio file for {path}"
# Load audio segments
voice = AudioSegment.from_wav(voice_path)
music = AudioSegment.from_wav(music_path)
sound_effect = AudioSegment.from_wav(sound_effect_path)
voice_len = len(voice) # duration in milliseconds
# Loop or trim music to match voice duration using pydub multiplication
if len(music) < voice_len:
repeats = math.ceil(voice_len / len(music))
music = (music * repeats)[:voice_len]
else:
music = music[:voice_len]
# Loop or trim sound design to match voice duration
if len(sound_effect) < voice_len:
repeats = math.ceil(voice_len / len(sound_effect))
sound_effect = (sound_effect * repeats)[:voice_len]
else:
sound_effect = sound_effect[:voice_len]
# Apply ducking if enabled
if ducking:
music = music - duck_level
sound_effect = sound_effect - duck_level
# Overlay music and sound effect for background
background = music.overlay(sound_effect)
# Overlay voice on top of background
final_audio = background.overlay(voice)
output_path = os.path.join(tempfile.gettempdir(), "blended_output.wav")
final_audio.export(output_path, format="wav")
return output_path
except Exception as e:
logging.exception("Error blending audio")
return f"Error blending audio: {e}"
# ---------------------------------------------------------------------
# Gradio Interface
# ---------------------------------------------------------------------
with gr.Blocks(css="""
/* Global Styles */
body {
background: linear-gradient(135deg, #1d1f21, #3a3d41);
color: #f0f0f0;
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.header {
text-align: center;
padding: 2rem 1rem;
background: linear-gradient(90deg, #6a11cb, #2575fc);
border-radius: 0 0 20px 20px;
margin-bottom: 2rem;
}
.header h1 {
margin: 0;
font-size: 2.5rem;
}
.header p {
font-size: 1.2rem;
}
.gradio-container {
background: #2e2e2e;
border-radius: 10px;
padding: 1rem;
}
.tab-title {
font-size: 1.1rem;
font-weight: bold;
}
.footer {
text-align: center;
font-size: 0.9em;
margin-top: 2rem;
padding: 1rem;
color: #cccccc;
}
""") as demo:
# Custom Header
with gr.Row(elem_classes="header"):
gr.Markdown("""
<h1>π§ Ai Ads Promo</h1>
<p>Your all-in-one AI solution for creating professional audio ads.</p>
""")
gr.Markdown("""
**Welcome to Ai Ads Promo!**
This app helps you create amazing audio ads in just a few steps:
1. **Script Generation:** Provide your idea and get a voice-over script, sound design, and music suggestions.
2. **Voice Synthesis:** Convert the script into natural-sounding speech.
3. **Music Production:** Generate a custom music track.
4. **Sound Design:** Create creative sound effects.
5. **Audio Blending:** Seamlessly blend voice, music, and sound design (with optional ducking).
""")
with gr.Tabs():
# Step 1: Script Generation
with gr.Tab("π Script Generation"):
with gr.Row():
user_prompt = gr.Textbox(
label="Promo Ads Idea",
placeholder="E.g., A 30-second ad for a radio morning show...",
lines=2
)
with gr.Row():
llama_model_id = gr.Textbox(
label="LLaMA Model ID",
value="meta-llama/Meta-Llama-3-8B-Instruct",
placeholder="Enter a valid Hugging Face model ID"
)
duration = gr.Slider(
label="Desired Ad Duration (seconds)",
minimum=15,
maximum=60,
step=15,
value=30
)
generate_script_button = gr.Button("Generate Script", variant="primary")
script_output = gr.Textbox(label="Generated Voice-Over Script", lines=5, interactive=False)
sound_design_output = gr.Textbox(label="Sound Design Suggestions", lines=3, interactive=False)
music_suggestion_output = gr.Textbox(label="Music Suggestions", lines=3, interactive=False)
generate_script_button.click(
fn=lambda prompt, model_id, dur: generate_script(prompt, model_id, HF_TOKEN, dur),
inputs=[user_prompt, llama_model_id, duration],
outputs=[script_output, sound_design_output, music_suggestion_output],
)
# Step 2: Voice Synthesis
with gr.Tab("π€ Voice Synthesis"):
gr.Markdown("Generate a natural-sounding voice-over using Coqui TTS.")
selected_tts_model = gr.Dropdown(
label="TTS Model",
choices=[
"tts_models/en/ljspeech/tacotron2-DDC",
"tts_models/en/ljspeech/vits",
"tts_models/en/sam/tacotron-DDC",
],
value="tts_models/en/ljspeech/tacotron2-DDC",
multiselect=False
)
generate_voice_button = gr.Button("Generate Voice-Over", variant="primary")
voice_audio_output = gr.Audio(label="Voice-Over (WAV)", type="filepath")
generate_voice_button.click(
fn=lambda script, tts_model: generate_voice(script, tts_model),
inputs=[script_output, selected_tts_model],
outputs=voice_audio_output,
)
# Step 3: Music Production
with gr.Tab("πΆ Music Production"):
gr.Markdown("Generate a custom music track using the **MusicGen Large** model.")
audio_length = gr.Slider(
label="Music Length (tokens)",
minimum=128,
maximum=1024,
step=64,
value=512,
info="Increase tokens for longer audio (inference time may vary)."
)
generate_music_button = gr.Button("Generate Music", variant="primary")
music_output = gr.Audio(label="Generated Music (WAV)", type="filepath")
generate_music_button.click(
fn=lambda music_prompt, length: generate_music(music_prompt, length),
inputs=[music_suggestion_output, audio_length],
outputs=[music_output],
)
# Step 4: Sound Design Generation
with gr.Tab("π§ Sound Design Generation"):
gr.Markdown("Generate a creative sound design track based on the script's suggestions.")
generate_sound_design_button = gr.Button("Generate Sound Design", variant="primary")
sound_design_audio_output = gr.Audio(label="Generated Sound Design (WAV)", type="filepath")
generate_sound_design_button.click(
fn=generate_sound_design,
inputs=[sound_design_output],
outputs=[sound_design_audio_output],
)
# Step 5: Audio Blending (Voice + Sound Design + Music)
with gr.Tab("ποΈ Audio Blending"):
gr.Markdown("Blend your voice-over, sound design, and music track. Enable ducking to lower background audio during voice segments.")
ducking_checkbox = gr.Checkbox(label="Enable Ducking?", value=True)
duck_level_slider = gr.Slider(
label="Ducking Level (dB attenuation)",
minimum=0,
maximum=20,
step=1,
value=10
)
blend_button = gr.Button("Blend Audio", variant="primary")
blended_output = gr.Audio(label="Final Blended Output (WAV)", type="filepath")
blend_button.click(
fn=blend_audio,
inputs=[voice_audio_output, sound_design_audio_output, music_output, ducking_checkbox, duck_level_slider],
outputs=blended_output
)
# Footer and Visitor Badge
gr.Markdown("""
<div class="footer">
<hr>
Created with β€οΈ by <a href="https://bilsimaging.com" target="_blank" style="color: #88aaff;">bilsimaging.com</a>
<br>
<small>Ai Ads Promo © 2025</small>
</div>
""")
gr.HTML("""
<div style="text-align: center; margin-top: 1rem;">
<a href="https://visitorbadge.io/status?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold">
<img src="https://api.visitorbadge.io/api/visitors?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2FBils%2Fradiogold&countColor=%23263759" alt="visitor badge"/>
</a>
</div>
""")
if __name__ == "__main__":
demo.launch(debug=True)
|