Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,6 @@
|
|
|
|
1 |
import os
|
2 |
-
import requests
|
3 |
import torch
|
4 |
-
import scipy.io.wavfile as wav
|
5 |
-
import streamlit as st
|
6 |
-
from io import BytesIO
|
7 |
from transformers import (
|
8 |
AutoTokenizer,
|
9 |
AutoModelForCausalLM,
|
@@ -11,228 +8,111 @@ from transformers import (
|
|
11 |
AutoProcessor,
|
12 |
MusicgenForConditionalGeneration
|
13 |
)
|
14 |
-
|
15 |
-
|
16 |
-
# ---------------------------------------------------------------------
|
17 |
-
# 1) PAGE CONFIGURATION
|
18 |
-
# ---------------------------------------------------------------------
|
19 |
-
st.set_page_config(
|
20 |
-
page_title="AI Radio Imaging with Llama 3",
|
21 |
-
page_icon="🎧",
|
22 |
-
layout="wide"
|
23 |
-
)
|
24 |
-
|
25 |
-
# ---------------------------------------------------------------------
|
26 |
-
# 2) CUSTOM CSS / UI DESIGN
|
27 |
-
# ---------------------------------------------------------------------
|
28 |
-
CUSTOM_CSS = """
|
29 |
-
<style>
|
30 |
-
body {
|
31 |
-
background-color: #121212;
|
32 |
-
color: #FFFFFF;
|
33 |
-
font-family: "Helvetica Neue", sans-serif;
|
34 |
-
}
|
35 |
-
.block-container {
|
36 |
-
max-width: 1100px;
|
37 |
-
padding: 1rem 1.5rem;
|
38 |
-
}
|
39 |
-
h1, h2, h3 {
|
40 |
-
color: #1DB954;
|
41 |
-
}
|
42 |
-
.stButton>button {
|
43 |
-
background-color: #1DB954 !important;
|
44 |
-
color: #FFFFFF !important;
|
45 |
-
border-radius: 24px;
|
46 |
-
padding: 0.6rem 1.2rem;
|
47 |
-
}
|
48 |
-
.stButton>button:hover {
|
49 |
-
background-color: #1ed760 !important;
|
50 |
-
}
|
51 |
-
textarea, input, select {
|
52 |
-
border-radius: 8px !important;
|
53 |
-
background-color: #282828 !important;
|
54 |
-
color: #FFFFFF !important;
|
55 |
-
}
|
56 |
-
audio {
|
57 |
-
width: 100%;
|
58 |
-
margin-top: 1rem;
|
59 |
-
}
|
60 |
-
.footer-note {
|
61 |
-
text-align: center;
|
62 |
-
font-size: 14px;
|
63 |
-
opacity: 0.7;
|
64 |
-
margin-top: 2rem;
|
65 |
-
}
|
66 |
-
#MainMenu, footer {visibility: hidden;}
|
67 |
-
</style>
|
68 |
-
"""
|
69 |
-
st.markdown(CUSTOM_CSS, unsafe_allow_html=True)
|
70 |
-
|
71 |
-
# ---------------------------------------------------------------------
|
72 |
-
# 3) LOAD LOTTIE ANIMATION
|
73 |
-
# ---------------------------------------------------------------------
|
74 |
-
@st.cache_data
|
75 |
-
def load_lottie_url(url: str):
|
76 |
-
r = requests.get(url)
|
77 |
-
if r.status_code != 200:
|
78 |
-
return None
|
79 |
-
return r.json()
|
80 |
-
|
81 |
-
LOTTIE_URL = "https://assets3.lottiefiles.com/temp/lf20_Q6h5zV.json"
|
82 |
-
lottie_animation = load_lottie_url(LOTTIE_URL)
|
83 |
|
84 |
# ---------------------------------------------------------------------
|
85 |
-
#
|
86 |
# ---------------------------------------------------------------------
|
87 |
-
|
88 |
-
def load_llama_pipeline(model_id: str, device: str, token: str):
|
89 |
try:
|
90 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
91 |
model = AutoModelForCausalLM.from_pretrained(
|
92 |
model_id,
|
93 |
use_auth_token=token,
|
94 |
-
torch_dtype=torch.float16 if device == "
|
95 |
-
device_map=device,
|
96 |
low_cpu_mem_usage=True
|
97 |
)
|
98 |
-
|
99 |
-
"text-generation",
|
100 |
-
model=model,
|
101 |
-
tokenizer=tokenizer,
|
102 |
-
device_map=device
|
103 |
-
)
|
104 |
-
return text_gen_pipeline
|
105 |
except Exception as e:
|
106 |
-
|
107 |
-
raise
|
108 |
|
109 |
# ---------------------------------------------------------------------
|
110 |
-
#
|
111 |
# ---------------------------------------------------------------------
|
112 |
-
def
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
temperature=0.9
|
124 |
-
)
|
125 |
-
output_text = result[0]["generated_text"]
|
126 |
-
if "Refined script:" in output_text:
|
127 |
-
output_text = output_text.split("Refined script:", 1)[-1].strip()
|
128 |
-
output_text += "\n\n(Generated by Llama 3 - Radio Imaging)"
|
129 |
-
return output_text
|
130 |
|
131 |
# ---------------------------------------------------------------------
|
132 |
-
#
|
133 |
# ---------------------------------------------------------------------
|
134 |
-
@st.cache_resource
|
135 |
def load_musicgen_model():
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
139 |
|
140 |
# ---------------------------------------------------------------------
|
141 |
-
#
|
142 |
# ---------------------------------------------------------------------
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
152 |
|
153 |
# ---------------------------------------------------------------------
|
154 |
-
#
|
155 |
# ---------------------------------------------------------------------
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
|
162 |
-
|
163 |
-
|
164 |
-
llama_model_id = st.text_input(
|
165 |
-
"Llama 3 Model ID",
|
166 |
-
value="meta-llama/Meta-Llama-3-70B",
|
167 |
-
help="Enter the exact model ID from Hugging Face."
|
168 |
-
)
|
169 |
-
with col_device:
|
170 |
-
device_option = st.selectbox(
|
171 |
-
"Device",
|
172 |
-
["auto", "cpu"],
|
173 |
-
help="Choose GPU (auto) or CPU."
|
174 |
-
)
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
with st.spinner("Generating script..."):
|
186 |
-
try:
|
187 |
-
llama_pipeline = load_llama_pipeline(llama_model_id, device_option, hf_token)
|
188 |
-
final_script = generate_radio_script(prompt, llama_pipeline)
|
189 |
-
st.success("Promo script generated!")
|
190 |
-
st.text_area("Generated Script", value=final_script, height=200)
|
191 |
-
except Exception as e:
|
192 |
-
st.error(f"Llama generation error: {e}")
|
193 |
|
194 |
-
|
195 |
|
196 |
# ---------------------------------------------------------------------
|
197 |
-
#
|
198 |
# ---------------------------------------------------------------------
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
with st.spinner("Generating audio..."):
|
207 |
-
try:
|
208 |
-
mg_model, mg_processor = load_musicgen_model()
|
209 |
-
inputs = mg_processor(
|
210 |
-
text=[st.session_state["final_script"]],
|
211 |
-
padding=True,
|
212 |
-
return_tensors="pt"
|
213 |
-
)
|
214 |
-
audio_values = mg_model.generate(**inputs, max_new_tokens=audio_length)
|
215 |
-
sr = mg_model.config.audio_encoder.sampling_rate
|
216 |
-
output_file = "radio_jingle.wav"
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
st.error(f"MusicGen error: {e}")
|
226 |
|
227 |
# ---------------------------------------------------------------------
|
228 |
-
#
|
229 |
# ---------------------------------------------------------------------
|
230 |
-
|
231 |
-
st.markdown(
|
232 |
-
"""
|
233 |
-
<div class="footer-note">
|
234 |
-
© 2025 AI Radio Imaging – Built with Hugging Face & Streamlit
|
235 |
-
</div>
|
236 |
-
""",
|
237 |
-
unsafe_allow_html=True
|
238 |
-
)
|
|
|
1 |
+
import gradio as gr
|
2 |
import os
|
|
|
3 |
import torch
|
|
|
|
|
|
|
4 |
from transformers import (
|
5 |
AutoTokenizer,
|
6 |
AutoModelForCausalLM,
|
|
|
8 |
AutoProcessor,
|
9 |
MusicgenForConditionalGeneration
|
10 |
)
|
11 |
+
import scipy.io.wavfile as wav
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# ---------------------------------------------------------------------
|
14 |
+
# Load Llama 3 Model
|
15 |
# ---------------------------------------------------------------------
|
16 |
+
def load_llama_pipeline(model_id: str, token: str, device: str = "cpu"):
|
|
|
17 |
try:
|
18 |
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=token)
|
19 |
model = AutoModelForCausalLM.from_pretrained(
|
20 |
model_id,
|
21 |
use_auth_token=token,
|
22 |
+
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
|
23 |
+
device_map="auto" if device == "cuda" else None,
|
24 |
low_cpu_mem_usage=True
|
25 |
)
|
26 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if device == "cuda" else -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
except Exception as e:
|
28 |
+
return str(e)
|
|
|
29 |
|
30 |
# ---------------------------------------------------------------------
|
31 |
+
# Generate Radio Script
|
32 |
# ---------------------------------------------------------------------
|
33 |
+
def generate_script(user_input: str, pipeline_llama):
|
34 |
+
try:
|
35 |
+
system_prompt = (
|
36 |
+
"You are a top-tier radio imaging producer using Llama 3. "
|
37 |
+
"Take the user's concept and craft a short, creative promo script."
|
38 |
+
)
|
39 |
+
combined_prompt = f"{system_prompt}\nUser concept: {user_input}\nRefined script:"
|
40 |
+
result = pipeline_llama(combined_prompt, max_new_tokens=200, do_sample=True, temperature=0.9)
|
41 |
+
return result[0]['generated_text'].split("Refined script:")[-1].strip()
|
42 |
+
except Exception as e:
|
43 |
+
return f"Error generating script: {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
# ---------------------------------------------------------------------
|
46 |
+
# Load MusicGen Model
|
47 |
# ---------------------------------------------------------------------
|
|
|
48 |
def load_musicgen_model():
|
49 |
+
try:
|
50 |
+
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
|
51 |
+
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
|
52 |
+
return model, processor
|
53 |
+
except Exception as e:
|
54 |
+
return None, str(e)
|
55 |
|
56 |
# ---------------------------------------------------------------------
|
57 |
+
# Generate Audio
|
58 |
# ---------------------------------------------------------------------
|
59 |
+
def generate_audio(prompt: str, audio_length: int, mg_model, mg_processor):
|
60 |
+
try:
|
61 |
+
inputs = mg_processor(text=[prompt], padding=True, return_tensors="pt")
|
62 |
+
outputs = mg_model.generate(**inputs, max_new_tokens=audio_length)
|
63 |
+
sr = mg_model.config.audio_encoder.sampling_rate
|
64 |
+
audio_data = outputs[0, 0].cpu().numpy()
|
65 |
+
normalized_audio = (audio_data / max(abs(audio_data)) * 32767).astype("int16")
|
66 |
+
output_file = "radio_jingle.wav"
|
67 |
+
wav.write(output_file, rate=sr, data=normalized_audio)
|
68 |
+
return output_file
|
69 |
+
except Exception as e:
|
70 |
+
return str(e)
|
71 |
|
72 |
# ---------------------------------------------------------------------
|
73 |
+
# Gradio Interface
|
74 |
# ---------------------------------------------------------------------
|
75 |
+
def radio_imaging_app(user_prompt, llama_model_id, hf_token, audio_length):
|
76 |
+
# Load Llama 3 Pipeline
|
77 |
+
pipeline_llama = load_llama_pipeline(llama_model_id, hf_token, device="cuda" if torch.cuda.is_available() else "cpu")
|
78 |
+
if isinstance(pipeline_llama, str):
|
79 |
+
return pipeline_llama, None
|
80 |
|
81 |
+
# Generate Script
|
82 |
+
script = generate_script(user_prompt, pipeline_llama)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
# Load MusicGen
|
85 |
+
mg_model, mg_processor = load_musicgen_model()
|
86 |
+
if isinstance(mg_processor, str):
|
87 |
+
return script, mg_processor
|
88 |
|
89 |
+
# Generate Audio
|
90 |
+
audio_file = generate_audio(script, audio_length, mg_model, mg_processor)
|
91 |
+
if isinstance(audio_file, str) and audio_file.startswith("Error"):
|
92 |
+
return script, audio_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
return script, audio_file
|
95 |
|
96 |
# ---------------------------------------------------------------------
|
97 |
+
# Interface
|
98 |
# ---------------------------------------------------------------------
|
99 |
+
with gr.Blocks() as demo:
|
100 |
+
gr.Markdown("# 🎧 AI Radio Imaging with Llama 3 + MusicGen")
|
101 |
+
with gr.Row():
|
102 |
+
user_prompt = gr.Textbox(label="Enter your promo idea", placeholder="E.g., A 15-second hype jingle for a morning talk show, fun and energetic.")
|
103 |
+
llama_model_id = gr.Textbox(label="Llama 3 Model ID", value="meta-llama/Meta-Llama-3-70B")
|
104 |
+
hf_token = gr.Textbox(label="Hugging Face Token", type="password")
|
105 |
+
audio_length = gr.Slider(label="Audio Length (tokens)", minimum=128, maximum=1024, step=64, value=512)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
generate_button = gr.Button("Generate Promo Script and Audio")
|
108 |
+
script_output = gr.Textbox(label="Generated Script")
|
109 |
+
audio_output = gr.Audio(label="Generated Audio", type="file")
|
110 |
|
111 |
+
generate_button.click(radio_imaging_app,
|
112 |
+
inputs=[user_prompt, llama_model_id, hf_token, audio_length],
|
113 |
+
outputs=[script_output, audio_output])
|
|
|
114 |
|
115 |
# ---------------------------------------------------------------------
|
116 |
+
# Launch App
|
117 |
# ---------------------------------------------------------------------
|
118 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|