File size: 8,070 Bytes
21cab83
eed5424
21cab83
 
 
eed5424
21cab83
 
eed5424
 
21cab83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eed5424
21cab83
 
 
 
 
 
eed5424
21cab83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0fbb06
eed5424
21cab83
 
 
 
 
 
f0fbb06
21cab83
 
 
 
 
 
f0fbb06
21cab83
 
 
 
 
 
 
eed5424
21cab83
f0fbb06
eed5424
 
21cab83
 
 
 
 
 
 
 
 
 
 
513f7a6
 
21cab83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513f7a6
f0fbb06
21cab83
f0fbb06
21cab83
e3d67e9
21cab83
 
 
 
 
 
 
 
 
 
 
eed5424
 
21cab83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
513f7a6
eed5424
21cab83
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import torch
import gradio as gr
from unsloth import FastLanguageModel
from transformers import TextStreamer, GenerationConfig
import warnings

# Suppress specific warnings if needed (optional)
warnings.filterwarnings("ignore", category=UserWarning, message=".*padding_mask.*")

# --- Configuration ---
MODEL_NAME = "unsloth/gemma-3-1b-it"
MAX_SEQ_LENGTH = 4096  # Choose based on model's capabilities and your VRAM
DTYPE = None  # None for auto detection, or torch.float16, torch.bfloat16
LOAD_IN_4BIT = True # Use 4-bit quantization for lower memory usage

# --- Load Model and Tokenizer ---
print(f"Loading model: {MODEL_NAME}")
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=MODEL_NAME,
    max_seq_length=MAX_SEQ_LENGTH,
    dtype=DTYPE,
    load_in_4bit=LOAD_IN_4BIT,
    # token = "hf_...", # Add your Hugging Face token if needed (for gated models)
)
print("Model and tokenizer loaded successfully.")

# Optimize for inference
FastLanguageModel.for_inference(model)
print("Model optimized for inference.")

# --- Generation Function ---
def generate_response(
    prompt,
    max_new_tokens=512,
    temperature=0.7,
    top_p=0.9,
    do_sample=True,
    system_prompt=None # Optional system prompt
):
    """
    Generates a response from the model given a prompt and parameters.
    """
    messages = []
    if system_prompt and system_prompt.strip():
         messages.append({"role": "system", "content": system_prompt})
    messages.append({"role": "user", "content": prompt})

    # Apply chat template
    try:
        inputs = tokenizer.apply_chat_template(
            messages,
            tokenize=True,
            add_generation_prompt=True, # Ensures the '<start_of_turn>model' token is added
            return_tensors="pt",
        ).to(model.device) # Ensure inputs are on the same device as the model
    except Exception as e:
        print(f"Error applying chat template: {e}")
        # Fallback or simple concatenation if template fails (less ideal)
        formatted_prompt = f"<bos><start_of_turn>user\n{prompt}<end_of_turn>\n<start_of_turn>model\n"
        inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device)


    # --- Use a TextStreamer for Gradio ---
    # While streaming works well in terminals, Gradio updates per yield.
    # For a simpler Gradio experience, we'll generate the full response at once.
    # If you want streaming in Gradio, it requires more complex handling
    # with gr.Textbox(interactive=False) and yielding chunks.

    # --- Generate Full Response ---
    generation_config = GenerationConfig(
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        top_p=top_p,
        do_sample=do_sample,
        pad_token_id=tokenizer.eos_token_id, # Use EOS token for padding
        eos_token_id=tokenizer.eos_token_id,
    )

    print("\nGenerating response...")
    print(f"  Prompt length: {inputs.shape[1]} tokens")
    print(f"  Max new tokens: {max_new_tokens}")
    print(f"  Temperature: {temperature}")
    print(f"  Top-P: {top_p}")
    print(f"  Do Sample: {do_sample}")

    with torch.inference_mode(): # Ensure no gradients are computed
        outputs = model.generate(
            input_ids=inputs,
            attention_mask=torch.ones_like(inputs), # Provide attention mask
            generation_config=generation_config,
        )

    # Decode the generated tokens, skipping the prompt part
    # outputs[0] contains the full sequence (prompt + response)
    input_length = inputs.shape[1]
    response_tokens = outputs[0][input_length:]
    response_text = tokenizer.decode(response_tokens, skip_special_tokens=True)
    print(f"  Response length: {len(response_tokens)} tokens")
    print("Generation complete.")

    return response_text.strip()


# --- Gradio Interface ---
print("Creating Gradio interface...")

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        f"""
        #  चैट Unsloth Gemma 3.1B-IT Interface
        Interact with the `{MODEL_NAME}` model optimized with Unsloth.
        Enter your prompt below and adjust the generation parameters.
        *Note: Running on {'GPU' if torch.cuda.is_available() else 'CPU'}. 4-bit quantization is {'enabled' if LOAD_IN_4BIT else 'disabled'}*.
        """
    )

    with gr.Row():
        with gr.Column(scale=2):
            prompt_input = gr.Textbox(
                label="Your Prompt",
                placeholder="Ask me anything...",
                lines=4,
                show_copy_button=True,
            )
            system_prompt_input = gr.Textbox(
                label="System Prompt (Optional)",
                placeholder="Example: You are a helpful assistant.",
                lines=2
            )
            submit_button = gr.Button("Generate Response", variant="primary")

        with gr.Column(scale=1):
            gr.Markdown("### Generation Parameters")
            max_new_tokens_slider = gr.Slider(
                minimum=32,
                maximum=2048, # Adjust max based on VRAM and needs
                value=512,
                step=32,
                label="Max New Tokens",
                info="Maximum number of tokens to generate."
            )
            temperature_slider = gr.Slider(
                minimum=0.1,
                maximum=1.5,
                value=0.6, # Adjusted default temperature slightly lower
                step=0.05,
                label="Temperature",
                info="Controls randomness. Lower values are more deterministic."
            )
            top_p_slider = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.9,
                step=0.05,
                label="Top-P (Nucleus Sampling)",
                info="Considers only the most probable tokens with cumulative probability P."
            )
            do_sample_checkbox = gr.Checkbox(
                value=True,
                label="Use Sampling",
                info="If unchecked, uses greedy decoding (picks the most likely token)."
            )

    output_textbox = gr.Markdown(label="Model Response", value="*Response will appear here...*")

    # --- Connect Components ---
    submit_button.click(
        fn=generate_response,
        inputs=[
            prompt_input,
            max_new_tokens_slider,
            temperature_slider,
            top_p_slider,
            do_sample_checkbox,
            system_prompt_input,
        ],
        outputs=output_textbox,
        api_name="generate" # Allows API access if needed
    )

    # --- Examples ---
    gr.Examples(
        examples=[
            ["Explain the concept of Large Language Models (LLMs) in simple terms.", 512, 0.7, 0.9, True, ""],
            ["Write a short story about a robot exploring a futuristic city.", 768, 0.8, 0.95, True, ""],
            ["Provide 5 ideas for a healthy breakfast.", 256, 0.6, 0.9, True, ""],
            ["Translate 'Hello, how are you?' to French.", 64, 0.5, 0.9, False, ""],
            ["What is the capital of Australia?", 64, 0.3, 0.9, False, "You are a factual answering bot."]
        ],
        inputs=[
            prompt_input,
            max_new_tokens_slider,
            temperature_slider,
            top_p_slider,
            do_sample_checkbox,
            system_prompt_input,
        ],
        outputs=output_textbox, # Output examples to the main output area
        fn=generate_response,   # Make examples clickable
        cache_examples=False,   # Recalculate examples on click if needed, or True to cache
    )

# --- Launch the Interface ---
if __name__ == "__main__":
    print("Launching Gradio interface...")
    # share=True creates a public link (use with caution)
    demo.launch(share=False, server_name="0.0.0.0", server_port=7860)
    # Use server_name="0.0.0.0" to make it accessible on your local network
    # Use server_port=7860 (or another) to specify the port
    print("Gradio interface launched. Access it at http://<your-ip-address>:7860 (or http://127.0.0.1:7860 locally)")