Update app.py
Browse files
app.py
CHANGED
@@ -13,21 +13,20 @@ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(
|
|
13 |
MODEL_REPO = "microsoft/Phi-4-mini-instruct-onnx"
|
14 |
|
15 |
# --- Defaulting to CPU INT4 for Hugging Face Spaces ---
|
16 |
-
EXECUTION_PROVIDER = "cpu"
|
17 |
MODEL_VARIANT_GLOB = "cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/*"
|
18 |
-
# Ensure requirements.txt lists: onnxruntime-genai
|
19 |
# --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
20 |
|
21 |
# --- (Optional) Alternative GPU Configuration ---
|
22 |
-
# EXECUTION_PROVIDER = "cuda"
|
23 |
# MODEL_VARIANT_GLOB = "gpu/gpu-int4-rtn-block-32/*"
|
24 |
-
# Ensure requirements.txt lists: onnxruntime-genai-cuda
|
25 |
# --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
26 |
|
27 |
LOCAL_MODEL_DIR = "./phi4-mini-onnx-model" # Directory within the Space
|
28 |
HF_LOGO_URL = "https://huggingface.co/front/assets/huggingface_logo-noborder.svg"
|
29 |
HF_MODEL_URL = f"https://huggingface.co/{MODEL_REPO}"
|
30 |
ORT_GENAI_URL = "https://github.com/microsoft/onnxruntime-genai"
|
|
|
31 |
|
32 |
# Global variables for model and tokenizer
|
33 |
model = None
|
@@ -68,41 +67,41 @@ def initialize_model():
|
|
68 |
model_status = f"Loading model ({EXECUTION_PROVIDER.upper()})..."
|
69 |
logging.info(model_status)
|
70 |
try:
|
71 |
-
#
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
og_device_type = og.DeviceType.DML # Requires onnxruntime-genai-directml
|
76 |
-
else: # Default to CPU
|
77 |
-
og_device_type = og.DeviceType.CPU
|
78 |
-
|
79 |
-
model = og.Model(model_path, og_device_type)
|
80 |
tokenizer = og.Tokenizer(model)
|
81 |
model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})"
|
82 |
logging.info("Model and Tokenizer loaded successfully.")
|
|
|
|
|
|
|
|
|
|
|
83 |
except Exception as e:
|
84 |
logging.error(f"Error loading model or tokenizer: {e}", exc_info=True)
|
85 |
model_status = f"Error loading model: {e}"
|
86 |
raise RuntimeError(f"Failed to load model: {e}")
|
87 |
|
88 |
-
# --- Generation Function ---
|
89 |
-
def
|
90 |
-
"""Generates a response using the Phi-4 ONNX model, yielding
|
91 |
global model_status
|
92 |
if not model or not tokenizer:
|
93 |
model_status = "Error: Model not initialized!"
|
94 |
yield "Error: Model not initialized. Please check logs."
|
95 |
return
|
96 |
-
if not prompt:
|
97 |
-
yield "Please enter a prompt."
|
98 |
-
return
|
99 |
|
100 |
# --- Prepare the prompt using the Phi-4 instruct format ---
|
101 |
full_prompt = ""
|
102 |
-
|
|
|
103 |
full_prompt += f"<|user|>\n{user_msg}<|end|>\n"
|
104 |
-
if assistant_msg:
|
105 |
full_prompt += f"<|assistant|>\n{assistant_msg}<|end|>\n"
|
|
|
|
|
106 |
full_prompt += f"<|user|>\n{prompt}<|end|>\n<|assistant|>\n"
|
107 |
|
108 |
logging.info(f"Generating response (MaxL: {max_length}, Temp: {temperature}, TopP: {top_p}, TopK: {top_k})")
|
@@ -127,11 +126,11 @@ def generate_response(prompt, history, max_length, temperature, top_p, top_k):
|
|
127 |
|
128 |
start_time = time.time()
|
129 |
generator = og.Generator(model, params)
|
130 |
-
response_text = ""
|
131 |
model_status = "Generating..." # Update status indicator
|
132 |
logging.info("Streaming response...")
|
133 |
|
134 |
first_token_time = None
|
|
|
135 |
while not generator.is_done():
|
136 |
generator.compute_logits()
|
137 |
generator.generate_next_token()
|
@@ -144,45 +143,83 @@ def generate_response(prompt, history, max_length, temperature, top_p, top_k):
|
|
144 |
break
|
145 |
|
146 |
decoded_chunk = tokenizer.decode([next_token])
|
|
|
147 |
|
148 |
# Handle potential decoding issues or special tokens if necessary
|
149 |
-
# (e.g., some models might output "<|end|>" which you might want to strip)
|
150 |
if decoded_chunk == "<|end|>": # Example: Stop if assistant outputs end token explicitly
|
151 |
logging.info("Assistant explicitly generated <|end|> token.")
|
152 |
break
|
|
|
|
|
|
|
153 |
|
154 |
-
|
155 |
-
yield
|
156 |
|
157 |
end_time = time.time()
|
158 |
ttft = (first_token_time - start_time) * 1000 if first_token_time else -1
|
159 |
total_time = end_time - start_time
|
160 |
-
token_count = len(tokenizer.decode(generator.get_output_sequences()[0])) # Approx token count
|
161 |
tps = (token_count / total_time) if total_time > 0 else 0
|
162 |
|
163 |
-
logging.info(f"Generation complete. Tokens:
|
164 |
model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})" # Reset status
|
165 |
|
166 |
-
# Final yield with the complete text
|
167 |
-
yield response_text.strip()
|
168 |
-
|
169 |
except Exception as e:
|
170 |
logging.error(f"Error during generation: {e}", exc_info=True)
|
171 |
model_status = f"Error during generation: {e}"
|
172 |
-
yield f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
def clear_chat():
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
# --- Initialize Model on App Start ---
|
179 |
-
# Wrap in try-except to allow Gradio UI to potentially load even if model fails
|
180 |
try:
|
181 |
initialize_model()
|
182 |
except Exception as e:
|
183 |
print(f"FATAL: Model initialization failed: {e}")
|
184 |
-
model_status
|
185 |
-
|
186 |
|
187 |
# --- Gradio Interface ---
|
188 |
logging.info("Creating Gradio Interface...")
|
@@ -193,10 +230,6 @@ theme = gr.themes.Soft(
|
|
193 |
secondary_hue="sky",
|
194 |
neutral_hue="slate",
|
195 |
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
|
196 |
-
).set(
|
197 |
-
# Customize specific component styles if needed
|
198 |
-
# button_primary_background_fill="*primary_500",
|
199 |
-
# button_primary_background_fill_hover="*primary_400",
|
200 |
)
|
201 |
|
202 |
with gr.Blocks(theme=theme, title="Phi-4 Mini ONNX Chat") as demo:
|
@@ -206,10 +239,11 @@ with gr.Blocks(theme=theme, title="Phi-4 Mini ONNX Chat") as demo:
|
|
206 |
gr.Markdown(f"""
|
207 |
# Phi-4 Mini Instruct ONNX Chat 🤖
|
208 |
Interact with the quantized `{model_variant_name}` version of [`{MODEL_REPO}`]({HF_MODEL_URL})
|
209 |
-
running efficiently via [`onnxruntime-genai`]({ORT_GENAI_URL}).
|
210 |
""")
|
211 |
with gr.Column(scale=1, min_width=150):
|
212 |
gr.Image(HF_LOGO_URL, elem_id="hf-logo", show_label=False, show_download_button=False, container=False, height=50)
|
|
|
213 |
model_status_text = gr.Textbox(value=model_status, label="Model Status", interactive=False, max_lines=2)
|
214 |
|
215 |
|
@@ -222,7 +256,7 @@ with gr.Blocks(theme=theme, title="Phi-4 Mini ONNX Chat") as demo:
|
|
222 |
height=600,
|
223 |
layout="bubble",
|
224 |
bubble_full_width=False,
|
225 |
-
avatar_images=(None,
|
226 |
)
|
227 |
with gr.Row():
|
228 |
prompt_input = gr.Textbox(
|
@@ -231,8 +265,10 @@ with gr.Blocks(theme=theme, title="Phi-4 Mini ONNX Chat") as demo:
|
|
231 |
lines=4,
|
232 |
scale=9 # Make textbox wider
|
233 |
)
|
234 |
-
|
235 |
-
|
|
|
|
|
236 |
|
237 |
|
238 |
# Settings Column
|
@@ -246,37 +282,51 @@ with gr.Blocks(theme=theme, title="Phi-4 Mini ONNX Chat") as demo:
|
|
246 |
|
247 |
gr.Markdown("---") # Separator
|
248 |
gr.Markdown("ℹ️ **Note:** Uses Phi-4 instruction format: \n`<|user|>\nPROMPT<|end|>\n<|assistant|>`")
|
|
|
249 |
|
250 |
|
251 |
# Event Listeners (Connecting UI components to functions)
|
252 |
|
253 |
-
# Define
|
254 |
-
|
255 |
-
|
256 |
-
#
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
)
|
263 |
-
|
264 |
-
|
265 |
-
fn=
|
266 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
|
267 |
outputs=[chatbot],
|
268 |
-
|
269 |
)
|
270 |
|
271 |
# Clear button action
|
272 |
clear_button.click(
|
273 |
fn=clear_chat,
|
274 |
inputs=None,
|
275 |
-
outputs=[prompt_input, chatbot], # Clear
|
276 |
-
queue=False #
|
277 |
)
|
278 |
|
279 |
# Launch the Gradio app
|
280 |
logging.info("Launching Gradio App...")
|
281 |
-
demo.queue() # Enable queuing
|
282 |
-
demo.launch(show_error=True, max_threads=40)
|
|
|
13 |
MODEL_REPO = "microsoft/Phi-4-mini-instruct-onnx"
|
14 |
|
15 |
# --- Defaulting to CPU INT4 for Hugging Face Spaces ---
|
16 |
+
EXECUTION_PROVIDER = "cpu" # Corresponds to installing 'onnxruntime-genai'
|
17 |
MODEL_VARIANT_GLOB = "cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/*"
|
|
|
18 |
# --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
19 |
|
20 |
# --- (Optional) Alternative GPU Configuration ---
|
21 |
+
# EXECUTION_PROVIDER = "cuda" # Corresponds to installing 'onnxruntime-genai-cuda'
|
22 |
# MODEL_VARIANT_GLOB = "gpu/gpu-int4-rtn-block-32/*"
|
|
|
23 |
# --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
|
24 |
|
25 |
LOCAL_MODEL_DIR = "./phi4-mini-onnx-model" # Directory within the Space
|
26 |
HF_LOGO_URL = "https://huggingface.co/front/assets/huggingface_logo-noborder.svg"
|
27 |
HF_MODEL_URL = f"https://huggingface.co/{MODEL_REPO}"
|
28 |
ORT_GENAI_URL = "https://github.com/microsoft/onnxruntime-genai"
|
29 |
+
PHI_LOGO_URL = "https://microsoft.github.io/phi/assets/img/logo-final.png" # Phi logo for bot avatar
|
30 |
|
31 |
# Global variables for model and tokenizer
|
32 |
model = None
|
|
|
67 |
model_status = f"Loading model ({EXECUTION_PROVIDER.upper()})..."
|
68 |
logging.info(model_status)
|
69 |
try:
|
70 |
+
# FIX: Remove explicit DeviceType. Let the library infer or use string if needed by constructor.
|
71 |
+
# The simple constructor often works by detecting the installed ORT package.
|
72 |
+
logging.info(f"Using provider based on installed package (expecting: {EXECUTION_PROVIDER})")
|
73 |
+
model = og.Model(model_path) # Simplified model loading
|
|
|
|
|
|
|
|
|
|
|
74 |
tokenizer = og.Tokenizer(model)
|
75 |
model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})"
|
76 |
logging.info("Model and Tokenizer loaded successfully.")
|
77 |
+
except AttributeError as ae:
|
78 |
+
logging.error(f"AttributeError during model/tokenizer init: {ae}", exc_info=True)
|
79 |
+
logging.error("This might indicate an installation issue or version incompatibility with onnxruntime_genai.")
|
80 |
+
model_status = f"Init Error: {ae}"
|
81 |
+
raise RuntimeError(f"Failed to initialize model/tokenizer: {ae}")
|
82 |
except Exception as e:
|
83 |
logging.error(f"Error loading model or tokenizer: {e}", exc_info=True)
|
84 |
model_status = f"Error loading model: {e}"
|
85 |
raise RuntimeError(f"Failed to load model: {e}")
|
86 |
|
87 |
+
# --- Generation Function (Core Logic) ---
|
88 |
+
def generate_response_stream(prompt, history, max_length, temperature, top_p, top_k):
|
89 |
+
"""Generates a response using the Phi-4 ONNX model, yielding text chunks."""
|
90 |
global model_status
|
91 |
if not model or not tokenizer:
|
92 |
model_status = "Error: Model not initialized!"
|
93 |
yield "Error: Model not initialized. Please check logs."
|
94 |
return
|
|
|
|
|
|
|
95 |
|
96 |
# --- Prepare the prompt using the Phi-4 instruct format ---
|
97 |
full_prompt = ""
|
98 |
+
# History format is [[user1, bot1], [user2, bot2], ...]
|
99 |
+
for user_msg, assistant_msg in history: # history here is *before* the current prompt
|
100 |
full_prompt += f"<|user|>\n{user_msg}<|end|>\n"
|
101 |
+
if assistant_msg: # Append assistant message only if it exists
|
102 |
full_prompt += f"<|assistant|>\n{assistant_msg}<|end|>\n"
|
103 |
+
|
104 |
+
# Add the current user prompt and the trigger for the assistant's response
|
105 |
full_prompt += f"<|user|>\n{prompt}<|end|>\n<|assistant|>\n"
|
106 |
|
107 |
logging.info(f"Generating response (MaxL: {max_length}, Temp: {temperature}, TopP: {top_p}, TopK: {top_k})")
|
|
|
126 |
|
127 |
start_time = time.time()
|
128 |
generator = og.Generator(model, params)
|
|
|
129 |
model_status = "Generating..." # Update status indicator
|
130 |
logging.info("Streaming response...")
|
131 |
|
132 |
first_token_time = None
|
133 |
+
token_count = 0
|
134 |
while not generator.is_done():
|
135 |
generator.compute_logits()
|
136 |
generator.generate_next_token()
|
|
|
143 |
break
|
144 |
|
145 |
decoded_chunk = tokenizer.decode([next_token])
|
146 |
+
token_count += 1
|
147 |
|
148 |
# Handle potential decoding issues or special tokens if necessary
|
|
|
149 |
if decoded_chunk == "<|end|>": # Example: Stop if assistant outputs end token explicitly
|
150 |
logging.info("Assistant explicitly generated <|end|> token.")
|
151 |
break
|
152 |
+
if decoded_chunk == tokenizer.eos_token: # Check against tokenizer's eos_token string
|
153 |
+
logging.info("Assistant generated EOS token string.")
|
154 |
+
break
|
155 |
|
156 |
+
|
157 |
+
yield decoded_chunk # Yield just the text chunk
|
158 |
|
159 |
end_time = time.time()
|
160 |
ttft = (first_token_time - start_time) * 1000 if first_token_time else -1
|
161 |
total_time = end_time - start_time
|
|
|
162 |
tps = (token_count / total_time) if total_time > 0 else 0
|
163 |
|
164 |
+
logging.info(f"Generation complete. Tokens: {token_count}, Total Time: {total_time:.2f}s, TTFT: {ttft:.2f}ms, TPS: {tps:.2f}")
|
165 |
model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})" # Reset status
|
166 |
|
|
|
|
|
|
|
167 |
except Exception as e:
|
168 |
logging.error(f"Error during generation: {e}", exc_info=True)
|
169 |
model_status = f"Error during generation: {e}"
|
170 |
+
yield f"\n\nSorry, an error occurred during generation: {e}" # Yield error message
|
171 |
+
|
172 |
+
# --- Gradio Interface Functions ---
|
173 |
+
|
174 |
+
# 1. Function to add user message to chat history
|
175 |
+
def add_user_message(user_message, history):
|
176 |
+
"""Adds the user's message to the chat history for display."""
|
177 |
+
if not user_message:
|
178 |
+
raise gr.Error("Please enter a message.")
|
179 |
+
history = history + [[user_message, None]] # Append user message, leave bot response None
|
180 |
+
return "", history # Clear input textbox, return updated history
|
181 |
+
|
182 |
+
# 2. Function to handle bot response generation and streaming
|
183 |
+
def generate_bot_response(history, max_length, temperature, top_p, top_k):
|
184 |
+
"""Generates the bot's response based on the history and streams it."""
|
185 |
+
if not history or history[-1][1] is not None:
|
186 |
+
# This shouldn't happen in the normal flow, but good practice
|
187 |
+
return history
|
188 |
+
|
189 |
+
user_prompt = history[-1][0] # Get the latest user prompt
|
190 |
+
# Prepare history for the model (all turns *before* the current one)
|
191 |
+
model_history = history[:-1]
|
192 |
+
|
193 |
+
# Get the generator stream
|
194 |
+
response_stream = generate_response_stream(
|
195 |
+
user_prompt, model_history, max_length, temperature, top_p, top_k
|
196 |
+
)
|
197 |
|
198 |
+
# Stream the response chunks back to Gradio
|
199 |
+
history[-1][1] = "" # Initialize the bot response string
|
200 |
+
for chunk in response_stream:
|
201 |
+
history[-1][1] += chunk # Append the chunk to the bot's message in history
|
202 |
+
yield history # Yield the *entire updated history* back to Chatbot
|
203 |
+
|
204 |
+
# 3. Function to clear chat
|
205 |
def clear_chat():
|
206 |
+
"""Clears the chat history and input."""
|
207 |
+
global model_status # Keep model status indicator updated
|
208 |
+
# Reset status only if it was showing an error from generation maybe?
|
209 |
+
# Or just always reset to Ready if model is loaded.
|
210 |
+
if model and tokenizer:
|
211 |
+
model_status = f"Model Ready ({EXECUTION_PROVIDER.upper()} / {model_variant_name})"
|
212 |
+
# Keep the original error if init failed
|
213 |
+
return None, [], model_status # Clear Textbox, Chatbot history, and update status display
|
214 |
+
|
215 |
|
216 |
# --- Initialize Model on App Start ---
|
|
|
217 |
try:
|
218 |
initialize_model()
|
219 |
except Exception as e:
|
220 |
print(f"FATAL: Model initialization failed: {e}")
|
221 |
+
# model_status is already set inside initialize_model on error
|
222 |
+
|
223 |
|
224 |
# --- Gradio Interface ---
|
225 |
logging.info("Creating Gradio Interface...")
|
|
|
230 |
secondary_hue="sky",
|
231 |
neutral_hue="slate",
|
232 |
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
|
|
|
|
|
|
|
|
|
233 |
)
|
234 |
|
235 |
with gr.Blocks(theme=theme, title="Phi-4 Mini ONNX Chat") as demo:
|
|
|
239 |
gr.Markdown(f"""
|
240 |
# Phi-4 Mini Instruct ONNX Chat 🤖
|
241 |
Interact with the quantized `{model_variant_name}` version of [`{MODEL_REPO}`]({HF_MODEL_URL})
|
242 |
+
running efficiently via [`onnxruntime-genai`]({ORT_GENAI_URL}) ({EXECUTION_PROVIDER.upper()}).
|
243 |
""")
|
244 |
with gr.Column(scale=1, min_width=150):
|
245 |
gr.Image(HF_LOGO_URL, elem_id="hf-logo", show_label=False, show_download_button=False, container=False, height=50)
|
246 |
+
# Use the global model_status variable for the initial value
|
247 |
model_status_text = gr.Textbox(value=model_status, label="Model Status", interactive=False, max_lines=2)
|
248 |
|
249 |
|
|
|
256 |
height=600,
|
257 |
layout="bubble",
|
258 |
bubble_full_width=False,
|
259 |
+
avatar_images=(None, PHI_LOGO_URL) # (user, bot)
|
260 |
)
|
261 |
with gr.Row():
|
262 |
prompt_input = gr.Textbox(
|
|
|
265 |
lines=4,
|
266 |
scale=9 # Make textbox wider
|
267 |
)
|
268 |
+
# Combine Send and Clear Buttons Vertically? Or keep side-by-side? Side-by-side looks better
|
269 |
+
with gr.Column(scale=1, min_width=120):
|
270 |
+
submit_button = gr.Button("Send", variant="primary", size="lg")
|
271 |
+
clear_button = gr.Button("🗑️ Clear Chat", variant="secondary")
|
272 |
|
273 |
|
274 |
# Settings Column
|
|
|
282 |
|
283 |
gr.Markdown("---") # Separator
|
284 |
gr.Markdown("ℹ️ **Note:** Uses Phi-4 instruction format: \n`<|user|>\nPROMPT<|end|>\n<|assistant|>`")
|
285 |
+
gr.Markdown(f"Running on **{EXECUTION_PROVIDER.upper()}**.")
|
286 |
|
287 |
|
288 |
# Event Listeners (Connecting UI components to functions)
|
289 |
|
290 |
+
# Define inputs for the bot response generator
|
291 |
+
bot_response_inputs = [chatbot, max_length, temperature, top_p, top_k]
|
292 |
+
|
293 |
+
# Chain actions:
|
294 |
+
# 1. User presses Enter or clicks Send
|
295 |
+
# 2. `add_user_message` updates history, clears input
|
296 |
+
# 3. `generate_bot_response` streams bot reply into history
|
297 |
+
submit_event = prompt_input.submit(
|
298 |
+
fn=add_user_message,
|
299 |
+
inputs=[prompt_input, chatbot],
|
300 |
+
outputs=[prompt_input, chatbot], # Update textbox and history
|
301 |
+
queue=False, # Submit is fast
|
302 |
+
).then(
|
303 |
+
fn=generate_bot_response, # Call the generator function
|
304 |
+
inputs=bot_response_inputs, # Pass history and params
|
305 |
+
outputs=[chatbot], # Stream output directly to chatbot
|
306 |
+
api_name="chat" # Optional: name for API usage
|
307 |
)
|
308 |
+
|
309 |
+
submit_button.click( # Mirror actions for button click
|
310 |
+
fn=add_user_message,
|
311 |
+
inputs=[prompt_input, chatbot],
|
312 |
+
outputs=[prompt_input, chatbot],
|
313 |
+
queue=False,
|
314 |
+
).then(
|
315 |
+
fn=generate_bot_response,
|
316 |
+
inputs=bot_response_inputs,
|
317 |
outputs=[chatbot],
|
318 |
+
api_name=False # Don't expose button click as separate API endpoint
|
319 |
)
|
320 |
|
321 |
# Clear button action
|
322 |
clear_button.click(
|
323 |
fn=clear_chat,
|
324 |
inputs=None,
|
325 |
+
outputs=[prompt_input, chatbot, model_status_text], # Clear input, chat, and update status text
|
326 |
+
queue=False # Clearing is fast
|
327 |
)
|
328 |
|
329 |
# Launch the Gradio app
|
330 |
logging.info("Launching Gradio App...")
|
331 |
+
demo.queue(max_size=20) # Enable queuing with a limit
|
332 |
+
demo.launch(show_error=True, max_threads=40)
|