Update app.py
Browse files
app.py
CHANGED
@@ -163,7 +163,7 @@ class TextClassifier:
|
|
163 |
}
|
164 |
|
165 |
def detailed_scan(self, text: str) -> Dict:
|
166 |
-
"""
|
167 |
if not text.strip():
|
168 |
return {
|
169 |
'sentence_predictions': [],
|
@@ -180,22 +180,21 @@ class TextClassifier:
|
|
180 |
if not sentences:
|
181 |
return {}
|
182 |
|
183 |
-
#
|
184 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
185 |
-
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0, 'appearances': 0} for i in range(len(sentences))}
|
186 |
|
187 |
-
#
|
188 |
-
|
189 |
-
|
190 |
|
191 |
-
#
|
192 |
-
batch_size =
|
193 |
for i in range(0, len(windows), batch_size):
|
194 |
batch_end = min(i + batch_size, len(windows))
|
195 |
batch_windows = windows[i:batch_end]
|
196 |
batch_indices = window_sentence_indices[i:batch_end]
|
197 |
|
198 |
-
# Process batch
|
199 |
inputs = self.tokenizer(
|
200 |
batch_windows,
|
201 |
truncation=True,
|
@@ -208,46 +207,54 @@ class TextClassifier:
|
|
208 |
outputs = self.model(**inputs)
|
209 |
probs = F.softmax(outputs.logits, dim=-1)
|
210 |
|
211 |
-
#
|
212 |
for window_idx, indices in enumerate(batch_indices):
|
213 |
center_idx = len(indices) // 2
|
|
|
|
|
|
|
|
|
214 |
window_human_prob = probs[window_idx][1].item()
|
215 |
window_ai_prob = probs[window_idx][0].item()
|
216 |
|
217 |
-
# Update scores for all sentences in this window
|
218 |
for pos, sent_idx in enumerate(indices):
|
|
|
219 |
weight = center_weight if pos == center_idx else edge_weight
|
|
|
220 |
sentence_scores[sent_idx]['human_prob'] += weight * window_human_prob
|
221 |
sentence_scores[sent_idx]['ai_prob'] += weight * window_ai_prob
|
222 |
-
sentence_scores[sent_idx]['appearances'] += weight
|
223 |
|
|
|
224 |
del inputs, outputs, probs
|
225 |
if torch.cuda.is_available():
|
226 |
torch.cuda.empty_cache()
|
227 |
|
228 |
-
# Calculate final predictions
|
229 |
sentence_predictions = []
|
230 |
-
prev_pred = None
|
231 |
for i in range(len(sentences)):
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
|
252 |
sentence_predictions.append({
|
253 |
'sentence': sentences[i],
|
@@ -256,7 +263,6 @@ class TextClassifier:
|
|
256 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
257 |
'confidence': max(human_prob, ai_prob)
|
258 |
})
|
259 |
-
prev_pred = current_pred
|
260 |
|
261 |
return {
|
262 |
'sentence_predictions': sentence_predictions,
|
@@ -264,7 +270,6 @@ class TextClassifier:
|
|
264 |
'full_text': text,
|
265 |
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
266 |
}
|
267 |
-
|
268 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
269 |
"""Format predictions as HTML with color-coding."""
|
270 |
html_parts = []
|
|
|
163 |
}
|
164 |
|
165 |
def detailed_scan(self, text: str) -> Dict:
|
166 |
+
"""Perform a detailed scan with sentence-level analysis and improved boundary handling."""
|
167 |
if not text.strip():
|
168 |
return {
|
169 |
'sentence_predictions': [],
|
|
|
180 |
if not sentences:
|
181 |
return {}
|
182 |
|
183 |
+
# Create centered windows for each sentence
|
184 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
|
|
185 |
|
186 |
+
# Track scores for each sentence
|
187 |
+
sentence_appearances = {i: 0 for i in range(len(sentences))}
|
188 |
+
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0} for i in range(len(sentences))}
|
189 |
|
190 |
+
# Increased batch size and process windows more efficiently
|
191 |
+
batch_size = 32 # Increased from 16 to 32
|
192 |
for i in range(0, len(windows), batch_size):
|
193 |
batch_end = min(i + batch_size, len(windows))
|
194 |
batch_windows = windows[i:batch_end]
|
195 |
batch_indices = window_sentence_indices[i:batch_end]
|
196 |
|
197 |
+
# Process batch more efficiently
|
198 |
inputs = self.tokenizer(
|
199 |
batch_windows,
|
200 |
truncation=True,
|
|
|
207 |
outputs = self.model(**inputs)
|
208 |
probs = F.softmax(outputs.logits, dim=-1)
|
209 |
|
210 |
+
# Attribute predictions with center-weighted approach
|
211 |
for window_idx, indices in enumerate(batch_indices):
|
212 |
center_idx = len(indices) // 2
|
213 |
+
center_weight = 0.7 # Higher weight for center sentence
|
214 |
+
edge_weight = 0.3 / (len(indices) - 1) # Distribute remaining weight
|
215 |
+
|
216 |
+
# Process probabilities once per window
|
217 |
window_human_prob = probs[window_idx][1].item()
|
218 |
window_ai_prob = probs[window_idx][0].item()
|
219 |
|
|
|
220 |
for pos, sent_idx in enumerate(indices):
|
221 |
+
# Apply higher weight to center sentence
|
222 |
weight = center_weight if pos == center_idx else edge_weight
|
223 |
+
sentence_appearances[sent_idx] += weight
|
224 |
sentence_scores[sent_idx]['human_prob'] += weight * window_human_prob
|
225 |
sentence_scores[sent_idx]['ai_prob'] += weight * window_ai_prob
|
|
|
226 |
|
227 |
+
# Clean up GPU memory more aggressively
|
228 |
del inputs, outputs, probs
|
229 |
if torch.cuda.is_available():
|
230 |
torch.cuda.empty_cache()
|
231 |
|
232 |
+
# Calculate final predictions with boundary smoothing
|
233 |
sentence_predictions = []
|
|
|
234 |
for i in range(len(sentences)):
|
235 |
+
if sentence_appearances[i] > 0:
|
236 |
+
human_prob = sentence_scores[i]['human_prob'] / sentence_appearances[i]
|
237 |
+
ai_prob = sentence_scores[i]['ai_prob'] / sentence_appearances[i]
|
238 |
+
|
239 |
+
# Apply minimal smoothing at prediction boundaries
|
240 |
+
if i > 0 and i < len(sentences) - 1:
|
241 |
+
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
242 |
+
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
243 |
+
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
244 |
+
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
245 |
|
246 |
+
# Check if we're at a prediction boundary
|
247 |
+
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
248 |
+
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
249 |
+
next_pred = 'human' if next_human > next_ai else 'ai'
|
250 |
+
|
251 |
+
if current_pred != prev_pred or current_pred != next_pred:
|
252 |
+
# Small adjustment at boundaries
|
253 |
+
smooth_factor = 0.1
|
254 |
+
human_prob = (human_prob * (1 - smooth_factor) +
|
255 |
+
(prev_human + next_human) * smooth_factor / 2)
|
256 |
+
ai_prob = (ai_prob * (1 - smooth_factor) +
|
257 |
+
(prev_ai + next_ai) * smooth_factor / 2)
|
258 |
|
259 |
sentence_predictions.append({
|
260 |
'sentence': sentences[i],
|
|
|
263 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
264 |
'confidence': max(human_prob, ai_prob)
|
265 |
})
|
|
|
266 |
|
267 |
return {
|
268 |
'sentence_predictions': sentence_predictions,
|
|
|
270 |
'full_text': text,
|
271 |
'overall_prediction': self.aggregate_predictions(sentence_predictions)
|
272 |
}
|
|
|
273 |
def format_predictions_html(self, sentence_predictions: List[Dict]) -> str:
|
274 |
"""Format predictions as HTML with color-coding."""
|
275 |
html_parts = []
|