Update app.py
Browse files
app.py
CHANGED
@@ -163,7 +163,7 @@ class TextClassifier:
|
|
163 |
}
|
164 |
|
165 |
def detailed_scan(self, text: str) -> Dict:
|
166 |
-
"""
|
167 |
if not text.strip():
|
168 |
return {
|
169 |
'sentence_predictions': [],
|
@@ -180,18 +180,22 @@ class TextClassifier:
|
|
180 |
if not sentences:
|
181 |
return {}
|
182 |
|
183 |
-
#
|
184 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
|
|
185 |
|
186 |
-
#
|
187 |
-
|
188 |
-
|
189 |
|
190 |
-
# Process windows in batches
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
194 |
|
|
|
195 |
inputs = self.tokenizer(
|
196 |
batch_windows,
|
197 |
truncation=True,
|
@@ -204,45 +208,46 @@ class TextClassifier:
|
|
204 |
outputs = self.model(**inputs)
|
205 |
probs = F.softmax(outputs.logits, dim=-1)
|
206 |
|
207 |
-
#
|
208 |
for window_idx, indices in enumerate(batch_indices):
|
209 |
center_idx = len(indices) // 2
|
210 |
-
|
211 |
-
|
212 |
|
|
|
213 |
for pos, sent_idx in enumerate(indices):
|
214 |
-
# Apply higher weight to center sentence
|
215 |
weight = center_weight if pos == center_idx else edge_weight
|
216 |
-
|
217 |
-
sentence_scores[sent_idx]['
|
218 |
-
sentence_scores[sent_idx]['
|
219 |
|
220 |
-
|
|
|
|
|
|
|
|
|
221 |
sentence_predictions = []
|
|
|
222 |
for i in range(len(sentences)):
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
prev_human = sentence_scores[i-1]['human_prob'] / sentence_appearances[i-1]
|
230 |
-
prev_ai = sentence_scores[i-1]['ai_prob'] / sentence_appearances[i-1]
|
231 |
-
next_human = sentence_scores[i+1]['human_prob'] / sentence_appearances[i+1]
|
232 |
-
next_ai = sentence_scores[i+1]['ai_prob'] / sentence_appearances[i+1]
|
233 |
-
|
234 |
-
# Check if we're at a prediction boundary
|
235 |
-
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
236 |
-
prev_pred = 'human' if prev_human > prev_ai else 'ai'
|
237 |
-
next_pred = 'human' if next_human > next_ai else 'ai'
|
238 |
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
|
|
|
|
|
|
246 |
|
247 |
sentence_predictions.append({
|
248 |
'sentence': sentences[i],
|
@@ -251,6 +256,7 @@ class TextClassifier:
|
|
251 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
252 |
'confidence': max(human_prob, ai_prob)
|
253 |
})
|
|
|
254 |
|
255 |
return {
|
256 |
'sentence_predictions': sentence_predictions,
|
|
|
163 |
}
|
164 |
|
165 |
def detailed_scan(self, text: str) -> Dict:
|
166 |
+
"""Optimized detailed scan with sentence-level analysis."""
|
167 |
if not text.strip():
|
168 |
return {
|
169 |
'sentence_predictions': [],
|
|
|
180 |
if not sentences:
|
181 |
return {}
|
182 |
|
183 |
+
# Pre-calculate window information
|
184 |
windows, window_sentence_indices = self.processor.create_centered_windows(sentences, WINDOW_SIZE)
|
185 |
+
sentence_scores = {i: {'human_prob': 0.0, 'ai_prob': 0.0, 'appearances': 0} for i in range(len(sentences))}
|
186 |
|
187 |
+
# Calculate weights once
|
188 |
+
center_weight = 0.7
|
189 |
+
edge_weight = 0.3 / (WINDOW_SIZE - 1) if WINDOW_SIZE > 1 else 0.3
|
190 |
|
191 |
+
# Process all windows in larger batches
|
192 |
+
batch_size = min(32, len(windows)) # Increased batch size
|
193 |
+
for i in range(0, len(windows), batch_size):
|
194 |
+
batch_end = min(i + batch_size, len(windows))
|
195 |
+
batch_windows = windows[i:batch_end]
|
196 |
+
batch_indices = window_sentence_indices[i:batch_end]
|
197 |
|
198 |
+
# Process batch
|
199 |
inputs = self.tokenizer(
|
200 |
batch_windows,
|
201 |
truncation=True,
|
|
|
208 |
outputs = self.model(**inputs)
|
209 |
probs = F.softmax(outputs.logits, dim=-1)
|
210 |
|
211 |
+
# Process each window in the batch
|
212 |
for window_idx, indices in enumerate(batch_indices):
|
213 |
center_idx = len(indices) // 2
|
214 |
+
window_human_prob = probs[window_idx][1].item()
|
215 |
+
window_ai_prob = probs[window_idx][0].item()
|
216 |
|
217 |
+
# Update scores for all sentences in this window
|
218 |
for pos, sent_idx in enumerate(indices):
|
|
|
219 |
weight = center_weight if pos == center_idx else edge_weight
|
220 |
+
sentence_scores[sent_idx]['human_prob'] += weight * window_human_prob
|
221 |
+
sentence_scores[sent_idx]['ai_prob'] += weight * window_ai_prob
|
222 |
+
sentence_scores[sent_idx]['appearances'] += weight
|
223 |
|
224 |
+
del inputs, outputs, probs
|
225 |
+
if torch.cuda.is_available():
|
226 |
+
torch.cuda.empty_cache()
|
227 |
+
|
228 |
+
# Calculate final predictions
|
229 |
sentence_predictions = []
|
230 |
+
prev_pred = None
|
231 |
for i in range(len(sentences)):
|
232 |
+
scores = sentence_scores[i]
|
233 |
+
if scores['appearances'] > 0:
|
234 |
+
# Calculate base probabilities
|
235 |
+
human_prob = scores['human_prob'] / scores['appearances']
|
236 |
+
ai_prob = scores['ai_prob'] / scores['appearances']
|
237 |
+
current_pred = 'human' if human_prob > ai_prob else 'ai'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
+
# Only apply smoothing at actual prediction boundaries
|
240 |
+
if i > 0 and prev_pred and current_pred != prev_pred:
|
241 |
+
# Simple smoothing only at boundaries
|
242 |
+
smooth_factor = 0.1
|
243 |
+
if i < len(sentences) - 1:
|
244 |
+
next_scores = sentence_scores[i + 1]
|
245 |
+
next_human = next_scores['human_prob'] / next_scores['appearances']
|
246 |
+
next_ai = next_scores['ai_prob'] / next_scores['appearances']
|
247 |
+
|
248 |
+
# Apply minimal smoothing
|
249 |
+
human_prob = human_prob * (1 - smooth_factor) + next_human * smooth_factor
|
250 |
+
ai_prob = ai_prob * (1 - smooth_factor) + next_ai * smooth_factor
|
251 |
|
252 |
sentence_predictions.append({
|
253 |
'sentence': sentences[i],
|
|
|
256 |
'prediction': 'human' if human_prob > ai_prob else 'ai',
|
257 |
'confidence': max(human_prob, ai_prob)
|
258 |
})
|
259 |
+
prev_pred = current_pred
|
260 |
|
261 |
return {
|
262 |
'sentence_predictions': sentence_predictions,
|