smartdocai / app.py
FatimaGr's picture
translate
4210dc2 verified
raw
history blame
5.75 kB
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer, MarianMTModel, MarianTokenizer
import shutil
#
import os
import logging
from PyPDF2 import PdfReader
import docx
from PIL import Image
import openpyxl # 📌 Pour lire les fichiers Excel (.xlsx)
from pptx import Presentation
import fitz # PyMuPDF
import io
from docx import Document
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import re
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM
from fastapi.responses import FileResponse
import os
from fastapi.middleware.cors import CORSMiddleware
import matplotlib
matplotlib.use('Agg')
import re
import torch
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from transformers import AutoTokenizer, AutoModelForCausalLM
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import FileResponse
import os
from fastapi.middleware.cors import CORSMiddleware
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer
import shutil
import os
import logging
from fastapi.middleware.cors import CORSMiddleware
from PyPDF2 import PdfReader
import docx
from PIL import Image # Pour ouvrir les images avant analyse
from transformers import MarianMTModel, MarianTokenizer
import os
import fitz
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
import logging
import openpyxl
# Configuration du logging
logging.basicConfig(level=logging.INFO)
app = FastAPI()
# Configuration CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
UPLOAD_DIR = "uploads"
os.makedirs(UPLOAD_DIR, exist_ok=True)
#traduction-----------------------------------------------------------------------------------------------------------
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model_name = "facebook/m2m100_418M"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
# Fonction pour extraire le texte
def extract_text_from_pdf(file):
doc = fitz.open(stream=file.file.read(), filetype="pdf")
return "\n".join([page.get_text() for page in doc]).strip()
def extract_text_from_docx(file):
doc = Document(io.BytesIO(file.file.read()))
return "\n".join([para.text for para in doc.paragraphs]).strip()
def extract_text_from_pptx(file):
prs = Presentation(io.BytesIO(file.file.read()))
return "\n".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]).strip()
def extract_text_from_excel(file):
wb = openpyxl.load_workbook(io.BytesIO(file.file.read()), data_only=True)
text = [str(cell) for sheet in wb.worksheets for row in sheet.iter_rows(values_only=True) for cell in row if cell]
return "\n".join(text).strip()
@app.post("/translate/")
async def translate_document(file: UploadFile = File(...), target_lang: str = Form(...)):
"""API pour traduire un document."""
try:
logging.info(f"📥 Fichier reçu : {file.filename}")
logging.info(f"🌍 Langue cible reçue : {target_lang}")
if model is None or tokenizer is None:
return JSONResponse(status_code=500, content={"error": "Modèle de traduction non chargé"})
# Extraction du texte
if file.filename.endswith(".pdf"):
text = extract_text_from_pdf(file)
elif file.filename.endswith(".docx"):
text = extract_text_from_docx(file)
elif file.filename.endswith(".pptx"):
text = extract_text_from_pptx(file)
elif file.filename.endswith(".xlsx"):
text = extract_text_from_excel(file)
else:
return JSONResponse(status_code=400, content={"error": "Format non supporté"})
logging.info(f"📜 Texte extrait : {text[:50]}...")
if not text:
return JSONResponse(status_code=400, content={"error": "Aucun texte trouvé dans le document"})
# Vérifier si la langue cible est supportée
target_lang_id = tokenizer.get_lang_id(target_lang)
if target_lang_id is None:
return JSONResponse(
status_code=400,
content={"error": f"Langue cible '{target_lang}' non supportée. Langues disponibles : {list(tokenizer.lang_code_to_id.keys())}"}
)
# Traduction
tokenizer.src_lang = "fr"
encoded_text = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
logging.info(f"🔍 ID de la langue cible : {target_lang_id}")
generated_tokens = model.generate(**encoded_text, forced_bos_token_id=target_lang_id)
translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
logging.info(f"✅ Traduction réussie : {translated_text[:50]}...")
return {"translated_text": translated_text}
except Exception as e:
logging.error(f"❌ Erreur lors de la traduction : {e}")
return JSONResponse(status_code=500, content={"error": "Échec de la traduction"})
# Servir les fichiers statiques (HTML, CSS, JS)
app.mount("/static", StaticFiles(directory="static", html=True), name="static")
@app.get("/")
async def root():
return RedirectResponse(url="/static/principal.html")