File size: 5,752 Bytes
4210dc2
 
845d6a6
4210dc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845d6a6
 
 
4210dc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
845d6a6
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer, MarianMTModel, MarianTokenizer
import shutil
#
import os
import logging
from PyPDF2 import PdfReader
import docx
from PIL import Image
import openpyxl  # 📌 Pour lire les fichiers Excel (.xlsx)
from pptx import Presentation
import fitz  # PyMuPDF
import io
from docx import Document
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import re
import pandas as pd
from transformers import AutoTokenizer, AutoModelForCausalLM
from fastapi.responses import FileResponse
import os
from fastapi.middleware.cors import CORSMiddleware
import matplotlib
matplotlib.use('Agg')

import re
import torch
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from transformers import AutoTokenizer, AutoModelForCausalLM
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import FileResponse
import os
from fastapi.middleware.cors import CORSMiddleware
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer
import shutil
import os
import logging
from fastapi.middleware.cors import CORSMiddleware
from PyPDF2 import PdfReader
import docx
from PIL import Image  # Pour ouvrir les images avant analyse
from transformers import MarianMTModel, MarianTokenizer
import os
import fitz 
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer

import logging
import openpyxl


# Configuration du logging
logging.basicConfig(level=logging.INFO)

app = FastAPI()

# Configuration CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

UPLOAD_DIR = "uploads"
os.makedirs(UPLOAD_DIR, exist_ok=True)

#traduction-----------------------------------------------------------------------------------------------------------

from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
model_name = "facebook/m2m100_418M"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)


# Fonction pour extraire le texte
def extract_text_from_pdf(file):
    doc = fitz.open(stream=file.file.read(), filetype="pdf")
    return "\n".join([page.get_text() for page in doc]).strip()

def extract_text_from_docx(file):
    doc = Document(io.BytesIO(file.file.read()))
    return "\n".join([para.text for para in doc.paragraphs]).strip()

def extract_text_from_pptx(file):
    prs = Presentation(io.BytesIO(file.file.read()))
    return "\n".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")]).strip()

def extract_text_from_excel(file):
    wb = openpyxl.load_workbook(io.BytesIO(file.file.read()), data_only=True)
    text = [str(cell) for sheet in wb.worksheets for row in sheet.iter_rows(values_only=True) for cell in row if cell]
    return "\n".join(text).strip()

@app.post("/translate/")
async def translate_document(file: UploadFile = File(...), target_lang: str = Form(...)):
    """API pour traduire un document."""
    try:
        logging.info(f"📥 Fichier reçu : {file.filename}")
        logging.info(f"🌍 Langue cible reçue : {target_lang}")

        if model is None or tokenizer is None:
            return JSONResponse(status_code=500, content={"error": "Modèle de traduction non chargé"})

        # Extraction du texte
        if file.filename.endswith(".pdf"):
            text = extract_text_from_pdf(file)
        elif file.filename.endswith(".docx"):
            text = extract_text_from_docx(file)
        elif file.filename.endswith(".pptx"):
            text = extract_text_from_pptx(file)
        elif file.filename.endswith(".xlsx"):
            text = extract_text_from_excel(file)
        else:
            return JSONResponse(status_code=400, content={"error": "Format non supporté"})

        logging.info(f"📜 Texte extrait : {text[:50]}...")

        if not text:
            return JSONResponse(status_code=400, content={"error": "Aucun texte trouvé dans le document"})

        # Vérifier si la langue cible est supportée
        target_lang_id = tokenizer.get_lang_id(target_lang)

        if target_lang_id is None:
            return JSONResponse(
                status_code=400,
                content={"error": f"Langue cible '{target_lang}' non supportée. Langues disponibles : {list(tokenizer.lang_code_to_id.keys())}"}
            )

        # Traduction
        tokenizer.src_lang = "fr"
        encoded_text = tokenizer(text, return_tensors="pt", padding=True, truncation=True)

        logging.info(f"🔍 ID de la langue cible : {target_lang_id}")

        generated_tokens = model.generate(**encoded_text, forced_bos_token_id=target_lang_id)

        translated_text = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]

        logging.info(f"✅ Traduction réussie : {translated_text[:50]}...")
        return {"translated_text": translated_text}

    except Exception as e:
        logging.error(f"❌ Erreur lors de la traduction : {e}")
        return JSONResponse(status_code=500, content={"error": "Échec de la traduction"})

# Servir les fichiers statiques (HTML, CSS, JS)
app.mount("/static", StaticFiles(directory="static", html=True), name="static")


@app.get("/")
async def root():
    return RedirectResponse(url="/static/principal.html")