Yolo-v7-Quantized: Optimized for Mobile Deployment

Quantized real-time object detection optimized for mobile and edge

YoloV7 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset.

This model is an implementation of Yolo-v7-Quantized found here.

More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Object detection
  • Model Stats:
    • Model checkpoint: YoloV7 Tiny
    • Input resolution: 640x640
    • Number of parameters: 6.24M
    • Model size: 6.23 MB
    • Precision: w8a8 (8-bit weights, 8-bit activations)
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
Yolo-v7 Samsung Galaxy S23 Snapdragon® 8 Gen 2 TFLITE 2.504 ms 0 - 30 MB INT8 NPU --
Yolo-v7 Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 3.026 ms 0 - 29 MB INT8 NPU --
Yolo-v7 Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 4.047 ms 0 - 28 MB INT8 NPU --
Yolo-v7 Samsung Galaxy S24 Snapdragon® 8 Gen 3 TFLITE 1.699 ms 0 - 42 MB INT8 NPU --
Yolo-v7 Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 2.021 ms 1 - 36 MB INT8 NPU --
Yolo-v7 Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 2.919 ms 0 - 67 MB INT8 NPU --
Yolo-v7 Snapdragon 8 Elite QRD Snapdragon® 8 Elite TFLITE 1.382 ms 0 - 24 MB INT8 NPU --
Yolo-v7 Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 2.195 ms 1 - 28 MB INT8 NPU --
Yolo-v7 Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 2.2 ms 1 - 57 MB INT8 NPU --
Yolo-v7 SA7255P ADP SA7255P TFLITE 16.532 ms 0 - 21 MB INT8 NPU --
Yolo-v7 SA7255P ADP SA7255P QNN 16.258 ms 1 - 10 MB INT8 NPU --
Yolo-v7 SA8255 (Proxy) SA8255P Proxy TFLITE 2.521 ms 0 - 30 MB INT8 NPU --
Yolo-v7 SA8255 (Proxy) SA8255P Proxy QNN 2.857 ms 1 - 4 MB INT8 NPU --
Yolo-v7 SA8295P ADP SA8295P TFLITE 3.901 ms 0 - 26 MB INT8 NPU --
Yolo-v7 SA8295P ADP SA8295P QNN 4.298 ms 1 - 19 MB INT8 NPU --
Yolo-v7 SA8650 (Proxy) SA8650P Proxy TFLITE 2.509 ms 0 - 31 MB INT8 NPU --
Yolo-v7 SA8650 (Proxy) SA8650P Proxy QNN 2.86 ms 1 - 3 MB INT8 NPU --
Yolo-v7 SA8775P ADP SA8775P TFLITE 3.547 ms 0 - 21 MB INT8 NPU --
Yolo-v7 SA8775P ADP SA8775P QNN 4.009 ms 1 - 11 MB INT8 NPU --
Yolo-v7 RB3 Gen 2 (Proxy) QCS6490 Proxy TFLITE 9.795 ms 0 - 31 MB INT8 NPU --
Yolo-v7 RB3 Gen 2 (Proxy) QCS6490 Proxy QNN 7.784 ms 1 - 13 MB INT8 NPU --
Yolo-v7 RB5 (Proxy) QCS8250 Proxy TFLITE 55.949 ms 15 - 55 MB INT8 GPU --
Yolo-v7 QCS8275 (Proxy) QCS8275 Proxy TFLITE 16.532 ms 0 - 21 MB INT8 NPU --
Yolo-v7 QCS8275 (Proxy) QCS8275 Proxy QNN 16.258 ms 1 - 10 MB INT8 NPU --
Yolo-v7 QCS8550 (Proxy) QCS8550 Proxy TFLITE 2.502 ms 0 - 31 MB INT8 NPU --
Yolo-v7 QCS8550 (Proxy) QCS8550 Proxy QNN 2.846 ms 1 - 5 MB INT8 NPU --
Yolo-v7 QCS9075 (Proxy) QCS9075 Proxy TFLITE 3.547 ms 0 - 21 MB INT8 NPU --
Yolo-v7 QCS9075 (Proxy) QCS9075 Proxy QNN 4.009 ms 1 - 11 MB INT8 NPU --
Yolo-v7 QCS8450 (Proxy) QCS8450 Proxy TFLITE 3.247 ms 0 - 34 MB INT8 NPU --
Yolo-v7 QCS8450 (Proxy) QCS8450 Proxy QNN 3.802 ms 1 - 38 MB INT8 NPU --
Yolo-v7 Snapdragon X Elite CRD Snapdragon® X Elite QNN 3.127 ms 1 - 1 MB INT8 NPU --
Yolo-v7 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 4.547 ms 6 - 6 MB INT8 NPU --

License

  • The license for the original implementation of Yolo-v7-Quantized can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Usage and Limitations

Model may not be used for or in connection with any of the following applications:

  • Accessing essential private and public services and benefits;
  • Administration of justice and democratic processes;
  • Assessing or recognizing the emotional state of a person;
  • Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
  • Education and vocational training;
  • Employment and workers management;
  • Exploitation of the vulnerabilities of persons resulting in harmful behavior;
  • General purpose social scoring;
  • Law enforcement;
  • Management and operation of critical infrastructure;
  • Migration, asylum and border control management;
  • Predictive policing;
  • Real-time remote biometric identification in public spaces;
  • Recommender systems of social media platforms;
  • Scraping of facial images (from the internet or otherwise); and/or
  • Subliminal manipulation
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support