AI & ML interests

None defined yet.

Recent Activity

ShirinYamaniΒ  updated a dataset about 17 hours ago
trl-lib/documentation-images
qgallouedecΒ  updated a dataset 2 days ago
trl-lib/OpenMathReasoning
qgallouedecΒ  published a dataset 2 days ago
trl-lib/OpenMathReasoning
View all activity

trl-lib's activity

julien-cΒ 
posted an update 3 days ago
view post
Post
3566
BOOOOM: Today I'm dropping TINY AGENTS

the 50 lines of code Agent in Javascript πŸ”₯

I spent the last few weeks working on this, so I hope you will like it.

I've been diving into MCP (Model Context Protocol) to understand what the hype was all about.

It is fairly simple, but still quite powerful: MCP is a standard API to expose sets of Tools that can be hooked to LLMs.

But while doing that, came my second realization:

Once you have a MCP Client, an Agent is literally just a while loop on top of it. 🀯

➑️ read it exclusively on the official HF blog: https://huggingface.co./blog/tiny-agents
  • 1 reply
Β·
lewtunΒ 
posted an update about 2 months ago
view post
Post
2470
Introducing OlympicCoder: a series of open reasoning models that can solve olympiad-level programming problems πŸ§‘β€πŸ’»

- 7B open-r1/OlympicCoder-7B
- 32B open-r1/OlympicCoder-32B

We find that OlympicCoder models outperform Claude 3.7 Sonnet, as well as others over 100x larger πŸ’ͺ

Together with the models, we are releasing:

πŸ“ŠCodeForces-CoTs: new dataset of code problems from the most popular competitive coding platform, with R1 traces in C++ and Python open-r1/codeforces-cots

πŸ† IOI'2024: a new benchmark of VERY hard programming problems where even frontier models struggle to match human performance open-r1/ioi

For links to the models and datasets, check out our latest progress report from Open R1: https://huggingface.co./blog/open-r1/update-3
  • 1 reply
Β·
julien-cΒ 
posted an update about 2 months ago
view post
Post
3663
Important notice 🚨

For Inference Providers who have built support for our Billing API (currently: Fal, Novita, HF-Inference – with more coming soon), we've started enabling Pay as you go (=PAYG)

What this means is that you can use those Inference Providers beyond the free included credits, and they're charged to your HF account.

You can see it on this view: any provider that does not have a "Billing disabled" badge, is PAYG-compatible.
Β·
lewtunΒ 
posted an update 3 months ago
view post
Post
5158
Introducing OpenR1-Math-220k!

open-r1/OpenR1-Math-220k

The community has been busy distilling DeepSeek-R1 from inference providers, but we decided to have a go at doing it ourselves from scratch πŸ’ͺ

What’s new compared to existing reasoning datasets?

β™Ύ Based on AI-MO/NuminaMath-1.5: we focus on math reasoning traces and generate answers for problems in NuminaMath 1.5, an improved version of the popular NuminaMath-CoT dataset.

🐳 800k R1 reasoning traces: We generate two answers for 400k problems using DeepSeek R1. The filtered dataset contains 220k problems with correct reasoning traces.

πŸ“€ 512 H100s running locally: Instead of relying on an API, we leverage vLLM and SGLang to run generations locally on our science cluster, generating 180k reasoning traces per day.

⏳ Automated filtering: We apply Math Verify to only retain problems with at least one correct answer. We also leverage Llama3.3-70B-Instruct as a judge to retrieve more correct examples (e.g for cases with malformed answers that can’t be verified with a rules-based parser)

πŸ“Š We match the performance of DeepSeek-Distill-Qwen-7B by finetuning Qwen-7B-Math-Instruct on our dataset.

πŸ”Ž Read our blog post for all the nitty gritty details: https://huggingface.co./blog/open-r1/update-2
lewtunΒ 
posted an update 3 months ago
view post
Post
10346
We are reproducing the full DeepSeek R1 data and training pipeline so everybody can use their recipe. Instead of doing it in secret we can do it together in the open!

πŸ§ͺ Step 1: replicate the R1-Distill models by distilling a high-quality reasoning corpus from DeepSeek-R1.

🧠 Step 2: replicate the pure RL pipeline that DeepSeek used to create R1-Zero. This will involve curating new, large-scale datasets for math, reasoning, and code.

πŸ”₯ Step 3: show we can go from base model -> SFT -> RL via multi-stage training.

Follow along: https://github.com/huggingface/open-r1
Β·