metadata
base_model: HiDream-ai/HiDream-I1-Full
library_name: diffusers
license: mit
instance_prompt: 3d icon
widget:
- text: 3dicon of a llama eating ramen
output:
url: image_0.png
- text: 3dicon of a llama eating ramen
output:
url: image_1.png
- text: 3dicon of a llama eating ramen
output:
url: image_2.png
- text: 3dicon of a llama eating ramen
output:
url: image_3.png
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- hidream
- hidream-diffusers
- template:sd-lora
- text-to-image
- diffusers-training
- diffusers
- lora
- hidream
- hidream-diffusers
- template:sd-lora
HiDream Image DreamBooth LoRA - linoyts/hidream-3dicon-lora

- Prompt
- 3dicon of a llama eating ramen

- Prompt
- 3dicon of a llama eating ramen

- Prompt
- 3dicon of a llama eating ramen

- Prompt
- 3dicon of a llama eating ramen
Model description
These are linoyts/hidream-3dicon-lora DreamBooth LoRA weights for HiDream-ai/HiDream-I1-Full.
The weights were trained using DreamBooth with the HiDream Image diffusers trainer.
Trigger words
You should use 3d icon
to trigger the image generation.
Download model
Download the *.safetensors LoRA in the Files & versions tab.
Use it with the 🧨 diffusers library
>>> import torch
>>> from transformers import PreTrainedTokenizerFast, LlamaForCausalLM
>>> from diffusers import HiDreamImagePipeline
>>> tokenizer_4 = PreTrainedTokenizerFast.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
>>> text_encoder_4 = LlamaForCausalLM.from_pretrained(
... "meta-llama/Meta-Llama-3.1-8B-Instruct",
... output_hidden_states=True,
... output_attentions=True,
... torch_dtype=torch.bfloat16,
... )
>>> pipe = HiDreamImagePipeline.from_pretrained(
... "HiDream-ai/HiDream-I1-Full",
... tokenizer_4=tokenizer_4,
... text_encoder_4=text_encoder_4,
... torch_dtype=torch.bfloat16,
... )
>>> pipe.enable_model_cpu_offload()
>>> pipe.load_lora_weights(f"linoyts/hidream-3dicon-lora")
>>> image = pipe(f"3d icon").images[0]
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
Intended uses & limitations
How to use
# TODO: add an example code snippet for running this diffusion pipeline
Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
Training details
[TODO: describe the data used to train the model]