HiDream Image DreamBooth LoRA - linoyts/dog-hidream-lora-mini-test

- Prompt
- a photo of sks dog sitting in a bucket

- Prompt
- a photo of sks dog sitting in a bucket

- Prompt
- a photo of sks dog sitting in a bucket

- Prompt
- a photo of sks dog sitting in a bucket
Model description
These are linoyts/dog-hidream-lora-mini-test DreamBooth LoRA weights for HiDream-ai/HiDream-I1-Full.
The weights were trained using DreamBooth with the HiDream Image diffusers trainer.
Trigger words
You should use a photo of sks dog
to trigger the image generation.
Download model
Download the *.safetensors LoRA in the Files & versions tab.
Use it with the 🧨 diffusers library
>>> import torch
>>> from transformers import PreTrainedTokenizerFast, LlamaForCausalLM
>>> from diffusers import HiDreamImagePipeline
>>> tokenizer_4 = PreTrainedTokenizerFast.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct")
>>> text_encoder_4 = LlamaForCausalLM.from_pretrained(
... "meta-llama/Meta-Llama-3.1-8B-Instruct",
... output_hidden_states=True,
... output_attentions=True,
... torch_dtype=torch.bfloat16,
... )
>>> pipe = HiDreamImagePipeline.from_pretrained(
... "HiDream-ai/HiDream-I1-Full",
... tokenizer_4=tokenizer_4,
... text_encoder_4=text_encoder_4,
... torch_dtype=torch.bfloat16,
... )
>>> pipe.enable_model_cpu_offload()
>>> pipe.load_lora_weights(f"linoyts/dog-hidream-lora-mini-test")
>>> image = pipe(f"a photo of sks dog").images[0]
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
Intended uses & limitations
How to use
# TODO: add an example code snippet for running this diffusion pipeline
Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
Training details
[TODO: describe the data used to train the model]
- Downloads last month
- 0
Model tree for linoyts/dog-hidream-lora-mini-test
Base model
HiDream-ai/HiDream-I1-Full