kernel
flash-attn / flash_attn /src /flash_bwd_preprocess_kernel.h
drbh
feat: include source and enable build
a7165c8
/***************************************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#pragma once
#include "namespace_config.h"
#include <cute/tensor.hpp>
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
namespace FLASH_NAMESPACE {
using namespace cute;
////////////////////////////////////////////////////////////////////////////////////////////////////
template <int THREADS_PER_ROW, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
inline __device__ void dot_do_o(Tensor<Engine0, Layout0> const &do_, Tensor<Engine0, Layout0> const &o,
Tensor<Engine1, Layout1> &dP_sum, const int gdP_col_stride, const float scale) {
static_assert(Layout0::rank == 3, "Only support 3D Tensor");
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
CUTE_STATIC_ASSERT_V(do_.layout() == o.layout());
// Reshape do_ and o from (8, kBlockM / 32, kHeadDim / 64) to (kBlockM / 32, 8 * kHeadDim / 64)
// The last coordinate is the "page".
Tensor do_reshaped = make_tensor(do_.data(), make_layout(get<1>(do_.layout()),
make_layout(get<0>(do_.layout()),
get<2>(do_.layout()))));
Tensor o_reshaped = make_tensor(o.data(), do_reshaped.layout());
Tensor do_fp32 = FLASH_NAMESPACE::convert_type<float>(do_reshaped);
Tensor o_fp32 = FLASH_NAMESPACE::convert_type<float>(o_reshaped);
#pragma unroll
for (int mi = 0; mi < size<0>(do_reshaped); ++mi) {
float dP_sum_cur = do_fp32(mi, 0) * o_fp32(mi, 0);
#pragma unroll
for (int ni = 1; ni < size<1>(do_reshaped); ni++) {
dP_sum_cur += do_fp32(mi, ni) * o_fp32(mi, ni);
}
FLASH_NAMESPACE::SumOp<float> sum_op;
dP_sum_cur = FLASH_NAMESPACE::Allreduce<THREADS_PER_ROW>::run(dP_sum_cur, sum_op) * scale;
if (threadIdx.x % THREADS_PER_ROW == 0) {
dP_sum(mi * gdP_col_stride + threadIdx.x / THREADS_PER_ROW) = dP_sum_cur;
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Just compute dot(do, o) and write the result (softmax_d) to global memory as a separate kernel.
// This is used in the case where we want to parallelize the backward across seqlen_k.
template<bool Clear_dQaccum=true, typename Kernel_traits, typename Params>
inline __device__ void compute_dot_do_o(const Params &params) {
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
const int m_block = blockIdx.x;
// The block index for the batch.
const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.z;
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
const BlockInfo binfo(params, bidb);
if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
+ m_block * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
+ m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
+ (m_block * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128ll * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
// Regarding 128 * params.b see a comment in mha_varlen_bwd about padding of dq_accum and softmax_d
const index_t row_offset_dpsum = (params.unpadded_lse ? (bidh * (params.total_q + 128 * params.b) + binfo.q_offset(params.seqlen_q_rounded, 1, bidb) + 128 * bidb): (bidb * params.h + bidh) * params.seqlen_q_rounded) + m_block * kBlockM;
Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.do_row_stride, _1{}));
Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.o_row_stride, _1{}));
Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.h * params.d_rounded, _1{}));
Tensor dP_sum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
Shape<Int<kBlockM>>{}, Stride<_1>{});
typename Kernel_traits::GmemTiledCopydO gmem_tiled_copy_dO;
auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
// TODO: careful, we're zeroing out dQaccum with type float4, but when
// we do atomicAdds, we use type float. The layouts are different. Check this.
typename Kernel_traits::GmemTiledCopydQaccum gmem_tiled_copy_dQaccum;
auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
Tensor cdO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor tdOcdO = gmem_thr_copy_dO.partition_S(cdO);
// Allocate predicate tensors for k
Tensor tdOpdO = make_tensor<bool>(make_shape(size<2>(tdOgdO)));
// Set predicates for k bounds
#pragma unroll
for (int k = 0; k < size(tdOpdO); ++k) {tdOpdO(k) = get<1>(tdOcdO(0, 0, k)) < params.d;}
Tensor tdOrdO = make_fragment_like(tdOgdO);
Tensor tdOrO = make_fragment_like(tdOgO);
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_dO, tdOgdO, tdOrdO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
);
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_dO, tdOgO, tdOrO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
);
// By right we need to scale dP up by 1/p_dropout, but instead we don't and only scale the final
// results (dQ and dK) by 1/p_dropout. So we need to keep dP_sum scaled down by p_dropout here,
// so that (dP - dP_sum) is on the same scale.
dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, dP_sum,
Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
if (Clear_dQaccum) {
// We're actually not zero'ing out all of dQaccum, but only the part that we're going to
// do atomicAdds on.
Tensor zero = make_fragment_like(tdQgdQaccum);
clear(zero);
cute::copy(gmem_tiled_copy_dQaccum, zero, tdQgdQaccum);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, typename Params>
inline __device__ void clear_dKVaccum(const Params &params) {
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
const int n_block = blockIdx.x;
// The block index for the batch.
const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.z;
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockN = Kernel_traits::kBlockN;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
const BlockInfo binfo(params, bidb);
if (n_block * kBlockN >= binfo.actual_seqlen_k) return;
const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded + n_block * kBlockN) * params.d_rounded;
Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});
Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});
typename Kernel_traits::GmemTiledCopydQaccum gmem_tiled_copy_dKVaccum;
auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_D(gdKaccum);
Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_D(gdVaccum);
Tensor zero = make_fragment_like(tdKgdKaccum);
clear(zero);
cute::copy(gmem_tiled_copy_dKVaccum, zero, tdKgdKaccum);
cute::copy(gmem_tiled_copy_dKVaccum, zero, tdVgdVaccum);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Convert dQ from dQaccum (in float) to fp16/bf16.
// This is used in the case where we want to parallelize the backward across seqlen_k.
template<typename Kernel_traits, typename Params>
inline __device__ void convert_dQ(const Params &params, const int nsplits) {
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
// Shared memory.
extern __shared__ char smem_[];
const int m_block = blockIdx.x;
// The block index for the batch.
const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.z;
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
const BlockInfo binfo(params, bidb);
if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
+ m_block * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
+ (m_block * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128ll * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.dq_row_stride, _1{}));
Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.h * params.d_rounded, _1{}));
Tensor sdQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
typename Kernel_traits::SmemLayoutdQ{});
typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dQaccum;
auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
typename Kernel_traits::TiledMmadQ tiled_mma_dq;
auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ); // ((Atom,AtomNum),PIPE_M,PIPE_N)
Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_S(gdQaccum);
Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));
Tensor tdQrdQaccum = make_fragment_like(tdQgdQaccum);
clear(acc_dq);
for (int s = 0; s < nsplits; ++s) {
cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, tdQrdQaccum);
#pragma unroll
for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) += tdQrdQaccum(i); }
tdQgdQaccum.data() = tdQgdQaccum.data() + params.dq_accum_split_stride;
}
#pragma unroll
for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
// Convert acc_dq from fp32 to fp16
Tensor rdQ = FLASH_NAMESPACE::convert_type<Element>(acc_dq);
Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
__syncthreads();
Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
Tensor tdQpdQ = make_tensor<bool>(make_shape(size<2>(tdQgdQ)));
#pragma unroll
for (int k = 0; k < size(tdQpdQ); ++k) { tdQpdQ(k) = get<1>(tdQcdQ(0, 0, k)) < params.d; }
// Clear_OOB_K must be false since we don't want to write zeros to gmem
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dQ, tdQrdQ, tdQgdQ, tdQcdQ, tdQpdQ, binfo.actual_seqlen_q - m_block * kBlockM
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Convert dK and dV from dKaccum and dVaccum (in float) to fp16/bf16.
// This is used in the case where we want to parallelize the backward across seqlen_q.
template<typename Kernel_traits, typename Params>
inline __device__ void convert_dKV(const Params &params) {
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
// Shared memory.
extern __shared__ char smem_[];
const int n_block = blockIdx.x;
// The block index for the batch.
const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.z;
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockN = Kernel_traits::kBlockN;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
const BlockInfo binfo(params, bidb);
if (n_block * kBlockN >= binfo.actual_seqlen_k) return;
const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
+ n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
+ n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded
+ n_block * kBlockN) * params.d_rounded;
Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.dk_row_stride, _1{}));
Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.dv_row_stride, _1{}));
Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
Stride<Int<kHeadDim>, _1>{});
Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
Stride<Int<kHeadDim>, _1>{});
Tensor sdK = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
typename Kernel_traits::SmemLayoutdKV{});
Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)
typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dKV;
auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dKVaccum;
auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK); // ((Atom,AtomNum),PIPE_M,PIPE_N)
Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV); // ((Atom,AtomNum),PIPE_M,PIPE_N)
Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_S(gdKaccum);
Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_S(gdVaccum);
Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
CUTE_STATIC_ASSERT_V(size(acc_dk) == size(tdKgdKaccum));
CUTE_STATIC_ASSERT_V(size(acc_dv) == size(tdVgdVaccum));
Tensor tdKrdKaccum = make_fragment_like(tdKgdKaccum);
Tensor tdVrdVaccum = make_fragment_like(tdVgdVaccum);
cute::copy(gmem_tiled_copy_dKVaccum, tdKgdKaccum, tdKrdKaccum);
cute::copy(gmem_tiled_copy_dKVaccum, tdVgdVaccum, tdVrdVaccum);
#pragma unroll
for (int i = 0; i < size(acc_dk); ++i) {
acc_dk(i) = tdKrdKaccum(i) * params.scale_softmax_rp_dropout;
}
#pragma unroll
for (int i = 0; i < size(acc_dv); ++i) {
acc_dv(i) = tdVrdVaccum(i) * params.rp_dropout;
}
// Convert acc_dk from fp32 to fp16
Tensor rdK = FLASH_NAMESPACE::convert_type<Element>(acc_dk);
Tensor rdV = FLASH_NAMESPACE::convert_type<Element>(acc_dv);
Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK); // ((Atom,AtomNum), MMA_N, MMA_N)
Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
__syncthreads();
Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
Tensor cdKV = make_identity_tensor(Shape<Int<kBlockN>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
#pragma unroll
for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
// Clear_OOB_K must be false since we don't want to write zeros to gmem
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
);
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
);
}
} // namespace flash