File size: 20,774 Bytes
a7165c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
/***************************************************************************************************
* Copyright (c) 2024, Tri Dao.
******************************************************************************/
#pragma once
#include "namespace_config.h"
#include <cute/tensor.hpp>
#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
namespace FLASH_NAMESPACE {
using namespace cute;
////////////////////////////////////////////////////////////////////////////////////////////////////
template <int THREADS_PER_ROW, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
inline __device__ void dot_do_o(Tensor<Engine0, Layout0> const &do_, Tensor<Engine0, Layout0> const &o,
Tensor<Engine1, Layout1> &dP_sum, const int gdP_col_stride, const float scale) {
static_assert(Layout0::rank == 3, "Only support 3D Tensor");
static_assert(Layout1::rank == 1, "Only support 1D Tensor");
CUTE_STATIC_ASSERT_V(do_.layout() == o.layout());
// Reshape do_ and o from (8, kBlockM / 32, kHeadDim / 64) to (kBlockM / 32, 8 * kHeadDim / 64)
// The last coordinate is the "page".
Tensor do_reshaped = make_tensor(do_.data(), make_layout(get<1>(do_.layout()),
make_layout(get<0>(do_.layout()),
get<2>(do_.layout()))));
Tensor o_reshaped = make_tensor(o.data(), do_reshaped.layout());
Tensor do_fp32 = FLASH_NAMESPACE::convert_type<float>(do_reshaped);
Tensor o_fp32 = FLASH_NAMESPACE::convert_type<float>(o_reshaped);
#pragma unroll
for (int mi = 0; mi < size<0>(do_reshaped); ++mi) {
float dP_sum_cur = do_fp32(mi, 0) * o_fp32(mi, 0);
#pragma unroll
for (int ni = 1; ni < size<1>(do_reshaped); ni++) {
dP_sum_cur += do_fp32(mi, ni) * o_fp32(mi, ni);
}
FLASH_NAMESPACE::SumOp<float> sum_op;
dP_sum_cur = FLASH_NAMESPACE::Allreduce<THREADS_PER_ROW>::run(dP_sum_cur, sum_op) * scale;
if (threadIdx.x % THREADS_PER_ROW == 0) {
dP_sum(mi * gdP_col_stride + threadIdx.x / THREADS_PER_ROW) = dP_sum_cur;
}
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Just compute dot(do, o) and write the result (softmax_d) to global memory as a separate kernel.
// This is used in the case where we want to parallelize the backward across seqlen_k.
template<bool Clear_dQaccum=true, typename Kernel_traits, typename Params>
inline __device__ void compute_dot_do_o(const Params ¶ms) {
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
const int m_block = blockIdx.x;
// The block index for the batch.
const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.z;
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
const BlockInfo binfo(params, bidb);
if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
+ m_block * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
+ m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
+ (m_block * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128ll * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
// Regarding 128 * params.b see a comment in mha_varlen_bwd about padding of dq_accum and softmax_d
const index_t row_offset_dpsum = (params.unpadded_lse ? (bidh * (params.total_q + 128 * params.b) + binfo.q_offset(params.seqlen_q_rounded, 1, bidb) + 128 * bidb): (bidb * params.h + bidh) * params.seqlen_q_rounded) + m_block * kBlockM;
Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.do_row_stride, _1{}));
Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.o_row_stride, _1{}));
Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.h * params.d_rounded, _1{}));
Tensor dP_sum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
Shape<Int<kBlockM>>{}, Stride<_1>{});
typename Kernel_traits::GmemTiledCopydO gmem_tiled_copy_dO;
auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
// TODO: careful, we're zeroing out dQaccum with type float4, but when
// we do atomicAdds, we use type float. The layouts are different. Check this.
typename Kernel_traits::GmemTiledCopydQaccum gmem_tiled_copy_dQaccum;
auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
Tensor cdO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor tdOcdO = gmem_thr_copy_dO.partition_S(cdO);
// Allocate predicate tensors for k
Tensor tdOpdO = make_tensor<bool>(make_shape(size<2>(tdOgdO)));
// Set predicates for k bounds
#pragma unroll
for (int k = 0; k < size(tdOpdO); ++k) {tdOpdO(k) = get<1>(tdOcdO(0, 0, k)) < params.d;}
Tensor tdOrdO = make_fragment_like(tdOgdO);
Tensor tdOrO = make_fragment_like(tdOgO);
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_dO, tdOgdO, tdOrdO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
);
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
gmem_tiled_copy_dO, tdOgO, tdOrO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
);
// By right we need to scale dP up by 1/p_dropout, but instead we don't and only scale the final
// results (dQ and dK) by 1/p_dropout. So we need to keep dP_sum scaled down by p_dropout here,
// so that (dP - dP_sum) is on the same scale.
dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, dP_sum,
Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
if (Clear_dQaccum) {
// We're actually not zero'ing out all of dQaccum, but only the part that we're going to
// do atomicAdds on.
Tensor zero = make_fragment_like(tdQgdQaccum);
clear(zero);
cute::copy(gmem_tiled_copy_dQaccum, zero, tdQgdQaccum);
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename Kernel_traits, typename Params>
inline __device__ void clear_dKVaccum(const Params ¶ms) {
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
const int n_block = blockIdx.x;
// The block index for the batch.
const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.z;
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockN = Kernel_traits::kBlockN;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
const BlockInfo binfo(params, bidb);
if (n_block * kBlockN >= binfo.actual_seqlen_k) return;
const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded + n_block * kBlockN) * params.d_rounded;
Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});
Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});
typename Kernel_traits::GmemTiledCopydQaccum gmem_tiled_copy_dKVaccum;
auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_D(gdKaccum);
Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_D(gdVaccum);
Tensor zero = make_fragment_like(tdKgdKaccum);
clear(zero);
cute::copy(gmem_tiled_copy_dKVaccum, zero, tdKgdKaccum);
cute::copy(gmem_tiled_copy_dKVaccum, zero, tdVgdVaccum);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Convert dQ from dQaccum (in float) to fp16/bf16.
// This is used in the case where we want to parallelize the backward across seqlen_k.
template<typename Kernel_traits, typename Params>
inline __device__ void convert_dQ(const Params ¶ms, const int nsplits) {
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
// Shared memory.
extern __shared__ char smem_[];
const int m_block = blockIdx.x;
// The block index for the batch.
const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.z;
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockM = Kernel_traits::kBlockM;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
const BlockInfo binfo(params, bidb);
if (m_block * kBlockM >= binfo.actual_seqlen_q) return;
const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
+ m_block * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
+ (m_block * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128ll * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.dq_row_stride, _1{}));
Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
Shape<Int<kBlockM>, Int<kHeadDim>>{},
make_stride(params.h * params.d_rounded, _1{}));
Tensor sdQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
typename Kernel_traits::SmemLayoutdQ{});
typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dQaccum;
auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
typename Kernel_traits::TiledMmadQ tiled_mma_dq;
auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ); // ((Atom,AtomNum),PIPE_M,PIPE_N)
Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_S(gdQaccum);
Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));
Tensor tdQrdQaccum = make_fragment_like(tdQgdQaccum);
clear(acc_dq);
for (int s = 0; s < nsplits; ++s) {
cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, tdQrdQaccum);
#pragma unroll
for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) += tdQrdQaccum(i); }
tdQgdQaccum.data() = tdQgdQaccum.data() + params.dq_accum_split_stride;
}
#pragma unroll
for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
// Convert acc_dq from fp32 to fp16
Tensor rdQ = FLASH_NAMESPACE::convert_type<Element>(acc_dq);
Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
__syncthreads();
Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
Tensor tdQpdQ = make_tensor<bool>(make_shape(size<2>(tdQgdQ)));
#pragma unroll
for (int k = 0; k < size(tdQpdQ); ++k) { tdQpdQ(k) = get<1>(tdQcdQ(0, 0, k)) < params.d; }
// Clear_OOB_K must be false since we don't want to write zeros to gmem
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dQ, tdQrdQ, tdQgdQ, tdQcdQ, tdQpdQ, binfo.actual_seqlen_q - m_block * kBlockM
);
}
////////////////////////////////////////////////////////////////////////////////////////////////////
// Convert dK and dV from dKaccum and dVaccum (in float) to fp16/bf16.
// This is used in the case where we want to parallelize the backward across seqlen_q.
template<typename Kernel_traits, typename Params>
inline __device__ void convert_dKV(const Params ¶ms) {
using Element = typename Kernel_traits::Element;
using ElementAccum = typename Kernel_traits::ElementAccum;
using index_t = typename Kernel_traits::index_t;
// Shared memory.
extern __shared__ char smem_[];
const int n_block = blockIdx.x;
// The block index for the batch.
const int bidb = blockIdx.y;
// The block index for the head.
const int bidh = blockIdx.z;
// The thread index.
const int tidx = threadIdx.x;
constexpr int kBlockN = Kernel_traits::kBlockN;
constexpr int kHeadDim = Kernel_traits::kHeadDim;
const BlockInfo binfo(params, bidb);
if (n_block * kBlockN >= binfo.actual_seqlen_k) return;
const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
+ n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
+ n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded
+ n_block * kBlockN) * params.d_rounded;
Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.dk_row_stride, _1{}));
Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
make_stride(params.dv_row_stride, _1{}));
Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
Stride<Int<kHeadDim>, _1>{});
Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
Shape<Int<kBlockN>, Int<kHeadDim>>{},
Stride<Int<kHeadDim>, _1>{});
Tensor sdK = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
typename Kernel_traits::SmemLayoutdKV{});
Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)
typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dKV;
auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dKVaccum;
auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK); // ((Atom,AtomNum),PIPE_M,PIPE_N)
Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV); // ((Atom,AtomNum),PIPE_M,PIPE_N)
Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV); // ((Atom,AtomNum),ATOM_M,ATOM_N)
Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_S(gdKaccum);
Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_S(gdVaccum);
Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{}); // MMA, MMA_N, MMA_K
CUTE_STATIC_ASSERT_V(size(acc_dk) == size(tdKgdKaccum));
CUTE_STATIC_ASSERT_V(size(acc_dv) == size(tdVgdVaccum));
Tensor tdKrdKaccum = make_fragment_like(tdKgdKaccum);
Tensor tdVrdVaccum = make_fragment_like(tdVgdVaccum);
cute::copy(gmem_tiled_copy_dKVaccum, tdKgdKaccum, tdKrdKaccum);
cute::copy(gmem_tiled_copy_dKVaccum, tdVgdVaccum, tdVrdVaccum);
#pragma unroll
for (int i = 0; i < size(acc_dk); ++i) {
acc_dk(i) = tdKrdKaccum(i) * params.scale_softmax_rp_dropout;
}
#pragma unroll
for (int i = 0; i < size(acc_dv); ++i) {
acc_dv(i) = tdVrdVaccum(i) * params.rp_dropout;
}
// Convert acc_dk from fp32 to fp16
Tensor rdK = FLASH_NAMESPACE::convert_type<Element>(acc_dk);
Tensor rdV = FLASH_NAMESPACE::convert_type<Element>(acc_dv);
Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK); // ((Atom,AtomNum), MMA_N, MMA_N)
Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV); // ((Atom,AtomNum), MMA_N, MMA_N)
cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
__syncthreads();
Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
Tensor cdKV = make_identity_tensor(Shape<Int<kBlockN>, Int<kHeadDim>>{}); // (BLK_M,BLK_K) -> (blk_m,blk_k)
Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
#pragma unroll
for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
// Clear_OOB_K must be false since we don't want to write zeros to gmem
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
);
FLASH_NAMESPACE::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
);
}
} // namespace flash
|