Salesforce-codet5-small-CodeXGLUE-CONCODE-adamw
This model is a fine-tuned version of Salesforce/codet5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.7666
- Exact Match: 0.163
- Rouge1: 0.5716
- Rouge2: 0.4046
- Rougel: 0.5536
- Rougelsum: 0.5614
- Bleu: 0.1335
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Exact Match | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu |
---|---|---|---|---|---|---|---|---|---|
2.3935 | 0.16 | 500 | 0.9724 | 0.129 | 0.5286 | 0.3466 | 0.5098 | 0.5153 | 0.1127 |
0.8984 | 0.32 | 1000 | 0.8919 | 0.138 | 0.5463 | 0.3714 | 0.5285 | 0.5353 | 0.1200 |
0.8121 | 0.48 | 1500 | 0.8583 | 0.1455 | 0.5529 | 0.3787 | 0.5350 | 0.5426 | 0.1158 |
0.7598 | 0.64 | 2000 | 0.8437 | 0.1485 | 0.5541 | 0.3813 | 0.5355 | 0.5432 | 0.1197 |
0.7289 | 0.8 | 2500 | 0.8189 | 0.158 | 0.5597 | 0.3906 | 0.5416 | 0.5501 | 0.1222 |
0.7053 | 0.96 | 3000 | 0.8145 | 0.161 | 0.5572 | 0.3888 | 0.5392 | 0.5469 | 0.1222 |
0.6544 | 1.12 | 3500 | 0.7982 | 0.1565 | 0.5606 | 0.3920 | 0.5436 | 0.5517 | 0.1260 |
0.6334 | 1.28 | 4000 | 0.7974 | 0.1585 | 0.5633 | 0.3906 | 0.5448 | 0.5529 | 0.1284 |
0.6236 | 1.44 | 4500 | 0.7943 | 0.163 | 0.5639 | 0.3931 | 0.5455 | 0.5542 | 0.1275 |
0.6221 | 1.6 | 5000 | 0.7824 | 0.1655 | 0.5718 | 0.4011 | 0.5537 | 0.5621 | 0.1310 |
0.608 | 1.76 | 5500 | 0.7792 | 0.163 | 0.5664 | 0.3997 | 0.5490 | 0.5567 | 0.1314 |
0.5956 | 1.92 | 6000 | 0.7785 | 0.1605 | 0.5641 | 0.3981 | 0.5470 | 0.5546 | 0.1294 |
0.5701 | 2.08 | 6500 | 0.7800 | 0.157 | 0.5673 | 0.3955 | 0.5489 | 0.5568 | 0.1336 |
0.5378 | 2.24 | 7000 | 0.7720 | 0.1655 | 0.5686 | 0.4000 | 0.5504 | 0.5582 | 0.1308 |
0.541 | 2.4 | 7500 | 0.7709 | 0.1625 | 0.5699 | 0.3984 | 0.5511 | 0.5590 | 0.1313 |
0.5359 | 2.56 | 8000 | 0.7673 | 0.164 | 0.5697 | 0.4023 | 0.5521 | 0.5601 | 0.1332 |
0.5322 | 2.72 | 8500 | 0.7642 | 0.1665 | 0.5708 | 0.4033 | 0.5527 | 0.5606 | 0.1350 |
0.5387 | 2.88 | 9000 | 0.7622 | 0.159 | 0.5672 | 0.3988 | 0.5500 | 0.5573 | 0.1342 |
0.514 | 3.04 | 9500 | 0.7700 | 0.166 | 0.5722 | 0.4052 | 0.5546 | 0.5618 | 0.1352 |
0.4895 | 3.2 | 10000 | 0.7676 | 0.1615 | 0.5696 | 0.4016 | 0.5516 | 0.5591 | 0.1359 |
0.4827 | 3.36 | 10500 | 0.7665 | 0.162 | 0.5756 | 0.4072 | 0.5577 | 0.5656 | 0.1367 |
0.4814 | 3.52 | 11000 | 0.7700 | 0.1605 | 0.5709 | 0.4026 | 0.5528 | 0.5605 | 0.1334 |
0.4847 | 3.68 | 11500 | 0.7666 | 0.163 | 0.5716 | 0.4046 | 0.5536 | 0.5614 | 0.1335 |
Framework versions
- Transformers 4.27.1
- Pytorch 1.12.1+cu113
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support