Transformers documentation

SigLIP2

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.51.3).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

PyTorch FlashAttention SDPA

SigLIP2

Overview

SigLIP2 is a family of multilingual vision-language encoders that builds on the SigLIP training recipe. It includes decoder-based pretraining, self-distillation, and masked prediction to improve dense prediction tasks (segmentation, depth estimation, etc.). This model is available in two variants:

  • NaFlex supports different resolutions and maintains the native image aspect ratio
  • FixRes supports fixed resolutions and is backwards compatible with SigLIP

You can find all the original SigLIP2 checkpoints under the SigLIP2 collection.

Click on the SigLIP2 models in the right sidebar for more examples of how to apply SigLIP2 to different image and text tasks.

The example below demonstrates zero-shot classification with Pipeline or the AutoModel class.

Pipeline
AutoModel (FixRes)
AutoModel (NaFlex)
import torch
from transformers import pipeline

image = "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]

pipeline = pipeline(task="zero-shot-image-classification", model="google/siglip2-base-patch16-224", device=0, torch_dtype=torch.bfloat16)
pipeline(image, candidate_labels=candidate_labels)

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.

The example below uses bitsandbytes to only quantize the weights to int4.

import torch
import requests
from PIL import Image
from transformers import AutoProcessor, AutoModel, BitsAndBytesConfig

bnb_config = BitsAndBytesConfig(load_in_4bit=True)
model = AutoModel.from_pretrained("google/siglip2-large-patch16-512", quantization_config=bnb_config, device_map="auto", attn_implementation="sdpa")
processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-224")

url = "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
image = Image.open(requests.get(url, stream=True).raw)
candidate_labels = ["a Pallas cat", "a lion", "a Siberian tiger"]

# follows the pipeline prompt template to get same results
texts = [f'This is a photo of {label}.' for label in candidate_labels]

# IMPORTANT: we pass `padding=max_length` and `max_length=64` since the model was trained with this
inputs = processor(text=texts, images=image, padding="max_length", max_length=64, return_tensors="pt").to("cuda")

with torch.no_grad():
    outputs = model(**inputs)

logits_per_image = outputs.logits_per_image
probs = torch.sigmoid(logits_per_image)
print(f"{probs[0][0]:.1%} that image 0 is '{candidate_labels[0]}'")

Notes

  • Training is supported for DDP and FSDP on single-node multi-GPU setups. However, it does not use torch.distributed utilities which may limit the scalability of batch size.

  • When using the standalone GemmaTokenizerFast make sure to pass padding="max_length" and max_length=64 as that’s how the model was trained.

  • Model was trained with lowercased text, so make sure your text labels are preprocessed the same way.

  • To get the same results as the Pipeline, a prompt template of "This is a photo of {label}." should be passed to the processor.

  • The NaFlex variant processes different types of images at the appropriate resolution (using a larger resolution to process document images for example), while also minimizing the impact of aspect ratio distortion for certain inference tasks like OCR.

    NaFlex resizes the input image so the height and width are multiples of the patch size after resizing. It keeps the aspect ratio distortion as low as possible and produces a sequence length of at most the desired target sequence length (max_num_patches). After resizing, the image is split into a sequence of patches and a mask with padding information is added.

  • Toggle the attn_implementation parameter to either "sdpa" or "flash_attention_2" to use a more memory-efficient attention.

    # pip install -U flash-attn --no-build-isolation
    
    from transformers import SiglipModel
    
    model = SiglipModel.from_pretrained(
        "google/siglip2-so400m-patch14-384",
        attn_implementation="flash_attention_2",
        torch_dtype=torch.float16,
        device_map=device,
    )

Siglip2Config

class transformers.Siglip2Config

< >

( text_config = None vision_config = None **kwargs )

Parameters

  • text_config (dict, optional) — Dictionary of configuration options used to initialize Siglip2TextConfig.
  • vision_config (dict, optional) — Dictionary of configuration options used to initialize Siglip2VisionConfig.
  • kwargs (optional) — Dictionary of keyword arguments.

Siglip2Config is the configuration class to store the configuration of a Siglip2Model. It is used to instantiate a Siglip2 model according to the specified arguments, defining the text model and vision model configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the Siglip2 google/siglip2-base-patch16-224 architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Example:

>>> from transformers import Siglip2Config, Siglip2Model

>>> # Initializing a Siglip2Config with google/siglip2-base-patch16-224 style configuration
>>> configuration = Siglip2Config()

>>> # Initializing a Siglip2Model (with random weights) from the google/siglip2-base-patch16-224 style configuration
>>> model = Siglip2Model(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

>>> # We can also initialize a Siglip2Config from a Siglip2TextConfig and a Siglip2VisionConfig
>>> from transformers import Siglip2TextConfig, Siglip2VisionConfig

>>> # Initializing a Siglip2Text and Siglip2Vision configuration
>>> config_text = Siglip2TextConfig()
>>> config_vision = Siglip2VisionConfig()

>>> config = Siglip2Config.from_text_vision_configs(config_text, config_vision)

from_text_vision_configs

< >

( text_config: Siglip2TextConfig vision_config: Siglip2VisionConfig **kwargs ) Siglip2Config

Returns

Siglip2Config

An instance of a configuration object

Instantiate a Siglip2Config (or a derived class) from siglip2 text model configuration and siglip2 vision model configuration.

Siglip2TextConfig

class transformers.Siglip2TextConfig

< >

( vocab_size = 32000 hidden_size = 768 intermediate_size = 3072 num_hidden_layers = 12 num_attention_heads = 12 max_position_embeddings = 64 hidden_act = 'gelu_pytorch_tanh' layer_norm_eps = 1e-06 attention_dropout = 0.0 pad_token_id = 1 bos_token_id = 49406 eos_token_id = 49407 projection_size = None **kwargs )

Parameters

  • vocab_size (int, optional, defaults to 32000) — Vocabulary size of the Siglip2 text model. Defines the number of different tokens that can be represented by the inputs_ids passed when calling Siglip2Model.
  • hidden_size (int, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer.
  • intermediate_size (int, optional, defaults to 3072) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.
  • num_hidden_layers (int, optional, defaults to 12) — Number of hidden layers in the Transformer encoder.
  • num_attention_heads (int, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder.
  • max_position_embeddings (int, optional, defaults to 64) — The maximum sequence length that this model might ever be used with. Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
  • hidden_act (str or function, optional, defaults to "gelu_pytorch_tanh") — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "selu" and "gelu_new" "quick_gelu" are supported.
  • layer_norm_eps (float, optional, defaults to 1e-06) — The epsilon used by the layer normalization layers.
  • attention_dropout (float, optional, defaults to 0.0) — The dropout ratio for the attention probabilities.
  • pad_token_id (int, optional, defaults to 1) — The id of the padding token in the vocabulary.
  • bos_token_id (int, optional, defaults to 49406) — The id of the beginning-of-sequence token in the vocabulary.
  • eos_token_id (int, optional, defaults to 49407) — The id of the end-of-sequence token in the vocabulary.
  • projection_size (int, optional, defaults to hidden_size) — The size of the projection head.

This is the configuration class to store the configuration of a Siglip2TextModel. It is used to instantiate a Siglip2 text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the text encoder of the Siglip2 google/siglip2-base-patch16-224 architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Example:

>>> from transformers import Siglip2TextConfig, Siglip2TextModel

>>> # Initializing a Siglip2TextConfig with google/siglip2-base-patch16-224 style configuration
>>> configuration = Siglip2TextConfig()

>>> # Initializing a Siglip2TextModel (with random weights) from the google/siglip2-base-patch16-224 style configuration
>>> model = Siglip2TextModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

Siglip2VisionConfig

class transformers.Siglip2VisionConfig

< >

( hidden_size = 768 intermediate_size = 3072 num_hidden_layers = 12 num_attention_heads = 12 num_channels = 3 num_patches = 256 patch_size = 16 hidden_act = 'gelu_pytorch_tanh' layer_norm_eps = 1e-06 attention_dropout = 0.0 **kwargs )

Parameters

  • hidden_size (int, optional, defaults to 768) — Dimensionality of the encoder layers and the pooler layer.
  • intermediate_size (int, optional, defaults to 3072) — Dimensionality of the “intermediate” (i.e., feed-forward) layer in the Transformer encoder.
  • num_hidden_layers (int, optional, defaults to 12) — Number of hidden layers in the Transformer encoder.
  • num_attention_heads (int, optional, defaults to 12) — Number of attention heads for each attention layer in the Transformer encoder.
  • num_channels (int, optional, defaults to 3) — Number of channels in the input images.
  • num_patches (int, optional, defaults to 256) — The number of patches in the image with the size of (patch_size, patch_size). The image is resized to fill maximum of this number of patches, and to preserve the aspect ratio. In case the resulted number of patches is lower, the image is padded in “patch” dimension.
  • patch_size (int, optional, defaults to 16) — The size (resolution) of each patch.
  • hidden_act (str or function, optional, defaults to "gelu_pytorch_tanh") — The non-linear activation function (function or string) in the encoder and pooler. If string, "gelu", "relu", "selu" and "gelu_new" "quick_gelu" are supported.
  • layer_norm_eps (float, optional, defaults to 1e-06) — The epsilon used by the layer normalization layers.
  • attention_dropout (float, optional, defaults to 0.0) — The dropout ratio for the attention probabilities.

This is the configuration class to store the configuration of a Siglip2VisionModel. It is used to instantiate a Siglip2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the vision encoder of the Siglip2 google/siglip2-base-patch16-naflex architecture.

Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.

Example:

>>> from transformers import Siglip2VisionConfig, Siglip2VisionModel

>>> # Initializing a Siglip2VisionConfig with google/siglip2-base-patch16-naflex style configuration
>>> configuration = Siglip2VisionConfig()

>>> # Initializing a Siglip2VisionModel (with random weights) from the google/siglip2-base-patch16-naflex style configuration
>>> model = Siglip2VisionModel(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

Siglip2ImageProcessor

class transformers.Siglip2ImageProcessor

< >

( do_resize: bool = True resample: PILImageResampling = <Resampling.BILINEAR: 2> do_rescale: bool = True rescale_factor: float = 0.00392156862745098 do_normalize: bool = True image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None do_convert_rgb: typing.Optional[bool] = None patch_size: int = 16 max_num_patches: int = 256 **kwargs )

Parameters

  • do_resize (bool, optional, defaults to True) — Whether to resize the image’s dimensions to fit max_num_patches according to given patch_size. Can be overridden by do_resize in the preprocess method.
  • resample (PILImageResampling, optional, defaults to Resampling.BILINEAR) — Resampling filter to use if resizing the image. Can be overridden by resample in the preprocess method.
  • do_rescale (bool, optional, defaults to True) — Whether to rescale the image by the specified scale rescale_factor. Can be overridden by do_rescale in the preprocess method.
  • rescale_factor (int or float, optional, defaults to 1/255) — Scale factor to use if rescaling the image. Can be overridden by rescale_factor in the preprocess method.
  • do_normalize (bool, optional, defaults to True) — Whether to normalize the image by the specified mean and standard deviation. Can be overridden by do_normalize in the preprocess method.
  • image_mean (float or List[float], optional, defaults to [0.5, 0.5, 0.5]) — Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_mean parameter in the preprocess method.
  • image_std (float or List[float], optional, defaults to [0.5, 0.5, 0.5]) — Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_std parameter in the preprocess method. Can be overridden by the image_std parameter in the preprocess method.
  • do_convert_rgb (bool, optional, defaults to True) — Whether to convert the image to RGB.
  • patch_size (int, optional, defaults to 16) — The size (resolution) of each patch the image will be split to.
  • max_num_patches (int, optional, defaults to 256) — The image will be resized to have at most this number of patches, and then padded in “patch” dimension to match this number exactly.

Constructs a SigLIP2 image processor.

preprocess

< >

( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']] do_resize: typing.Optional[bool] = None resample: typing.Optional[ForwardRef('PILImageResampling')] = None do_rescale: typing.Optional[bool] = None rescale_factor: typing.Optional[float] = None do_normalize: typing.Optional[bool] = None image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None input_data_format: typing.Union[str, transformers.image_utils.ChannelDimension, NoneType] = None do_convert_rgb: typing.Optional[bool] = None patch_size: typing.Optional[int] = None max_num_patches: typing.Optional[int] = None )

Parameters

  • images (ImageInput) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False.
  • do_resize (bool, optional, defaults to self.do_resize) — Whether to resize the image.
  • size (Dict[str, int], optional, defaults to self.size) — Size of the image after resizing.
  • resample (int, optional, defaults to self.resample) — Resampling filter to use if resizing the image. This can be one of the enum PILImageResampling. Only has an effect if do_resize is set to True.
  • do_rescale (bool, optional, defaults to self.do_rescale) — Whether to rescale the image.
  • rescale_factor (float, optional, defaults to self.rescale_factor) — Rescale factor to rescale the image by if do_rescale is set to True.
  • do_normalize (bool, optional, defaults to self.do_normalize) — Whether to normalize the image.
  • image_mean (float or List[float], optional, defaults to self.image_mean) — Image mean to use for normalization. Only has an effect if do_normalize is set to True.
  • image_std (float or List[float], optional, defaults to self.image_std) — Image standard deviation to use for normalization. Only has an effect if do_normalize is set to True.
  • return_tensors (str or TensorType, optional) — The type of tensors to return. Can be one of:
    • Unset: Return a list of np.ndarray.
    • TensorType.TENSORFLOW or 'tf': Return a batch of type tf.Tensor.
    • TensorType.PYTORCH or 'pt': Return a batch of type torch.Tensor.
    • TensorType.NUMPY or 'np': Return a batch of type np.ndarray.
    • TensorType.JAX or 'jax': Return a batch of type jax.numpy.ndarray.
  • input_data_format (ChannelDimension or str, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
    • "none" or ChannelDimension.NONE: image in (height, width) format.
  • do_convert_rgb (bool, optional, defaults to self.do_convert_rgb) — Whether to convert the image to RGB.
  • patch_size (int, optional, defaults to self.patch_size) — Patch size for processing, same as the patch size used in the model.
  • max_num_patches (int, optional, defaults to self.max_num_patches) — Maximum number of patches per image, the image will be resized to have at most this number of patches.

Preprocess an image or batch of images.

Siglip2ImageProcessorFast

class transformers.Siglip2ImageProcessorFast

< >

( **kwargs: typing_extensions.Unpack[transformers.models.siglip2.image_processing_siglip2_fast.Siglip2FastImageProcessorKwargs] )

Parameters

  • do_resize (bool, optional, defaults to self.do_resize) — Whether to resize the image’s (height, width) dimensions to the specified size. Can be overridden by the do_resize parameter in the preprocess method.
  • size (dict, optional, defaults to self.size) — Size of the output image after resizing. Can be overridden by the size parameter in the preprocess method.
  • default_to_square (bool, optional, defaults to self.default_to_square) — Whether to default to a square image when resizing, if size is an int.
  • resample (PILImageResampling, optional, defaults to self.resample) — Resampling filter to use if resizing the image. Only has an effect if do_resize is set to True. Can be overridden by the resample parameter in the preprocess method.
  • do_center_crop (bool, optional, defaults to self.do_center_crop) — Whether to center crop the image to the specified crop_size. Can be overridden by do_center_crop in the preprocess method.
  • crop_size (Dict[str, int] optional, defaults to self.crop_size) — Size of the output image after applying center_crop. Can be overridden by crop_size in the preprocess method.
  • do_rescale (bool, optional, defaults to self.do_rescale) — Whether to rescale the image by the specified scale rescale_factor. Can be overridden by the do_rescale parameter in the preprocess method.
  • rescale_factor (int or float, optional, defaults to self.rescale_factor) — Scale factor to use if rescaling the image. Only has an effect if do_rescale is set to True. Can be overridden by the rescale_factor parameter in the preprocess method.
  • do_normalize (bool, optional, defaults to self.do_normalize) — Whether to normalize the image. Can be overridden by the do_normalize parameter in the preprocess method. Can be overridden by the do_normalize parameter in the preprocess method.
  • image_mean (float or List[float], optional, defaults to self.image_mean) — Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_mean parameter in the preprocess method. Can be overridden by the image_mean parameter in the preprocess method.
  • image_std (float or List[float], optional, defaults to self.image_std) — Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_std parameter in the preprocess method. Can be overridden by the image_std parameter in the preprocess method.
  • do_convert_rgb (bool, optional, defaults to self.do_convert_rgb) — Whether to convert the image to RGB.
  • return_tensors (str or TensorType, optional, defaults to self.return_tensors) — Returns stacked tensors if set to `pt, otherwise returns a list of tensors.
  • data_format (ChannelDimension or str, optional, defaults to self.data_format) — Only ChannelDimension.FIRST is supported. Added for compatibility with slow processors.
  • input_data_format (ChannelDimension or str, optional, defaults to self.input_data_format) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
    • "none" or ChannelDimension.NONE: image in (height, width) format.
  • device (torch.device, optional, defaults to self.device) — The device to process the images on. If unset, the device is inferred from the input images.
  • patch_size (int, optional, defaults to 16) — The size (resolution) of each patch the image will be split to.
  • max_num_patches (int, optional, defaults to 256) — The image will be resized to have at most this number of patches, and then padded in “patch” dimension to match this number exactly.

Constructs a fast Siglip2 image processor.

preprocess

< >

( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), list['PIL.Image.Image'], list[numpy.ndarray], list['torch.Tensor']] **kwargs: typing_extensions.Unpack[transformers.models.siglip2.image_processing_siglip2_fast.Siglip2FastImageProcessorKwargs] )

Parameters

  • images (ImageInput) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False.
  • do_resize (bool, optional, defaults to self.do_resize) — Whether to resize the image.
  • size (Dict[str, int], optional, defaults to self.size) — Describes the maximum input dimensions to the model.
  • resample (PILImageResampling or InterpolationMode, optional, defaults to self.resample) — Resampling filter to use if resizing the image. This can be one of the enum PILImageResampling. Only has an effect if do_resize is set to True.
  • do_center_crop (bool, optional, defaults to self.do_center_crop) — Whether to center crop the image.
  • crop_size (Dict[str, int], optional, defaults to self.crop_size) — Size of the output image after applying center_crop.
  • do_rescale (bool, optional, defaults to self.do_rescale) — Whether to rescale the image.
  • rescale_factor (float, optional, defaults to self.rescale_factor) — Rescale factor to rescale the image by if do_rescale is set to True.
  • do_normalize (bool, optional, defaults to self.do_normalize) — Whether to normalize the image.
  • image_mean (float or List[float], optional, defaults to self.image_mean) — Image mean to use for normalization. Only has an effect if do_normalize is set to True.
  • image_std (float or List[float], optional, defaults to self.image_std) — Image standard deviation to use for normalization. Only has an effect if do_normalize is set to True.
  • do_convert_rgb (bool, optional, defaults to self.do_convert_rgb) — Whether to convert the image to RGB.
  • return_tensors (str or TensorType, optional, defaults to self.return_tensors) — Returns stacked tensors if set to `pt, otherwise returns a list of tensors.
  • data_format (ChannelDimension or str, optional, defaults to self.data_format) — Only ChannelDimension.FIRST is supported. Added for compatibility with slow processors.
  • input_data_format (ChannelDimension or str, optional, defaults to self.input_data_format) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
    • "none" or ChannelDimension.NONE: image in (height, width) format.
  • device (torch.device, optional, defaults to self.device) — The device to process the images on. If unset, the device is inferred from the input images.
  • patch_size (int, optional, defaults to self.patch_size) — The size (resolution) of each patch the image will be split to.
  • max_num_patches (int, optional, defaults to self.max_num_patches) — The image will be resized to have at most this number of patches, and then padded in “patch” dimension to match this number exactly.

Preprocess an image or batch of images.

Siglip2Processor

class transformers.Siglip2Processor

< >

( image_processor tokenizer )

Parameters

Constructs a Siglip2 processor which wraps a Siglip2 image processor and a Gemma tokenizer into a single processor.

Siglip2Processor offers all the functionalities of Siglip2ImageProcessor and GemmaTokenizerFast. See the __call__() and decode() for more information.

batch_decode

< >

( *args **kwargs )

This method forwards all its arguments to Siglip2Tokenizer’s batch_decode(). Please refer to the docstring of this method for more information.

decode

< >

( *args **kwargs )

This method forwards all its arguments to Siglip2Tokenizer’s decode(). Please refer to the docstring of this method for more information.

Siglip2Model

class transformers.Siglip2Model

< >

( config: Siglip2Config )

Parameters

  • config (Siglip2Config) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( input_ids: typing.Optional[torch.LongTensor] = None pixel_values: typing.Optional[torch.FloatTensor] = None pixel_attention_mask: typing.Optional[torch.Tensor] = None spatial_shapes: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None return_loss: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.models.siglip2.modeling_siglip2.Siglip2Output or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.

    What are input IDs?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details.
  • return_loss (bool, optional) — Whether or not to return the contrastive loss.
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • interpolate_pos_encoding (bool, optional, defaults to False) — Whether to interpolate the pre-trained position encodings.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

Returns

transformers.models.siglip2.modeling_siglip2.Siglip2Output or tuple(torch.FloatTensor)

A transformers.models.siglip2.modeling_siglip2.Siglip2Output or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (<class 'transformers.models.siglip2.configuration_siglip2.Siglip2Config'>) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when return_loss is True) — Contrastive loss for image-text similarity.
  • logits_per_image (torch.FloatTensor of shape (image_batch_size, text_batch_size)) — The scaled dot product scores between image_embeds and text_embeds. This represents the image-text similarity scores.
  • logits_per_text (torch.FloatTensor of shape (text_batch_size, image_batch_size)) — The scaled dot product scores between text_embeds and image_embeds. This represents the text-image similarity scores.
  • text_embeds (torch.FloatTensor of shape (batch_size, output_dim) — The text embeddings obtained by applying the projection layer to the pooled output of Siglip2TextModel.
  • image_embeds (torch.FloatTensor of shape (batch_size, output_dim) — The image embeddings obtained by applying the projection layer to the pooled output of Siglip2VisionModel.
  • text_model_output (BaseModelOutputWithPooling) — The output of the Siglip2TextModel.
  • vision_model_output (BaseModelOutputWithPooling) — The output of the Siglip2VisionModel.

The Siglip2Model forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AutoModel
>>> import torch

>>> model = AutoModel.from_pretrained("google/siglip2-base-patch16-224")
>>> processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-224")

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> texts = ["a photo of 2 cats", "a photo of 2 dogs"]
>>> # important: we pass `padding=max_length` since the model was trained with this
>>> inputs = processor(text=texts, images=image, padding="max_length", return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> logits_per_image = outputs.logits_per_image
>>> probs = torch.sigmoid(logits_per_image) # these are the probabilities
>>> print(f"{probs[0][0]:.1%} that image 0 is '{texts[0]}'")
31.9% that image 0 is 'a photo of 2 cats'

get_text_features

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) text_features (torch.FloatTensor of shape (batch_size, output_dim)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.

    What are input IDs?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

Returns

text_features (torch.FloatTensor of shape (batch_size, output_dim)

The text embeddings obtained by applying the projection layer to the pooled output of Siglip2TextModel.

The Siglip2Model forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

>>> from transformers import AutoTokenizer, AutoModel
>>> import torch

>>> model = AutoModel.from_pretrained("google/siglip2-base-patch16-224")
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip2-base-patch16-224")

>>> # important: make sure to set padding="max_length" as that's how the model was trained
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")
>>> with torch.no_grad():
...     text_features = model.get_text_features(**inputs)

get_image_features

< >

( pixel_values: typing.Optional[torch.FloatTensor] = None pixel_attention_mask: typing.Optional[torch.Tensor] = None spatial_shapes: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) image_features (torch.FloatTensor of shape (batch_size, output_dim)

Parameters

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details.
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • interpolate_pos_encoding (bool, optional, defaults to False) — Whether to interpolate the pre-trained position encodings.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

Returns

image_features (torch.FloatTensor of shape (batch_size, output_dim)

The image embeddings obtained by applying the projection layer to the pooled output of Siglip2VisionModel.

The Siglip2Model forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, AutoModel
>>> import torch

>>> model = AutoModel.from_pretrained("google/siglip2-base-patch16-224")
>>> processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-224")

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> inputs = processor(images=image, return_tensors="pt")

>>> with torch.no_grad():
...     image_features = model.get_image_features(**inputs)

Siglip2TextModel

class transformers.Siglip2TextModel

< >

( config: Siglip2TextConfig )

Parameters

  • config (Siglip2Config) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The text model from Siglip2 without any head or projection on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( input_ids: typing.Optional[torch.Tensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.

    What are input IDs?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

Returns

transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)

A transformers.modeling_outputs.BaseModelOutputWithPooling or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (<class 'transformers.models.siglip2.configuration_siglip2.Siglip2TextConfig'>) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (torch.FloatTensor of shape (batch_size, hidden_size)) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The Siglip2TextModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

>>> from transformers import AutoTokenizer, Siglip2TextModel

>>> model = Siglip2TextModel.from_pretrained("google/siglip2-base-patch16-224")
>>> tokenizer = AutoTokenizer.from_pretrained("google/siglip2-base-patch16-224")

>>> # important: make sure to set padding="max_length" as that's how the model was trained
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding="max_length", return_tensors="pt")

>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output  # pooled (EOS token) states

Siglip2VisionModel

class transformers.Siglip2VisionModel

< >

( config: Siglip2VisionConfig )

Parameters

  • config (Siglip2Config) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The vision model from Siglip2 without any head or projection on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( pixel_values: FloatTensor pixel_attention_mask: Tensor spatial_shapes: LongTensor output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)

Parameters

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details.
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • interpolate_pos_encoding (bool, optional, defaults to False) — Whether to interpolate the pre-trained position encodings.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

Returns

transformers.modeling_outputs.BaseModelOutputWithPooling or tuple(torch.FloatTensor)

A transformers.modeling_outputs.BaseModelOutputWithPooling or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (<class 'transformers.models.siglip2.configuration_siglip2.Siglip2VisionConfig'>) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, sequence_length, hidden_size)) — Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (torch.FloatTensor of shape (batch_size, hidden_size)) — Last layer hidden-state of the first token of the sequence (classification token) after further processing through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns the classification token after processing through a linear layer and a tanh activation function. The linear layer weights are trained from the next sentence prediction (classification) objective during pretraining.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, sequence_length, hidden_size).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, sequence_length, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The Siglip2VisionModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Siglip2VisionModel

>>> model = Siglip2VisionModel.from_pretrained("google/siglip2-base-patch16-224")
>>> processor = AutoProcessor.from_pretrained("google/siglip2-base-patch16-224")

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> inputs = processor(images=image, return_tensors="pt")

>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output  # pooled features

Siglip2ForImageClassification

class transformers.Siglip2ForImageClassification

< >

( config: Siglip2Config )

Parameters

  • config (Siglip2Config) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

Siglip2 vision encoder with an image classification head on top (a linear layer on top of the pooled final hidden states of the patch tokens) e.g. for ImageNet.

This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)

This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( pixel_values: typing.Optional[torch.Tensor] = None pixel_attention_mask: typing.Optional[torch.Tensor] = None spatial_shapes: typing.Optional[torch.LongTensor] = None labels: typing.Optional[torch.Tensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None ) transformers.modeling_outputs.ImageClassifierOutput or tuple(torch.FloatTensor)

Parameters

  • input_ids (torch.LongTensor of shape (batch_size, sequence_length)) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.

    Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.

    What are input IDs?

  • attention_mask (torch.Tensor of shape (batch_size, sequence_length), optional) — Mask to avoid performing attention on padding token indices. Mask values selected in [0, 1]:

    • 1 for tokens that are not masked,
    • 0 for tokens that are masked.

    What are attention masks?

  • position_ids (torch.LongTensor of shape (batch_size, sequence_length), optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range [0, config.max_position_embeddings - 1].

    What are position IDs?

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using AutoImageProcessor. See CLIPImageProcessor.call() for details.
  • return_loss (bool, optional) — Whether or not to return the contrastive loss.
  • output_attentions (bool, optional) — Whether or not to return the attentions tensors of all attention layers. See attentions under returned tensors for more detail.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • interpolate_pos_encoding (bool, optional, defaults to False) — Whether to interpolate the pre-trained position encodings.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the image classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

transformers.modeling_outputs.ImageClassifierOutput or tuple(torch.FloatTensor)

A transformers.modeling_outputs.ImageClassifierOutput or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (Siglip2Config) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) — Classification (or regression if config.num_labels==1) loss.

  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) — Classification (or regression if config.num_labels==1) scores (before SoftMax).

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) — Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape (batch_size, sequence_length, hidden_size). Hidden-states (also called feature maps) of the model at the output of each stage.

  • attentions (tuple(torch.FloatTensor), optional, returned when output_attentions=True is passed or when config.output_attentions=True) — Tuple of torch.FloatTensor (one for each layer) of shape (batch_size, num_heads, patch_size, sequence_length).

    Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

The Siglip2ForImageClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

>>> from transformers import AutoImageProcessor, Siglip2ForImageClassification
>>> import torch
>>> from PIL import Image
>>> import requests

>>> torch.manual_seed(3)
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> # note: we are loading a `Siglip2Model` from the hub here,
>>> # so the head will be randomly initialized, hence the predictions will be random if seed is not set above.
>>> image_processor = AutoImageProcessor.from_pretrained("google/siglip2-base-patch16-224")
>>> model = Siglip2ForImageClassification.from_pretrained("google/siglip2-base-patch16-224")

>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the two classes
>>> predicted_class_idx = logits.argmax(-1).item()
>>> print("Predicted class:", model.config.id2label[predicted_class_idx])
Predicted class: LABEL_1
< > Update on GitHub