Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --erased-cubical #-} module Midi where open import Agda.Builtin.String using (String) open import Data.Fin using (toℕ) open import Data.Nat using (ℕ) open import Data.List using (List; []; _∷_; concatMap) open import Data.Product using (_,_) open import Data.Unit using (⊤) open import MidiEvent using (Tick; MidiEvent; midiEvent; MidiTrack; track) {-# FOREIGN GHC import System.Environment (getArgs) import Codec.Midi import Data.Text (Text, unpack, pack) import Data.List (sort, map) import Text.Read (readMaybe) type HsTicksPerBeat = Integer type HsTicks = Integer type HsKey = Integer type HsVelocity = Integer type HsPreset = Integer type HsChannel = Integer type HsTempo = Integer type HsAbsTime = Integer type HsTrackName = Text -- convert beats per minute to microseconds per beat bpmToTempo :: Int -> Tempo bpmToTempo bpm = round $ 1000000 * 60 / fromIntegral bpm data HsMidiMessage = HsNoteOn HsVelocity HsTicks HsKey | HsNoteOff HsVelocity HsTicks HsKey deriving Eq getTicks :: HsMidiMessage -> HsTicks getTicks (HsNoteOn _ t _) = t getTicks (HsNoteOff _ t _) = t instance Ord HsMidiMessage where a <= b = getTicks a <= getTicks b data HsMidiTrack = HsMidiTrack HsTrackName HsPreset HsChannel HsTempo [HsMidiMessage] fi = fromInteger makeTrack :: Channel -> HsAbsTime -> [HsMidiMessage] -> (Track Ticks , HsAbsTime) makeTrack c t [] = ([(0, TrackEnd)], t) makeTrack c t (HsNoteOn v t' k : ms) = let (rest, t'') = makeTrack c t' ms in ((fi (t' - t), NoteOn c (fi k) (fi v)) : rest, t'') makeTrack c t (HsNoteOff v t' k : ms) = let (rest, t'') = makeTrack c t' ms in ((fi (t' - t), NoteOff c (fi k) (fi v)) : rest, t'') toTrack :: HsMidiTrack -> Track Ticks toTrack (HsMidiTrack name preset channel tempo messages) = (0, TrackName (unpack name)) : (0, ProgramChange (fi channel) (fi preset)) : (0, TempoChange (bpmToTempo (fi tempo))) : fst (makeTrack (fi channel) 0 (sort messages)) toMidi :: HsTicksPerBeat -> [HsMidiTrack] -> Midi toMidi ticks tracks = let mtracks = map toTrack tracks in Midi MultiTrack (TicksPerBeat (fi ticks)) mtracks exportTracks :: Text -> HsTicksPerBeat -> [HsMidiTrack] -> IO () exportTracks filePath ticksPerBeat tracks = do let path = unpack filePath --putStrLn $ "Writing file " ++ path --putStrLn $ show $ toMidi ticksPerBeat tracks exportFile path (toMidi ticksPerBeat tracks) -- Returns n+1 if s parses as natural number n, or 0 for any failure readNat :: Text -> Integer readNat s = case (readMaybe (unpack s) :: Maybe Integer) of Just n -> if n >= 0 then n+1 else 0 Nothing -> 0 #-} postulate IO : Set → Set putStrLn : String -> IO ⊤ getArgs : IO (List String) _>>=_ : {A B : Set} -> IO A -> (A -> IO B) -> IO B {-# BUILTIN IO IO #-} {-# COMPILE GHC IO = type IO #-} {-# COMPILE GHC putStrLn = putStrLn . unpack #-} {-# COMPILE GHC getArgs = fmap (fmap pack) getArgs #-} {-# COMPILE GHC _>>=_ = \_ _ -> (>>=) :: IO a -> (a -> IO b) -> IO b #-} FilePath = String data Pair (A : Set) (B : Set) : Set where pair : A → B → Pair A B {-# COMPILE GHC Pair = data (,) ((,)) #-} HInstrument HPitch HVelocity : Set HInstrument = ℕ HPitch = ℕ HVelocity = ℕ HChannel = ℕ HTempo = ℕ data MidiMessage : Set where noteOn : HVelocity → Tick → HPitch → MidiMessage noteOff : HVelocity → Tick → HPitch → MidiMessage {-# COMPILE GHC MidiMessage = data HsMidiMessage (HsNoteOn | HsNoteOff) #-} event→messages : MidiEvent → List MidiMessage event→messages (midiEvent p start stop v) = let v' = toℕ v in noteOn v' start p ∷ noteOff v' stop p ∷ [] data HMidiTrack : Set where htrack : String → HInstrument → HChannel → HTempo → List MidiMessage → HMidiTrack {-# COMPILE GHC HMidiTrack = data HsMidiTrack (HsMidiTrack) #-} track→htrack : MidiTrack → HMidiTrack track→htrack (track n i c t m) = htrack n (toℕ i) (toℕ c) t (concatMap event→messages m) postulate exportTracks : FilePath → -- path to the file to save the MIDI data to ℕ → -- number of ticks per beat (by default a beat is a quarter note) List HMidiTrack → -- tracks, one per instrument IO ⊤ {-# COMPILE GHC exportTracks = exportTracks #-} postulate readNat : String → ℕ {-# COMPILE GHC readNat = readNat #-}
{ "alphanum_fraction": 0.6290781695, "avg_line_length": 32.390070922, "ext": "agda", "hexsha": "f8adea413a19651a82c7e4507b8e6868a0bf2ec7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Midi.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Midi.agda", "max_line_length": 100, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Midi.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 1401, "size": 4567 }
module ParseTree where open import Data.String open import Data.Nat open import Data.Bool open import Data.List {-# FOREIGN GHC import ParseTree #-} data ParseTree : Set data TypeSignature : Set data Expr : Set data Range : Set data Identifier : Set data RangePosition : Set data Pragma : Set data Comment : Set data ParseTree where signature : (signature : TypeSignature) -> (range : Range) -> ParseTree functionDefinition : (definitionOf : Identifier) -> (params : List Expr) -> (body : Expr) -> (range : Range) -> ParseTree dataStructure : (dataName : Identifier) -> (parameters : List TypeSignature) -> (indexInfo : Expr) -> (constructors : List TypeSignature) -> (range : Range) -> {comments : List (List Comment)} -> ParseTree pragma : (pragma : Pragma) -> (range : Range) -> ParseTree openImport : (opened : Bool) -> (imported : Bool) -> (moduleName : Identifier) -> (range : Range) -> {comments : List (List Comment)} -> ParseTree moduleName : (moduleName : Identifier) -> (range : Range) -> ParseTree {-# COMPILE GHC ParseTree = data ParseTree ( Signature | FunctionDefinition | DataStructure | Pragma | OpenImport | ModuleName ) #-} data TypeSignature where typeSignature : (funcName : Identifier) -> (funcType : Expr) -> TypeSignature {-# COMPILE GHC TypeSignature = data TypeSignature ( TypeSignature ) #-} data Expr where numLit : {value : ℕ} -> {position : Range} -> {commentsBef : List Comment} -> {commentsAf : List Comment} -> Expr ident : (identifier : Identifier) -> Expr hole : {textInside : String} -> {position : Range} -> {commentsBef : List Comment} -> {commentsAf : List Comment} -> Expr functionApp : (firstPart : Expr) -> (secondPart : Expr) -> {isType : Bool} -> Expr implicit : (expr : Expr) -> Expr underscore : {position : Range} -> {commentsBef : List Comment} -> {commentsAf : List Comment} -> Expr namedArgument : (arg : TypeSignature) -> {explicit : Bool} -> {commentsBef : List Comment} -> {commentsAf : List Comment} -> Expr {-# COMPILE GHC Expr = data Expr ( NumLit | Ident | Hole | FunctionApp | Implicit | Underscore | NamedArgument ) #-} data Range where range : (lastUnaffected : ℕ) -> (lastAffected : ℕ) -> Range {-# COMPILE GHC Range = data Range ( Range ) #-} data Identifier where identifier : (name : String) -> (isInRange : (ℕ -> RangePosition)) -> (scope : ℕ) -> (declaration : ℕ) -> {inScope : Bool} -> {commentsBefore : List Comment} -> {commentsAfter : List Comment} -> Identifier {-# COMPILE GHC Identifier = data Identifier ( Identifier ) #-} data RangePosition where before : RangePosition inside : RangePosition after : RangePosition {-# COMPILE GHC RangePosition = data RangePosition ( Before | Inside | After ) #-} data Pragma where builtin : (concept : String) -> (definition : Identifier) -> Pragma option : (opts : List String) -> Pragma {-# COMPILE GHC Pragma = data Pragma ( Builtin | Option ) #-} data Comment where comment : {content : String} -> {codePos : Range} -> {isMultiLine : Bool} -> Comment {-# COMPILE GHC Comment = data Comment ( Comment ) #-}
{ "alphanum_fraction": 0.6765087605, "avg_line_length": 30.5148514851, "ext": "agda", "hexsha": "25c3d2dc6601456a8d26399688ab39b5b70f31e1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/ParseTree.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/ParseTree.agda", "max_line_length": 207, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/ParseTree.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 827, "size": 3082 }
module Web.Semantic.DL.Category.Properties.Tensor where open import Web.Semantic.DL.Category.Properties.Tensor.RespectsEquiv public using ( tensor-resp-≣ ) open import Web.Semantic.DL.Category.Properties.Tensor.Functor public using ( tensor-resp-id ; tensor-resp-compose ) open import Web.Semantic.DL.Category.Properties.Tensor.Isomorphisms public using ( symm-iso ; assoc-iso ; assoc⁻¹-iso ; unit₁-iso ; unit₁⁻¹-iso ; unit₂-iso ; unit₂⁻¹-iso ) open import Web.Semantic.DL.Category.Properties.Tensor.Coherence public using ( assoc-unit ; assoc-assoc ; assoc-symm ) open import Web.Semantic.DL.Category.Properties.Tensor.UnitNatural public using ( unit₁-natural ; unit₂-natural ) open import Web.Semantic.DL.Category.Properties.Tensor.SymmNatural public using ( symm-natural ) open import Web.Semantic.DL.Category.Properties.Tensor.AssocNatural public using ( assoc-natural )
{ "alphanum_fraction": 0.7797552836, "avg_line_length": 37.4583333333, "ext": "agda", "hexsha": "72fc4eb050ae3919d221173381034f978afd71af", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor.agda", "max_line_length": 81, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Tensor.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 236, "size": 899 }
module sn-calculus-confluence.recrec where open import Data.Nat using (_+_) open import Function using (_∋_ ; _∘_ ; id ; _$_) open import Data.Nat.Properties.Simple using ( +-comm ; +-assoc ) open import utility open import Esterel.Lang open import Esterel.Lang.Properties open import Esterel.Environment as Env open import Esterel.Context open import Data.Product open import Data.Sum open import Data.Bool open import Data.List open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Empty open import sn-calculus open import context-properties open import Esterel.Lang.Binding open import Data.Maybe using ( just ) open import Data.List.Any open import Data.List.Any.Properties renaming ( ++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ ) open import Data.FiniteMap import Data.OrderedListMap as OMap open import Data.Nat as Nat using (ℕ) open import Esterel.Variable.Signal as Signal using (Signal) open import Esterel.Variable.Shared as SharedVar using (SharedVar) open import Esterel.Variable.Sequential as SeqVar open import sn-calculus-confluence.helper ρ-conf-rec2 : ∀{θ El Er ql qr i oli ori qro qlo FV BV θl θr a b El' Er' A Al Ar} → CorrectBinding (ρ⟨ θ , A ⟩· i) FV BV → (ieql : i ≐ El ⟦ ql ⟧e) → (ieqr : i ≐ Er ⟦ qr ⟧e) → El a~ Er → (rl : (ρ⟨ θ , A ⟩· i) sn⟶₁ (ρ⟨ θl , Al ⟩· oli)) → (rr : (ρ⟨ θ , A ⟩· i) sn⟶₁ (ρ⟨ θr , Ar ⟩· ori)) → (olieq : oli ≐ El ⟦ qlo ⟧e) → (orieq : ori ≐ Er ⟦ qro ⟧e) → (->E-view rl ieql olieq) → (->E-view rr ieqr orieq) → (El ≡ (epar₂ a ∷ El')) → (Er ≡ (epar₁ b ∷ Er')) → ( Σ[ θo ∈ Env ] Σ[ Ao ∈ Ctrl ] Σ[ si ∈ Term ] Σ[ Elo ∈ EvaluationContext ] Σ[ Ero ∈ EvaluationContext ] Σ[ oorieq ∈ ori ≐ Elo ⟦ ql ⟧e ] Σ[ oolieq ∈ oli ≐ Ero ⟦ qr ⟧e ] Σ[ sireq ∈ (si ≐ Elo ⟦ qlo ⟧e ) ] Σ[ sileq ∈ (si ≐ Ero ⟦ qro ⟧e ) ] Σ[ redl ∈ ((ρ⟨ θl , Al ⟩· oli) sn⟶₁ (ρ⟨ θo , Ao ⟩· si )) ] Σ[ redr ∈ ((ρ⟨ θr , Ar ⟩· ori) sn⟶₁ (ρ⟨ θo , Ao ⟩· si )) ] ((->E-view redl oolieq sileq) × (->E-view redr oorieq sireq) × (Σ (EvaluationContext × EvaluationContext × Term × Term) λ { (Elo' , Ero' , a , b) → (Elo ≡ (epar₂ a ∷ Elo') × Ero ≡ (epar₁ b ∷ Ero'))}))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)}{ql = ql}{qr = qr} {i = .(p ∥ q)} cb (depar₂ ieql) (depar₁ ieqr) par (ris-present{p = pr} a1 b1 .(depar₂ ieql)) (ris-present{p = pl} a2 b2 (depar₁ .ieqr)) olieq orieq vis-present vis-present refl refl = θ , _ , (El ⟦ pl ⟧e) ∥ (Er ⟦ pr ⟧e) , (epar₂ (El ⟦ pl ⟧e) ∷ Er) , (epar₁ (Er ⟦ pr ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , (ris-present a2 b2 (depar₁ ieqr)) , (ris-present a1 b1 (depar₂ ieql)) , (vis-present , vis-present , (_ , refl , refl)) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} cb (depar₂ ieql) (depar₁ ieqr) par (ris-present{p = r} a1 b1 .(depar₂ ieql)) (ris-absent{q = l} a2 b2 .(depar₁ ieqr)) olieq orieq vis-present vis-absent refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , ((epar₁ (Er ⟦ r ⟧e) ∷ El)) , depar₂ ieql , (depar₁ ieqr) , Erefl , (Erefl , ((ris-absent a2 b2 (depar₁ ieqr)) , ((ris-present a1 b1 (depar₂ ieql)) , (vis-absent , vis-present , (_ , refl , refl))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (ris-present a1 b1 .(depar₂ ieql)) (rraise-shared a2 .(depar₁ ieqr)) olieq orieq vis-present vraise-shared refl refl = θ , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , ((depar₁ ieqr) , (Erefl , (Erefl , ((rraise-shared a2 (depar₁ ieqr)) , ((ris-present a1 b1 (depar₂ ieql)) , (vraise-shared , vis-present , (_ , refl , refl)))))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (ris-present a1 b1 .(depar₂ ieql)) (rraise-var a2 .(depar₁ ieqr)) olieq orieq vis-present vraise-var refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , (rraise-var a2 (depar₁ ieqr)) , ((ris-present a1 b1 (depar₂ ieql)) , (vraise-var , vis-present , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (ris-present a1 b1 .(depar₂ ieql)) (rif-false a2 b2 .(depar₁ ieqr)) olieq orieq vis-present vif-false refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , (rif-false a2 b2 (depar₁ ieqr)) , ((ris-present a1 b1 (depar₂ ieql)) , (vif-false , vis-present , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (ris-present a1 b1 .(depar₂ ieql)) (rif-true a2 b2 .(depar₁ ieqr)) olieq orieq vis-present vif-true refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , (rif-true a2 b2 (depar₁ ieqr)) , ((ris-present a1 b1 (depar₂ ieql)) , (vif-true , vis-present , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (ris-absent a1 b1 .(depar₂ ieql)) (ris-present a2 b2 .(depar₁ ieqr)) olieq orieq vis-absent vis-present refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , ris-present a2 b2 (depar₁ ieqr) , (ris-absent a1 b1 (depar₂ ieql) , (vis-present , vis-absent , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (ris-absent a1 b1 .(depar₂ ieql)) (ris-absent a2 b2 .(depar₁ ieqr)) olieq orieq vis-absent vis-absent refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , ris-absent a2 b2 (depar₁ ieqr) , (ris-absent a1 b1 (depar₂ ieql) , (vis-absent , vis-absent , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (ris-absent a1 b1 .(depar₂ ieql)) (rif-false a2 b2 .(depar₁ ieqr)) olieq orieq vis-absent vif-false refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rif-false a2 b2 (depar₁ ieqr) , (ris-absent a1 b1 (depar₂ ieql) , (vif-false , vis-absent , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (ris-absent a1 b1 .(depar₂ ieql)) (rif-true a2 b2 .(depar₁ ieqr)) olieq orieq vis-absent vif-true refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rif-true a2 b2 (depar₁ ieqr) , (ris-absent a1 b1 (depar₂ ieql) , (vif-true , vis-absent , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (ris-absent a1 b1 .(depar₂ ieql)) (rraise-var a2 .(depar₁ ieqr)) olieq orieq vis-absent vraise-var refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rraise-var a2 (depar₁ ieqr) , (ris-absent a1 b1 (depar₂ ieql) , (vraise-var , vis-absent , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (ris-absent a1 b1 .(depar₂ ieql)) (rraise-shared a2 .(depar₁ ieqr)) olieq orieq vis-absent vraise-shared refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rraise-shared a2 (depar₁ ieqr) , (ris-absent a1 b1 (depar₂ ieql) , (vraise-shared , vis-absent , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rraise-shared a .(depar₂ ieql)) (ris-present a2 b2 .(depar₁ ieqr)) olieq orieq vraise-shared vis-present refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , ris-present a2 b2 (depar₁ ieqr) , (rraise-shared a (depar₂ ieql) , (vis-present , vraise-shared , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rraise-shared a .(depar₂ ieql)) (ris-absent a2 b2 .(depar₁ ieqr)) olieq orieq vraise-shared vis-absent refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , ris-absent a2 b2 (depar₁ ieqr) , (rraise-shared a (depar₂ ieql) , (vis-absent , vraise-shared , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rraise-shared a .(depar₂ ieql)) (rraise-shared a2 .(depar₁ ieqr)) olieq orieq vraise-shared vraise-shared refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rraise-shared a2 (depar₁ ieqr) , (rraise-shared a (depar₂ ieql) , (vraise-shared , vraise-shared , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rraise-shared a .(depar₂ ieql)) (rif-false a2 b2 .(depar₁ ieqr)) olieq orieq vraise-shared vif-false refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rif-false a2 b2 (depar₁ ieqr) , (rraise-shared a (depar₂ ieql) , (vif-false , vraise-shared , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rraise-shared a .(depar₂ ieql)) (rif-true a2 b2 .(depar₁ ieqr)) olieq orieq vraise-shared vif-true refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rif-true a2 b2 (depar₁ ieqr) , (rraise-shared a (depar₂ ieql) , (vif-true , vraise-shared , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rraise-shared a .(depar₂ ieql)) (rraise-var a2 .(depar₁ ieqr)) olieq orieq vraise-shared vraise-var refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rraise-var a2 (depar₁ ieqr) , (rraise-shared a (depar₂ ieql) , (vraise-var , vraise-shared , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rraise-var a1 .(depar₂ ieql)) (ris-present a2 b2 .(depar₁ ieqr)) olieq orieq vraise-var vis-present refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , ris-present a2 b2 (depar₁ ieqr) , (rraise-var a1 (depar₂ ieql) , (vis-present , vraise-var , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rraise-var a1 .(depar₂ ieql)) (ris-absent a2 b2 .(depar₁ ieqr)) olieq orieq vraise-var vis-absent refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , ris-absent a2 b2 (depar₁ ieqr) , (rraise-var a1 (depar₂ ieql) , (vis-absent , vraise-var , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rraise-var a1 .(depar₂ ieql)) (rraise-shared a2 .(depar₁ ieqr)) olieq orieq vraise-var vraise-shared refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rraise-shared a2 (depar₁ ieqr) , (rraise-var a1 (depar₂ ieql) , (vraise-shared , vraise-var , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rraise-var a1 .(depar₂ ieql)) (rraise-var a2 .(depar₁ ieqr)) olieq orieq vraise-var vraise-var refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rraise-var a2 (depar₁ ieqr) , (rraise-var a1 (depar₂ ieql) , (vraise-var , vraise-var , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rraise-var a1 .(depar₂ ieql)) (rif-false a2 b2 .(depar₁ ieqr)) olieq orieq vraise-var vif-false refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rif-false a2 b2 (depar₁ ieqr) , (rraise-var a1 (depar₂ ieql) , (vif-false , vraise-var , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rraise-var a1 .(depar₂ ieql)) (rif-true a2 b2 .(depar₁ ieqr)) olieq orieq vraise-var vif-true refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rif-true a2 b2 (depar₁ ieqr) , (rraise-var a1 (depar₂ ieql) , (vif-true , vraise-var , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rif-false a1 b1 .(depar₂ ieql)) (ris-present a2 b2 .(depar₁ ieqr)) olieq orieq vif-false vis-present refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , ris-present a2 b2 (depar₁ ieqr) , (rif-false a1 b1 (depar₂ ieql) , (vis-present , vif-false , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rif-false a1 b1 .(depar₂ ieql)) (ris-absent a2 b2 .(depar₁ ieqr)) olieq orieq vif-false vis-absent refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , ris-absent a2 b2 (depar₁ ieqr) , (rif-false a1 b1 (depar₂ ieql) , (vis-absent , vif-false , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rif-false a1 b1 .(depar₂ ieql)) (rraise-shared a2 .(depar₁ ieqr)) olieq orieq vif-false vraise-shared refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rraise-shared a2 (depar₁ ieqr) , (rif-false a1 b1 (depar₂ ieql) , (vraise-shared , vif-false , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rif-false a1 b1 .(depar₂ ieql)) (rraise-var a2 .(depar₁ ieqr)) olieq orieq vif-false vraise-var refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rraise-var a2 (depar₁ ieqr) , (rif-false a1 b1 (depar₂ ieql) , (vraise-var , vif-false , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rif-false a1 b1 .(depar₂ ieql)) (rif-false a2 b2 .(depar₁ ieqr)) olieq orieq vif-false vif-false refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rif-false a2 b2 (depar₁ ieqr) , (rif-false a1 b1 (depar₂ ieql) , (vif-false , vif-false , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rif-false a1 b1 .(depar₂ ieql)) (rif-true a2 b2 .(depar₁ ieqr)) olieq orieq vif-false vif-true refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rif-true a2 b2 (depar₁ ieqr) , (rif-false a1 b1 (depar₂ ieql) , (vif-true , vif-false , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rif-true a1 b1 .(depar₂ ieql)) (ris-present a2 b2 .(depar₁ ieqr)) olieq orieq vif-true vis-present refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , ris-present a2 b2 (depar₁ ieqr) , (rif-true a1 b1 (depar₂ ieql) , (vis-present , vif-true , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rif-true a1 b1 .(depar₂ ieql)) (ris-absent a2 b2 .(depar₁ ieqr)) olieq orieq vif-true vis-absent refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , ris-absent a2 b2 (depar₁ ieqr) , (rif-true a1 b1 (depar₂ ieql) , (vis-absent , vif-true , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rif-true a1 b1 .(depar₂ ieql)) (rraise-shared a2 .(depar₁ ieqr)) olieq orieq vif-true vraise-shared refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rraise-shared a2 (depar₁ ieqr) , (rif-true a1 b1 (depar₂ ieql) , (vraise-shared , vif-true , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rif-true a1 b1 .(depar₂ ieql)) (rraise-var a2 .(depar₁ ieqr)) olieq orieq vif-true vraise-var refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rraise-var a2 (depar₁ ieqr) , (rif-true a1 b1 (depar₂ ieql) , (vraise-var , vif-true , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rif-true a1 b1 .(depar₂ ieql)) (rif-false a2 b2 .(depar₁ ieqr)) olieq orieq vif-true vif-false refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rif-false a2 b2 (depar₁ ieqr) , (rif-true a1 b1 (depar₂ ieql) , (vif-false , vif-true , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (rif-true a1 b1 .(depar₂ ieql)) (rif-true a2 b2 .(depar₁ ieqr)) olieq orieq vif-true vif-true refl refl = θ , _ , ( ( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e ) ) , (epar₂ (El ⟦ l ⟧e) ∷ Er) , (epar₁ (Er ⟦ r ⟧e) ∷ El) , depar₂ ieql , (depar₁ ieqr) , Erefl , Erefl , rif-true a2 b2 (depar₁ ieqr) , (rif-true a1 b1 (depar₂ ieql) , (vif-true , vif-true , (_ , refl , refl))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)}{qro = l}{qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (ris-present{S = Sp} a b .(depar₂ ieql)) (remit{S = S} ein ¬S≡a .(depar₁ ieqr)) olieq orieq vis-present vemit refl refl with Sp Signal.≟ S ... | yes refl = θo , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr) , (Erefl , Erefl , ((remit ein ¬S≡a (depar₁ ieqr)) , (ris-present (sig-set-mono'{Sp}{S}{θ}{Signal.present}{ein} a) eq (depar₂ ieql) , (vemit , vis-present , (_ , refl , refl)))))) where θo = (set-sig{S = S} θ ein Signal.present) eq = (sig-putget {S}{θ}{Signal.present} a (sig-set-mono'{S}{S}{θ}{Signal.present}{a} a)) ... | no ¬pr = θo , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr) , (Erefl , Erefl , ((remit ein ¬S≡a (depar₁ ieqr)) , (ris-present (sig-set-mono'{Sp}{S}{θ}{Signal.present}{ein} a) eq (depar₂ ieql) , (vemit , vis-present , (_ , refl , refl)))))) where θo = (set-sig{S = S} θ ein Signal.present) eq = (sig-putputget{Sp}{S}{θ}{Signal.present}{Signal.present} ¬pr a ein (sig-set-mono'{Sp}{S}{θ}{Signal.present}{ein} a) b) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (ris-present a1 b1 .(depar₂ ieql)) (rset-shared-value-old{s = s} a2 b2 c2 .(depar₁ ieqr)) olieq orieq vis-present vset-shared-value-old refl refl = (Env.set-shr{s} θ b2 (SharedVar.new) (δ a2)) , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr) , (Erefl , Erefl , (rset-shared-value-old a2 b2 c2 (depar₁ ieqr) , (ris-present a1 b1 (depar₂ ieql) , (vset-shared-value-old , vis-present , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (ris-present a b .(depar₂ ieql)) (rset-shared-value-new{s = s} e' s∈ x .ieqr) olieq orieq vis-present vset-shared-value-new refl refl = (Env.set-shr{s} θ s∈ (SharedVar.new) (Env.shr-vals{s} θ s∈ + δ e')) , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (rset-shared-value-new e' s∈ x (depar₁ ieqr') , (ris-present a b (depar₂ ieql) , (vset-shared-value-new , vis-present , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (ris-present a b .(depar₂ ieql)) (rset-var{x = x} x∈ e' .ieqr) olieq orieq vis-present vset-var refl refl = (Env.set-var{x} θ x∈ (δ e')) , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (rset-var x∈ e' (depar₁ ieqr') , (ris-present a b (depar₂ ieql) , (vset-var , vis-present , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (ris-absent{S = Sp} Sp∈ Sp≡ .(depar₂ ieql)) (remit{S = S} S∈ ¬S≡a .ieqr) olieq orieq vis-absent vemit refl refl with Sp Signal.≟ S ... | yes refl = ⊥-elim (¬S≡a (subst (λ x → sig-stats{Sp} θ x ≡ Signal.absent) (sig∈-eq{S}{θ} Sp∈ S∈) Sp≡)) ... | no ¬pr = θo , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (remit S∈ ¬S≡a (depar₁ ieqr') , (ris-absent (sig-set-mono'{Sp}{S}{θ}{_}{S∈} Sp∈) eq (depar₂ ieql) , (vemit , vis-absent , (_ , refl , refl)))))) where θo = (set-sig{S = S} θ S∈ Signal.present) eq = (sig-putputget{Sp}{S}{θ}{_}{_} ¬pr Sp∈ S∈ (sig-set-mono'{Sp}{S}{θ}{Signal.present}{S∈} Sp∈) Sp≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (ris-absent{S = Sp} Sp∈ Sp≡ .(depar₂ ieql)) (rset-shared-value-old{s = s} e' s∈ x .ieqr) olieq orieq vis-absent vset-shared-value-old refl refl = (Env.set-shr{s} θ s∈ (SharedVar.new) (δ e')) , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (rset-shared-value-old e' s∈ x (depar₁ ieqr') , (ris-absent Sp∈ Sp≡ (depar₂ ieql) , (vset-shared-value-old , vis-absent , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (ris-absent{S = Sp} Sp∈ Sp≡ .(depar₂ ieql)) (rset-shared-value-new{s = s} e' s∈ x .ieqr) olieq orieq vis-absent vset-shared-value-new refl refl = (Env.set-shr{s} θ s∈ (SharedVar.new) (Env.shr-vals{s} θ s∈ + δ e')) , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (rset-shared-value-new e' s∈ x (depar₁ ieqr') , (ris-absent Sp∈ Sp≡ (depar₂ ieql) , (vset-shared-value-new , vis-absent , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (ris-absent{S = Sp} Sp∈ Sp≡ .(depar₂ ieql)) (rset-var{x = x} x∈ e' .ieqr) olieq orieq vis-absent vset-var refl refl = (Env.set-var{x} θ x∈ (δ e')) , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (rset-var x∈ e' (depar₁ ieqr') , (ris-absent Sp∈ Sp≡ (depar₂ ieql) , (vset-var , vis-absent , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (remit{S = S} ein ¬S≡a .(depar₂ ieql)) (ris-present{S = Sp} a b .(depar₁ ieqr)) olieq orieq vemit vis-present refl refl with Sp Signal.≟ S ... | yes refl = θo , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr) , (Erefl , Erefl , (ris-present (sig-set-mono'{Sp}{S}{θ}{Signal.present}{ein} a) eq (depar₁ ieqr) , ((remit ein ¬S≡a (depar₂ ieql)) , (vis-present , vemit , (_ , refl , refl)))))) where θo = (set-sig{S = S} θ ein Signal.present) eq = (sig-putget {S}{θ}{Signal.present} a (sig-set-mono'{S}{S}{θ}{Signal.present}{a} a)) ... | no ¬pr = θo , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr) , (Erefl , Erefl , (ris-present (sig-set-mono'{Sp}{S}{θ}{Signal.present}{ein} a) eq (depar₁ ieqr) , ((remit ein ¬S≡a (depar₂ ieql)) , (vis-present , vemit , (_ , refl , refl)))))) where θo = (set-sig{S = S} θ ein Signal.present) eq = (sig-putputget{Sp}{S}{θ}{Signal.present}{Signal.present} ¬pr a ein (sig-set-mono'{Sp}{S}{θ}{Signal.present}{ein} a) b) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) (depar₁ ieqr) par (remit{S = S} S∈ ¬S≡a .(depar₂ ieql)) (ris-absent{S = Sp} Sp∈ Sp≡ .(depar₁ ieqr)) olieq orieq vemit vis-absent refl refl with Sp Signal.≟ S ... | yes refl = ⊥-elim ((¬S≡a (subst (λ x → sig-stats{Sp} θ x ≡ Signal.absent) (sig∈-eq{S}{θ} Sp∈ S∈) Sp≡))) ... | no ¬pr = θo , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr) , (Erefl , Erefl , (ris-absent (sig-set-mono'{Sp}{S}{θ}{_}{S∈} Sp∈) eq (depar₁ ieqr) , (remit S∈ ¬S≡a (depar₂ ieql) , (vis-absent , vemit , (_ , refl , refl)))))) where θo = (set-sig{S = S} θ S∈ Signal.present) eq = (sig-putputget{Sp}{S}{θ}{_}{_} ¬pr Sp∈ S∈ (sig-set-mono'{Sp}{S}{θ}{Signal.present}{S∈} Sp∈) Sp≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (remit{S = S} S∈ ¬S≡a .(depar₂ ieql)) (rif-false{x = x} x∈ x≡ .ieqr) olieq orieq vemit vif-false refl refl = (Env.set-sig{S} θ S∈ Signal.present) , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (rif-false x∈ x≡ (depar₁ ieqr') , (remit S∈ ¬S≡a (depar₂ ieql) , (vif-false , vemit , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (remit{S = S} S∈ ¬S≡a .(depar₂ ieql)) (rif-true{x = x} x∈ x≡ .ieqr) olieq orieq vemit vif-true refl refl = (Env.set-sig{S} θ S∈ Signal.present) , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (rif-true x∈ x≡ (depar₁ ieqr') , (remit S∈ ¬S≡a (depar₂ ieql) , (vif-true , vemit , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} {GO} {GO} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (remit{S = S} S∈ ¬S≡a .(depar₂ ieql)) (rraise-shared{s = s}{p = pp} e' .ieqr) olieq orieq vemit vraise-shared refl refl with (ready-maint/irr S S∈ Signal.present e') ... | e'' , e≡ = θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , ((proj₁ rett) , (remit S∈ ¬S≡a (depar₂ ieql) , (proj₂ rett , vemit , (_ , refl , refl)))))) where θo = (Env.set-sig{S} θ S∈ Signal.present) get : (typeof e≡) → Σ[ redl ∈ ((ρ⟨ θo , GO ⟩· p ∥ (Er ⟦ r ⟧e)) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redl (depar₁ ieqr') Erefl get e≡ rewrite e≡ = (rraise-shared e'' (depar₁ ieqr')) , vraise-shared rett = (get e≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (remit{S = S} S∈ ¬S≡a .(depar₂ ieql)) (rset-shared-value-old{s = s}{e = ee} e' s∈ s≡ .ieqr) olieq orieq vemit vset-shared-value-old refl refl with (ready-maint/irr S S∈ Signal.present e') ... | (e'' , e≡) = θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (proj₁ rett , (remit S∈ ¬S≡a (depar₂ ieql) , (proj₂ rett , vemit , (_ , refl , refl)))))) where θo = (Env.set-sig{S} (Env.set-shr{s = s} θ s∈ SharedVar.new (δ e')) S∈ Signal.present) get : (typeof e≡) → Σ[ redl ∈ ((ρ⟨ (Env.set-sig{S} θ S∈ Signal.present) , GO ⟩· p ∥ (Er ⟦ r ⟧e)) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redl (depar₁ ieqr') Erefl get e≡ rewrite e≡ = (rset-shared-value-old e'' s∈ s≡ (depar₁ ieqr')) , vset-shared-value-old rett = (get e≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (remit{S = S} S∈ ¬S≡a .(depar₂ ieql)) rl@(rset-shared-value-new{s = s} e' s∈ s≡ .ieqr) olieq orieq vemit vset-shared-value-new refl refl with (ready-maint/irr S S∈ Signal.present e') ... | (e'' , e≡) = θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (proj₁ rett , (remit S∈ ¬S≡a (depar₂ ieql) , (proj₂ rett , vemit , (_ , refl , refl)))))) where θo = (Env.set-sig{S} (Env.set-shr{s} θ s∈ SharedVar.new ( (shr-vals{s = s} θ s∈) + (δ e') )) S∈ Signal.present) get : (typeof e≡) → Σ[ redl ∈ ((ρ⟨ (Env.set-sig{S} θ S∈ Signal.present) , GO ⟩· p ∥ (Er ⟦ r ⟧e)) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redl (depar₁ ieqr') Erefl get e≡ rewrite e≡ = (rset-shared-value-new e'' s∈ s≡ (depar₁ ieqr')) , vset-shared-value-new rett = (get e≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (remit{S = S} S∈ ¬S≡a .(depar₂ ieql)) (rraise-var{x = x} e' .ieqr) olieq orieq vemit vraise-var refl refl with ready-maint/irr S S∈ Signal.present e' ... | (e'' , e≡) = θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (proj₁ rett , (remit S∈ ¬S≡a (depar₂ ieql) , (proj₂ rett , vemit , (_ , refl , refl)))))) where θo = (Env.set-sig{S} θ S∈ Signal.present) get : (typeof e≡) → Σ[ redl ∈ ((ρ⟨ θo , GO ⟩· p ∥ (Er ⟦ r ⟧e)) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redl (depar₁ ieqr') Erefl get e≡ rewrite e≡ = (rraise-var e'' (depar₁ ieqr')) , vraise-var rett = (get e≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (remit{S = S} S∈ ¬S≡a .(depar₂ ieql)) (rset-var{x = x} x∈ e' .ieqr) olieq orieq vemit vset-var refl refl with (ready-maint/irr S S∈ Signal.present e') ... | (e'' , e≡) = θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (proj₁ rett , (remit S∈ ¬S≡a (depar₂ ieql) , (proj₂ rett , vemit , (_ , refl , refl)))))) where θo = (Env.set-sig {S} (Env.set-var{x} θ x∈ (δ e')) S∈ Signal.present) θ2 = (Env.set-sig {S} θ S∈ Signal.present) get : (typeof e≡) → Σ[ redl ∈ ((ρ⟨ θ2 , GO ⟩· p ∥ (Er ⟦ r ⟧e)) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redl (depar₁ ieqr') Erefl get e≡ rewrite e≡ = (rset-var{x = x} x∈ e'' (depar₁ ieqr')) , vset-var rett = (get e≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (remit{S = Sl} Sl∈ ¬Sl≡a .(depar₂ ieql)) (remit{S = Sr} Sr∈ ¬Sr≡a .ieqr) olieq orieq vemit vemit refl refl with Sr Signal.≟ Sl ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (remit{S = Sl} Sl∈ ¬Sl≡a.(depar₂ ieql)) (remit{S = Sr} Sr∈ ¬Sr≡a .ieqr) olieq orieq vemit vemit refl refl | no ¬pr with sig-set-comm{θ}{Sl}{Sr}{Signal.present}{Signal.present} Sl∈ Sr∈ (λ x → ¬pr (sym x)) ... | in1 , in2 , θ≡ = θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (remit {S = Sr} in2 (sig-put-mby-overwrite Sr Sl θ Signal.absent Signal.present Sr∈ Sl∈ in2 (λ ()) ¬Sr≡a) (depar₁ ieqr') , ( proj₁ (get θ≡) , (vemit , proj₂ (get θ≡) , (_ , refl , refl)))))) where θl = (Env.set-sig{Sl} θ Sl∈ Signal.present) θr = (Env.set-sig{Sr} θ Sr∈ Signal.present) θo = (Env.set-sig{Sr} θl in2 Signal.present) get : (typeof θ≡) → Σ[ redl ∈ ((ρ⟨ θr , GO ⟩· (El ⟦ l ⟧e) ∥ q) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redl (depar₂ ieql) Erefl get θ≡ rewrite θ≡ = remit in1 (sig-put-mby-overwrite Sl Sr θ Signal.absent Signal.present Sl∈ Sr∈ in1 (λ ()) ¬Sl≡a) (depar₂ ieql) , vemit ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (remit{S = Sl} Sl∈ ¬Sl≡a .(depar₂ ieql)) (remit{S = Sr} Sr∈ ¬Sr≡a .ieqr) olieq orieq vemit vemit refl refl | yes refl with sig∈-eq{Sl}{θ} Sl∈ Sr∈ ... | ∈≡ rewrite ∈≡ = θ2 , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (remit {S = S} S∈2 ((sig-put-mby-overwrite Sl Sr θ Signal.absent Signal.present Sr∈ Sl∈ S∈2 (λ ()) ¬Sl≡a) ) (depar₁ ieqr') , (remit {S = S} S∈2 ((sig-put-mby-overwrite Sl Sr θ Signal.absent Signal.present Sr∈ Sl∈ S∈2 (λ ()) ¬Sl≡a)) (depar₂ ieql) , (vemit , vemit , (_ , refl , refl)))))) where S = Sl θ1 = (Env.set-sig{S} θ Sl∈ Signal.present) S∈2 = sig-set-mono'{S}{S}{θ}{Signal.present}{Sl∈} Sr∈ θ2 = (Env.set-sig{S} θ1 S∈2 Signal.present) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (rraise-shared{s = s}{p = pp} e' .(depar₂ ieql)) (remit{S = S} S∈ ¬S≡a .ieqr) olieq orieq vraise-shared vemit refl refl with (ready-maint/irr S S∈ Signal.present e') ... | e'' , e≡ = θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (remit S∈ ¬S≡a (depar₁ ieqr') ,((proj₁ rett) , (vemit , proj₂ rett , (_ , refl , refl)))))) where θo = (Env.set-sig{S} θ S∈ Signal.present) get : (typeof e≡) → Σ[ redl ∈ ((ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ q) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redl (depar₂ ieql) Erefl get e≡ rewrite e≡ = (rraise-shared e'' (depar₂ ieql)) , vraise-shared rett = (get e≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (rset-shared-value-old{s = sl} e'l sl∈ sl≡ .(depar₂ ieql)) (ris-present{S = S} S∈ S≡ .ieqr) olieq orieq vset-shared-value-old vis-present refl refl = θo , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (ris-present S∈ S≡ (depar₁ ieqr') , (rset-shared-value-old e'l sl∈ sl≡ (depar₂ ieql) , (vis-present , vset-shared-value-old , (_ , refl , refl)))))) where θo = (Env.set-shr{sl} θ sl∈ (SharedVar.new) (δ e'l)) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (rset-shared-value-old{s = sl} e'l sl∈ sl≡ .(depar₂ ieql)) (ris-absent{S = S} S∈ S≡ .ieqr) olieq orieq vset-shared-value-old vis-absent refl refl = (Env.set-shr{sl} θ sl∈ (SharedVar.new) (δ e'l)) , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (ris-absent S∈ S≡ (depar₁ ieqr') , (rset-shared-value-old e'l sl∈ sl≡ (depar₂ ieql) , (vis-absent , vset-shared-value-old , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (rset-shared-value-old{s = sl} e'l sl∈ sl≡ .(depar₂ ieql)) (remit{S = S} S∈ ¬S≡a .ieqr) olieq orieq vset-shared-value-old vemit refl refl = θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (remit S∈ ¬S≡a (depar₁ ieqr') , (proj₁ res , (vemit , proj₂ res , (_ , refl , refl)))))) where θ1 = (Env.set-sig{S} θ S∈ Signal.present) θ2 = (Env.set-shr{sl} θ sl∈ (SharedVar.new) (δ e'l)) θo = (Env.set-sig{S} θ2 S∈ Signal.present) e≡ = (ready-maint/irr S S∈ Signal.present e'l) get : (typeof e≡) → Σ[ redl ∈ ((ρ⟨ θ1 , GO ⟩· (El ⟦ l ⟧e) ∥ q) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redl (depar₂ ieql) Erefl get (e'' , e≡) rewrite e≡ = rset-shared-value-old {s = sl} e'' sl∈ sl≡ (depar₂ ieql) , vset-shared-value-old res = get e≡ ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (rset-shared-value-old{s = sl} e'l sl∈ sl≡ .(depar₂ ieql)) (rif-false{x = x} x∈ x≡ .ieqr) olieq orieq vset-shared-value-old vif-false refl refl = θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (rif-false x∈ x≡ (depar₁ ieqr') , (rset-shared-value-old e'l sl∈ sl≡ (depar₂ ieql) , (vif-false , vset-shared-value-old , (_ , refl , refl)))))) where θo = (Env.set-shr{sl} θ sl∈ (SharedVar.new) (δ e'l)) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (rset-shared-value-old{s = sl} e'l sl∈ sl≡ .(depar₂ ieql)) (rif-true x∈ x≡ .ieqr) olieq orieq vset-shared-value-old vif-true refl refl = (Env.set-shr{sl} θ sl∈ (SharedVar.new) (δ e'l)) , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (rif-true x∈ x≡ (depar₁ ieqr') , (rset-shared-value-old e'l sl∈ sl≡ (depar₂ ieql) , (vif-true , vset-shared-value-old , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (rset-shared-value-new{s = sl} e'l sl∈ sl≡ .(depar₂ ieql)) (ris-absent S∈ S≡ .ieqr) olieq orieq vset-shared-value-new vis-absent refl refl = (Env.set-shr{sl} θ sl∈ (SharedVar.new) (Env.shr-vals{sl} θ sl∈ + (δ e'l))) , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (ris-absent S∈ S≡ (depar₁ ieqr') , ( rset-shared-value-new e'l sl∈ sl≡ (depar₂ ieql) , (vis-absent , vset-shared-value-new , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (rset-shared-value-new{s = sl} e'l sl∈ sl≡ .(depar₂ ieql)) (remit{S = S} S∈ ¬S≡a .ieqr) olieq orieq vset-shared-value-new vemit refl refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (remit S∈ ¬S≡a (depar₁ ieqr') , ( proj₁ res , (vemit , proj₂ res , (_ , refl , refl))))))) where θ1 = Env.set-shr{sl} θ sl∈ (SharedVar.new) (Env.shr-vals{sl} θ sl∈ + (δ e'l)) θ2 = Env.set-sig{S} θ S∈ Signal.present θo = Env.set-sig{S} θ1 S∈ Signal.present e≡ = (ready-maint/irr S S∈ Signal.present e'l) get : (typeof e≡) → Σ[ redl ∈ ((ρ⟨ θ2 , GO ⟩· (El ⟦ l ⟧e) ∥ q) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redl (depar₂ ieql) Erefl get (e'' , e≡) rewrite e≡ = rset-shared-value-new {s = sl} e'' sl∈ sl≡ (depar₂ ieql) , vset-shared-value-new res = get e≡ ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-shared-value-new{s = sl}{e} e'l sl∈ sl≡ .(depar₂ ieqr)) (rraise-var e'r .ieql) olieq orieq vset-shared-value-new vraise-var refl refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ (get e''l,δl≡) , (rset-shared-value-new{θ = θ}{(El ⟦ l ⟧e) ∥ q}{s = sl}{e}{epar₂ (El ⟦ l ⟧e) ∷ Er} e'l sl∈ sl≡ (depar₂ ieqr) , (proj₂ (get e''l,δl≡) , vset-shared-value-new , (_ , refl , refl))))))) where θo = Env.set-shr{s = sl} θ sl∈ SharedVar.new (shr-vals{s = sl} θ sl∈ + δ e'l) ¬s=ready : ¬ (shr-stats{sl} θ sl∈) ≡ SharedVar.ready ¬s=ready = λ x → lookup-s-eq θ sl sl∈ sl∈ x sl≡ (λ ()) -- (coherence-of-shr-set* any/env sl sl∈ (depar₂ ieqr) ? ) e''l,δl≡ = (ready-irr-on-irr-s sl (Env.shr-vals{sl} θ sl∈ + δ e'l) sl∈ ¬s=ready e'r) get : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θo , GO ⟩· p ∥ (Er ⟦ r ⟧e)) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl get (e'' , e≡) rewrite e≡ = rraise-var e'' (depar₁ ieql') , vraise-var ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (rset-shared-value-new{s = sl} e'l sl∈ sl≡ .(depar₂ ieql)) (rif-false{x = x} x∈ x≡ .ieqr) olieq orieq vset-shared-value-new vif-false refl refl = (Env.set-shr{s = sl} θ sl∈ SharedVar.new (shr-vals{s = sl} θ sl∈ + δ e'l) , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (rif-false{x = x} x∈ x≡ (depar₁ ieqr') , rset-shared-value-new e'l sl∈ sl≡ (depar₂ ieql) , (vif-false , vset-shared-value-new , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (rset-shared-value-new{s = sl} e'l sl∈ sl≡ .(depar₂ ieql)) (rif-true{x = x} x∈ x≡ .ieqr) olieq orieq vset-shared-value-new vif-true refl refl = (Env.set-shr{s = sl} θ sl∈ SharedVar.new (shr-vals{s = sl} θ sl∈ + δ e'l) , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (rif-true{x = x} x∈ x≡ (depar₁ ieqr') , rset-shared-value-new e'l sl∈ sl≡ (depar₂ ieql) , (vif-true , vset-shared-value-new , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieql) ieqr@(depar₁ ieqr') par (rraise-var{_}{_}{x}{pl}{e}{_} e'l .(depar₂ ieql)) (remit{S = S} S∈ ¬S≡a .ieqr) olieq orieq vraise-var vemit refl refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieql) , (depar₁ ieqr') , (Erefl , Erefl , (remit S∈ ¬S≡a (depar₁ ieqr') , proj₁ res , (vemit , proj₂ res , (_ , refl , refl)))))) where θo = Env.set-sig{S = S} θ S∈ Signal.present e''l,δl≡ = (ready-maint/irr S S∈ Signal.present e'l) get : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ q) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieql) Erefl get (e'' , e≡) rewrite e≡ = rraise-var e'' (depar₂ ieql) , vraise-var res = (get e''l,δl≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rraise-var{x = x} e'l .(depar₂ ieqr)) (rset-shared-value-old{s = s} e'r s∈ s≡ .ieql) olieq orieq vraise-var vset-shared-value-old refl refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (rset-shared-value-old{s = s} e'r s∈ s≡ (depar₁ ieql') , proj₁ res , (vset-shared-value-old , proj₂ res , (_ , refl , refl)))))) where θo = Env.set-shr{s = s} θ s∈ SharedVar.new (δ e'r) ¬s=ready : ¬ (shr-stats{s} θ s∈) ≡ SharedVar.ready ¬s=ready = λ x₁ → lookup-s-eq θ s s∈ s∈ x₁ s≡ (λ ()) -- (coherence-of-shr-set* any/env s s∈ (depar₂ ieqr) ? ) e''l,δl≡ = (ready-irr-on-irr-s s (δ e'r) s∈ ¬s=ready e'l) get : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ q) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl get (e'' , e≡) rewrite e≡ = rraise-var e'' (depar₂ ieqr) , vraise-var res = (get e''l,δl≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rraise-var{x = x} e'l .(depar₂ ieqr)) (rset-shared-value-new{s = s} e'r s∈ s≡ .ieql) olieq orieq vraise-var vset-shared-value-new refl refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (rset-shared-value-new{s = s} e'r s∈ s≡ (depar₁ ieql') , proj₁ res , (vset-shared-value-new , proj₂ res , (_ , refl , refl)))))) where θo = Env.set-shr{s = s} θ s∈ SharedVar.new ( (Env.shr-vals{s = s} θ s∈) + (δ e'r)) ¬s=ready : ¬ (shr-stats{s} θ s∈) ≡ SharedVar.ready ¬s=ready = λ x₁ → lookup-s-eq θ s s∈ s∈ x₁ s≡ (λ ()) -- (coherence-of-shr-set* any/env s s∈ (depar₂ ieqr) ? ) e''l,δl≡ = (ready-irr-on-irr-s s ( (Env.shr-vals{s = s} θ s∈) + (δ e'r)) s∈ ¬s=ready e'l) get : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ q) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl get (e'' , e≡) rewrite e≡ = rraise-var e'' (depar₂ ieqr) , vraise-var res = (get e''l,δl≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} {.A} {.A} (CBρ CBpp@(CBpar cbl cbr BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq)) (depar₂ ieqr) ieql@(depar₁ ieql') par (rraise-var{x = xl}{pl}{e = el} e'l .(depar₂ ieqr)) (rset-var{x = xr}{e = er} xr∈ e'r .ieql) olieq orieq vraise-var vset-var refl refl = (θo , A , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (rset-var xr∈ e'r (depar₁ ieql') , proj₁ res , (vset-var , proj₂ res , (_ , refl , refl)))))) where θo = Env.set-var{x = xr} θ xr∈ (δ e'r) BV<=,FV<=,CB<= : ∃ (λ BV → ∃ (λ FV → (CorrectBinding (xr ≔ er) BV FV))) BV<=,FV<=,CB<= = CBE⟦p⟧=>CBp{E = El}{p = (xr ≔ er)} ( (subst (λ x → CorrectBinding x _ _) (sym (unplug ieql')) cbl) ) BV<= = (proj₁ BV<=,FV<=,CB<=) FV<= = (proj₁ (proj₂ BV<=,FV<=,CB<=)) CB<= = (proj₂ (proj₂ BV<=,FV<=,CB<=)) FV<=⊆FVE,BV<=⊆BVE : (FV<= ⊆ _ × BV<= ⊆ _) FV<=⊆FVE,BV<=⊆BVE = CBp⊆CBE⟦p⟧ El (xr ≔ er) CB<= (subst (λ x → CorrectBinding x _ _) (sym (unplug ieql')) cbl) BV<=⊆BVE = proj₂ FV<=⊆FVE,BV<=⊆BVE FV<=⊆FVE = proj₁ FV<=⊆FVE,BV<=⊆BVE xr∈FVrf : (typeof CB<=) → (SeqVar.unwrap xr) ∈ Xs FV<= xr∈FVrf cb with BV<= | FV<= xr∈FVrf CBvset | .([] , [] , []) | FV = here refl xr∈FVr = xr∈FVrf CB<= BVvar,FVvar,CBvar : ∃ (λ BV → ∃ (λ FV → (CorrectBinding (var xl ≔ el in: pl) BV FV))) BVvar,FVvar,CBvar = CBE⟦p⟧=>CBp{E = Er}{p = (var xl ≔ el in: pl)} ( (subst (λ x → CorrectBinding x _ _) (sym (unplug ieqr)) cbr) ) BVvar = (proj₁ BVvar,FVvar,CBvar) FVvar = (proj₁ (proj₂ BVvar,FVvar,CBvar)) CBvar' = (proj₂ (proj₂ BVvar,FVvar,CBvar)) FVvar⊆FVE,BVvar⊆BVE : (FVvar ⊆ _ × BVvar ⊆ _) FVvar⊆FVE,BVvar⊆BVE = CBp⊆CBE⟦p⟧ Er (var xl ≔ el in: pl) CBvar' (subst (λ x → CorrectBinding x _ _) (sym (unplug ieqr)) cbr) BVvar⊆BVE = proj₂ FVvar⊆FVE,BVvar⊆BVE FVvar⊆FVE = proj₁ FVvar⊆FVE,BVvar⊆BVE FVel⊆FVEf : (typeof CBvar') → (FVₑ el) ⊆ FVvar FVel⊆FVEf cb with BVvar | FVvar FVel⊆FVEf (CBvar cb) | BV | FV = ∪ˡ ⊆-refl FVel⊆FVE = FVel⊆FVEf CBvar' -- Xp≠Xq xr∉FVel : (SeqVar.unwrap xr) ∉ (Xs (FVₑ el)) xr∉FVel x = Xp≠Xq _ xr∈FVEl xr∈FVE where xr∈FVE = (proj₂ (proj₂ (⊆-trans FVel⊆FVE FVvar⊆FVE))) _ x xr∈FVEl = (proj₂ (proj₂ FV<=⊆FVE)) _ xr∈FVr e''l,δl≡ = ready-irr-on-irr-x xr (δ e'r) xr∈ e'l xr∉FVel get : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θo , A ⟩· (El ⟦ l ⟧e) ∥ q) sn⟶₁ (ρ⟨ θo , A ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl get (e'' , e≡) rewrite e≡ = rraise-var e'' (depar₂ ieqr) , vraise-var res = (get e''l,δl≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-var{x = xl}{e = el} xl∈ e'l .(depar₂ ieqr)) (ris-present{S = S} S∈ S≡ .ieql) olieq orieq vset-var vis-present refl refl = (θo , A , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (ris-present S∈ S≡ (depar₁ ieql') , rset-var xl∈ e'l (depar₂ ieqr) , (vis-present , vset-var , (_ , refl , refl)))))) where θo = Env.set-var{x = xl} θ xl∈ (δ e'l) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-var{x = xl}{e = el} xl∈ e'l .(depar₂ ieqr)) (ris-absent S∈ S≡ .ieql) olieq orieq vset-var vis-absent refl refl = (θo , A , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (ris-absent S∈ S≡ (depar₁ ieql') , rset-var xl∈ e'l (depar₂ ieqr) , (vis-absent , vset-var , (_ , refl , refl)))))) where θo = Env.set-var{x = xl} θ xl∈ (δ e'l) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-var{x = xl}{e = el} xl∈ e'l .(depar₂ ieqr)) (remit{S = S} S∈ ¬S≡a .ieql) olieq orieq vset-var vemit refl refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (remit S∈ ¬S≡a (depar₁ ieql') , proj₁ rett , (vemit , proj₂ rett , (_ , refl , refl)))))) where θo = Env.set-var{x = xl} (Env.set-sig{S = S} θ S∈ Signal.present) xl∈ (δ e'l) θ2 = (Env.set-sig {S} θ S∈ Signal.present) x = (ready-maint/irr S S∈ Signal.present e'l) get : (typeof x) → Σ[ redl ∈ ((ρ⟨ θ2 , GO ⟩· (El ⟦ l ⟧e) ∥ q) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redl (depar₂ ieqr) Erefl get (e'' , e≡) rewrite e≡ = (rset-var{x = xl} xl∈ e'' (depar₂ ieqr)) , vset-var rett = (get x) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} (CBρ CBpp@(CBpar cbl cbr BVp≠BVq FVp≠BVq BVp≠FVq Xp≠Xq)) (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-var{x = xl}{e = el} xl∈ e'l .(depar₂ ieqr)) (rraise-var{x = xr}{pr}{e = er} e'r .ieql) olieq orieq vset-var vraise-var refl refl = (θo , A , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , ( proj₁ res , rset-var xl∈ e'l (depar₂ ieqr) , ( proj₂ res , vset-var , (_ , refl , refl)))))) where θo = Env.set-var{x = xl} θ xl∈ (δ e'l) BV<=,FV<=,CB<= : ∃ (λ BV → ∃ (λ FV → (CorrectBinding (xl ≔ el) BV FV))) BV<=,FV<=,CB<= = CBE⟦p⟧=>CBp{E = Er}{p = (xl ≔ el)} ( (subst (λ x → CorrectBinding x _ _) (sym (unplug ieqr)) cbr) ) BV<= = (proj₁ BV<=,FV<=,CB<=) FV<= = (proj₁ (proj₂ BV<=,FV<=,CB<=)) CB<= = (proj₂ (proj₂ BV<=,FV<=,CB<=)) FV<=⊆FVE,BV<=⊆BVE : (FV<= ⊆ _ × BV<= ⊆ _) FV<=⊆FVE,BV<=⊆BVE = CBp⊆CBE⟦p⟧ Er (xl ≔ el) CB<= (subst (λ x → CorrectBinding x _ _) (sym (unplug ieqr)) cbr) BV<=⊆BVE = proj₂ FV<=⊆FVE,BV<=⊆BVE FV<=⊆FVE = proj₁ FV<=⊆FVE,BV<=⊆BVE xr∈FVlf : (typeof CB<=) → (SeqVar.unwrap xl) ∈ Xs FV<= xr∈FVlf cb with BV<= | FV<= xr∈FVlf CBvset | .([] , [] , []) | FV = here refl xr∈FVl = xr∈FVlf CB<= BVvar,FVvar,CBvar : ∃ (λ BV → ∃ (λ FV → (CorrectBinding (var xr ≔ er in: pr) BV FV))) BVvar,FVvar,CBvar = CBE⟦p⟧=>CBp{E = El}{p = (var xr ≔ er in: pr)} ( (subst (λ x → CorrectBinding x _ _) (sym (unplug ieql')) cbl) ) BVvar = (proj₁ BVvar,FVvar,CBvar) FVvar = (proj₁ (proj₂ BVvar,FVvar,CBvar)) CBvar' = (proj₂ (proj₂ BVvar,FVvar,CBvar)) FVvar⊆FVE,BVvar⊆BVE : (FVvar ⊆ _ × BVvar ⊆ _) FVvar⊆FVE,BVvar⊆BVE = CBp⊆CBE⟦p⟧ El (var xr ≔ er in: pr) CBvar' (subst (λ x → CorrectBinding x _ _) (sym (unplug ieql')) cbl) BVvar⊆BVE = proj₂ FVvar⊆FVE,BVvar⊆BVE FVvar⊆FVE = proj₁ FVvar⊆FVE,BVvar⊆BVE FVel⊆FVEf : (typeof CBvar') → (FVₑ er) ⊆ FVvar FVel⊆FVEf cb with BVvar | FVvar FVel⊆FVEf (CBvar cb) | BV | FV = ∪ˡ ⊆-refl FVel⊆FVE = FVel⊆FVEf CBvar' -- Xp≠Xq xr∉FVer : (SeqVar.unwrap xl) ∉ (Xs (FVₑ er)) xr∉FVer x = Xp≠Xq _ xr∈FVE xr∈FVEl where xr∈FVE = (proj₂ (proj₂ (⊆-trans FVel⊆FVE FVvar⊆FVE))) _ x xr∈FVEl = (proj₂ (proj₂ FV<=⊆FVE)) _ xr∈FVl e''r,δr≡ = ready-irr-on-irr-x xl (δ e'l) xl∈ e'r xr∉FVer get : (typeof e''r,δr≡) → Σ[ redr ∈ ((ρ⟨ θo , A ⟩· (p ∥ (Er ⟦ r ⟧e))) sn⟶₁ (ρ⟨ θo , A ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl get (e'' , e≡) rewrite e≡ = rraise-var e'' (depar₁ ieql') , vraise-var res = (get e''r,δr≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rif-true a b .(depar₂ ieqr)) (remit{S = S} S∈ ¬S≡a .ieql) olieq orieq vif-true vemit refl refl = ((Env.set-sig{S = S} θ S∈ Signal.present) , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , ( remit S∈ ¬S≡a (depar₁ ieql') , rif-true a b (depar₂ ieqr) , ( vemit , vif-true , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rif-false a b .(depar₂ ieqr)) (remit{S = S} S∈ ¬S≡a .ieql) olieq orieq vif-false vemit refl refl = ((Env.set-sig{S = S} θ S∈ Signal.present) , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , ( remit S∈ ¬S≡a (depar₁ ieql') , rif-false a b (depar₂ ieqr) , ( vemit , vif-false , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} (CBρ cb) (depar₂{r = .(sr ⇐ er)} ieqr) ieql@(depar₁{r = .(xl ≔ el)} ieql') par (rset-shared-value-new{s = sr}{e = er} e'r sr∈ sr≡ .(depar₂ ieqr)) (rset-var{x = xl}{e = el} xl∈ e'l .ieql) olieq orieq vset-shared-value-new vset-var refl refl with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | (.((xl ≔ el) ∥ (sr ⇐ er)) , BVo , FVo) , (CBpar{FVp = FV≔}{FVq = FV<=} cb≔@(CBvset{.xl}{.el}) cb<=@(CBsset{.sr}{.er}) BV≔≠BV<= FV≔≠BV<= BV≔≠FV<- X≔≠X<=) , refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ resl , proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl)))))) where θr = Env.set-shr{s = sr} θ sr∈ SharedVar.new (shr-vals{s = sr} θ sr∈ + δ e'r) θl = Env.set-var{x = xl} θ xl∈ (δ e'l) -- θo = Env.set-shr{s = sr} θl sr∈ SharedVar.new (shr-vals{s = sr} θ sr∈ + δ e'r) θo = Env.set-var{x = xl} θr xl∈ (δ e'l) xl∈FVel = ((SeqVar.unwrap xl) ∈ (Xs FV≔)) ∋ here refl xl∉FVer : (SeqVar.unwrap xl) ∉ (Xs (FVₑ er)) xl∉FVer = X≔≠X<= _ xl∈FVel ¬sl≡ready : ¬ (Env.shr-stats {sr} θ sr∈ ≡ SharedVar.ready) ¬sl≡ready = λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ()) e''r,δr≡ = ready-irr-on-irr-x xl (δ e'l) xl∈ e'r xl∉FVer e''l,δl≡ = ready-irr-on-irr-s sr (shr-vals{s = sr} θ sr∈ + δ e'r) sr∈ ¬sl≡ready e'l getr : (typeof e''r,δr≡) → Σ[ redr ∈ ((ρ⟨ θl , GO ⟩· ((El ⟦ l ⟧e ) ∥ q)) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl getr (e'' , e≡) rewrite e≡ = rset-shared-value-new e'' sr∈ sr≡ (depar₂ ieqr) , vset-shared-value-new resr = getr e''r,δr≡ getl : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θr , GO ⟩· (p ∥ (Er ⟦ r ⟧e))) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl getl (e'' , e≡) rewrite e≡ = rset-var{x = xl} xl∈ e'' (depar₁ ieql') , vset-var resl = getl e''l,δl≡ ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-var{x = xr}{e = er} xr∈ e'r .(depar₂ ieqr)) (rif-false{p = pt}{q = pf}{x = xl} xl∈ xl≡ .ieql) olieq orieq vset-var vif-false refl refl with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar{FVp = FVif}{FVq = FV≔} cbif@(CBif _ _) cb≔@CBvset BVif≠BV≔ FVif≠BV≔ BVif≠FV≔ Xif≠X≔) , refl = (θo , A , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ res , rset-var xr∈ e'r (depar₂ ieqr) , (proj₂ res , vset-var , (_ , refl , refl)))))) where θo = Env.set-var{x = xr} θ xr∈ (δ e'r) xr∈XsFV≔ = ((SeqVar.unwrap xr) ∈ (Xs FV≔)) ∋ here refl xl∈XsFVif = ((SeqVar.unwrap xl) ∈ (Xs FVif)) ∋ here refl ¬xl≡xr : ¬ xl ≡ xr ¬xl≡xr refl = Xif≠X≔ _ xl∈XsFVif xr∈XsFV≔ xl∈2 = (seq-set-mono'{xl}{xr}{θ}{δ e'r}{xr∈} xl∈) θ≡xl = seq-putputget {xl} {xr}{θ}{0}{δ e'r} ¬xl≡xr xl∈ xr∈ xl∈2 xl≡ res : Σ[ redr ∈ ((ρ⟨ θo , A ⟩· (p ∥ (Er ⟦ r ⟧e))) sn⟶₁ (ρ⟨ θo , A ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl res = rif-false xl∈2 θ≡xl (depar₁ ieql') , vif-false ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-var{x = xr}{e = er} xr∈ e'r .(depar₂ ieqr)) (rif-true{x = xl} xl∈ xl≡ .ieql) olieq orieq vset-var vif-true refl refl with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar{FVp = FVif}{FVq = FV≔} cbif@(CBif _ _) cb≔@CBvset BVif≠BV≔ FVif≠BV≔ BVif≠FV≔ Xif≠X≔) , refl = (θo , A , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ res , rset-var xr∈ e'r (depar₂ ieqr) , (proj₂ res , vset-var , (_ , refl , refl)))))) where θo = Env.set-var{x = xr} θ xr∈ (δ e'r) xr∈XsFV≔ = ((SeqVar.unwrap xr) ∈ (Xs FV≔)) ∋ here refl xl∈XsFVif = ((SeqVar.unwrap xl) ∈ (Xs FVif)) ∋ here refl ¬xl≡xr : ¬ xl ≡ xr ¬xl≡xr refl = Xif≠X≔ _ xl∈XsFVif xr∈XsFV≔ xl∈2 = (seq-set-mono'{xl}{xr}{θ}{δ e'r}{xr∈} xl∈) θ≡xl = seq-putputget {xl} {xr}{θ}{_}{δ e'r} ¬xl≡xr xl∈ xr∈ xl∈2 xl≡ res : Σ[ redr ∈ ((ρ⟨ θo , A ⟩· (p ∥ (Er ⟦ r ⟧e))) sn⟶₁ (ρ⟨ θo , A ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl res = rif-true xl∈2 θ≡xl (depar₁ ieql') , vif-true ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-var{x = xr}{e = er} xr∈ e'r .(depar₂ ieqr)) (rraise-shared{e = el} e'l .ieql) olieq orieq vset-var vraise-shared refl refl with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar{FVq = FV≔} cbr@(CBshared _) cb≔@CBvset BVr≠BV≔ FVr≠BV≔ BVr≠FV≔ Xr≠X≔) , refl = (θo , A , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ resl , rset-var xr∈ e'r (depar₂ ieqr) , (proj₂ resl , vset-var , (_ , refl , refl)))))) where θo = Env.set-var{x = xr} θ xr∈ (δ e'r) xr∈Fv≔ : (SeqVar.unwrap xr) ∈ (Xs FV≔) xr∈Fv≔ = here refl xr∉FVel : (SeqVar.unwrap xr) ∉ (Xs (FVₑ el)) xr∉FVel x = Xr≠X≔ _ (++ˡ x) xr∈Fv≔ e''l,δl≡ = ready-irr-on-irr-x xr (δ e'r) xr∈ e'l xr∉FVel getl : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θo , A ⟩· (p ∥ (Er ⟦ r ⟧e))) sn⟶₁ (ρ⟨ θo , A ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl getl (e'' , e≡) rewrite e≡ = (rraise-shared e'' (depar₁ ieql')) , vraise-shared resl = (getl e''l,δl≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-var{x = xr}{e = er} xr∈ e'r .(depar₂ ieqr)) (rset-shared-value-old{s = sl}{e = el} e'l sl∈ sl≡ .ieql) olieq orieq vset-var vset-shared-value-old refl refl with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | (o , BVo , FVo) , (CBpar{FVp = FV<=}{FVq = FV≔} cb≔@(CBsset) cb<=@(CBvset) BV≔≠BV<= FV≔≠BV<= BV≔≠FV<- X≔≠X<=) , refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ resl , proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl)))))) where θl = Env.set-shr{s = sl} θ sl∈ SharedVar.new (δ e'l) θr = Env.set-var{x = xr} θ xr∈ (δ e'r) -- θo = Env.set-shr{s = sr} θl sr∈ SharedVar.new (shr-vals{s = sr} θ sr∈ + δ e'r) θo = Env.set-var{x = xr} θl xr∈ (δ e'r) xr∈FVer = ((SeqVar.unwrap xr) ∈ (Xs FV≔)) ∋ here refl xr∉FVel : (SeqVar.unwrap xr) ∉ (Xs (FVₑ el)) xr∉FVel x = X≔≠X<= _ x xr∈FVer ¬sl≡ready : ¬ (Env.shr-stats {sl} θ sl∈ ≡ SharedVar.ready) ¬sl≡ready = λ x → lookup-s-eq θ sl sl∈ sl∈ x sl≡ (λ ()) e''l,δl≡ = ready-irr-on-irr-x xr (δ e'r) xr∈ e'l xr∉FVel e''r,δr≡ = ready-irr-on-irr-s sl (δ e'l) sl∈ ¬sl≡ready e'r getr : (typeof e''r,δr≡) → Σ[ redr ∈ ((ρ⟨ θl , GO ⟩· ((El ⟦ l ⟧e ) ∥ q)) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl getr (e'' , e≡) rewrite e≡ = (rset-var xr∈ e'' (depar₂ ieqr)) , vset-var resr = getr e''r,δr≡ getl : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θr , GO ⟩· (p ∥ (Er ⟦ r ⟧e))) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl getl (e'' , e≡) rewrite e≡ = (rset-shared-value-old e'' sl∈ sl≡ (depar₁ ieql')) , vset-shared-value-old resl = getl e''l,δl≡ ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-var{x = xr}{e = er} xr∈ e'r .(depar₂ ieqr)) (rset-shared-value-new{s = sl}{e = el} e'l sl∈ sl≡ .ieql) olieq orieq vset-var vset-shared-value-new refl refl with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | (o , BVo , FVo) , (CBpar{FVp = FV<=}{FVq = FV≔} cb≔@(CBsset) cb<=@(CBvset) BV≔≠BV<= FV≔≠BV<= BV≔≠FV<- X≔≠X<=) , refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ resl , proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl)))))) where θl = Env.set-shr{s = sl} θ sl∈ SharedVar.new (Env.shr-vals{s = sl} θ sl∈ + δ e'l) θr = Env.set-var{x = xr} θ xr∈ (δ e'r) -- θo = Env.set-shr{s = sr} θl sr∈ SharedVar.new (shr-vals{s = sr} θ sr∈ + δ e'r) θo = Env.set-var{x = xr} θl xr∈ (δ e'r) xr∈FVer = ((SeqVar.unwrap xr) ∈ (Xs FV≔)) ∋ here refl xr∉FVel : (SeqVar.unwrap xr) ∉ (Xs (FVₑ el)) xr∉FVel x = X≔≠X<= _ x xr∈FVer ¬sl≡ready : ¬ (Env.shr-stats {sl} θ sl∈ ≡ SharedVar.ready) ¬sl≡ready = λ x → lookup-s-eq θ sl sl∈ sl∈ x sl≡ (λ ()) e''l,δl≡ = ready-irr-on-irr-x xr (δ e'r) xr∈ e'l xr∉FVel e''r,δr≡ = ready-irr-on-irr-s sl (Env.shr-vals{s = sl} θ sl∈ + δ e'l) sl∈ ¬sl≡ready e'r getr : (typeof e''r,δr≡) → Σ[ redr ∈ ((ρ⟨ θl , GO ⟩· ((El ⟦ l ⟧e ) ∥ q)) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl getr (e'' , e≡) rewrite e≡ = (rset-var xr∈ e'' (depar₂ ieqr)) , vset-var resr = getr e''r,δr≡ getl : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θr , GO ⟩· (p ∥ (Er ⟦ r ⟧e))) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl getl (e'' , e≡) rewrite e≡ = (rset-shared-value-new e'' sl∈ sl≡ (depar₁ ieql')) , vset-shared-value-new resl = getl e''l,δl≡ ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rif-false{x = xr} xr∈ xr≡ .(depar₂ ieqr)) (rset-shared-value-old{s = sl} e'l sl∈ sl≡ .ieql) olieq orieq vif-false vset-shared-value-old refl refl = (Env.set-shr{s = sl} θ sl∈ SharedVar.new (δ e'l) , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (rset-shared-value-old e'l sl∈ sl≡ (depar₁ ieql') , rif-false xr∈ xr≡ (depar₂ ieqr) , (vset-shared-value-old , vif-false , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rif-false{x = xr} xr∈ xr≡ .(depar₂ ieqr)) (rset-shared-value-new{s = sl} e'l sl∈ sl≡ .ieql) olieq orieq vif-false vset-shared-value-new refl refl = (Env.set-shr{s = sl} θ sl∈ SharedVar.new (Env.shr-vals{s = sl} θ sl∈ + δ e'l) , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (rset-shared-value-new e'l sl∈ sl≡ (depar₁ ieql') , rif-false xr∈ xr≡ (depar₂ ieqr) , (vset-shared-value-new , vif-false , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rif-true {x = xr} xr∈ xr≡ .(depar₂ ieqr)) (rset-shared-value-old{s = sl} e'l sl∈ sl≡ .ieql) olieq orieq vif-true vset-shared-value-old refl refl = (Env.set-shr{s = sl} θ sl∈ SharedVar.new (δ e'l) , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (rset-shared-value-old e'l sl∈ sl≡ (depar₁ ieql') , rif-true xr∈ xr≡ (depar₂ ieqr) , (vset-shared-value-old , vif-true , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rif-true {x = xr} xr∈ xr≡ .(depar₂ ieqr)) (rset-shared-value-new{s = sl} e'l sl∈ sl≡ .ieql) olieq orieq vif-true vset-shared-value-new refl refl = (Env.set-shr{s = sl} θ sl∈ SharedVar.new (Env.shr-vals{s = sl} θ sl∈ + δ e'l) , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (rset-shared-value-new e'l sl∈ sl≡ (depar₁ ieql') , rif-true xr∈ xr≡ (depar₂ ieqr) , (vset-shared-value-new , vif-true , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-var{x = xr}{e = er} xr∈ e'r .(depar₂ ieqr)) (rset-var{x = xl}{e = el} xl∈ e'l .ieql) olieq orieq vset-var vset-var refl refl with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | (o , BVo , FVo) , (CBpar{p = .(xl ≔ el)}{q = .(xr ≔ er)}{FVp = FVl}{FVq = FVr} cb≔@(CBvset) cb<=@(CBvset) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = (θo , A , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ resl , proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl)))))) where θl = Env.set-var{x = xl} θ xl∈ (δ e'l) θr = Env.set-var{x = xr} θ xr∈ (δ e'r) xr∈2 = (seq-set-mono'{xr}{xl}{θ}{δ e'l}{x'∈ = xl∈} xr∈) xl∈2 = (seq-set-mono'{xl}{xr}{θ}{δ e'r}{x'∈ = xr∈} xl∈) θo = Env.set-var{x = xr} θl xr∈2 (δ e'r) θo2 = Env.set-var{x = xl} θr xl∈2 (δ e'l) xl∈FVl = ((SeqVar.unwrap xl) ∈ (Xs FVl)) ∋ (here refl) xr∈FVr = ((SeqVar.unwrap xr) ∈ (Xs FVr)) ∋ (here refl) xr∉FVl = ((SeqVar.unwrap xr) ∉ (Xs FVl)) ∋ (dist'-sym Xl≠Xr) _ xr∈FVr xl∉FVr = ((SeqVar.unwrap xl) ∉ (Xs FVr)) ∋ Xl≠Xr _ xl∈FVl ¬xl≡xr = (¬ xl ≡ xr) ∋ (λ {refl → xl∉FVr xr∈FVr}) e''l,δl≡ = ready-irr-on-irr-x xr (δ e'r) xr∈ e'l (xr∉FVl ∘ there) e''r,δr≡ = ready-irr-on-irr-x xl (δ e'l) xl∈ e'r (xl∉FVr ∘ there) getl : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θr , A ⟩· (p ∥ (Er ⟦ r ⟧e))) sn⟶₁ (ρ⟨ θo , A ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl getl (e'' , e≡) rewrite e≡ with seq-set-comm θ xr xl (δ e'r) (δ e'') xr∈ xl∈ (¬xl≡xr ∘ sym) ... | (_ , xl∈2 , eq) rewrite sym eq = ( rset-var xl∈2 e'' (depar₁ ieql') , vset-var ) getr : (typeof e''r,δr≡) → Σ[ redr ∈ ((ρ⟨ θl , A ⟩· ((El ⟦ l ⟧e) ∥ q)) sn⟶₁ (ρ⟨ θo , A ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl getr (e'' , e≡) rewrite e≡ = rset-var xr∈2 e'' (depar₂ ieqr) , vset-var resl = getl e''l,δl≡ resr = getr e''r,δr≡ ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rif-false{x = xr} xr∈ xr≡ .(depar₂ ieqr)) (rset-var{x = xl}{e = el} xl∈ e'l .ieql) olieq orieq vif-false vset-var refl refl with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar{FVp = FV≔}{FVq = FVif} cb≔@CBvset cbif@(CBif _ _) BV≔≠BV FV≔≠BVif BV≔≠FVif X≔≠Xif) , refl = (θo , A , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , ( rset-var xl∈ e'l (depar₁ ieql') , proj₁ res , ( vset-var , proj₂ res , (_ , refl , refl) ))))) where θo = Env.set-var{x = xl} θ xl∈ (δ e'l) xl∈XsFV≔ = ((SeqVar.unwrap xl) ∈ (Xs FV≔)) ∋ here refl xr∈XsFVif = ((SeqVar.unwrap xr) ∈ (Xs FVif)) ∋ here refl ¬xl≡xr : ¬ xl ≡ xr ¬xl≡xr refl = X≔≠Xif _ xl∈XsFV≔ xr∈XsFVif xr∈2 = (seq-set-mono'{xr}{xl}{θ}{δ e'l}{xl∈} xr∈) θ≡xr = seq-putputget {xr} {xl}{θ}{0}{δ e'l} (¬xl≡xr ∘ sym) xr∈ xl∈ xr∈2 xr≡ res : Σ[ redr ∈ ((ρ⟨ θo , A ⟩· ((El ⟦ l ⟧e) ∥ q )) sn⟶₁ (ρ⟨ θo , A ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl res = rif-false xr∈2 θ≡xr (depar₂ ieqr) , vif-false ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rif-true{x = xr} xr∈ xr≡ .(depar₂ ieqr)) (rset-var{x = xl}{e = el} xl∈ e'l .ieql) olieq orieq vif-true vset-var refl refl with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar{FVp = FV≔}{FVq = FVif} cb≔@CBvset cbif@(CBif _ _) BV≔≠BV FV≔≠BVif BV≔≠FVif X≔≠Xif) , refl = (θo , A , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , ( rset-var xl∈ e'l (depar₁ ieql') , proj₁ res , ( vset-var , proj₂ res , (_ , refl , refl) ))))) where θo = Env.set-var{x = xl} θ xl∈ (δ e'l) xl∈XsFV≔ = ((SeqVar.unwrap xl) ∈ (Xs FV≔)) ∋ here refl xr∈XsFVif = ((SeqVar.unwrap xr) ∈ (Xs FVif)) ∋ here refl ¬xl≡xr : ¬ xl ≡ xr ¬xl≡xr refl = X≔≠Xif _ xl∈XsFV≔ xr∈XsFVif xr∈2 = (seq-set-mono'{xr}{xl}{θ}{δ e'l}{xl∈} xr∈) θ≡xr = seq-putputget {xr} {xl}{θ}{_}{δ e'l} (¬xl≡xr ∘ sym) xr∈ xl∈ xr∈2 xr≡ res : Σ[ redr ∈ ((ρ⟨ θo , A ⟩· ((El ⟦ l ⟧e) ∥ q )) sn⟶₁ (ρ⟨ θo , A ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl res = rif-true xr∈2 θ≡xr (depar₂ ieqr) , vif-true ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rraise-shared{s = sr} e'r .(depar₂ ieqr)) (rset-shared-value-old{s = sl} e'l sl∈ sl≡ .ieql) olieq orieq vraise-shared vset-shared-value-old refl refl with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar{FVp = FV<=} cb<=@(CBsset) cbr BV<=≠BVr FV<=≠BVr BV<=≠FVr X<=≠Xr) , refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , ( rset-shared-value-old e'l sl∈ sl≡ (depar₁ ieql') , proj₁ res , ( vset-shared-value-old , proj₂ res , (_ , refl , refl) ))))) where θo = Env.set-shr{s = sl} θ sl∈ SharedVar.new (δ e'l) e''r,δr≡ = ready-irr-on-irr-s sl (δ e'l) sl∈ (λ x → lookup-s-eq θ sl sl∈ sl∈ x sl≡ (λ ())) e'r res : Σ[ redr ∈ ((ρ⟨ θo , GO ⟩· ((El ⟦ l ⟧e) ∥ q )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl res rewrite proj₂ e''r,δr≡ = (rraise-shared (ready-maint-s _ (δ e'l) sl∈ (λ x → lookup-s-eq θ sl sl∈ sl∈ x sl≡ (λ ())) e'r) (depar₂ ieqr)) , vraise-shared ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rraise-shared e'r .(depar₂ ieqr)) (rset-shared-value-new{s = sl} e'l sl∈ sl≡ .ieql) olieq orieq vraise-shared vset-shared-value-new refl refl with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar{FVp = FV<=} cb<=@(CBsset) cbr BV<=≠BVr FV<=≠BVr BV<=≠FVr X<=≠Xr) , refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , ( rset-shared-value-new e'l sl∈ sl≡ (depar₁ ieql') , proj₁ res , ( vset-shared-value-new , proj₂ res , (_ , refl , refl) ))))) where θo = Env.set-shr{s = sl} θ sl∈ SharedVar.new (Env.shr-vals{s = sl} θ sl∈ + δ e'l) e''r,δr≡ = ready-irr-on-irr-s sl (Env.shr-vals{s = sl} θ sl∈ + δ e'l) sl∈ (λ x → lookup-s-eq θ sl sl∈ sl∈ x sl≡ (λ ())) e'r res : Σ[ redr ∈ ((ρ⟨ θo , GO ⟩· ((El ⟦ l ⟧e) ∥ q )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl res rewrite proj₂ e''r,δr≡ = rraise-shared (proj₁ e''r,δr≡) (depar₂ ieqr) , vraise-shared ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rraise-shared{e = er} e'r .(depar₂ ieqr)) (rset-var{x = xl}{e = el} xl∈ e'l .ieql) olieq orieq vraise-shared vset-var refl refl with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar{FVp = FV≔} cb≔@(CBvset) cbr@(CBshared _) BV≔≠BVr FV≔≠BVr BV≔≠FVr X≔≠Xr) , refl = (θo , A , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , ( rset-var xl∈ e'l (depar₁ ieql') , proj₁ res , ( vset-var , proj₂ res , (_ , refl , refl) ))))) where θo = Env.set-var{x = xl} θ xl∈ (δ e'l) xl∈FVel = ((SeqVar.unwrap xl) ∈ (Xs FV≔)) ∋ here refl e''r,δr≡ = ready-irr-on-irr-x xl (δ e'l) xl∈ e'r ((X≔≠Xr _ xl∈FVel) ∘ ++ˡ) res : Σ[ redr ∈ ((ρ⟨ θo , A ⟩· ((El ⟦ l ⟧e) ∥ q )) sn⟶₁ (ρ⟨ θo , A ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl res rewrite proj₂ e''r,δr≡ = (rraise-shared (proj₁ e''r,δr≡) (depar₂ ieqr)) , vraise-shared ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-shared-value-old{s = sr} e'r sr∈ sr≡ .(depar₂ ieqr)) (rraise-shared{e = el} e'l .ieql) olieq orieq vset-shared-value-old vraise-shared refl refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , ( proj₁ res , rset-shared-value-old e'r sr∈ sr≡ (depar₂ ieqr) , ( proj₂ res , vset-shared-value-old , (_ , refl , refl) ))))) where θo = Env.set-shr{s = sr} θ sr∈ SharedVar.new (δ e'r) e''l,δl≡ = ready-irr-on-irr-s sr (δ e'r) sr∈ (λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ())) e'l res : Σ[ redr ∈ ((ρ⟨ θo , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl res rewrite proj₂ e''l,δl≡ = (rraise-shared (ready-maint-s sr (δ e'r) sr∈ (λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ())) e'l) (depar₁ ieql')) , vraise-shared ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-shared-value-old{s = sr} e'r sr∈ sr≡ .(depar₂ ieqr)) (rraise-var{e = el} e'l .ieql) olieq orieq vset-shared-value-old vraise-var refl refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , ( proj₁ res , rset-shared-value-old e'r sr∈ sr≡ (depar₂ ieqr) , ( proj₂ res , vset-shared-value-old , (_ , refl , refl) ))))) where θo = Env.set-shr{s = sr} θ sr∈ SharedVar.new (δ e'r) e''l,δl≡ = ready-irr-on-irr-s sr (δ e'r) sr∈ (λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ())) e'l res : Σ[ redr ∈ ((ρ⟨ θo , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl res rewrite proj₂ e''l,δl≡ = (rraise-var (ready-maint-s sr (δ e'r) sr∈ (λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ())) e'l) (depar₁ ieql')) , vraise-var ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-shared-value-new{s = sr} e'r sr∈ sr≡ .(depar₂ ieqr)) (rraise-shared e'l .ieql) olieq orieq vset-shared-value-new vraise-shared refl refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , ( proj₁ res , rset-shared-value-new e'r sr∈ sr≡ (depar₂ ieqr) , ( proj₂ res , vset-shared-value-new , (_ , refl , refl) ))))) where nn = (Env.shr-vals{s = sr} θ sr∈ + δ e'r) θo = Env.set-shr{s = sr} θ sr∈ SharedVar.new nn e''l,δl≡ = ready-irr-on-irr-s sr nn sr∈ (λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ())) e'l res : Σ[ redr ∈ ((ρ⟨ θo , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl res rewrite proj₂ e''l,δl≡ = (rraise-shared (ready-maint-s sr nn sr∈ (λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ())) e'l) (depar₁ ieql')) , vraise-shared ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-shared-value-old{s = sr}{e = er} e'r sr∈ sr≡ .(depar₂ ieqr)) (rset-var{x = xl}{e = el} xl∈ e'l .ieql) olieq orieq vset-shared-value-old vset-var refl refl with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar{FVp = FV:=}{FVq = FV<=} cb:=@(CBvset) cb<=@(CBsset) BV:=≠BV<= FV:=≠BV<= BV:=≠FV<= X:=≠X<=) , refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , ( proj₁ resl , proj₁ resr , ( proj₂ resl , proj₂ resr , (_ , refl , refl) ))))) where θr = Env.set-shr{s = sr} θ sr∈ SharedVar.new (δ e'r) θl = Env.set-var{x = xl} θ xl∈ (δ e'l) θo = Env.set-var{x = xl} θr xl∈ (δ e'l) xl∉FVer = ((SeqVar.unwrap xl) ∉ (Xs (FVₑ er))) ∋ X:=≠X<= _ (here refl) ¬sr≡ready = (¬ (Env.shr-stats{s = sr} θ sr∈) ≡ SharedVar.ready) ∋ λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ()) e''l,δl≡ = ready-irr-on-irr-s sr (δ e'r) sr∈ ¬sr≡ready e'l e''r,δr≡ = ready-irr-on-irr-x xl (δ e'l) xl∈ e'r xl∉FVer resl : Σ[ redr ∈ ((ρ⟨ θr , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl resl rewrite proj₂ e''l,δl≡ = (rset-var xl∈ (ready-maint-s _ (δ e'r) sr∈ (λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ())) e'l) (depar₁ ieql')) , vset-var resr : Σ[ redr ∈ ((ρ⟨ θl , GO ⟩· ( (El ⟦ l ⟧e) ∥ q )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl resr rewrite proj₂ e''r,δr≡ = (rset-shared-value-old (proj₁ e''r,δr≡) sr∈ sr≡ (depar₂ ieqr)) , vset-shared-value-old ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-shared-value-new{s = sr}{e = er} e'r sr∈ sr≡ .(depar₂ ieqr)) (rset-shared-value-new{s = sl}{e = el} e'l sl∈ sl≡ .ieql) olieq orieq vset-shared-value-new vset-shared-value-new refl refl with sl SharedVar.≟ sr ... | yes sl≡sr with sl≡sr ... | refl with shr∈-eq{sr}{θ} sl∈ sr∈ ... | refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ l-res , (proj₁ r-res , (proj₂ l-res , proj₂ r-res , (_ , refl , refl))))))) where s = sr s∈ = sr∈ ¬s=ready : ¬ (shr-stats{s} θ s∈) ≡ SharedVar.ready ¬s=ready = λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ()) -- coherence-of-shr-set* any/env s s∈ (depar₂ ieqr) e''l,δl≡ = ready-irr-on-irr-s s (Env.shr-vals{s} θ s∈ + δ e'r) s∈ ¬s=ready e'l e''r,δr≡ = ready-irr-on-irr-s s (Env.shr-vals{s} θ s∈ + δ e'l) s∈ ¬s=ready e'r θl = Env.set-shr{s} θ sl∈ SharedVar.new (Env.shr-vals{s} θ s∈ + δ e'l) s∈2 = (shr-set-mono'{s}{s}{θ}{s'∈ = s∈} s∈) θo = Env.set-shr{s} θl s∈2 SharedVar.new (Env.shr-vals{s} θl ((shr-set-mono'{s}{s}{θ}{s'∈ = s∈} s∈)) + δ e'r) getr : (typeof e''r,δr≡) → Σ[ redl ∈ ((ρ⟨ θl , GO ⟩· (El ⟦ l ⟧e) ∥ q) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redl (depar₂ ieqr) Erefl getr (e'' , e≡) rewrite e≡ = (rset-shared-value-new{θl} {s = s}{E = epar₂ (El ⟦ l ⟧e) ∷ Er} e'' s∈2 (proj₁ (Env.shr-putget{s}{θ}{SharedVar.new} s∈ s∈2)) (depar₂ ieqr)) , vset-shared-value-new r-res = (getr e''r,δr≡) s∈22 = (shr-set-mono'{s}{s}{θ}{s'∈ = s∈} s∈) θr = Env.set-shr{s} θ sl∈ SharedVar.new (Env.shr-vals{s} θ s∈ + δ e'r) θo2 = Env.set-shr{s} θr s∈22 SharedVar.new (Env.shr-vals{s} θr (s∈22) + δ e'l) getl : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θr , GO ⟩· p ∥ (Er ⟦ r ⟧e)) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl getl (e'' , e≡) rewrite (shr-putput-overwrite s θ SharedVar.new (Env.shr-vals{s} θ s∈ + δ e'l) SharedVar.new (Env.shr-vals{s} θl s∈2 + δ e'r) s∈ s∈2) | sym (shr-putput-overwrite s θ SharedVar.new (Env.shr-vals{s} θ s∈ + δ e'r) SharedVar.new (Env.shr-vals{s} θr s∈22 + δ e'l) s∈ s∈22) | sym (shr-putput-overwrite s θ SharedVar.new (Env.shr-vals{s} θ s∈ + δ e'r) SharedVar.new (Env.shr-vals{s} θr s∈22 + δ e'') s∈ s∈22) | proj₂ (shr-putget {s}{θ}{SharedVar.new}{(Env.shr-vals{s} θ s∈ + δ e'l)} s∈ s∈2) | e≡ | +-assoc (Env.shr-vals{s} θ s∈) (δ e'') (δ e'r) | +-comm (δ e'') (δ e'r) | sym (+-assoc (Env.shr-vals{s} θ s∈) (δ e'r) (δ e'')) with red | (->E-view red (depar₁ ieql') Erefl) ∋ vset-shared-value-new where red = rset-shared-value-new{θr}{p ∥ (Er ⟦ r ⟧e)}{s = s}{E = epar₁ (Er ⟦ r ⟧e) ∷ El} e'' s∈22 (proj₁ (Env.shr-putget{s}{θ}{SharedVar.new} s∈ s∈22)) (depar₁ ieql') ... | red | view rewrite (proj₂ (shr-putget {s}{θ}{SharedVar.new}{(Env.shr-vals{s} θ s∈ + δ e'r)} s∈ s∈22)) | (shr-putput-overwrite s θ SharedVar.new (Env.shr-vals{s} θ s∈ + δ e'r) SharedVar.new (Env.shr-vals{s} θ s∈ + δ e'r + δ e'') s∈ s∈22) = red , view l-res = (getl e''l,δl≡) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-shared-value-new{s = sr}{e = er} e'r sr∈ sr≡ .(depar₂ ieqr)) (rset-shared-value-new{s = sl}{e = el} e'l sl∈ sl≡ .ieql) olieq orieq vset-shared-value-new vset-shared-value-new refl refl | no ¬sl≡sr = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ resl , (proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl))))))) where nl = (Env.shr-vals{sl} θ sl∈ + δ e'l) nr = (Env.shr-vals{sr} θ sr∈ + δ e'r) θl = Env.set-shr{sl} θ sl∈ SharedVar.new nl θr = Env.set-shr{sr} θ sr∈ SharedVar.new nr sl∈2 = shr-set-mono'{sl}{sr}{θ}{SharedVar.new}{nr}{sr∈} sl∈ sr∈2 = shr-set-mono'{sr}{sl}{θ}{SharedVar.new}{nl}{sl∈} sr∈ θo = Env.set-shr{sr} θl sr∈2 SharedVar.new nr e''l,δl≡ = ready-irr-on-irr-s sr nr sr∈ (λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ())) e'l e''r,δr≡ = ready-irr-on-irr-s sl nl sl∈ (λ x → lookup-s-eq θ sl sl∈ sl∈ x sl≡ (λ ())) e'r getl : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θr , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl getl (e'' , e≡) with shr-set-comm θ sl sr SharedVar.new nl SharedVar.new nr sl∈ sr∈ ¬sl≡sr ... | (_ , _ , θ≡) rewrite θ≡ with shr-putputget {sl}{sr}{θ}{_}{Env.shr-vals{sl} θ sl∈}{SharedVar.new}{nr} ¬sl≡sr sl∈ sr∈ sl∈2 sl≡ refl ... | (eq1 , eq2) rewrite e≡ | sym eq2 = rset-shared-value-new e'' sl∈2 eq1 (depar₁ ieql') , vset-shared-value-new resl = (getl e''l,δl≡) getr : (typeof e''r,δr≡) → Σ[ redr ∈ ((ρ⟨ θl , GO ⟩· ( (El ⟦ l ⟧e) ∥ q )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl getr (e''r , δr≡) rewrite δr≡ with shr-putputget {sr}{sl}{θ}{_}{Env.shr-vals{sr} θ sr∈}{SharedVar.new}{nl} (¬sl≡sr ∘ sym) sr∈ sl∈ sr∈2 sr≡ refl ... | (eq1 , eq2) rewrite {- sym eq1 | -} sym eq2 =( rset-shared-value-new e''r sr∈2 eq1 (depar₂ ieqr)) , vset-shared-value-new resr = getr e''r,δr≡ ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-shared-value-old{s = sr} e'r sr∈ sr≡ .(depar₂ ieqr)) (rset-shared-value-old{s = sl} e'l sl∈ sl≡ .ieql) olieq orieq vset-shared-value-old vset-shared-value-old refl refl with sl SharedVar.≟ sr ... | yes refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ resl , proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl)))))) where s = sl s∈ = sl∈ nl = (δ e'l) nr = (δ e'r) s∈l = shr-set-mono'{s}{s}{θ}{SharedVar.new}{nr}{s∈} s∈ s∈r = shr-set-mono'{s}{s}{θ}{SharedVar.new}{nl}{s∈} s∈ s≡r,s≡nr = shr-putget{s}{θ}{SharedVar.new}{nr} s∈ s∈l s≡r,s≡nl = shr-putget{s}{θ}{SharedVar.new}{nl} s∈ s∈r θl = (Env.set-shr{s = s} θ s∈ SharedVar.new nl) θr = (Env.set-shr{s = s} θ s∈ SharedVar.new nr) θo = (Env.set-shr{s = s} θl s∈r SharedVar.new ((Env.shr-vals{s = s} θl s∈r) + nr)) θo2 = (Env.set-shr{s = s} θr s∈l SharedVar.new ((Env.shr-vals{s = s} θr s∈l) + nl)) e''l,δl≡ = ready-irr-on-irr-s sr nr sr∈ (λ x → lookup-s-eq θ sl sr∈ sr∈ x sr≡ (λ ())) e'l e''r,δr≡ = ready-irr-on-irr-s sl nl sl∈ (λ x → lookup-s-eq θ sl sl∈ sr∈ x sr≡ (λ ())) e'r -- s≡r,s≡nl' = shr-putget{s}{_}{SharedVar.new}{(δ (proj₁ e''l,δl≡)) } s∈ s∈r θo≡θo2 : θo ≡ θo2 θo≡θo2 rewrite (proj₂ s≡r,s≡nr) | (proj₂ s≡r,s≡nl) | +-comm nl nr | shr-putput-overwrite s θ SharedVar.new nl SharedVar.new (nr + nl) s∈ s∈r | shr-putput-overwrite s θ SharedVar.new nr SharedVar.new (nr + nl) s∈ s∈l = refl getl : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θr , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl getl (e'' , e≡) rewrite θo≡θo2 | e≡ = (rset-shared-value-new e'' s∈l ((proj₁ s≡r,s≡nr)) (depar₁{q = (Er ⟦ r ⟧e)} ieql')) , vset-shared-value-new resl = getl e''l,δl≡ getr : (typeof e''r,δr≡) → Σ[ redr ∈ ((ρ⟨ θl , GO ⟩· ( (El ⟦ l ⟧e) ∥ q )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl getr (e''r , δr≡) rewrite δr≡ = (rset-shared-value-new e''r s∈r (proj₁ s≡r,s≡nl) (depar₂ ieqr)) , vset-shared-value-new resr = getr e''r,δr≡ ... | no ¬sl≡sr = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ resl , (proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl))))))) where nl = (δ e'l) nr = (δ e'r) θl = Env.set-shr{sl} θ sl∈ SharedVar.new nl θr = Env.set-shr{sr} θ sr∈ SharedVar.new nr sl∈2 = shr-set-mono'{sl}{sr}{θ}{SharedVar.new}{nr}{sr∈} sl∈ sr∈2 = shr-set-mono'{sr}{sl}{θ}{SharedVar.new}{nl}{sl∈} sr∈ θo = Env.set-shr{sr} θl sr∈2 SharedVar.new nr e''l,δl≡ = ready-irr-on-irr-s sr nr sr∈ (λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ())) e'l e''r,δr≡ = ready-irr-on-irr-s sl nl sl∈ (λ x → lookup-s-eq θ sl sl∈ sl∈ x sl≡ (λ ())) e'r getl : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θr , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl getl (e'' , e≡) with shr-set-comm θ sl sr SharedVar.new nl SharedVar.new nr sl∈ sr∈ ¬sl≡sr ... | (_ , _ , θ≡) rewrite θ≡ with shr-putputget {sl}{sr}{θ}{_}{Env.shr-vals{sl} θ sl∈}{SharedVar.new}{nr} ¬sl≡sr sl∈ sr∈ sl∈2 sl≡ refl ... | (eq1 , eq2) rewrite e≡ | sym eq2 = rset-shared-value-old e'' sl∈2 eq1 (depar₁ ieql') , vset-shared-value-old resl = (getl e''l,δl≡) getr : (typeof e''r,δr≡) → Σ[ redr ∈ ((ρ⟨ θl , GO ⟩· ( (El ⟦ l ⟧e) ∥ q )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl getr (e''r , δr≡) rewrite δr≡ with shr-putputget {sr}{sl}{θ}{_}{Env.shr-vals{sr} θ sr∈}{SharedVar.new}{nl} (¬sl≡sr ∘ sym) sr∈ sl∈ sr∈2 sr≡ refl ... | (eq1 , eq2) rewrite {- sym eq1 | -} sym eq2 =( rset-shared-value-old e''r sr∈2 eq1 (depar₂ ieqr)) , vset-shared-value-old resr = getr e''r,δr≡ ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-shared-value-old{s = sr} e'r sr∈ sr≡ .(depar₂ ieqr)) (rset-shared-value-new{s = sl} e'l sl∈ sl≡ .ieql) olieq orieq vset-shared-value-old vset-shared-value-new refl refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ resl , proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl)))))) where ¬sl≡sr : ¬ sl ≡ sr ¬sl≡sr refl rewrite shr∈-eq'{sl}{shr θ} sl∈ sr∈ | sl≡ = ((¬ (SharedVar.new ≡ SharedVar.old)) ∋ (λ ())) sr≡ nl = (Env.shr-vals{s = sl} θ sl∈ + (δ e'l)) nr = (δ e'r) sl∈2 = shr-set-mono'{sl}{sr}{θ}{SharedVar.new}{nr}{sr∈} sl∈ sr∈2 = shr-set-mono'{sr}{sl}{θ}{SharedVar.new}{nl}{sl∈} sr∈ θl = (Env.set-shr{s = sl} θ sl∈ SharedVar.new nl) θr = (Env.set-shr{s = sr} θ sr∈ SharedVar.new nr) θo = (Env.set-shr{s = sr} θl sr∈2 SharedVar.new nr) e''l,δl≡ = ready-irr-on-irr-s sr nr sr∈ (λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ())) e'l e''r,δr≡ = ready-irr-on-irr-s sl nl sl∈ (λ x → lookup-s-eq θ sl sl∈ sl∈ x sl≡ (λ ())) e'r getl : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θr , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl getl (e'' , e≡) with (shr-set-comm θ sl sr SharedVar.new nl SharedVar.new nr sl∈ sr∈ ¬sl≡sr) ... | (_ , _ , eq) rewrite eq with (shr-putputget {sl} {sr} {θ}{SharedVar.new}{Env.shr-vals{sl} θ sl∈}{SharedVar.new}{nr} ¬sl≡sr sl∈ sr∈ sl∈2 sl≡ refl) ... | (eq1 , eq2) rewrite sym eq2 | e≡ = rset-shared-value-new e'' sl∈2 eq1 (depar₁ ieql') , vset-shared-value-new resl = (getl e''l,δl≡) getr : (typeof e''r,δr≡) → Σ[ redr ∈ ((ρ⟨ θl , GO ⟩· ( (El ⟦ l ⟧e) ∥ q )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl getr (e''r , δr≡) rewrite δr≡ = rset-shared-value-old e''r sr∈2 (proj₁ (shr-putputget {sr} {sl} {θ}{SharedVar.old}{Env.shr-vals{sr} θ sr∈}{SharedVar.new}{nl} (¬sl≡sr ∘ sym) sr∈ sl∈ sr∈2 sr≡ refl)) (depar₂ ieqr) , vset-shared-value-old resr = getr e''r,δr≡ ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-shared-value-new{s = sr} e'r sr∈ sr≡ .(depar₂ ieqr)) (rset-shared-value-old{s = sl} e'l sl∈ sl≡ .ieql) olieq orieq vset-shared-value-new vset-shared-value-old refl refl = (θo , A , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ resl , proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl)))))) where ¬sl≡sr : ¬ sl ≡ sr ¬sl≡sr refl rewrite shr∈-eq'{sl}{shr θ} sl∈ sr∈ | sl≡ = ((¬ (SharedVar.new ≡ SharedVar.old)) ∋ (λ ())) (sym sr≡) nl = (δ e'l) nr = (Env.shr-vals{s = sr} θ sr∈ + (δ e'r)) sl∈2 = shr-set-mono'{sl}{sr}{θ}{SharedVar.new}{nr}{sr∈} sl∈ sr∈2 = shr-set-mono'{sr}{sl}{θ}{SharedVar.new}{nl}{sl∈} sr∈ θl = (Env.set-shr{s = sl} θ sl∈ SharedVar.new nl) θr = (Env.set-shr{s = sr} θ sr∈ SharedVar.new nr) θo = (Env.set-shr{s = sr} θl sr∈2 SharedVar.new nr) e''l,δl≡ = ready-irr-on-irr-s sr nr sr∈ (λ x → lookup-s-eq θ sr sr∈ sr∈ x sr≡ (λ ())) e'l e''r,δr≡ = ready-irr-on-irr-s sl nl sl∈ (λ x → lookup-s-eq θ sl sl∈ sl∈ x sl≡ (λ ())) e'r getl : (typeof e''l,δl≡) → Σ[ redr ∈ ((ρ⟨ θr , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl getl (e'' , e≡) with (shr-set-comm θ sl sr SharedVar.new nl SharedVar.new nr sl∈ sr∈ ¬sl≡sr) ... | (_ , _ , eq) rewrite eq with (shr-putputget {sl} {sr} {θ}{SharedVar.old}{Env.shr-vals{sl} θ sl∈}{SharedVar.new}{nr} ¬sl≡sr sl∈ sr∈ sl∈2 sl≡ refl) ... | (eq1 , eq2) rewrite sym eq2 | e≡ = rset-shared-value-old e'' sl∈2 eq1 (depar₁ ieql') , vset-shared-value-old resl = (getl e''l,δl≡) getr : (typeof e''r,δr≡) → Σ[ redr ∈ ((ρ⟨ θl , GO ⟩· ( (El ⟦ l ⟧e) ∥ q )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl getr (e''r , δr≡) with (shr-putputget {sr} {sl} {θ}{SharedVar.new}{Env.shr-vals{sr} θ sr∈}{SharedVar.new}{nl} (¬sl≡sr ∘ sym) sr∈ sl∈ sr∈2 sr≡ refl) ... | (eq1 , eq2) rewrite sym eq2 | δr≡ = rset-shared-value-new e''r sr∈2 eq1 (depar₂ ieqr) , vset-shared-value-new resr = getr e''r,δr≡ ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} cb (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-shared-value-new{s = sr} e'r sr∈ sr≡ .(depar₂ ieqr)) (ris-present{S = Sl} S∈ S≡ .ieql) olieq orieq vset-shared-value-new vis-present refl refl = (Env.set-shr{s = sr} θ sr∈ SharedVar.new (Env.shr-vals{s = sr} θ sr∈ + (δ e'r)) , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (ris-present S∈ S≡ (depar₁ ieql') , rset-shared-value-new e'r sr∈ sr≡ (depar₂ ieqr) , (vis-present , vset-shared-value-new , (_ , refl , refl)))))) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} {Al = .A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rif-false{x = x} x∈ x≡ .(depar₂ ieqr)) (rmerge{θ₁ = .θ}{θm}{A₂ = A'} .ieql) olieq orieq vif-false vmerge refl refl = (θo , A-max A A' , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (rmerge (depar₁ ieql') , rif-false x∈2 (trans (sym (seq-←-irr-get' {θ} {θm} {x} x∈ x∉Domθm x∈2)) x≡) (depar₂ ieqr) , (vmerge , vif-false , (_ , refl , refl)))))) where θo = (θ ← θm) x∈2 = (seq-←-monoˡ x θ θm x∈) x∉Domθm : ¬ isVar∈ x θm x∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar{FVp = FVm}{FVq = FVif} cbm@(CBρ _) cb<=@(CBif _ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ x₁ → proj₂ (proj₂ BVl≠FVr) (SeqVar.unwrap x) (++ˡ x₁) (here refl) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} {Al = .A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rif-true{x = x} x∈ x≡ .(depar₂ ieqr)) (rmerge{θ₂ = θm}{A₂ = A'} .ieql) olieq orieq vif-true vmerge refl refl = (θo , A-max A A' , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (rmerge (depar₁ ieql') , rif-true x∈2 (trans (sym (seq-←-irr-get' {θ} {θm} {x} x∈ x∉Domθm x∈2)) x≡) (depar₂ ieqr) , (vmerge , vif-true , (_ , refl , refl)))))) where θo = (θ ← θm) x∈2 = (seq-←-monoˡ x θ θm x∈) x∉Domθm : ¬ isVar∈ x θm x∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar{FVp = FVm}{FVq = FVif} cbm@(CBρ _) cb<=@(CBif _ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ x₁ → proj₂ (proj₂ BVl≠FVr) (SeqVar.unwrap x) (++ˡ x₁) (here refl) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(_ ∥ _)} {qro = l} {qlo = r} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rmerge{θ₂ = θm} .(depar₂ ieqr)) (rif-false{x = x} x∈ x≡ .ieql) olieq orieq vmerge vif-false refl refl = (θo , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (rif-false x∈2 (trans (sym (seq-←-irr-get' {θ} {θm} {x} x∈ x∉Domθm x∈2)) x≡) (depar₁ ieql') , rmerge (depar₂ ieqr) , (vif-false , vmerge , (_ , refl , refl)))))) where θo = (θ ← θm) x∈2 = (seq-←-monoˡ x θ θm x∈) x∉Domθm : ¬ isVar∈ x θm x∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cb<=@(CBif _ _) cbm@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ x₁ → proj₂ (proj₂ FVl≠BVr) (SeqVar.unwrap x) (here refl) (++ˡ x₁) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(_ ∥ _)} {qro = l} {qlo = r} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rmerge{θ₂ = θm} .(depar₂ ieqr)) (rif-true{x = x} x∈ x≡ .ieql) olieq orieq vmerge vif-true refl refl = (θo , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (rif-true x∈2 (trans (sym (seq-←-irr-get' {θ} {θm} {x} x∈ x∉Domθm x∈2)) x≡) (depar₁ ieql') , rmerge (depar₂ ieqr) , (vif-true , vmerge , (_ , refl , refl)))))) where θo = (θ ← θm) x∈2 = (seq-←-monoˡ x θ θm x∈) x∉Domθm : ¬ isVar∈ x θm x∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cb<=@(CBif _ _) cbm@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ x₁ → proj₂ (proj₂ FVl≠BVr) (SeqVar.unwrap x) (here refl) (++ˡ x₁) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (ris-absent{S = S} S∈ S≡ .(depar₂ ieqr)) (rmerge{θ₁ = .θ}{θ₂ = θm} .ieql) olieq orieq vis-absent vmerge refl refl = (θo , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (rmerge (depar₁ ieql') , ris-absent S∈2 (trans (sym (sig-←-irr-get' {θ} {θm} {S} S∈ S∉Domθm S∈2)) S≡) (depar₂ ieqr) , (vmerge , vis-absent , (_ , refl , refl)))))) where θo = (θ ← θm) S∈2 = (sig-←-monoˡ S θ θm S∈) S∉Domθm : ¬ isSig∈ S θm S∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cb<=@(CBρ _) cbm@(CBpresent _ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ y → proj₁ BVl≠FVr _ (++ˡ y) (here refl) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(_ ∥ _)} {qro = l} {qlo = r} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rmerge{θ₂ = θm} .(depar₂ ieqr)) (ris-absent{S = S} S∈ S≡ .ieql) olieq orieq vmerge vis-absent refl refl = (θo , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (ris-absent S∈2 (trans (sym (sig-←-irr-get' {θ} {θm} {S} S∈ S∉Domθm S∈2)) S≡) (depar₁ ieql') , rmerge (depar₂ ieqr) , ( vis-absent , vmerge , (_ , refl , refl)))))) where θo = (θ ← θm) S∈2 = (sig-←-monoˡ S θ θm S∈) S∉Domθm : ¬ isSig∈ S θm S∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cbm@(CBpresent _ _) cb<=@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ y → proj₁ FVl≠BVr _ (here refl) (++ˡ y) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (ris-present{S = S} S∈ S≡ .(depar₂ ieqr)) (rmerge{θ₁ = .θ}{θ₂ = θm} .ieql) olieq orieq vis-present vmerge refl refl = (θo , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (rmerge (depar₁ ieql') , ris-present S∈2 (trans (sym (sig-←-irr-get' {θ} {θm} {S} S∈ S∉Domθm S∈2)) S≡) (depar₂ ieqr) , (vmerge , vis-present , (_ , refl , refl)))))) where θo = (θ ← θm) S∈2 = (sig-←-monoˡ S θ θm S∈) S∉Domθm : ¬ isSig∈ S θm S∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cb<=@(CBρ _) cbm@(CBpresent _ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ y → proj₁ BVl≠FVr _ (++ˡ y) (here refl) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(_ ∥ _)} {qro = l} {qlo = r} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rmerge{θ₂ = θm} .(depar₂ ieqr)) (ris-present{S = S} S∈ S≡ .ieql) olieq orieq vmerge vis-present refl refl = (θo , _ , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (ris-present S∈2 (trans (sym (sig-←-irr-get' {θ} {θm} {S} S∈ S∉Domθm S∈2)) S≡) (depar₁ ieql') , rmerge (depar₂ ieqr) , ( vis-present , vmerge , (_ , refl , refl)))))) where θo = (θ ← θm) S∈2 = (sig-←-monoˡ S θ θm S∈) S∉Domθm : ¬ isSig∈ S θm S∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cbm@(CBpresent _ _) cb<=@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ y → proj₁ FVl≠BVr _ (here refl) (++ˡ y) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} {Al = GO} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (remit{S = S} S∈ ¬S≡a .(depar₂ ieqr)) (rmerge{θ₂ = θm}{A₂ = A'} .ieql) olieq orieq vemit vmerge refl refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , proj₁ resl , proj₁ resr , ( proj₂ resl , proj₂ resr , (_ , refl , refl))))) where S∉Domθm : ¬ isSig∈ S θm S∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cbm@(CBρ _) cb<=@(CBemit) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ x → (proj₁ BVl≠FVr) _ (++ˡ x) (here refl) S∈2,θ≡ = sig-set-←-comm S Signal.present θ θm S∈ S∉Domθm S∈2 = proj₁ S∈2,θ≡ θ≡ = proj₂ S∈2,θ≡ θr = Env.set-sig{S = S} θ S∈ Signal.present θo = Env.set-sig{S = S} (θ ← θm) S∈2 Signal.present resr : Σ[ redl ∈ (ρ⟨ (θ ← θm) , A-max GO A' ⟩· ( (El ⟦ l ⟧e) ∥ q)) sn⟶₁ (ρ⟨ θo , GO ⟩· ((El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e))) ] ->E-view redl (depar₂ ieqr) Erefl resr rewrite A-max-GO-≡-left A' = remit S∈2 (λ x → ¬S≡a (trans (sig-←-∉-irr-stats' S θ θm S∈ S∉Domθm S∈2) x)) (depar₂ ieqr) , vemit resl : Σ[ redr ∈ ((ρ⟨ θr , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) )) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl resl rewrite sym θ≡ = (subst (λ go → Σ[ redr ∈ ((ρ⟨ θr , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) )) sn⟶₁ (ρ⟨ (θr ← θm) , go ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl) (A-max-GO-≡-left A') ((rmerge (depar₁ ieql')) , vmerge)) --with A-max GO A' | GO | (A-max-GO-≡-left A') | sym (A-max-GO-≡-left A') -- ... | .GO | .(A-max GO A') | refl | refl = {!(rmerge (depar₁ ieql')) , vmerge !} -- , {! vmerge !} ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(_ ∥ _)} {qro = l} {qlo = r} {A = GO} {Ar = GO} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rmerge{θ₂ = θm}{A₂ = Am} .(depar₂ ieqr)) (remit{S = S} S∈ ¬S≡a .ieql) olieq orieq vmerge vemit refl refl = (θo , GO , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , proj₁ resl , proj₁ resr , ( proj₂ resl , proj₂ resr , (_ , refl , refl))))) where S∉Domθm : ¬ isSig∈ S θm S∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cb<=@(CBemit) cbm@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ x → (proj₁ FVl≠BVr) _ (here refl) (++ˡ x) S∈2,θ≡ = sig-set-←-comm S Signal.present θ θm S∈ S∉Domθm S∈2 = proj₁ S∈2,θ≡ θ≡ = proj₂ S∈2,θ≡ θr = Env.set-sig{S = S} θ S∈ Signal.present θo = Env.set-sig{S = S} (θ ← θm) S∈2 Signal.present resl : Σ[ redl ∈ (ρ⟨ (θ ← θm) , A-max GO Am ⟩· ( p ∥ (Er ⟦ r ⟧e))) sn⟶₁ (ρ⟨ θo , GO ⟩· ((El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e))) ] ->E-view redl (depar₁ ieql') Erefl resl rewrite A-max-GO-≡-left Am = remit S∈2 (λ x → ¬S≡a (trans (sig-←-∉-irr-stats' S θ θm S∈ S∉Domθm S∈2) x)) (depar₁ ieql') , vemit resr : Σ[ redr ∈ (ρ⟨ θr , GO ⟩· ( (El ⟦ l ⟧e) ∥ q ) sn⟶₁ (ρ⟨ θo , GO ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl resr rewrite sym θ≡ = subst (λ go → Σ[ redr ∈ (ρ⟨ θr , GO ⟩· ( (El ⟦ l ⟧e) ∥ q ) sn⟶₁ (ρ⟨ (θr ← θm) , go ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl) (A-max-GO-≡-left Am) (rmerge (depar₂ ieqr) , vmerge) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} {Al = .A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rraise-shared{e = e} e' .(depar₂ ieqr)) (rmerge{θ₂ = θm}{A₂ = Am} .ieql) olieq orieq vraise-shared vmerge refl refl = (θo , Ao , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , rmerge (depar₁ ieql') , proj₁ resr , ( vmerge , proj₂ resr , (_ , refl , refl))))) where θo = (θ ← θm) Ao = A-max A Am Domθm≠FVe : distinct (Dom θm) (FVₑ e) Domθm≠FVe with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cbm@(CBρ _) cb<=@(CBshared _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = distinct-sym (dist++ˡ (distinct-sym (dist++ˡ BVl≠FVr))) resr : Σ[ redr ∈ (ρ⟨ θo , Ao ⟩· ( (El ⟦ l ⟧e) ∥ q ) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl resr with ready-irr-on-irr-θˡ θm e' Domθm≠FVe ... | (e'' , e≡) rewrite e≡ = rraise-shared e'' (depar₂ ieqr) , vraise-shared ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(_ ∥ _)} {qro = l} {qlo = r} {A = A} {Ar = .A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rmerge{θ₂ = θm}{A₂ = Am} .(depar₂ ieqr)) (rraise-shared{e = e} e' .ieql) olieq orieq vmerge vraise-shared refl refl = (θo , Ao , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , proj₁ resl , rmerge (depar₂ ieqr) , (proj₂ resl , vmerge , (_ , refl , refl))))) where θo = (θ ← θm) Ao = A-max A Am Domθm≠FVe : distinct (Dom θm) (FVₑ e) Domθm≠FVe with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cb<=@(CBshared _) cbm@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = (dist++ˡ (distinct-sym (dist++ˡ FVl≠BVr))) resl : Σ[ redr ∈ (ρ⟨ θo , Ao ⟩· ( p ∥ (Er ⟦ r ⟧e) ) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl resl with ready-irr-on-irr-θˡ θm e' Domθm≠FVe ... | (e'' , e≡) rewrite e≡ = rraise-shared e'' (depar₁ ieql') , vraise-shared ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} {Al = . A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rraise-var{e = e} e' .(depar₂ ieqr)) (rmerge{θ₂ = θm}{A₂ = Am} .ieql) olieq orieq vraise-var vmerge refl refl = (θo , Ao , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , rmerge (depar₁ ieql') , proj₁ resr , ( vmerge , proj₂ resr , (_ , refl , refl))))) where θo = (θ ← θm) Ao = A-max A Am Domθm≠FVe : distinct (Dom θm) (FVₑ e) Domθm≠FVe with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cbm@(CBρ _) cb<=@(CBvar _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = distinct-sym (dist++ˡ (distinct-sym (dist++ˡ BVl≠FVr))) resr : Σ[ redr ∈ (ρ⟨ θo , Ao ⟩· ( (El ⟦ l ⟧e) ∥ q ) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl resr with ready-irr-on-irr-θˡ θm e' Domθm≠FVe ... | (e'' , e≡) rewrite e≡ = rraise-var e'' (depar₂ ieqr) , vraise-var ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(_ ∥ _)} {qro = l} {qlo = r} {A = A} {Ar = .A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rmerge{θ₂ = θm}{A₂ = Am} .(depar₂ ieqr)) (rraise-var{e = e} e' .ieql) olieq orieq vmerge vraise-var refl refl = (θo , Ao , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , proj₁ resl , rmerge (depar₂ ieqr) , (proj₂ resl , vmerge , (_ , refl , refl))))) where θo = (θ ← θm) Ao = A-max A Am Domθm≠FVe : distinct (Dom θm) (FVₑ e) Domθm≠FVe with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cb<=@(CBvar _) cbm@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = (dist++ˡ (distinct-sym (dist++ˡ FVl≠BVr))) resl : Σ[ redr ∈ (ρ⟨ θo , Ao ⟩· ( p ∥ (Er ⟦ r ⟧e) ) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl resl with ready-irr-on-irr-θˡ θm e' Domθm≠FVe ... | (e'' , e≡) rewrite e≡ = rraise-var e'' (depar₁ ieql') , vraise-var ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = A} {Al = .A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-var{x = x}{e = e} x∈ e' .(depar₂ ieqr)) (rmerge{θ₂ = θm}{A₂ = Am} .ieql) olieq orieq vset-var vmerge refl refl = (θo , Ao , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , proj₁ resl , proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl))))) where Ao = A-max A Am Domθm≠FVe : distinct (Dom θm) (FVₑ e) Domθm≠FVe with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cbm@(CBρ _) cb<=@(CBvset) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = distinct-sym (dist++ˡ (distinct-sym (id , id , dist':: # BVl≠FVr))) x∉Domθm : ¬ isVar∈ x θm x∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cbm@(CBρ _) cb<=@(CBvset) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ x₁ → (proj₂ (proj₂ BVl≠FVr)) _ (++ˡ x₁) (here refl) x∈2,θ≡ = var-set-←-comm x (δ e') θ θm x∈ x∉Domθm x∈2 = proj₁ x∈2,θ≡ θ≡ = proj₂ x∈2,θ≡ θl = (θ ← θm) θr = Env.set-var{x = x} θ x∈ (δ e') θo = Env.set-var{x = x} θl x∈2 (δ e') resr : Σ[ redr ∈ (ρ⟨ θl , Ao ⟩· ( (El ⟦ l ⟧e) ∥ q ) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl resr with ready-irr-on-irr-θˡ θm e' Domθm≠FVe ... | (e'' , e≡) rewrite e≡ = rset-var x∈2 e'' (depar₂ ieqr) , vset-var resl : Σ[ redr ∈ (ρ⟨ θr , A ⟩· ( p ∥ (Er ⟦ r ⟧e) ) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl resl rewrite sym θ≡ = rmerge (depar₁ ieql') , vmerge ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(_ ∥ _)} {qro = l} {qlo = r} {A = A} {Ar = .A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rmerge{θ₂ = θm}{A₂ = Am} .(depar₂ ieqr)) (rset-var{x = x}{e = e} x∈ e' .ieql) olieq orieq vmerge vset-var refl refl = (θo , Ao , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , proj₁ resl , proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl))))) where Ao = A-max A Am Domθm≠FVe : distinct (Dom θm) (FVₑ e) Domθm≠FVe with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cb<=@(CBvset) cbm@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = id , id , dist':: # (distinct-sym (dist++ˡ FVl≠BVr)) x∉Domθm : ¬ isVar∈ x θm x∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cb<=@(CBvset) cbm@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ x₁ → (proj₂ (proj₂ FVl≠BVr)) _ (here refl) (++ˡ x₁) x∈2,θ≡ = var-set-←-comm x (δ e') θ θm x∈ x∉Domθm x∈2 = proj₁ x∈2,θ≡ θ≡ = proj₂ x∈2,θ≡ θr = (θ ← θm) θl = Env.set-var{x = x} θ x∈ (δ e') θo = Env.set-var{x = x} θr x∈2 (δ e') resl : Σ[ redr ∈ (ρ⟨ θr , Ao ⟩· ( p ∥ (Er ⟦ r ⟧e) ) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl resl with ready-irr-on-irr-θˡ θm e' Domθm≠FVe ... | (e'' , e≡) rewrite e≡ = rset-var x∈2 e'' (depar₁ ieql') , vset-var resr : Σ[ redr ∈ (ρ⟨ θl , A ⟩· ( (El ⟦ l ⟧e) ∥ q ) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl resr rewrite sym θ≡ = rmerge (depar₂ ieqr) , vmerge ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} {Al = GO} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-shared-value-old{s = s}{e = e} e' s∈ s≡ .(depar₂ ieqr)) (rmerge{θ₂ = θm}{A₁ = GO}{A₂ = Am} .ieql) olieq orieq vset-shared-value-old vmerge refl refl = (θo , Ao , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , proj₁ resl , proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl))))) where Ao = GO Domθm≠FVe : distinct (Dom θm) (FVₑ e) Domθm≠FVe with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cbm@(CBρ _) cb<=@(CBsset) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = distinct-sym (dist++ˡ (distinct-sym (id , dist':: , id # BVl≠FVr))) s∉Domθm : ¬ isShr∈ s θm s∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cbm@(CBρ _) cb<=@(CBsset) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ x₁ → (proj₁ (proj₂ BVl≠FVr)) _ (++ˡ x₁) (here refl) s∈2,θ≡ = shr-set-←-comm s SharedVar.new (δ e') θ θm s∈ s∉Domθm s∈2 = proj₁ s∈2,θ≡ θ≡ = proj₂ s∈2,θ≡ -- | A-max-GO-≡-left Am θl = (θ ← θm) θr = Env.set-shr{s = s} θ s∈ SharedVar.new (δ e') θo = Env.set-shr{s = s} θl s∈2 SharedVar.new (δ e') resr : Σ[ redr ∈ (ρ⟨ θl , A-max GO Am ⟩· ( (El ⟦ l ⟧e) ∥ q ) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl resr with ready-irr-on-irr-θˡ θm e' Domθm≠FVe ... | (e'' , e≡) rewrite e≡ | A-max-GO-≡-left Am = rset-shared-value-old e'' s∈2 ( trans (sym (shr-←-irr-get' {θ} {θm} {s} s∈ s∉Domθm s∈2)) s≡ ) (depar₂ ieqr) , vset-shared-value-old resl : Σ[ redr ∈ (ρ⟨ θr , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) ) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl resl rewrite sym θ≡ = subst (λ go → Σ[ redr ∈ (ρ⟨ θr , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) ) sn⟶₁ (ρ⟨ (θr ← θm) , go ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl ) (A-max-GO-≡-left Am) (rmerge (depar₁ ieql') , vmerge) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(_ ∥ _)} {qro = l} {qlo = r} {A = GO} {Ar = GO} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rmerge{θ₂ = θm}{A₂ = Am} .(depar₂ ieqr)) (rset-shared-value-old{s = s}{e = e} e' s∈ s≡ .ieql) olieq orieq vmerge vset-shared-value-old refl refl = (θo , Ao , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , proj₁ resl , proj₁ resr , ( proj₂ resl , proj₂ resr , (_ , refl , refl))))) where Ao = GO Domθm≠FVe : distinct (Dom θm) (FVₑ e) Domθm≠FVe with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cb<=@(CBsset) cbm@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = id , dist':: , id # (distinct-sym (dist++ˡ ((FVl≠BVr)))) s∉Domθm : ¬ isShr∈ s θm s∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cb<=@(CBsset) cbm@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ x₁ → (proj₁ (proj₂ FVl≠BVr)) _ (here refl) (++ˡ x₁) s∈2,θ≡ = shr-set-←-comm s SharedVar.new (δ e') θ θm s∈ s∉Domθm s∈2 = proj₁ s∈2,θ≡ θ≡ = proj₂ s∈2,θ≡ θr = (θ ← θm) θl = Env.set-shr{s = s} θ s∈ SharedVar.new (δ e') θo = Env.set-shr{s = s} θr s∈2 SharedVar.new (δ e') τ : Env → Ctrl → Set τ θ g = Σ[ redr ∈ (ρ⟨ θl , GO ⟩· ( (El ⟦ l ⟧e) ∥ q ) sn⟶₁ (ρ⟨ θ , g ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl resr : τ θo Ao resr rewrite sym θ≡ = subst (τ (θl ← θm)) (A-max-GO-≡-left Am) (rmerge (depar₂ ieqr) , vmerge) resl : Σ[ redr ∈ (ρ⟨ θr , A-max GO Am ⟩· ( p ∥ (Er ⟦ r ⟧e) ) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl resl with ready-irr-on-irr-θˡ θm e' Domθm≠FVe ... | (e'' , e≡) rewrite e≡ | A-max-GO-≡-left Am = rset-shared-value-old e'' s∈2 ( trans (sym (shr-←-irr-get' {θ} {θm} {s} s∈ s∉Domθm s∈2)) s≡ ) (depar₁ ieql') , vset-shared-value-old ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(p ∥ q)} {qro = l} {qlo = r} {A = GO} {Al = GO} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rset-shared-value-new{s = s}{e = e} e' s∈ s≡ .(depar₂ ieqr)) (rmerge{θ₂ = θm}{A₂ = Am} .ieql) olieq orieq vset-shared-value-new vmerge refl refl = (θo , Ao , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , proj₁ resl , proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl))))) where Ao = GO sn = (Env.shr-vals{s = s} θ s∈ + δ e') Domθm≠FVe : distinct (Dom θm) (FVₑ e) Domθm≠FVe with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cbm@(CBρ _) cb<=@(CBsset) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = distinct-sym (dist++ˡ (distinct-sym (id , dist':: , id # BVl≠FVr))) s∉Domθm : ¬ isShr∈ s θm s∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cbm@(CBρ _) cb<=@(CBsset) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ x₁ → (proj₁ (proj₂ BVl≠FVr)) _ (++ˡ x₁) (here refl) s∈2,θ≡ = shr-set-←-comm s SharedVar.new sn θ θm s∈ s∉Domθm s∈2 = proj₁ s∈2,θ≡ θ≡ = proj₂ s∈2,θ≡ θl = (θ ← θm) θr = Env.set-shr{s = s} θ s∈ SharedVar.new sn θo = Env.set-shr{s = s} θl s∈2 SharedVar.new sn resr : Σ[ redr ∈ (ρ⟨ θl , A-max GO Am ⟩· ( (El ⟦ l ⟧e) ∥ q ) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl resr with ready-irr-on-irr-θˡ θm e' Domθm≠FVe ... | (e'' , e≡) rewrite e≡ | (shr-←-irr-get/vals' {θ} {θm} {s} s∈ s∉Domθm s∈2) | A-max-GO-≡-left Am = rset-shared-value-new e'' s∈2 ( trans (sym (shr-←-irr-get' {θ} {θm} {s} s∈ s∉Domθm s∈2)) s≡ ) (depar₂ ieqr) , vset-shared-value-new τ : Env → Ctrl → Set τ θ g = Σ[ redr ∈ (ρ⟨ θr , GO ⟩· ( p ∥ (Er ⟦ r ⟧e) ) sn⟶₁ (ρ⟨ θ , g ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl resl : τ θo Ao resl rewrite sym θ≡ = subst (τ (θr ← θm)) (A-max-GO-≡-left Am) (rmerge{θ₁ = θr}{θ₂ = θm} (depar₁ ieql') , vmerge) ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(_ ∥ _)} {qro = l} {qlo = r} {A = GO} {Ar = GO} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rmerge{θ₂ = θm}{A₂ = Am} .(depar₂ ieqr)) (rset-shared-value-new{s = s}{e = e} e' s∈ s≡ .ieql) olieq orieq vmerge vset-shared-value-new refl refl = (θo , Ao , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , proj₁ resl , proj₁ resr , (proj₂ resl , proj₂ resr , (_ , refl , refl))))) where Ao = GO sn = (Env.shr-vals{s = s} θ s∈ + δ e') Domθm≠FVe : distinct (Dom θm) (FVₑ e) Domθm≠FVe with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cb<=@(CBsset) cbm@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = (id , dist':: , id # (distinct-sym (dist++ˡ FVl≠BVr))) s∉Domθm : ¬ isShr∈ s θm s∉Domθm with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cb<=@(CBsset) cbm@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = λ x₁ → (proj₁ (proj₂ FVl≠BVr)) _ (here refl) (++ˡ x₁) s∈2,θ≡ = shr-set-←-comm s SharedVar.new sn θ θm s∈ s∉Domθm s∈2 = proj₁ s∈2,θ≡ θ≡ = proj₂ s∈2,θ≡ θr = (θ ← θm) θl = Env.set-shr{s = s} θ s∈ SharedVar.new sn θo = Env.set-shr{s = s} θr s∈2 SharedVar.new sn τ : Env → Ctrl → Set τ θ g = Σ[ redr ∈ (ρ⟨ θl , Ao ⟩· ( (El ⟦ l ⟧e) ∥ q ) sn⟶₁ (ρ⟨ θ , g ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₂ ieqr) Erefl resr : τ θo Ao resr rewrite sym θ≡ = subst (τ (θl ← θm)) (A-max-GO-≡-left Am) $ rmerge{θ₁ = θl}{θ₂ = θm} (depar₂ ieqr) , vmerge resl : Σ[ redr ∈ (ρ⟨ θr , A-max GO Am ⟩· ( p ∥ (Er ⟦ r ⟧e) ) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl resl with ready-irr-on-irr-θˡ θm e' Domθm≠FVe ... | (e'' , e≡) rewrite e≡ | A-max-GO-≡-left Am | (shr-←-irr-get/vals' {θ} {θm} {s} s∈ s∉Domθm s∈2) = rset-shared-value-new e'' s∈2 ( trans (sym (shr-←-irr-get' {θ} {θm} {s} s∈ s∉Domθm s∈2)) s≡ ) (depar₁ ieql') , vset-shared-value-new ρ-conf-rec2 {θ} {(epar₂ p ∷ Er)} {(epar₁ q ∷ El)} {i = .(_ ∥ _)} {qro = l} {qlo = r} {A = A} (CBρ cb) (depar₂ ieqr) ieql@(depar₁ ieql') par (rmerge{θ₂ = θr}{A₂ = Ar} .(depar₂ ieqr)) (rmerge{θ₂ = θl}{A₂ = Al} .ieql) olieq orieq vmerge vmerge refl refl = (θo , Ao , (( El ⟦ l ⟧e ) ∥ ( Er ⟦ r ⟧e )) , ((epar₂ (El ⟦ l ⟧e) ∷ Er)) , ((epar₁ (Er ⟦ r ⟧e) ∷ El) , (depar₂ ieqr) , (depar₁ ieql') , (Erefl , Erefl , (proj₁ resl , rmerge (depar₂ ieqr) , (proj₂ resl , vmerge , (_ , refl , refl)))))) where θo = (θ ← θl) ← θr Ao = A-max (A-max A Al) Ar Domθl≠Domθr : distinct (Dom θl) (Dom θr) Domθl≠Domθr with inspecting-cb-distinct-double-unplug cb ieql' ieqr ... | ( o , BVo , FVo ) , (CBpar cbm@(CBρ _) cb<=@(CBρ _) BVl≠BVr FVl≠BVr BVl≠FVr Xl≠Xr) , refl = (λ f a b c → f a (++ˡ b) (++ˡ c)) , (λ f a b c → f a (++ˡ b) (++ˡ c)) , (λ f a b c → f a (++ˡ b) (++ˡ c)) # BVl≠BVr θ←θl←θr≡ = ←-assoc-comm θ θl θr Domθl≠Domθr ⌈⌈A,Al⌉,Ar⌉≡ : A-max (A-max A Ar) Al ≡ Ao ⌈⌈A,Al⌉,Ar⌉≡ = A-max-swap A Ar Al resl : Σ[ redr ∈ ((ρ⟨ (θ ← θr) , A-max A Ar ⟩· ( p ∥ (Er ⟦ r ⟧e) )) sn⟶₁ (ρ⟨ θo , Ao ⟩· (El ⟦ l ⟧e) ∥ (Er ⟦ r ⟧e) )) ] ->E-view redr (depar₁ ieql') Erefl resl rewrite θ←θl←θr≡ | sym ⌈⌈A,Al⌉,Ar⌉≡ = rmerge (depar₁ ieql') , vmerge
{ "alphanum_fraction": 0.5132755665, "avg_line_length": 75.5020408163, "ext": "agda", "hexsha": "93ff6aa20ba02ab48594a7b15d367a0b7cb5e81b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/sn-calculus-confluence/recrec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/sn-calculus-confluence/recrec.agda", "max_line_length": 374, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/sn-calculus-confluence/recrec.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 63521, "size": 129486 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.Band.Properties where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Nat open import Cubical.Data.NatPlusOne open import Cubical.Algebra open import Cubical.Algebra.Properties open import Cubical.Algebra.Semigroup.Properties using (isPropIsSemigroup) open import Cubical.Relation.Binary.Reasoning.Equality private variable ??? : Level isPropIsBand : ??? {B : Type ???} {_???_} ??? isProp (IsBand B _???_) isPropIsBand {_} {_} {_???_} (isband aSemigroup aIdem) (isband bSemigroup bIdem) = cong??? isband (isPropIsSemigroup aSemigroup bSemigroup) (isPropIdempotent (IsSemigroup.is-set aSemigroup) _???_ aIdem bIdem) module BandLemmas (S : Band ???) where open Band S ^-id : ??? x n ??? x ^ n ??? x ^-id x one = refl ^-id x (2+ zero) = idem x ^-id x (2+ (suc n)) = x ??? (x ??? x ^ 1+ n) ???????? assoc x x (x ^ 1+ n) ??? x ??? x ??? x ^ 1+ n ?????? cong (_??? x ^ 1+ n) (idem x) ??? x ??? x ^ 1+ n ?????? ^-id x (2+ n) ??? x ??? open BandLemmas public
{ "alphanum_fraction": 0.6232247285, "avg_line_length": 32.3513513514, "ext": "agda", "hexsha": "bb212ae74f9470b89dc395ffb5804a8e0ae939f3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Band/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Band/Properties.agda", "max_line_length": 127, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Band/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 397, "size": 1197 }
module _ where data Unit : Set where unit : Unit module M (_ : Unit) where record R₁ (A : Set) : Set₁ where no-eta-equality postulate x : A open R₁ ⦃ … ⦄ public record R₂ (A : Set) : Set₁ where field instance r₁ : R₁ A open R₂ ⦃ … ⦄ open M unit postulate A : Set instance postulate m : R₁ A a : A a = x
{ "alphanum_fraction": 0.5534246575, "avg_line_length": 10.4285714286, "ext": "agda", "hexsha": "b0aa14e1480ff0fa1daf821ba8fedd2bfa6ad89a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2008b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2008b.agda", "max_line_length": 34, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2008b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 140, "size": 365 }
-- 2014-04-06 Andreas, issue reported by Andres Sicard-Ramirez -- {-# OPTIONS --termination-depth=100 -v term.matrices:40 #-} data ℕ : Set where zero : ℕ succ : ℕ → ℕ -- The following function is accepted by the termination checker in -- Agda-2.3.2.2, but it is rejected by the termination checker in -- the current development version. (The function was adapted from Lee, -- Jones, and Ben-Amram, POPL '01). p : ℕ → ℕ → ℕ → ℕ p m n (succ r) = p m r n p m (succ n) zero = p zero n m p m zero zero = m
{ "alphanum_fraction": 0.6458333333, "avg_line_length": 29.3333333333, "ext": "agda", "hexsha": "f00f46c52af07bfd5c97550fd737e6699a8849c6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1055.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1055.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1055.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 163, "size": 528 }
module Oscar.Class.Monoid where open import Oscar.Data.Equality open import Oscar.Level record Monoid {a} {A : Set a} {b} (_↠_ : A → A → Set b) : Set (a ⊔ b) where field ε : ∀ {m} → m ↠ m _◇_ : ∀ {l m n} → m ↠ n → l ↠ m → l ↠ n ◇-left-identity : ∀ {m n} → (f : m ↠ n) → ε ◇ f ≡ f ◇-right-identity : ∀ {m n} → (f : m ↠ n) → f ◇ ε ≡ f ◇-associativity : ∀ {k l m n} (f : k ↠ l) (g : l ↠ m) (h : m ↠ n) → h ◇ (g ◇ f) ≡ (h ◇ g) ◇ f open Monoid ⦃ … ⦄ public
{ "alphanum_fraction": 0.460251046, "avg_line_length": 29.875, "ext": "agda", "hexsha": "9782f3189d7100078eb657393086003f18d68dda", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Class/Monoid.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Class/Monoid.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Class/Monoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 235, "size": 478 }
-- {-# OPTIONS --sized-types #-} Option obsolete since 2014-04-12. module SizedTypesLeqInfty where open import Common.Size data Nat : {size : Size} -> Set where zero : {size : Size} -> Nat {↑ size} suc : {size : Size} -> Nat {size} -> Nat {↑ size} weak : {i : Size} -> Nat {i} -> Nat {∞} weak x = x
{ "alphanum_fraction": 0.5928338762, "avg_line_length": 25.5833333333, "ext": "agda", "hexsha": "9c927c559e7bc82c8d799ed6ed22279f84e4c8fa", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/SizedTypesLeqInfty.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/SizedTypesLeqInfty.agda", "max_line_length": 66, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/SizedTypesLeqInfty.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 104, "size": 307 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Group open import lib.types.Pi open import lib.NType2 open import lib.types.Paths open import lib.types.EilenbergMacLane1.Core module lib.types.EilenbergMacLane1.FunElim where module _ {i} {G : Group i} where private module G = Group G module EM₁Level₁FunElim {j k} {B : EM₁ G → Type j} {C : EM₁ G → Type k} {{C-level : has-level 1 (C embase)}} (embase* : B embase → C embase) (emloop* : ∀ g b → transport C (emloop g) (embase* b) == embase* (transport B (emloop g) b)) (emloop-comp* : ∀ g₁ g₂ b → emloop* (G.comp g₁ g₂) b ◃∙ ap (λ p → embase* (transport B p b)) (emloop-comp g₁ g₂) ◃∙ ap embase* (transp-∙ (emloop g₁) (emloop g₂) b) ◃∎ =ₛ ap (λ p → transport C p (embase* b)) (emloop-comp g₁ g₂) ◃∙ transp-∙ (emloop g₁) (emloop g₂) (embase* b) ◃∙ ap (transport C (emloop g₂)) (emloop* g₁ b) ◃∙ emloop* g₂ (transport B (emloop g₁) b) ◃∎) where emloop** : ∀ g → embase* == embase* [ (λ x → B x → C x) ↓ emloop g ] emloop** g = ↓-→-from-transp (λ= (emloop* g)) private emloop-comp** : ∀ g₁ g₂ → emloop** (G.comp g₁ g₂) == emloop** g₁ ∙ᵈ emloop** g₂ [ (λ p → embase* == embase* [ (λ x → B x → C x) ↓ p ]) ↓ emloop-comp g₁ g₂ ] emloop-comp** g₁ g₂ = step₁ ▹ step₂ where intermediate' : ∀ b → transport C (emloop g₁ ∙ emloop g₂) (embase* b) == embase* (transport B (emloop g₁ ∙ emloop g₂) b) intermediate' = comp-transp {B = B} {C = C} {u = embase*} {u' = embase*} {u'' = embase*} (emloop g₁) (emloop g₂) (λ= (emloop* g₁)) (λ= (emloop* g₂)) intermediate : embase* == embase* [ (λ x → B x → C x) ↓ emloop g₁ ∙ emloop g₂ ] intermediate = ↓-→-from-transp (λ= intermediate') step₁'' : ∀ b → app= (λ= (emloop* (G.comp g₁ g₂))) b ◃∙ app= (ap (λ p → embase* ∘ transport B p) (emloop-comp g₁ g₂)) b ◃∎ =ₛ app= (ap (λ p → transport C p ∘ embase*) (emloop-comp g₁ g₂)) b ◃∙ app= (λ= intermediate') b ◃∎ step₁'' b = app= (λ= (emloop* (G.comp g₁ g₂))) b ◃∙ app= (ap (λ p → embase* ∘ transport B p) (emloop-comp g₁ g₂)) b ◃∎ =ₛ₁⟨ 0 & 1 & app=-β (emloop* (G.comp g₁ g₂)) b ⟩ emloop* (G.comp g₁ g₂) b ◃∙ app= (ap (λ p → embase* ∘ transport B p) (emloop-comp g₁ g₂)) b ◃∎ =ₛ₁⟨ 1 & 1 & ∘-ap (_$ b) (λ p → embase* ∘ transport B p) (emloop-comp g₁ g₂) ⟩ emloop* (G.comp g₁ g₂) b ◃∙ ap (λ p → embase* (transport B p b)) (emloop-comp g₁ g₂) ◃∎ =ₛ⟨ post-rotate-in {p = _ ◃∙ _ ◃∎} (emloop-comp* g₁ g₂ b) ⟩ ap (λ p → transport C p (embase* b)) (emloop-comp g₁ g₂) ◃∙ transp-∙ (emloop g₁) (emloop g₂) (embase* b) ◃∙ ap (transport C (emloop g₂)) (emloop* g₁ b) ◃∙ emloop* g₂ (transport B (emloop g₁) b) ◃∙ ! (ap embase* (transp-∙ (emloop g₁) (emloop g₂) b)) ◃∎ =ₛ₁⟨ 2 & 1 & ap (ap (transport C (emloop g₂))) (! (app=-β (emloop* g₁) b)) ⟩ ap (λ p → transport C p (embase* b)) (emloop-comp g₁ g₂) ◃∙ transp-∙ (emloop g₁) (emloop g₂) (embase* b) ◃∙ ap (transport C (emloop g₂)) (app= (λ= (emloop* g₁)) b) ◃∙ emloop* g₂ (transport B (emloop g₁) b) ◃∙ ! (ap embase* (transp-∙ (emloop g₁) (emloop g₂) b)) ◃∎ =ₛ₁⟨ 3 & 1 & ! (app=-β (emloop* g₂) (transport B (emloop g₁) b)) ⟩ ap (λ p → transport C p (embase* b)) (emloop-comp g₁ g₂) ◃∙ transp-∙ (emloop g₁) (emloop g₂) (embase* b) ◃∙ ap (transport C (emloop g₂)) (app= (λ= (emloop* g₁)) b) ◃∙ app= (λ= (emloop* g₂)) (transport B (emloop g₁) b) ◃∙ ! (ap embase* (transp-∙ (emloop g₁) (emloop g₂) b)) ◃∎ =ₛ⟨ 1 & 4 & contract ⟩ ap (λ p → transport C p (embase* b)) (emloop-comp g₁ g₂) ◃∙ intermediate' b ◃∎ =ₛ₁⟨ 0 & 1 & ap-∘ (_$ b) (λ p → transport C p ∘ embase*) (emloop-comp g₁ g₂) ⟩ app= (ap (λ p → transport C p ∘ embase*) (emloop-comp g₁ g₂)) b ◃∙ intermediate' b ◃∎ =ₛ₁⟨ 1 & 1 & ! (app=-β intermediate' b) ⟩ app= (ap (λ p → transport C p ∘ embase*) (emloop-comp g₁ g₂)) b ◃∙ app= (λ= intermediate') b ◃∎ ∎ₛ step₁' : λ= (emloop* (G.comp g₁ g₂)) ∙ ap (λ p → embase* ∘ transport B p) (emloop-comp g₁ g₂) == ap (λ p → transport C p ∘ embase*) (emloop-comp g₁ g₂) ∙ λ= intermediate' step₁' = –>-is-inj (app=-equiv {A = B embase} {P = λ _ → C embase} {f = transport C (emloop (G.comp g₁ g₂)) ∘ embase*} {g = embase* ∘ transport B (emloop g₁ ∙ emloop g₂)}) _ _ $ λ= $ λ b → app= (λ= (emloop* (G.comp g₁ g₂)) ∙ ap (λ p → embase* ∘ transport B p) (emloop-comp g₁ g₂)) b =⟨ ap-∙ (_$ b) (λ= (emloop* (G.comp g₁ g₂))) (ap (λ p → embase* ∘ transport B p) (emloop-comp g₁ g₂)) ⟩ app= (λ= (emloop* (G.comp g₁ g₂))) b ∙ app= (ap (λ p → embase* ∘ transport B p) (emloop-comp g₁ g₂)) b =⟨ =ₛ-out (step₁'' b) ⟩ app= (ap (λ p → transport C p ∘ embase*) (emloop-comp g₁ g₂)) b ∙ app= (λ= intermediate') b =⟨ ∙-ap (_$ b) (ap (λ p → transport C p ∘ embase*) (emloop-comp g₁ g₂)) (λ= intermediate') ⟩ app= (ap (λ p → transport C p ∘ embase*) (emloop-comp g₁ g₂) ∙ λ= intermediate') b =∎ step₁ : emloop** (G.comp g₁ g₂) == intermediate [ (λ p → embase* == embase* [ (λ x → B x → C x) ↓ p ]) ↓ emloop-comp g₁ g₂ ] step₁ = ap↓ ↓-→-from-transp $ ↓-='-in $ ∙'=∙ (λ= (emloop* (G.comp g₁ g₂))) (ap (λ p → embase* ∘ transport B p) (emloop-comp g₁ g₂)) ∙ step₁' step₂ : intermediate == emloop** g₁ ∙ᵈ emloop** g₂ step₂ = ↓-→-from-transp-∙ᵈ {B = B} {C = C} {p = emloop g₁} {q = emloop g₂} {u = embase*} {u' = embase*} {u'' = embase*} (λ= (emloop* g₁)) (λ= (emloop* g₂)) module M = EM₁Level₁Elim {P = λ x → B x → C x} {{EM₁-prop-elim {P = λ x → has-level 1 (B x → C x)} {{λ x → has-level-is-prop}} (Π-level {B = λ _ → C embase} (λ _ → C-level))}} embase* emloop** emloop-comp** open M public
{ "alphanum_fraction": 0.4661295136, "avg_line_length": 47.1971830986, "ext": "agda", "hexsha": "b8ba665e2c05e80f79538a6378c8e162cee23531", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/types/EilenbergMacLane1/FunElim.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/types/EilenbergMacLane1/FunElim.agda", "max_line_length": 96, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/types/EilenbergMacLane1/FunElim.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 2640, "size": 6702 }
{- SAMPLE PROGRAMS IN SOURCE LANGUAGE -} {-# OPTIONS --no-termination-check #-} open import Preliminaries open import Source module Samples where {- dbl (n : nat) : nat = 2 * n -} dbl : ∀ {Γ} → Γ |- (nat ->s nat) dbl = lam (rec (var i0) z (suc (suc (force (var (iS i0)))))) {- add (m n : nat) : nat = m + n -} add : ∀ {Γ} → Γ |- (nat ->s (nat ->s nat)) add = lam (lam (rec (var (iS i0)) (var i0) (suc (force (var (iS i0)))))) {- mult (m n : nat) : nat = m * n -} mult : ∀ {Γ} → Γ |- (nat ->s (nat ->s nat)) mult = lam (lam (rec (var (iS i0)) z (app (app add (var (iS (iS i0)))) (force (var (iS i0)))))) -- hack : instead of having bool case analysis just do natural number recursion and return 1/0 {- iszero (n : nat) : nat = z -> 1 | _ -> 0 -} isz : ∀ {Γ} → Γ |- (nat ->s nat) isz = lam (rec (var i0) (suc z) z) {- leq (m n : nat) : nat = m ≤ n -} leq : ∀ {Γ} → Γ |- (nat ->s (nat ->s nat)) leq = lam (lam (rec (var (iS i0)) (app isz (var (iS i0))) (rec (var (iS (iS (iS i0)))) (suc z) (force (var (iS i0)))))) {- len (l : list τ) : nat = [] -> z | x :: xs -> 1 + len xs -} len : ∀ {Γ τ} → Γ |- (list τ ->s nat) len = lam (listrec (var i0) z (suc (force (var (iS (iS i0)))))) {- insert (l : list nat) (el : nat) : list nat = [] -> [el] | x :: xs -> (leq el x -> el :: x :: xs | x :: (insert el xs)) -} insert : ∀ {Γ} → Γ |- (list nat ->s (nat ->s list nat)) insert = lam (lam (listrec (var (iS i0)) (var i0 ::s nil) (rec (app (app leq (var (iS (iS (iS i0))))) (var i0)) (var i0 ::s force (var (iS (iS i0)))) (var (iS (iS (iS (iS (iS i0))))) ::s var (iS (iS (iS (iS (iS (iS i0)))))))))) {- insertion sort (l : list nat) : list nat = [] -> [] | x :: xs -> insert x (isort xs) -} isort : ∀ {Γ} → Γ |- (list nat ->s list nat) isort = lam (listrec (var i0) nil (app (app insert (force (var (iS (iS i0))))) (var i0))) {- halve (l : list nat) : (list nat * list nat) = splits a list in half -} halve : ∀ {Γ} → Γ |- (list nat ->s (list nat ×s list nat)) halve = lam (listrec (var i0) (prod nil nil) (listrec (var (iS i0)) (prod (var i0 ::s nil) nil) (prod (var (iS (iS (iS i0))) ::s split (force (var (iS (iS i0)))) (var i0)) (var i0 ::s split (force (var (iS (iS i0)))) (var (iS i0)))))) {- merge (l1 l2 : list nat) : list nat = match l1 with [] -> l2 x :: xs -> match l2 with [] -> x :: xs y :: ys -> x <= y -> x :: merge xs l2 _ -> y :: merge l1 ys -} merge : ∀ {Γ} → Γ |- ((list nat ×s list nat) ->s list nat) merge = lam (listrec (split (var i0) (var i0)) (split (var i0) (var (iS i0))) (listrec (split (var (iS (iS (iS i0)))) (var (iS i0))) (split (var (iS (iS (iS i0)))) (var i0)) (rec (app (app leq (var (iS (iS (iS i0))))) (var i0)) (var (iS (iS (iS i0))) ::s force (var (iS (iS (iS (iS (iS i0))))))) (var i0 ::s app merge (prod (split (var (iS (iS (iS (iS (iS (iS (iS (iS i0))))))))) (var (iS i0))) (var (iS (iS (iS i0))))))))) {- mergesort (l : list nat) : list nat -} msort : ∀ {Γ} → Γ |- (list nat ->s list nat) msort = lam (listrec (var i0) nil (listrec (var (iS i0)) (var i0 ::s nil) (app merge (prod (app msort (split (app halve (var (iS (iS (iS (iS (iS (iS i0)))))))) (var i0))) (app msort (split (app halve (var (iS (iS (iS (iS (iS (iS i0)))))))) (var (iS i0))))))))
{ "alphanum_fraction": 0.4533956558, "avg_line_length": 42.7882352941, "ext": "agda", "hexsha": "aa5c2a0e53734ab7a099052b110e34e6903dfeac", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "complexity/Samples.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "complexity/Samples.agda", "max_line_length": 152, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "complexity/Samples.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 1439, "size": 3637 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything module Cubical.Relation.Binary.Raw.Bundles {c : Level} (Carrier : Type c) where open import Cubical.Foundations.Prelude using (isSet) open import Cubical.Relation.Nullary using (¬_) open import Cubical.Relation.Binary.Base open import Cubical.Relation.Binary.Raw.Definitions open import Cubical.Relation.Binary.Raw.Structures ------------------------------------------------------------------------ -- Preorders ------------------------------------------------------------------------ record Preorder ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where infix 4 _∼_ field _∼_ : RawRel Carrier ℓ isPreorder : IsPreorder _∼_ open IsPreorder isPreorder public ------------------------------------------------------------------------ -- Equivalences ------------------------------------------------------------------------ record PartialEquivalence ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where field _≈_ : RawRel Carrier ℓ isPartialEquivalence : IsPartialEquivalence _≈_ open IsPartialEquivalence isPartialEquivalence public _≉_ : RawRel Carrier _ x ≉ y = ¬ (x ≈ y) record Equivalence ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where infix 4 _≈_ field _≈_ : RawRel Carrier ℓ isEquivalence : IsEquivalence _≈_ open IsEquivalence isEquivalence public partialEquivalence : PartialEquivalence ℓ partialEquivalence = record { isPartialEquivalence = isPartialEquivalence } open PartialEquivalence partialEquivalence public using (_≉_) preorder : Preorder ℓ preorder = record { isPreorder = isPreorder } record DecEquivalence ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where infix 4 _≈_ field _≈_ : RawRel Carrier ℓ isDecEquivalence : IsDecEquivalence _≈_ open IsDecEquivalence isDecEquivalence public equivalence : Equivalence ℓ equivalence = record { isEquivalence = isEquivalence } open Equivalence equivalence public using (partialEquivalence; _≉_) ------------------------------------------------------------------------ -- Partial orders ------------------------------------------------------------------------ record PartialOrder ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where infix 4 _≤_ field _≤_ : RawRel Carrier ℓ isPartialOrder : IsPartialOrder _≤_ open IsPartialOrder isPartialOrder public preorder : Preorder ℓ preorder = record { isPreorder = isPreorder } record DecPartialOrder ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where infix 4 _≤_ field _≤_ : RawRel Carrier ℓ isDecPartialOrder : IsDecPartialOrder _≤_ open IsDecPartialOrder isDecPartialOrder public partialOrder : PartialOrder ℓ partialOrder = record { isPartialOrder = isPartialOrder } open PartialOrder partialOrder public using (preorder) record StrictPartialOrder ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where infix 4 _<_ field _<_ : RawRel Carrier ℓ isStrictPartialOrder : IsStrictPartialOrder _<_ open IsStrictPartialOrder isStrictPartialOrder public record DecStrictPartialOrder ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where infix 4 _<_ field _<_ : RawRel Carrier ℓ isDecStrictPartialOrder : IsDecStrictPartialOrder _<_ open IsDecStrictPartialOrder isDecStrictPartialOrder public strictPartialOrder : StrictPartialOrder ℓ strictPartialOrder = record { isStrictPartialOrder = isStrictPartialOrder } ------------------------------------------------------------------------ -- Total orders ------------------------------------------------------------------------ record TotalOrder ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where infix 4 _≤_ field _≤_ : RawRel Carrier ℓ isTotalOrder : IsTotalOrder _≤_ open IsTotalOrder isTotalOrder public partialOrder : PartialOrder ℓ partialOrder = record { isPartialOrder = isPartialOrder } open PartialOrder partialOrder public using (preorder) record DecTotalOrder ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where infix 4 _≤_ field _≤_ : RawRel Carrier ℓ isDecTotalOrder : IsDecTotalOrder _≤_ open IsDecTotalOrder isDecTotalOrder public totalOrder : TotalOrder ℓ totalOrder = record { isTotalOrder = isTotalOrder } open TotalOrder totalOrder public using (partialOrder; preorder) decPartialOrder : DecPartialOrder ℓ decPartialOrder = record { isDecPartialOrder = isDecPartialOrder } -- Note that these orders are decidable. The current implementation -- of `Trichotomous` subsumes irreflexivity and asymmetry. Any reasonable -- definition capturing these three properties implies decidability -- as `Trichotomous` necessarily separates out the equality case. record StrictTotalOrder ℓ : Type (ℓ-max c (ℓ-suc ℓ)) where infix 4 _<_ field _<_ : RawRel Carrier ℓ isStrictTotalOrder : IsStrictTotalOrder _<_ open IsStrictTotalOrder isStrictTotalOrder public strictPartialOrder : StrictPartialOrder ℓ strictPartialOrder = record { isStrictPartialOrder = isStrictPartialOrder }
{ "alphanum_fraction": 0.6314659379, "avg_line_length": 26.2717948718, "ext": "agda", "hexsha": "de75b19b2a0c74e3a85e04057fdd97d32866b331", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Raw/Bundles.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Raw/Bundles.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Raw/Bundles.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1343, "size": 5123 }
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Setoids.Setoids open import Rings.Definition open import Rings.Lemmas open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Lemmas open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Semirings.Definition module Fields.CauchyCompletion.Approximation {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where open Setoid S open SetoidTotalOrder (TotallyOrderedRing.total order) open SetoidPartialOrder pOrder open Equivalence eq open PartiallyOrderedRing pRing open Ring R open Group additiveGroup open Field F open import Fields.Lemmas F open import Fields.Orders.Lemmas {F = F} record { oRing = order } open import Rings.Orders.Total.Lemmas order open import Rings.Orders.Total.AbsoluteValue order open import Rings.Orders.Partial.Lemmas pRing open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Addition order F open import Fields.CauchyCompletion.Comparison order F open import Rings.InitialRing R open import Fields.Orders.Total.Lemmas {F = F} (record { oRing = order }) abstract chain : {a b : A} (c : CauchyCompletion) → (a r<C c) → (c <Cr b) → a < b chain {a} {b} c record { e = betweenAC ; 0<e = 0<betweenAC ; N = Nac ; pr = prAC } record { e = betweenCB ; 0<e = 0<betweenCB ; N = Nb ; property = prBC } = SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft (Equivalence.reflexive eq) (orderRespectsAddition 0<betweenAC a)) (<WellDefined groupIsAbelian (Equivalence.reflexive eq) (SetoidPartialOrder.<Transitive pOrder (prAC (succ Nac +N Nb) (le Nb (applyEquality succ (Semiring.commutative ℕSemiring Nb Nac)))) (<WellDefined identLeft (Equivalence.reflexive eq) (orderRespectsAddition 0<betweenCB (index (Sequence.tail (CauchyCompletion.elts c)) (Nac +N Nb))))))) (prBC (succ Nac +N Nb) (le Nac refl)) private approxLemma : (a : CauchyCompletion) (e e/2 : A) → (0G < e) → (e/2 + e/2 ∼ e) → (m N : ℕ) → abs ((index (CauchyCompletion.elts a) m) + inverse (index (CauchyCompletion.elts a) N)) < e/2 → (e/2 + index (CauchyCompletion.elts a) m) < (index (CauchyCompletion.elts a) N + e) approxLemma a e e/2 0<e prE/2 m N ans with totality 0R ((index (CauchyCompletion.elts a) m) + inverse (index (CauchyCompletion.elts a) N)) approxLemma a e e/2 0<e prE/2 m N ans | inl (inl x) with <WellDefined (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) (invLeft))) identRight) groupIsAbelian (orderRespectsAddition ans (index (CauchyCompletion.elts a) N)) ... | bl = <WellDefined groupIsAbelian (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) prE/2)) (orderRespectsAddition bl e/2) approxLemma a e e/2 0<e prE/2 m N ans | inl (inr x) with <WellDefined (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) (invLeft))) identRight) (identLeft) (orderRespectsAddition x (index (CauchyCompletion.elts a) N)) ... | bl = <WellDefined groupIsAbelian (Equivalence.reflexive eq) (ringAddInequalities bl (halfLess e/2 e 0<e prE/2)) approxLemma a e e/2 0<e prE/2 m N ans | inr x with transferToRight additiveGroup (Equivalence.symmetric eq x) ... | bl = <WellDefined (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq bl)) groupIsAbelian (orderRespectsAddition (halfLess e/2 e 0<e prE/2) (index (CauchyCompletion.elts a) N)) approximateAboveCrude : (a : CauchyCompletion) → A approximateAboveCrude a with CauchyCompletion.converges a 1R (0<1 (charNot2ImpliesNontrivial R charNot2)) ... | N , conv = (((index (CauchyCompletion.elts a) (succ N)) + 1R) + 1R) + 1R abstract approximateAboveCrudeIsAbove : (a : CauchyCompletion) → a <Cr (approximateAboveCrude a) approximateAboveCrudeIsAbove a with CauchyCompletion.converges a 1R (0<1 (charNot2ImpliesNontrivial R charNot2)) ... | N , conv = record { e = 1R ; 0<e = 0<1 (charNot2ImpliesNontrivial R charNot2) ; N = N ; property = ans } where ans : (m : ℕ) → (N <N m) → (1R + index (CauchyCompletion.elts a) m) < (((index (CauchyCompletion.elts a) (succ N) + 1R) + 1R) + 1R) ans m N<m with conv {m} {succ N} N<m (le 0 refl) ... | bl with totality 0G (index (CauchyCompletion.elts a) m + inverse (index (CauchyCompletion.elts a) (succ N))) ans m N<m | bl | inl (inl 0<am-aN) with <WellDefined (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) (invLeft))) identRight) (Equivalence.reflexive eq) (orderRespectsAddition bl (index (CauchyCompletion.elts a) (succ N))) ... | am<1+an = <WellDefined (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) identLeft) groupIsAbelian) (Equivalence.transitive eq (+WellDefined groupIsAbelian (Equivalence.reflexive eq)) +Associative) (ringAddInequalities am<1+an (orderRespectsAddition (0<1 (charNot2ImpliesNontrivial R charNot2)) 1R)) ans m N<m | bl | inl (inr am-aN<0) with <WellDefined (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) invLeft)) identRight) identLeft (orderRespectsAddition am-aN<0 (index (CauchyCompletion.elts a) (succ N))) ... | am<aN = <WellDefined groupIsAbelian (Equivalence.reflexive eq) (orderRespectsAddition (SetoidPartialOrder.<Transitive pOrder am<aN (<WellDefined (Equivalence.reflexive eq) (+Associative) (<WellDefined identLeft groupIsAbelian (orderRespectsAddition (<WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities (0<1 (charNot2ImpliesNontrivial R charNot2)) (0<1 (charNot2ImpliesNontrivial R charNot2)))) (index (CauchyCompletion.elts a) (succ N)))))) 1R) ans m N<m | bl | inr 0=am-aN = <WellDefined (Equivalence.transitive eq (+WellDefined identLeft (Equivalence.reflexive eq)) identLeft) (Equivalence.transitive eq groupIsAbelian (Equivalence.transitive eq (+WellDefined (Equivalence.transitive eq groupIsAbelian (+WellDefined (transferToRight additiveGroup (Equivalence.symmetric eq 0=am-aN)) (Equivalence.reflexive eq))) (Equivalence.reflexive eq)) +Associative)) (orderRespectsAddition (ringAddInequalities (0<1 (charNot2ImpliesNontrivial R charNot2)) (0<1 (charNot2ImpliesNontrivial R charNot2))) (1R + (index (CauchyCompletion.elts a) m))) rationalApproximatelyAbove : (a : CauchyCompletion) → (e : A) → (0G < e) → A rationalApproximatelyAbove a e 0<e with halve charNot2 e ... | e/2 , prE/2 with halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prE/2) 0<e) ... | 0<e/2 with halve charNot2 e/2 ... | e/4 , prE/4 with halvePositive e/4 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prE/4) 0<e/2) ... | 0<e/4 with CauchyCompletion.converges a e/4 0<e/4 ... | N , cauchyBeyondN = index (CauchyCompletion.elts a) (succ N) + e/2 abstract rationalApproximatelyAboveIsAbove : (a : CauchyCompletion) (e : A) → (0<e : 0G < e) → a <Cr (rationalApproximatelyAbove a e 0<e) rationalApproximatelyAboveIsAbove a e 0<e with halve charNot2 e ... | e/2 , prE/2 with halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prE/2) 0<e) ... | 0<e/2 with halve charNot2 e/2 ... | e/4 , prE/4 with halvePositive e/4 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prE/4) 0<e/2) ... | 0<e/4 with CauchyCompletion.converges a e/4 0<e/4 ... | N , cauchyBeyondN with halve charNot2 e/4 ... | e/8 , prE/8 with halvePositive e/8 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prE/8) 0<e/4) ... | 0<e/8 with CauchyCompletion.converges a e/8 0<e/8 ... | N2 , cauchyBeyondN2 = record { e = e/8 ; 0<e = 0<e/8 ; N = N +N N2 ; property = ans2 } where ans2 : (m : ℕ) → N +N N2 <N m → (e/8 + index (CauchyCompletion.elts a) m) < (index (CauchyCompletion.elts a) (succ N) + e/2) ans2 m <m with cauchyBeyondN {m} {succ N} (inequalityShrinkLeft <m) (le 0 refl) ... | absam-aN<e/4 with totality 0R ((index (CauchyCompletion.elts a) m) + inverse (index (CauchyCompletion.elts a) (succ N))) ans2 m <m | am-aN<e/4 | inl (inl 0<am-aN) = SetoidPartialOrder.<Transitive pOrder (<WellDefined groupIsAbelian (Equivalence.transitive eq groupIsAbelian +Associative) (orderRespectsAddition (<WellDefined (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) invLeft)) identRight) (Equivalence.reflexive eq) (orderRespectsAddition am-aN<e/4 (index (CauchyCompletion.elts a) (succ N)))) e/8)) (<WellDefined (Equivalence.reflexive eq) groupIsAbelian (orderRespectsAddition (<WellDefined (Equivalence.reflexive eq) prE/4 (orderRespectsAddition (halfLess e/8 e/4 0<e/4 prE/8) e/4)) (index (CauchyCompletion.elts a) (succ N)))) ans2 m <m | -[am-aN]<e/4 | inl (inr am-aN<0) with <WellDefined (Equivalence.transitive eq +Associative (Equivalence.transitive eq (+WellDefined invLeft (Equivalence.reflexive eq)) identLeft)) (Equivalence.reflexive eq) (orderRespectsAddition (<WellDefined (Equivalence.reflexive eq) (invTwice additiveGroup _) (ringSwapNegatives' -[am-aN]<e/4)) (e/4 + e/8)) ... | e/8<am-aN+e/4+e/8 = SetoidPartialOrder.<Transitive pOrder (orderRespectsAddition e/8<am-aN+e/4+e/8 (index (CauchyCompletion.elts a) m)) (<WellDefined (Equivalence.reflexive eq) groupIsAbelian (ringAddInequalities (<WellDefined (Equivalence.reflexive eq) identLeft (ringAddInequalities am-aN<0 (<WellDefined groupIsAbelian prE/4 (orderRespectsAddition (halfLess e/8 e/4 0<e/4 prE/8) e/4)))) am<aN)) where am<aN : (index (CauchyCompletion.elts a) m) < (index (CauchyCompletion.elts a) (succ N)) am<aN = <WellDefined (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) groupIsAbelian)) (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) invRight) identRight)) identLeft (orderRespectsAddition am-aN<0 (index (CauchyCompletion.elts a) (succ N))) ans2 m <m | absam-aN<e/4 | inr 0=am-aN = <WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq groupIsAbelian (+WellDefined (transferToRight additiveGroup (Equivalence.symmetric eq 0=am-aN)) (Equivalence.reflexive eq))) (orderRespectsAddition {b = e/2} (SetoidPartialOrder.<Transitive pOrder (halfLess e/8 e/4 0<e/4 prE/8) (halfLess e/4 e/2 0<e/2 prE/4)) (index (CauchyCompletion.elts a) m)) rationalApproximatelyAboveIsNear : (a : CauchyCompletion) (e : A) → (0<e : 0G < e) → (injection (rationalApproximatelyAbove a e 0<e) +C (-C a)) <C (injection e) rationalApproximatelyAboveIsNear a e 0<e with halve charNot2 e ... | e/2 , prE/2 with halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prE/2) 0<e) ... | 0<e/2 with halve charNot2 e/2 ... | e/4 , prE/4 with halvePositive e/4 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prE/4) 0<e/2) ... | 0<e/4 with CauchyCompletion.converges a e/4 0<e/4 ... | N , cauchyBeyondN with halve charNot2 e/4 ... | e/8 , prE/8 with halvePositive e/8 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prE/8) 0<e/4) ... | 0<e/8 with CauchyCompletion.converges a e/8 0<e/8 ... | N8 , cauchyBeyondN8 with halve charNot2 e/8 ... | e/16 , prE/16 with halvePositive e/16 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prE/16) 0<e/8) ... | 0<e/16 = record { i = (e/2 + e/4) + e/8 ; a<i = record { e = e/8 ; 0<e = 0<e/8 ; N = N +N N8 ; property = ans } ; i<b = record { e = e/16 ; 0<e = 0<e/16 ; N = 0 ; pr = t' } } where t' : (m : ℕ) → (0 <N m) → (((e/2 + e/4) + e/8) + e/16) < index (constSequence e) m t' m 0<m rewrite indexAndConst e m = <WellDefined (Equivalence.reflexive eq) prE/2 (<WellDefined (Equivalence.reflexive eq) (+WellDefined (Equivalence.reflexive eq) prE/4) (<WellDefined +Associative (Equivalence.symmetric eq +Associative) (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (<WellDefined (Equivalence.reflexive eq) prE/8 (<WellDefined groupIsAbelian groupIsAbelian (orderRespectsAddition (halfLess e/16 e/8 0<e/8 prE/16) e/8))) (e/2 + e/4))))) ans : (m : ℕ) → (N +N N8) <N m → (e/8 + index (apply _+_ (constSequence (index (CauchyCompletion.elts a) (succ N) + e/2)) (map inverse (CauchyCompletion.elts a))) m) < ((e/2 + e/4) + e/8) ans m N<m rewrite indexAndApply (constSequence (index (CauchyCompletion.elts a) (succ N) + e/2)) (map inverse (CauchyCompletion.elts a)) _+_ {m} | indexAndConst (index (CauchyCompletion.elts a) (succ N) + e/2) m | equalityCommutative (mapAndIndex (CauchyCompletion.elts a) inverse m) = <WellDefined groupIsAbelian (+WellDefined groupIsAbelian (Equivalence.reflexive eq)) (orderRespectsAddition (<WellDefined (Equivalence.transitive eq groupIsAbelian (Equivalence.reflexive eq)) (Equivalence.reflexive eq) q) e/8) where am : A am = index (CauchyCompletion.elts a) m aN : A aN = index (CauchyCompletion.elts a) (succ N) t : abs (am + inverse aN) < e/4 t = cauchyBeyondN {m} {succ N} (inequalityShrinkLeft N<m) (le 0 refl) r : ((inverse am) + aN) < e/4 r with t ... | f with totality 0G (am + inverse aN) r | am-aN<e/4 | inl (inl 0<am-aN) = SetoidPartialOrder.<Transitive pOrder (<WellDefined (Equivalence.transitive eq (invContravariant additiveGroup) (Equivalence.transitive eq groupIsAbelian (+WellDefined (Equivalence.reflexive eq) (invTwice additiveGroup _)))) (Equivalence.reflexive eq) (lemm2' _ 0<am-aN)) 0<e/4 r | f | inl (inr x) = <WellDefined (Equivalence.transitive eq (invContravariant additiveGroup) (Equivalence.transitive eq groupIsAbelian (+WellDefined (Equivalence.reflexive eq) (invTwice additiveGroup _)))) (Equivalence.reflexive eq) f r | am-aN<e/4 | inr 0=am-aN = <WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq 0=am-aN) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq (invIdent additiveGroup)) (inverseWellDefined additiveGroup 0=am-aN)) (inverseWellDefined additiveGroup groupIsAbelian)) (invContravariant additiveGroup)) (+WellDefined (Equivalence.reflexive eq) (invTwice additiveGroup _)))) (Equivalence.reflexive eq) am-aN<e/4 q : ((inverse (index (CauchyCompletion.elts a) m)) + (index (CauchyCompletion.elts a) (succ N) + e/2)) < (e/4 + e/2) q = <WellDefined (Equivalence.symmetric eq +Associative) (Equivalence.reflexive eq) (orderRespectsAddition r e/2) approximateAbove : (a : CauchyCompletion) → (ε : A) → (0G < ε) → Sg A (λ b → (a <Cr b) && (injection b +C (-C a)) <C (injection ε)) approximateAbove a e 0<e = rationalApproximatelyAbove a e 0<e , (rationalApproximatelyAboveIsAbove a e 0<e ,, rationalApproximatelyAboveIsNear a e 0<e) approximateBelow : (a : CauchyCompletion) → (ε : A) → (0G < ε) → Sg A (λ b → (b r<C a) && (a +C (-C injection b)) <C (injection ε)) approximateBelow a e 0<e with approximateAbove (-C a) e 0<e ... | x , (record { e = deltaXAnd-A ; 0<e = 0<deltaXA ; N = NdeltaXA ; property = prDeltaXA } ,, record { i = rationalNear ; a<i = record { e = bound ; 0<e = 0<bound ; N = N ; property = prBound } ; i<b = record { e = bound2 ; 0<e = 0<bound2 ; N = N2 ; pr = prBound2 } }) = inverse x , (record { e = deltaXAnd-A ; 0<e = 0<deltaXA ; N = NdeltaXA ; pr = λ m N<m → <WellDefined (Equivalence.transitive eq groupIsAbelian (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq groupIsAbelian (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (cancel {m} (CauchyCompletion.elts a))) identRight)))))) (Equivalence.transitive eq +Associative (Equivalence.transitive eq (+WellDefined invRight (Equivalence.reflexive eq)) identLeft)) (orderRespectsAddition (prDeltaXA m N<m) (inverse x + (index (CauchyCompletion.elts a) m))) } ,, record { i = rationalNear ; a<i = record { e = bound ; 0<e = 0<bound ; N = N ; property = pr1 } ; i<b = record { e = bound2 ; 0<e = 0<bound2 ; N = N2 ; pr = prBound2 } }) where cancel : {m : ℕ} (a : Sequence A) → (index (map inverse a) m) + (index a m) ∼ 0G cancel {m} a rewrite equalityCommutative (mapAndIndex a inverse m) = invLeft pr1 : (m : ℕ) → (N <N m) → (bound + index (apply _+_ (CauchyCompletion.elts a) (map inverse (constSequence (inverse x)))) m) < rationalNear pr1 m N<m with prBound m N<m ... | bl rewrite indexAndApply (CauchyCompletion.elts a) (map inverse (constSequence (inverse x))) _+_ {m} | equalityCommutative (mapAndIndex (constSequence (inverse x)) inverse m) | indexAndConst x m | indexAndApply (constSequence x) (map inverse (map inverse (CauchyCompletion.elts a))) _+_ {m} | indexAndConst x m | equalityCommutative (mapAndIndex (map inverse (CauchyCompletion.elts a)) inverse m) | equalityCommutative (mapAndIndex (CauchyCompletion.elts a) inverse m) | indexAndConst (inverse x) m = <WellDefined (+WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq groupIsAbelian (+WellDefined (invTwice additiveGroup _) (Equivalence.symmetric eq (invTwice additiveGroup _))))) (Equivalence.reflexive eq) bl boundModulus : (a : CauchyCompletion) → Sg A (λ b → Sg ℕ (λ N → (m : ℕ) → (N <N m) → (abs (index (CauchyCompletion.elts a) m)) < b)) boundModulus a with approximateBelow a 1R (0<1 (charNot2ImpliesNontrivial R charNot2)) ... | below , (below<a ,, a-below<e) with approximateAbove a 1R (0<1 (charNot2ImpliesNontrivial R charNot2)) ... | above , (a<above ,, above-a<e) with totality 0R below boundModulus a | below , (below<a ,, a-below<e) | above , (a<above ,, above-a<e) | inl (inl 0<below) with totality 0R above boundModulus a | below , (record { e = belowBound ; 0<e = 0<belowBound ; N = Nbelow ; pr = prBelow } ,, a-below<e) | above , (record { e = bound ; 0<e = 0<bound ; N = N ; property = ans } ,, above-a<e) | inl (inl 0<below) | inl (inl 0<above) = above , ((N +N Nbelow) , λ m N<m → SetoidPartialOrder.<Transitive pOrder (res m N<m) (ans m (inequalityShrinkLeft N<m))) where res : (m : ℕ) → ((N +N Nbelow) <N m) → (abs (index (CauchyCompletion.elts a) m)) < (bound + index (CauchyCompletion.elts a) m) res m N<m with totality 0R (index (CauchyCompletion.elts a) m) res m N<m | inl (inl _) = <WellDefined identLeft (Equivalence.reflexive eq) (orderRespectsAddition 0<bound (index (CauchyCompletion.elts a) m)) res m N<m | inl (inr am<0) = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder 0<below (SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft groupIsAbelian (orderRespectsAddition 0<belowBound below)) (prBelow m (inequalityShrinkRight N<m))) am<0))) res m N<m | inr 0=am = <WellDefined 0=am (Equivalence.transitive eq (Equivalence.symmetric eq identRight) (+WellDefined (Equivalence.reflexive eq) 0=am)) 0<bound boundModulus a | below , (below<a ,, a-below<e) | above , (a<above ,, above-a<e) | inl (inl 0<below) | inl (inr above<0) = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder 0<below (SetoidPartialOrder.<Transitive pOrder (chain a below<a a<above) above<0))) boundModulus a | below , (below<a ,, a-below<e) | above , (a<above ,, above-a<e) | inl (inl 0<below) | inr 0=above = exFalso (irreflexive (SetoidPartialOrder.<Transitive pOrder 0<below (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=above) (chain a below<a a<above)))) boundModulus a | below , (below<a ,, a-below<e) | above , (a<above ,, above-a<e) | inl (inr below<0) with totality 0R above boundModulus a | below , (below<a ,, a-below<e) | above , (a<above ,, above-a<e) | inl (inr below<0) | inl (inl 0<above) with totality (inverse below) above boundModulus a | below , (record { e = boundBelow ; 0<e = 0<boundBelow ; N = N ; pr = prBoundBelow } ,, a-below<e) | above , (record { e = boundAbove ; 0<e = 0<boundAbove ; N = Nabove ; property = prBoundAbove } ,, above-a<e) | inl (inr below<0) | inl (inl 0<above) | inl (inl -bel<ab) = above , ((N +N Nabove) , ans) where ans : (m : ℕ) → (N +N Nabove <N m) → abs (index (CauchyCompletion.elts a) m) < above ans m N<m with totality 0G (index (CauchyCompletion.elts a) m) ans m N<m | inl (inl 0<am) = SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft (Equivalence.reflexive eq) (orderRespectsAddition 0<boundAbove (index (CauchyCompletion.elts a) m))) (prBoundAbove m (inequalityShrinkRight N<m)) ans m N<m | inl (inr am<0) = SetoidPartialOrder.<Transitive pOrder (ringSwapNegatives' (prBoundBelow m (inequalityShrinkLeft N<m))) (SetoidPartialOrder.<Transitive pOrder (ringSwapNegatives' (<WellDefined identLeft groupIsAbelian (orderRespectsAddition 0<boundBelow below))) -bel<ab) ans m N<m | inr 0=am = <WellDefined 0=am (Equivalence.reflexive eq) 0<above boundModulus a | below , (record { e = boundBelow ; 0<e = 0<boundBelow ; N = N ; pr = prBoundBelow } ,, a-below<e) | above , (record { e = boundAbove ; 0<e = 0<boundAbove ; N = Nabove ; property = prBoundAbove } ,, above-a<e) | inl (inr below<0) | inl (inl 0<above) | inl (inr ab<-bel) = inverse below , ((N +N Nabove) , ans) where ans : (m : ℕ) → (N +N Nabove <N m) → abs (index (CauchyCompletion.elts a) m) < (inverse below) ans m N<m with totality 0G (index (CauchyCompletion.elts a) m) ans m N<m | inl (inl 0<am) = SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft (Equivalence.reflexive eq) (orderRespectsAddition 0<boundAbove (index (CauchyCompletion.elts a) m))) (prBoundAbove m (inequalityShrinkRight N<m))) ab<-bel ans m N<m | inl (inr am<0) = ringSwapNegatives' (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft groupIsAbelian (orderRespectsAddition 0<boundBelow below)) (prBoundBelow m (inequalityShrinkLeft N<m))) ans m N<m | inr 0=am = <WellDefined 0=am (Equivalence.reflexive eq) (lemm2 below below<0) boundModulus a | below , (record { e = boundBelow ; 0<e = 0<boundBelow ; N = N ; pr = prBoundBelow } ,, a-below<e) | above , (record { e = boundAbove ; 0<e = 0<boundAbove ; N = Nabove ; property = prBoundAbove } ,, above-a<e) | inl (inr below<0) | inl (inl 0<above) | inr -bel=ab = above , ((N +N Nabove) , ans) where ans : (m : ℕ) → (N +N Nabove <N m) → abs (index (CauchyCompletion.elts a) m) < above ans m N<m with totality 0G (index (CauchyCompletion.elts a) m) ans m N<m | inl (inl 0<am) = SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft (Equivalence.reflexive eq) (orderRespectsAddition 0<boundAbove (index (CauchyCompletion.elts a) m))) (prBoundAbove m (inequalityShrinkRight N<m)) ans m N<m | inl (inr am<0) = <WellDefined (Equivalence.reflexive eq) (-bel=ab) (ringSwapNegatives' (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft groupIsAbelian (orderRespectsAddition 0<boundBelow below)) (prBoundBelow m (inequalityShrinkLeft N<m)))) ans m N<m | inr 0=am = <WellDefined 0=am (Equivalence.reflexive eq) 0<above boundModulus a | below , (record { e = boundBelow ; 0<e = 0<boundBelow ; N = N ; pr = prBoundBelow } ,, a-below<e) | above , (record { e = boundAbove ; 0<e = 0<boundAbove ; N = Nabove ; property = prBoundAbove } ,, above-a<e) | inl (inr below<0) | inl (inr above<0) = inverse below , ((N +N Nabove) , ans) where ans : (m : ℕ) → ((N +N Nabove) <N m) → abs (index (CauchyCompletion.elts a) m) < inverse below ans m N<m with totality 0R (index (CauchyCompletion.elts a) m) ans m N<m | inl (inl 0<am) = exFalso (irreflexive {0G} (SetoidPartialOrder.<Transitive pOrder 0<am (SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft (Equivalence.reflexive eq) (orderRespectsAddition 0<boundAbove (index (CauchyCompletion.elts a) m))) (prBoundAbove m (inequalityShrinkRight N<m))) above<0))) ans m N<m | inl (inr am<0) = ringSwapNegatives' (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft groupIsAbelian (orderRespectsAddition 0<boundBelow below)) (prBoundBelow m (inequalityShrinkLeft N<m))) ans m N<m | inr 0=am = exFalso (irreflexive {0G} (<WellDefined (Equivalence.symmetric eq 0=am) (Equivalence.reflexive eq) (SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft (Equivalence.reflexive eq) (orderRespectsAddition 0<boundAbove (index (CauchyCompletion.elts a) m))) (prBoundAbove m (inequalityShrinkRight N<m))) above<0))) boundModulus a | below , (record { e = boundBelow ; 0<e = 0<boundBelow ; N = N ; pr = prBoundBelow } ,, a-below<e) | above , (record { e = boundAbove ; 0<e = 0<boundAbove ; N = Nabove ; property = prBoundAbove } ,, above-a<e) | inl (inr below<0) | inr 0=above = inverse below , ((N +N Nabove) , ans) where ans : (m : ℕ) → ((N +N Nabove) <N m) → abs (index (CauchyCompletion.elts a) m) < inverse below ans m N<m with totality 0R (index (CauchyCompletion.elts a) m) ans m N<m | inl (inl 0<am) = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=above) (SetoidPartialOrder.<Transitive pOrder 0<am (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft (Equivalence.reflexive eq) (orderRespectsAddition 0<boundAbove (index (CauchyCompletion.elts a) m))) (prBoundAbove m (inequalityShrinkRight N<m)))))) ans m N<m | inl (inr am<0) = ringSwapNegatives' (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft groupIsAbelian (orderRespectsAddition 0<boundBelow below)) (prBoundBelow m (inequalityShrinkLeft N<m))) ans m N<m | inr 0=am = <WellDefined 0=am (Equivalence.reflexive eq) (lemm2 _ below<0) boundModulus a | below , (record { e = boundBelow ; 0<e = boundBelowDiff ; N = Nb ; pr = ansBelow } ,, a-below<e) | above , (record { e = bound ; 0<e = 0<bound ; N = N ; property = ans } ,, above-a<e) | inr 0=below = above , ((N +N Nb) , λ m N<m → SetoidPartialOrder.<Transitive pOrder (res m N<m) (ans m (inequalityShrinkLeft N<m))) where res : (m : ℕ) → (N +N Nb) <N m → (abs (index (CauchyCompletion.elts a) m)) < (bound + index (CauchyCompletion.elts a) m) res m N<m with totality 0R (index (CauchyCompletion.elts a) m) res m N<m | inl (inl 0<am) = <WellDefined identLeft (Equivalence.reflexive eq) (orderRespectsAddition 0<bound (index (CauchyCompletion.elts a) m)) res m N<m | inl (inr am<0) = exFalso (irreflexive (<WellDefined (Equivalence.symmetric eq 0=below) (Equivalence.reflexive eq) (SetoidPartialOrder.<Transitive pOrder (SetoidPartialOrder.<Transitive pOrder (<WellDefined identLeft groupIsAbelian (orderRespectsAddition boundBelowDiff below)) (ansBelow m (inequalityShrinkRight N<m))) am<0))) res m N<m | inr 0=am = <WellDefined 0=am (Equivalence.transitive eq (Equivalence.symmetric eq identRight) (+WellDefined (Equivalence.reflexive eq) 0=am)) 0<bound
{ "alphanum_fraction": 0.7082481254, "avg_line_length": 131.4764150943, "ext": "agda", "hexsha": "454bf86b186042be55cf35b0db05afad71fdf6b2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/CauchyCompletion/Approximation.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/CauchyCompletion/Approximation.agda", "max_line_length": 1158, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/CauchyCompletion/Approximation.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 9444, "size": 27873 }
{-# OPTIONS --without-K --safe --erased-cubical --no-import-sorts #-} module Motif where open import Prelude open import SUtil using (lookup) open import Yamanote using (counterp) import Definition.Conversion import Definition.Conversion.Whnf import Definition.Typed import Definition.Untyped import Definition.Typed.Consequences.InverseUniv import Definition.Typed.Consequences.NeTypeEq import Definition.Typed.Consequences.Syntactic import Definition.Typed.Properties import Relation.Binary.PropositionalEquality.Core -- Number of levels of recursion levels : ℕ levels = 2 -- Factor to slow down base melody multiplier : ℕ multiplier = 2 ^ levels -- slowed down prime, etc forms p i r ri : List Note → List Note p = map (slowDown multiplier) i = inversion ∘ p r = retrograde ∘ p ri = retrograde ∘ i w : Pitch → List Note w n = slowDown multiplier (tone half n) ∷ [] ------------- -- Hexachords from P10 of ICFP 2020 micro-opera. i20p10a i20p10b i20coda : List Note i20p10a = tone 8th (b♭ 4) ∷ tone 8th (b♭ 4) ∷ tone 8th (a 4) ∷ tone 8th (g 4) ∷ tone qtr (c 5) ∷ tone qtr (d 5) ∷ tone half (c♯ 5) ∷ [] i20p10b = tone qtr (b 4) ∷ tone 9 (e 5) ∷ tone 8th (f♯ 4) ∷ tone 8th (f 4) ∷ tone 8th (d♯ 4) ∷ tone half (g♯ 5) ∷ [] i20coda = tone 8th (a 5) ∷ tone 8th (f 5) ∷ tone 8th (f 5) ∷ tone 8th (a 5) ∷ tone 8th (c 6) ∷ tone whole (f 6) ∷ [] ------------- -- first 8 notes of Yamanote counterpoint transposed to F yamanoteCP : List Note yamanoteCP = map (transposeNote (-[1+ 7 ]) ∘ slowDown 2) (take 8 counterp) ------------- soundness : List (Name × List Note) soundness = (quote soundness~↑ , p i20p10a) ∷ (quote soundness~↓ , i i20p10a) ∷ (quote soundnessConv↑ , p subject) ∷ (quote soundnessConv↓ , i subject) ∷ (quote soundnessConv↑Term , p yamanoteCP) ∷ (quote soundnessConv↓Term , i yamanoteCP) ∷ [] conversion : List (Name × List Note) conversion = (quote Definition.Conversion.Whnf.ne~↓ , ri canonsubject) ∷ (quote Definition.Conversion.[~] , r canonsubject) ∷ (quote Definition.Conversion.[↑] , p canonsubject) ∷ (quote Definition.Conversion.[↑] , i canonsubject) ∷ (quote Definition.Conversion._⊢_[conv↓]_.Empty-refl , p b4) ∷ (quote Definition.Conversion._⊢_[conv↓]_.U-refl , i b4) ∷ (quote Definition.Conversion._⊢_[conv↓]_.Unit-refl , r b4) ∷ (quote Definition.Conversion._⊢_[conv↓]_.ne , ri b4) ∷ (quote Definition.Conversion._⊢_[conv↓]_.Π-cong , p b5) ∷ (quote Definition.Conversion._⊢_[conv↓]_.Σ-cong , i b5) ∷ (quote Definition.Conversion._⊢_[conv↓]_.ℕ-refl , r b5) ∷ (quote Definition.Conversion._⊢_[conv↓]_∷_.Empty-ins , ri b5) ∷ (quote Definition.Conversion._⊢_[conv↓]_∷_.Unit-ins , p b6) ∷ (quote Definition.Conversion._⊢_[conv↓]_∷_.ne-ins , i b6) ∷ (quote Definition.Conversion._⊢_[conv↓]_∷_.suc-cong , r b6) ∷ (quote Definition.Conversion._⊢_[conv↓]_∷_.univ , ri b6) ∷ (quote Definition.Conversion._⊢_[conv↓]_∷_.zero-refl , p b7) ∷ (quote Definition.Conversion._⊢_[conv↓]_∷_.Σ-η , i b7) ∷ (quote Definition.Conversion._⊢_[conv↓]_∷_.η-eq , r b7) ∷ (quote Definition.Conversion._⊢_[conv↓]_∷_.η-unit , ri b7) ∷ (quote Definition.Conversion._⊢_[conv↓]_∷_.ℕ-ins , p b8) ∷ (quote Definition.Conversion._⊢_~_↑_.Emptyrec-cong , i b8) ∷ (quote Definition.Conversion._⊢_~_↑_.app-cong , r b8) ∷ (quote Definition.Conversion._⊢_~_↑_.fst-cong , ri b8) ∷ (quote Definition.Conversion._⊢_~_↑_.natrec-cong , p b9) ∷ (quote Definition.Conversion._⊢_~_↑_.snd-cong , i b9) ∷ (quote Definition.Conversion._⊢_~_↑_.var-refl , r b9) ∷ [] typed : List (Name × List Note) typed = (quote Definition.Typed.Consequences.InverseUniv.inverseUnivEq , ri b9) ∷ (quote Definition.Typed.Consequences.NeTypeEq.neTypeEq , p b10) ∷ (quote Definition.Typed.Consequences.Syntactic.syntacticEqTerm , i b10) ∷ (quote Definition.Typed.Consequences.Syntactic.syntacticTerm , r b10) ∷ (quote Definition.Typed.Consequences.Syntactic.syntacticΠ , ri b10) ∷ (quote Definition.Typed.Consequences.Syntactic.syntacticΣ , p b1) ∷ (quote Definition.Typed.Properties.subset* , i b1) ∷ (quote Definition.Typed.Properties.subset*Term , r b1) ∷ (quote Definition.Typed._⊢_.Emptyⱼ , ri b1) ∷ (quote Definition.Typed._⊢_.Unitⱼ , p b2) ∷ (quote Definition.Typed._⊢_.Uⱼ , i b2) ∷ (quote Definition.Typed._⊢_.ℕⱼ , r b2) ∷ (quote Definition.Typed._⊢_∷_.zeroⱼ , ri b2) ∷ (quote Definition.Typed._⊢_≡_.refl , p b3) ∷ (quote Definition.Typed._⊢_≡_.sym , i b3) ∷ (quote Definition.Typed._⊢_≡_.trans , r b3) ∷ (quote Definition.Typed._⊢_≡_.univ , ri b3) ∷ (quote Definition.Typed._⊢_≡_.Π-cong , w (c 6)) ∷ (quote Definition.Typed._⊢_≡_.Σ-cong , w (d 6)) ∷ (quote Definition.Typed._⊢_≡_∷_.Emptyrec-cong , w (e 6)) ∷ (quote Definition.Typed._⊢_≡_∷_.app-cong , w (f 6)) ∷ (quote Definition.Typed._⊢_≡_∷_.conv , w (g 6)) ∷ (quote Definition.Typed._⊢_≡_∷_.fst-cong , w (a 6)) ∷ (quote Definition.Typed._⊢_≡_∷_.natrec-cong , w (b 6)) ∷ (quote Definition.Typed._⊢_≡_∷_.refl , w (c 7)) ∷ (quote Definition.Typed._⊢_≡_∷_.snd-cong , w (d 7)) ∷ (quote Definition.Typed._⊢_≡_∷_.suc-cong , w (e 7)) ∷ (quote Definition.Typed._⊢_≡_∷_.sym , w (f 7)) ∷ (quote Definition.Typed._⊢_≡_∷_.trans , w (g 7)) ∷ (quote Definition.Typed._⊢_≡_∷_.Σ-η , w (a 7)) ∷ (quote Definition.Typed._⊢_≡_∷_.η-eq , w (b 7)) ∷ (quote Definition.Typed._⊢_≡_∷_.η-unit , w (c 8)) ∷ [] untyped : List (Name × List Note) untyped = (quote Definition.Untyped.Con._∙_ , w (d 8)) ∷ (quote Definition.Untyped.Empty , w (e 8)) ∷ (quote Definition.Untyped.Term.var , w (f 8)) ∷ (quote Definition.Untyped.U , w (g 8)) ∷ (quote Definition.Untyped.Unit , w (a 8)) ∷ (quote Definition.Untyped._[_] , w (b 8)) ∷ (quote Definition.Untyped._[_]↑ , w (c 3)) ∷ (quote Definition.Untyped._∘_ , w (d 3)) ∷ (quote Definition.Untyped._▹▹_ , w (e 3)) ∷ (quote Definition.Untyped.fst , w (f 3)) ∷ (quote Definition.Untyped.snd , w (g 3)) ∷ (quote Definition.Untyped.suc , w (a 3)) ∷ (quote Definition.Untyped.wk1 , w (b 3)) ∷ (quote Definition.Untyped.zero , w (c 4)) ∷ (quote Definition.Untyped.Π_▹_ , w (d 4)) ∷ (quote Definition.Untyped.Σ_▹_ , w (e 4)) ∷ (quote Definition.Untyped.ℕ , w (f 4)) ∷ [] misc : List (Name × List Note) misc = (quote Fin , w (c 2)) ∷ (quote Fin.zero , w (d 2)) ∷ (quote Relation.Binary.PropositionalEquality.Core.subst , w (e 2)) ∷ (quote fst , w (f 2)) ∷ (quote lzero , w (g 2)) ∷ (quote snd , w (a 2)) ∷ (quote ℕ.suc , w (b 2)) ∷ [] motives : List (Name × List Note) motives = soundness ++ conversion ++ typed ++ untyped ++ misc motif : Name → List Note motif = lookup motives
{ "alphanum_fraction": 0.6500224249, "avg_line_length": 34.1275510204, "ext": "agda", "hexsha": "b76ed88b8e253ecfd2f3f52f4f2f0e476d7157ae", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:05:31.000Z", "max_forks_repo_forks_event_min_datetime": "2020-11-10T04:05:31.000Z", "max_forks_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/Music", "max_forks_repo_path": "Soundness/agda/Motif.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/Music", "max_issues_repo_path": "Soundness/agda/Motif.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "5d9a1bbfbe52f55acf33d960763dce0872689c2b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/Music", "max_stars_repo_path": "Soundness/agda/Motif.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-10T04:05:28.000Z", "max_stars_repo_stars_event_min_datetime": "2020-11-10T04:05:28.000Z", "num_tokens": 2783, "size": 6689 }
module FileIOEffect where open import Effect import IO.Primitive as IO open import Data.String using (String) open import Data.Bool using (Bool ; if_then_else_ ; false ; true) open import Data.Unit using (⊤ ; tt) open import Category.Monad using (RawMonad) open import Level using (zero) open import Data.List using (List ; _∷_ ; []) open import Data.List.All using (All ; lookup ; _∷_ ; []) open import Data.List.Any using (here ; there) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) open import Membership-equality using (_∈_) open import Data.Product using (Σ ; _,_ ; _×_) data FileIOState : Set where opened closed : FileIOState data FileHandle : Set where FH : String → FileHandle data FileIOEff : Effect zero where `openFile : String → FileIOEff Bool ⊤ λ ok → if ok then FileHandle else ⊤ `closeFile : FileIOEff ⊤ FileHandle λ h → ⊤ -- Should we really use this now? FileIO : EFFECT zero FileIO = mkEff ⊤ FileIOEff IOMonad : RawMonad IO.IO IOMonad = record { return = IO.return ; _>>=_ = IO._>>=_ {zero} {zero}} myOpClose : ∀ {m} → String → EffM m ⊤ (FileIO ∷ []) λ _ → (FileIO ∷ []) myOpClose file = effect (here refl) (`openFile file) >>= λ { true → effect (here refl) `closeFile ; false → return tt} main : IO.IO ⊤ main = run IO.IO (record { return = IO.return ; _>>=_ = IO._>>=_ }) (myOpClose ".gitignore") myEnv where FileIOHandler : Handler IO.IO FileIOEff FileIOHandler v (`openFile x) k = k true (FH x) FileIOHandler (FH x) `closeFile k = k tt tt myEnv : Env IO.IO (FileIO ∷ []) myEnv = (FileIOHandler , tt) ∷ []
{ "alphanum_fraction": 0.68173258, "avg_line_length": 33.8936170213, "ext": "agda", "hexsha": "ef2f80651c3cf6d000906d3cd0e26d66899b1039", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "unused/FileIOEffect.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "unused/FileIOEffect.agda", "max_line_length": 98, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/thesis", "max_stars_repo_path": "unused/FileIOEffect.agda", "max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z", "num_tokens": 485, "size": 1593 }
{- This file contains cospans, cones, pullbacks and maps of cones in precategories. -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Pullback where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Categories.Category open Precategory private variable ℓ ℓ' : Level record Cospan (C : Precategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where constructor cospan field l r vertex : Precategory.ob C s₁ : C [ l , vertex ] s₂ : C [ r , vertex ] record Cone {C : Precategory ℓ ℓ'} (cspn : Cospan C) (c : ob C) : Type (ℓ-max ℓ ℓ') where constructor cone field p₁ : C [ c , (Cospan.l cspn)] p₂ : C [ c , (Cospan.r cspn)] sq : p₁ ⋆⟨ C ⟩ (Cospan.s₁ cspn) ≡ p₂ ⋆⟨ C ⟩ (Cospan.s₂ cspn) record Pullback {C : Precategory ℓ ℓ'} (cspn : Cospan C) : Type (ℓ-max ℓ ℓ') where constructor pullback field pbOb : ob C pbCn : Cone cspn pbOb universal : ∀ {c' : ob C} (cn' : Cone cspn c') → ∃![ f ∈ C [ c' , pbOb ] ] Σ[ q ∈ Cone.p₁ cn' ≡ f ⋆⟨ C ⟩ (Cone.p₁ pbCn) ] (Cone.p₂ cn' ≡ f ⋆⟨ C ⟩ (Cone.p₂ pbCn)) -- extend a cone on c by a morphism c'→c using precomposition coneMap : {C : Precategory ℓ ℓ'} {cspn : Cospan C} {c c' : ob C} (cn : Cone cspn c) (f : C [ c' , c ]) → Cone cspn c' coneMap {C = C} {cospan _ _ _ s₁ s₂} (cone p₁ p₂ sq) f = cone (f ⋆⟨ C ⟩ p₁) (f ⋆⟨ C ⟩ p₂) ((C .⋆Assoc f p₁ s₁) ∙∙ lPrecatWhisker {C = C} f (p₁ ⋆⟨ C ⟩ s₁) (p₂ ⋆⟨ C ⟩ s₂) sq ∙∙ sym (C .⋆Assoc f p₂ s₂))
{ "alphanum_fraction": 0.5909393738, "avg_line_length": 33.3555555556, "ext": "agda", "hexsha": "53a93225c6d242e6fe2fe0178bbc35d4829e53f3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "apabepa10/cubical", "max_forks_repo_path": "Cubical/Categories/Pullback.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "apabepa10/cubical", "max_issues_repo_path": "Cubical/Categories/Pullback.agda", "max_line_length": 145, "max_stars_count": null, "max_stars_repo_head_hexsha": "3a9bb56260c25a6f2e9c20af8d278de0fe8d9e05", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "apabepa10/cubical", "max_stars_repo_path": "Cubical/Categories/Pullback.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 639, "size": 1501 }
module Algebra.Theorems where open import Algebra open import Reasoning +pre-idempotence : ∀ {A} {x : Graph A} -> x + x + ε ≡ x +pre-idempotence {_} {x} = begin (x + x) + ε ≡⟨ L (L (symmetry *right-identity)) ⟩ (x * ε + x) + ε ≡⟨ L (R (symmetry *right-identity)) ⟩ (x * ε + x * ε) + ε ≡⟨ R (symmetry *right-identity) ⟩ (x * ε + x * ε) + ε * ε ≡⟨ symmetry decomposition ⟩ (x * ε) * ε ≡⟨ *right-identity ⟩ x * ε ≡⟨ *right-identity ⟩ x ∎ +identity : ∀ {A} {x : Graph A} -> x + ε ≡ x +identity {_} {x} = begin x + ε ≡⟨ symmetry +pre-idempotence ⟩ ((x + ε) + (x + ε)) + ε ≡⟨ L +associativity ⟩ (((x + ε) + x) + ε) + ε ≡⟨ L (L (symmetry +associativity)) ⟩ ((x + (ε + x)) + ε) + ε ≡⟨ L (L (R +commutativity)) ⟩ ((x + (x + ε)) + ε) + ε ≡⟨ L (L +associativity) ⟩ (((x + x) + ε) + ε) + ε ≡⟨ L (symmetry +associativity) ⟩ ((x + x) + (ε + ε)) + ε ≡⟨ symmetry +associativity ⟩ (x + x) + ((ε + ε) + ε) ≡⟨ R +pre-idempotence ⟩ (x + x) + ε ≡⟨ +pre-idempotence ⟩ x ∎ +idempotence : ∀ {A} {x : Graph A} -> x + x ≡ x +idempotence = transitivity (symmetry +identity) +pre-idempotence saturation : ∀ {A} {x : Graph A} -> x * x * x ≡ x * x saturation {_} {x} = begin (x * x) * x ≡⟨ decomposition ⟩ (x * x + x * x) + x * x ≡⟨ L +idempotence ⟩ x * x + x * x ≡⟨ +idempotence ⟩ x * x ∎ absorption : ∀ {A} {x y : Graph A} -> x * y + x + y ≡ x * y absorption {_} {x} {y} = begin (x * y + x) + y ≡⟨ L (R (symmetry *right-identity)) ⟩ (x * y + x * ε) + y ≡⟨ R (symmetry *right-identity) ⟩ (x * y + x * ε) + y * ε ≡⟨ symmetry decomposition ⟩ (x * y) * ε ≡⟨ *right-identity ⟩ x * y ∎ -- Subgraph relation ⊆reflexivity : ∀ {A} {x : Graph A} -> x ⊆ x ⊆reflexivity = +idempotence ⊆antisymmetry : ∀ {A} {x y : Graph A} -> x ⊆ y -> y ⊆ x -> x ≡ y ⊆antisymmetry p q = symmetry q -- x = y + x >> +commutativity -- y + x = x + y >> p -- x + y = y ⊆transitivity : ∀ {A} {x y z : Graph A} -> x ⊆ y -> y ⊆ z -> x ⊆ z ⊆transitivity p q = symmetry (symmetry q -- z = y + z >> L (symmetry p) -- y + z = (x + y) + z >> symmetry +associativity -- (x + y) + z = x + (y + z) >> R q) -- x + (y + z) = x + z ⊆least-element : ∀ {A} {x : Graph A} -> ε ⊆ x ⊆least-element = +commutativity >> +identity ⊆overlay : ∀ {A} {x y : Graph A} -> x ⊆ (x + y) ⊆overlay = +associativity >> L +idempotence ⊆connect : ∀ {A} {x y : Graph A} -> (x + y) ⊆ (x * y) ⊆connect = +commutativity >> +associativity >> absorption ⊆left-overlay-monotony : ∀ {A} {x y z : Graph A} -> x ⊆ y -> (x + z) ⊆ (y + z) ⊆left-overlay-monotony {_} {x} {y} {z} p = begin (x + z) + (y + z) ≡⟨ symmetry +associativity ⟩ x + (z + (y + z)) ≡⟨ R +commutativity ⟩ x + ((y + z) + z) ≡⟨ R (symmetry +associativity) ⟩ x + (y + (z + z)) ≡⟨ R (R +idempotence) ⟩ x + (y + z) ≡⟨ +associativity ⟩ (x + y) + z ≡⟨ L p ⟩ y + z ∎ ⊆right-overlay-monotony : ∀ {A} {x y z : Graph A} -> x ⊆ y -> (z + x) ⊆ (z + y) ⊆right-overlay-monotony {_} {x} {y} {z} p = begin (z + x) + (z + y) ≡⟨ +associativity ⟩ ((z + x) + z) + y ≡⟨ L +commutativity ⟩ (z + (z + x)) + y ≡⟨ L +associativity ⟩ ((z + z) + x) + y ≡⟨ L (L +idempotence) ⟩ (z + x) + y ≡⟨ symmetry +associativity ⟩ z + (x + y) ≡⟨ R p ⟩ z + y ∎ ⊆left-connect-monotony : ∀ {A} {x y z : Graph A} -> x ⊆ y -> (x * z) ⊆ (y * z) ⊆left-connect-monotony {_} {x} {y} {z} p = begin (x * z) + (y * z) ≡⟨ symmetry right-distributivity ⟩ (x + y) * z ≡⟨ L p ⟩ y * z ∎ ⊆right-connect-monotony : ∀ {A} {x y z : Graph A} -> x ⊆ y -> (z * x) ⊆ (z * y) ⊆right-connect-monotony {_} {x} {y} {z} p = begin (z * x) + (z * y) ≡⟨ symmetry left-distributivity ⟩ z * (x + y) ≡⟨ R p ⟩ z * y ∎ ⊆left-monotony : ∀ {A} {op : BinaryOperator} {x y z : Graph A} -> x ⊆ y -> apply op x z ⊆ apply op y z ⊆left-monotony {_} {+op} {x} {y} {z} p = ⊆left-overlay-monotony p ⊆left-monotony {_} {*op} {x} {y} {z} p = ⊆left-connect-monotony p ⊆right-monotony : ∀ {A} {op : BinaryOperator} {x y z : Graph A} -> x ⊆ y -> apply op z x ⊆ apply op z y ⊆right-monotony {_} {+op} {x} {y} {z} p = ⊆right-overlay-monotony p ⊆right-monotony {_} {*op} {x} {y} {z} p = ⊆right-connect-monotony p
{ "alphanum_fraction": 0.4172839506, "avg_line_length": 38.2677165354, "ext": "agda", "hexsha": "1dbdaea0b8d485ac67631dde40b76b12e98c95a2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "01f5f9f53ea81f692215300744aa77e26d8bf332", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/alga", "max_forks_repo_path": "src/Algebra/Theorems.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "01f5f9f53ea81f692215300744aa77e26d8bf332", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/alga", "max_issues_repo_path": "src/Algebra/Theorems.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "01f5f9f53ea81f692215300744aa77e26d8bf332", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/alga", "max_stars_repo_path": "src/Algebra/Theorems.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2035, "size": 4860 }
{-# OPTIONS --cubical #-} module Multidimensional.Data.Dir.Base where open import Cubical.Core.Primitives -- "Direction" type for determining direction in spatial structures. -- We interpret ↓ as 0 and ↑ as 1 when used in numerals in -- numerical types. data Dir : Type₀ where ↓ : Dir ↑ : Dir caseDir : ∀ {ℓ} → {A : Type ℓ} → (ad au : A) → Dir → A caseDir ad au ↓ = ad caseDir ad au ↑ = au
{ "alphanum_fraction": 0.6649874055, "avg_line_length": 24.8125, "ext": "agda", "hexsha": "48ec0b1ae766bf52c2e96f964570f9039c33f10a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_forks_repo_path": "Multidimensional/Data/Dir/Base.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_issues_repo_issues_event_max_datetime": "2019-07-02T16:24:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-19T20:40:07.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_issues_repo_path": "Multidimensional/Data/Dir/Base.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_stars_repo_path": "Multidimensional/Data/Dir/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 120, "size": 397 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Abstract.Types.EpochConfig open WithAbsVote -- This module provides a convenient way for modules in other namespaces to import -- everything from Abstract. module LibraBFT.Abstract.Abstract (UID : Set) (_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) (NodeId : Set) (𝓔 : EpochConfig UID NodeId) (𝓥 : VoteEvidence UID NodeId 𝓔) where open import LibraBFT.Abstract.Types UID NodeId 𝓔 public open import LibraBFT.Abstract.RecordChain UID _≟UID_ NodeId 𝓔 𝓥 public open import LibraBFT.Abstract.RecordChain.Assumptions UID _≟UID_ NodeId 𝓔 𝓥 public open import LibraBFT.Abstract.Records UID _≟UID_ NodeId 𝓔 𝓥 public open import LibraBFT.Abstract.Records.Extends UID _≟UID_ NodeId 𝓔 𝓥 public open import LibraBFT.Abstract.Properties UID _≟UID_ NodeId 𝓔 𝓥 public open import LibraBFT.Abstract.System UID _≟UID_ NodeId 𝓔 𝓥 public
{ "alphanum_fraction": 0.6975259377, "avg_line_length": 46.4074074074, "ext": "agda", "hexsha": "873c56fdbb933b8f010c4baca9707d9301e33f6c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Abstract/Abstract.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Abstract/Abstract.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Abstract/Abstract.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 372, "size": 1253 }
module Nats.Multiply.Distrib where open import Nats open import Equality open import Function open import Nats.Multiply.Comm open import Nats.Add.Assoc open import Nats.Add.Comm ------------------------------------------------------------------------ -- internal stuffs private a*1+b=a+a*b : ∀ a b → a * suc b ≡ a + a * b a*1+b=a+a*b a b rewrite nat-multiply-comm a $ suc b | nat-multiply-comm a b = refl a*c+b*c=/a+b/*c : ∀ a b c → a * c + b * c ≡ (a + b) * c a*c+b*c=/a+b/*c a b zero rewrite nat-multiply-comm a 0 | nat-multiply-comm b 0 | nat-multiply-comm (a + b) 0 = refl a*c+b*c=/a+b/*c a b sc@(suc c) rewrite nat-add-comm a b | a*1+b=a+a*b a c | nat-add-assoc a (a * c) (b * sc) | nat-add-comm a $ a * c + b * sc | a*1+b=a+a*b b c | nat-multiply-comm (b + a) sc | nat-add-assoc b a $ c * (b + a) | nat-add-comm a $ c * (b + a) | sym $ nat-add-assoc b (c * (b + a)) a | nat-multiply-comm c $ b + a | sym $ a*c+b*c=/a+b/*c b a c | sym $ nat-add-assoc (a * c) b (b * c) | nat-add-comm (b * c) (a * c) | sym $ nat-add-assoc b (b * c) (a * c) | sym $ nat-add-assoc b (a * c) (b * c) | nat-add-comm b $ a * c = refl ------------------------------------------------------------------------ -- public aliases nat-multiply-distrib : ∀ a b c → a * c + b * c ≡ (a + b) * c nat-multiply-distrib = a*c+b*c=/a+b/*c
{ "alphanum_fraction": 0.4306803594, "avg_line_length": 29.3962264151, "ext": "agda", "hexsha": "661fcfc4079c23d03ae1450fb800ae640403eaab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Nats/Multiply/Distrib.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Nats/Multiply/Distrib.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Nats/Multiply/Distrib.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 510, "size": 1558 }
module Categories.CoProducts where open import Data.Sum hiding ([_,_]) open import Library hiding (_+_ ; _,_) open import Categories record CoProd {l m}(C : Cat {l}{m}) : Set (m ⊔ l) where open Cat C field _+_ : Obj -> Obj -> Obj inl : ∀{A B} -> Hom A (A + B) inr : ∀{A B} -> Hom B (A + B) [_,_] : ∀{A B C} -> Hom A C -> Hom B C -> Hom (A + B) C law1 : ∀{A B C}(f : Hom A C)(g : Hom B C) → comp [ f , g ] inl ≅ f law2 : ∀{A B C}(f : Hom A C)(g : Hom B C) → comp [ f , g ] inr ≅ g law3 : ∀{A B C}(f : Hom A C)(g : Hom B C) (h : Hom (A + B) C) → comp h inl ≅ f → comp h inr ≅ g → h ≅ [ f , g ]
{ "alphanum_fraction": 0.4242002782, "avg_line_length": 35.95, "ext": "agda", "hexsha": "25f5088291ae83ac27c9a93cbf0f468c8b3e31da", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "Categories/CoProducts.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "Categories/CoProducts.agda", "max_line_length": 63, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "Categories/CoProducts.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 272, "size": 719 }
module Prelude.Number where open import Agda.Builtin.FromNat public open import Agda.Builtin.FromNeg public NoNumConstraint : ∀ {a} {A : Set a} → Number A → Set a NoNumConstraint Num = ∀ {n} → Number.Constraint Num n NoNegConstraint : ∀ {a} {A : Set a} → Negative A → Set a NoNegConstraint Neg = ∀ {n} → Negative.Constraint Neg n
{ "alphanum_fraction": 0.7125748503, "avg_line_length": 27.8333333333, "ext": "agda", "hexsha": "95acc477853eff7c90d75667a6acd7593ef4e606", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/Number.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/Number.agda", "max_line_length": 56, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/Number.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 98, "size": 334 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Group.Morphism where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Structures.Group.Base private variable ℓ ℓ' : Level -- The following definition of GroupHom and GroupEquiv are level-wise heterogeneous. -- This allows for example to deduce that G ≡ F from a chain of isomorphisms -- G ≃ H ≃ F, even if H does not lie in the same level as G and F. isGroupHom : (G : Group {ℓ}) (H : Group {ℓ'}) (f : ⟨ G ⟩ → ⟨ H ⟩) → Type _ isGroupHom G H f = (x y : ⟨ G ⟩) → f (x G.+ y) ≡ (f x H.+ f y) where module G = Group G module H = Group H record GroupHom (G : Group {ℓ}) (H : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where constructor grouphom field fun : ⟨ G ⟩ → ⟨ H ⟩ isHom : isGroupHom G H fun record GroupEquiv (G : Group {ℓ}) (H : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where constructor groupequiv field eq : ⟨ G ⟩ ≃ ⟨ H ⟩ isHom : isGroupHom G H (equivFun eq) hom : GroupHom G H hom = grouphom (equivFun eq) isHom
{ "alphanum_fraction": 0.6417910448, "avg_line_length": 28.2105263158, "ext": "agda", "hexsha": "4185131bd28719fa68bd6a2f175542705b7aa9b6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "RobertHarper/cubical", "max_forks_repo_path": "Cubical/Structures/Group/Morphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "RobertHarper/cubical", "max_issues_repo_path": "Cubical/Structures/Group/Morphism.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "RobertHarper/cubical", "max_stars_repo_path": "Cubical/Structures/Group/Morphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 371, "size": 1072 }
module Prelude.Equality where open import Prelude.Decidable open import Agda.Builtin.Equality public record Eq {a} (A : Set a) : Set a where infix 4 _==_ field _==_ : (x y : A) → Dec (x ≡ y) open Eq {{...}} public sym : ∀ {a} {A : Set a} {x y : A} → x ≡ y → y ≡ x sym refl = refl infixr 0 _⟨≡⟩_ _⟨≡⟩ʳ_ _ʳ⟨≡⟩_ _ʳ⟨≡⟩ʳ_ trans : ∀ {a} {A : Set a} {x y z : A} → x ≡ y → y ≡ z → x ≡ z trans refl eq = eq _⟨≡⟩_ = trans _⟨≡⟩ʳ_ : ∀ {a} {A : Set a} {x y z : A} → x ≡ y → z ≡ y → x ≡ z eq ⟨≡⟩ʳ refl = eq _ʳ⟨≡⟩_ : ∀ {a} {A : Set a} {x y z : A} → y ≡ x → y ≡ z → x ≡ z refl ʳ⟨≡⟩ eq = eq _ʳ⟨≡⟩ʳ_ : ∀ {a} {A : Set a} {x y z : A} → y ≡ x → z ≡ y → x ≡ z refl ʳ⟨≡⟩ʳ refl = refl infixl 4 cong _*≡_ syntax cong f eq = f $≡ eq cong : ∀ {a b} {A : Set a} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl _*≡_ : ∀ {a b} {A : Set a} {B : Set b} {f g : A → B} {x y} → f ≡ g → x ≡ y → f x ≡ g y refl *≡ refl = refl cong₂ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} (f : A → B → C) {x₁ x₂ y₁ y₂} → x₁ ≡ x₂ → y₁ ≡ y₂ → f x₁ y₁ ≡ f x₂ y₂ cong₂ f refl refl = refl transport : ∀ {a b} {A : Set a} (B : A → Set b) {x y} → x ≡ y → B x → B y transport B refl bx = bx transport₂ : ∀ {a b c} {A : Set a} {B : Set b} (C : A → B → Set c) {x₁ x₂ y₁ y₂} → x₁ ≡ x₂ → y₁ ≡ y₂ → C x₁ y₁ → C x₂ y₂ transport₂ C refl refl cxy = cxy -- Decidable equality helpers -- decEq₁ : ∀ {a b} {A : Set a} {B : Set b} {f : A → B} → (∀ {x y} → f x ≡ f y → x ≡ y) → ∀ {x y} → Dec (x ≡ y) → Dec (f x ≡ f y) decEq₁ f-inj (yes refl) = yes refl decEq₁ f-inj (no neq) = no λ eq → neq (f-inj eq) decEq₂ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} {f : A → B → C} → (∀ {x y z w} → f x y ≡ f z w → x ≡ z) → (∀ {x y z w} → f x y ≡ f z w → y ≡ w) → ∀ {x y z w} → Dec (x ≡ y) → Dec (z ≡ w) → Dec (f x z ≡ f y w) decEq₂ f-inj₁ f-inj₂ (no neq) _ = no λ eq → neq (f-inj₁ eq) decEq₂ f-inj₁ f-inj₂ _ (no neq) = no λ eq → neq (f-inj₂ eq) decEq₂ f-inj₁ f-inj₂ (yes refl) (yes refl) = yes refl {-# INLINE decEq₁ #-} {-# INLINE decEq₂ #-} -- Equality reasoning -- infixr 0 eqReasoningStep eqReasoningStepʳ infix 1 _∎ -- Giving the proofs in the reverse order means the values of x and y -- are inferred before checking the x ≡ y proof. This leads to significant -- performance improvements in some cases. syntax eqReasoningStep x q p = x ≡⟨ p ⟩ q eqReasoningStep : ∀ {a} {A : Set a} (x : A) {y z} → y ≡ z → x ≡ y → x ≡ z x ≡⟨ refl ⟩ p = p syntax eqReasoningStepʳ x q p = x ≡⟨ p ⟩ʳ q eqReasoningStepʳ : ∀ {a} {A : Set a} (x : A) {y z} → y ≡ z → y ≡ x → x ≡ z x ≡⟨ refl ⟩ʳ p = p _∎ : ∀ {a} {A : Set a} (x : A) → x ≡ x x ∎ = refl -- Instances -- instance EqEq : ∀ {a} {A : Set a} {x y : A} → Eq (x ≡ y) _==_ {{EqEq}} refl refl = yes refl
{ "alphanum_fraction": 0.4894755619, "avg_line_length": 29.5052631579, "ext": "agda", "hexsha": "c0d8ebeb1bcd567d9cb02eb3d43585a899a9ee87", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Prelude/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Prelude/Equality.agda", "max_line_length": 120, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Prelude/Equality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1362, "size": 2803 }
data HasUniqueValues (A : Set) : List A → Set where [] : HasUniqueValues A [] _∷_ : {x : A} → {xs : List A} → x ∉ xs → (uxs : HasUniqueValues A xs) → HasUniqueValues A (x ∷ xs) record AList (A : Set) (B : Set) : Set where field domain : List A uniquedomain : HasUniqueValues A domain range : ∀ {x : A} → x ∈ domain → B open AList record Unifiable (F : Set) (T : Set) (U₁ U₂ : Set) (σ : (T → F) → F → F) : Set₁ where field _≈u≈_ : (φ₁ φ₂ : F) → Set unifier : (φ₁ φ₂ : F) → φ₁ ≈u≈ φ₂ → (F → F) × (F → F) unifier-law : (φ₁ φ₂ : F) → (=u= : φ₁ ≈u≈ φ₂) → (let u = unifier φ₁ φ₂ =u=) → (fst u) φ₁ ≡ (snd u) φ₂ mutual data FTerm : 𝕃 VariableName → Set where variable : (𝑥 : VariableName) → FTerm (𝕃⟦ 𝑥 ⟧) function : (𝑓 : FunctionName) → ..{𝑥s : 𝕃 VariableName} {arity : Nat} → (τs : FTerms 𝑥s arity) → FTerm 𝑥s data FTerms : 𝕃 VariableName → Nat → Set where [] : FTerms ∅ zero _∷_ : ∀ ..{𝑥s' 𝑥s : 𝕃 VariableName} → FTerm 𝑥s' → {n : Nat} → FTerms 𝑥s n → FTerms (union {m = VariableName} 𝑥s' 𝑥s) (⊹ n) instance MembershipVariableNameFTerm : ∀ {𝑥s} → Membership VariableName (FTerm 𝑥s) MembershipVariableNameFTerm = {!!} record TotalIntersection {ℓ} (m : Set ℓ) (M : Set ℓ) ⦃ _ : Membership m M ⦄ : Set ℓ where field intersection : M → M → M intersectionLaw1 : ∀ {x : m} {X₁ X₂ : M} → x ∈ intersection X₁ X₂ → x ∈ X₁ intersectionLaw2 : ∀ {x : m} {X₁ X₂ : M} → x ∈ intersection X₁ X₂ → x ∈ X₂ intersectionLaw3 : ∀ {x : m} {X₁ X₂ : M} → x ∈ X₁ × x ∈ X₂ → x ∈ intersection X₁ X₂ open TotalIntersection ⦃ … ⦄ {-# DISPLAY TotalIntersection.intersection _ = intersection #-} instance Intersection𝕃 : ∀ {ℓ} {A : Set ℓ} ⦃ _ : Eq A ⦄ → TotalIntersection A (𝕃 A) Intersection𝕃 = {!!} mutual subst : AList VariableName (∃ FTerm) → ∃ FTerm → ∃ FTerm subst x t@(.(✓ ∅) , variable 𝑥) with 𝑥 ∈? domain x … | yes x∈D = range x x∈D … | no x∉D = t subst x (fst₁ , function 𝑓 {𝑥s = 𝑥s} {arity = a} τs) with substs x a (𝑥s , τs) subst x (fst₁ , function 𝑓 {.fst₁} {arity₁} τs) | fst₂ , snd₁ = fst₂ , (function 𝑓 snd₁) substs : AList VariableName (∃ FTerm) → (a : Nat) → ∃ (flip FTerms a) → ∃ (flip FTerms a) substs x .0 (.∅ , []) = ∅ , [] substs x .(suc _) (._ , (x₁ ∷ snd₁)) with {!subst x (_ , x₁)!} substs x .(suc _) (._ , (x₁ ∷ snd₁)) | sb = {!!} -- indexed by the number of function symbols contained data DTerm : Nat → Set where variable : (𝑥 : VariableName) → DTerm zero function : (𝑓 : FunctionName) → {arity : Nat} → (τs : Vec (∃ DTerm) arity) → DTerm (suc (sum (fst <$> vecToList τs))) mutual substD : VariableName → ∃ DTerm → {n : Nat} → DTerm n → ∃ DTerm substD x x₁ (variable 𝑥) = ifYes 𝑥 ≟ x then x₁ else _ , variable 𝑥 substD x x₁ (function 𝑓 τs) with substsD x x₁ τs substD x x₁ (function 𝑓 τs) | ss = suc (sum (fst <$> vecToList ss)) , function 𝑓 {_} ss substsD : VariableName → ∃ DTerm → {n : Nat} → Vec (Σ Nat DTerm) n → Vec (Σ Nat DTerm) n substsD x x₁ [] = [] substsD x x₁ (x₂ ∷ x₃) with substD x x₁ (snd x₂) | substsD x x₁ x₃ substsD x x₁ (x₂ ∷ x₃) | fst₁ , snd₁ | sss = (fst₁ , snd₁) ∷ sss data HDTerm : Set where ⟨_⟩ : {n : Nat} → DTerm n → HDTerm substituteD : (AList VariableName HDTerm) → HDTerm → HDTerm substituteD = {!!} amgu : HDTerm → HDTerm → (AList VariableName HDTerm) → Maybe (AList VariableName HDTerm) amgu ⟨ variable 𝑥 ⟩ ⟨ variable 𝑥₁ ⟩ f = {!!} amgu ⟨ variable 𝑥 ⟩ ⟨ function 𝑓 τs ⟩ f = {!!} amgu ⟨ function 𝑓 τs ⟩ ⟨ variable 𝑥 ⟩ f = {!!} amgu ⟨ function 𝑓 τs₁ ⟩ ⟨ function 𝑓₁ τs ⟩ f = {!!} {- data AList : 𝕃 VariableName → Set where [] : AList ∅ _∷_ : -} record JohnUnification {𝑥s₁} (τ₁ : FTerm 𝑥s₁) {𝑥s₂} (τ₂ : FTerm 𝑥s₂) (_ : intersection {m = VariableName} 𝑥s₁ 𝑥s₂ ≡ ∅) : Set where field u₁ u₂ : AList VariableName (∃ FTerm) unification-law₁ : fst (subst u₁ (𝑥s₁ , τ₁)) ≡ fst (subst u₂ (𝑥s₂ , τ₂)) unification-law₂ : snd (subst u₁ (𝑥s₁ , τ₁)) ≡ transport FTerm (sym unification-law₁) (snd (subst u₂ (𝑥s₂ , τ₂))) record UnificationEquation (𝑥s : 𝕃 VariableName) : Set where field {lhs-terms} : 𝕃 VariableName lhs : FTerm lhs-terms {rhs-terms} : 𝕃 VariableName rhs : FTerm rhs-terms lhs∪rhs-terms : 𝑥s ≡ union {m = VariableName} lhs-terms rhs-terms open UnificationEquation number-of-variables-that-occur-more-than-once : ∀ {n-eqn} → Vec (∃ λ 𝑥s → UnificationEquation 𝑥s) n-eqn → Nat number-of-variables-that-occur-more-than-once {zero} [] = 0 number-of-variables-that-occur-more-than-once {suc n-eqn} x = {!!} number-of-function-symbols : ∀ {𝑥s} → FTerm 𝑥s → Nat number-of-function-symbols = {!!} record UnificationProblem (n-var n-lhs n-eqn : Nat) : Set where field equations : Vec (∃ λ 𝑥s → UnificationEquation 𝑥s) n-eqn n-var-law : number-of-variables-that-occur-more-than-once equations ≤ n-var n-lhs-law : (sum ∘ vecToList $ number-of-function-symbols ∘ lhs ∘ snd <$> equations) ≤ n-lhs instance MembershipUnificationEquationUnificationProblem : ∀ {n-var n-lhs n-eqn 𝑥s} → Membership (UnificationEquation 𝑥s) (UnificationProblem n-var n-lhs n-eqn) MembershipUnificationEquationUnificationProblem = {!!} instance MembershipVariableNameUnificationProblem : ∀ {n-var n-lhs n-eqn} → Membership VariableName (UnificationProblem n-var n-lhs n-eqn) MembershipVariableNameUnificationProblem = {!!} deletable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set deletable = {!!} deletable? : ∀ {𝑥s} → (eq : UnificationEquation 𝑥s) → Dec (deletable eq) deletable? = {!!} u-deletable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var n-lhs n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → deletable εq × εq ∈ up) u-deletable? {n-var} {n-lhs} {zero} up = no {!!} u-deletable? {n-var} {n-lhs} {suc n-eqn} up = {!!} deleteRule : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem n-var n-lhs (suc n-eqn)} {𝑥s} {εq : UnificationEquation 𝑥s} → deletable εq → εq ∈ up → UnificationProblem n-var n-lhs n-eqn deleteRule = {!!} decomposable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set decomposable = {!!} decomposable? : ∀ {𝑥s} → (eq : UnificationEquation 𝑥s) → Dec (decomposable eq) decomposable? = {!!} u-decomposable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var (suc n-lhs) n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → decomposable εq × εq ∈ up) u-decomposable? = {!!} decomposeRule : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem n-var (suc n-lhs) n-eqn} {𝑥s} {εq : UnificationEquation 𝑥s} → decomposable εq → εq ∈ up → UnificationProblem n-var n-lhs n-eqn decomposeRule = {!!} swapable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set swapable = {!!} swapable? : ∀ {𝑥s} → (eq : UnificationEquation 𝑥s) → Dec (swapable eq) swapable? = {!!} u-swapable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var (suc n-lhs) n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → swapable εq × εq ∈ up) u-swapable? = {!!} swapRule : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem n-var (suc n-lhs) n-eqn} {𝑥s} {εq : UnificationEquation 𝑥s} → swapable εq → εq ∈ up → UnificationProblem n-var n-lhs n-eqn swapRule = {!!} eliminatable : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem n-var n-lhs n-eqn} {𝑥s} {εq : UnificationEquation 𝑥s} → (εq∈up : εq ∈ up) → Set eliminatable = {!!} u-eliminatable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem (suc n-var) n-lhs n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → ∃ λ (εq∈up : εq ∈ up) → eliminatable {up = up} {εq = εq} εq∈up) u-eliminatable? = {!!} eliminateRule : ∀ {n-var n-lhs n-eqn} {up : UnificationProblem (suc n-var) n-lhs n-eqn} {𝑥s} {εq : UnificationEquation 𝑥s} → {εq∈up : εq ∈ up} → eliminatable {up = up} {εq = εq} εq∈up → UnificationProblem n-var n-lhs n-eqn eliminateRule = {!!} conflictable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set conflictable = {!!} conflictable? : ∀ {𝑥s} → (εq : UnificationEquation 𝑥s) → Dec (conflictable εq) conflictable? = {!!} u-conflictable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var n-lhs n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → conflictable εq × εq ∈ up) u-conflictable? = {!!} checkable : ∀ {𝑥s} → UnificationEquation 𝑥s → Set checkable = {!!} checkable? : ∀ {𝑥s} → (εq : UnificationEquation 𝑥s) → Dec (checkable εq) checkable? = {!!} u-checkable? : ∀ {n-var n-lhs n-eqn} (up : UnificationProblem n-var n-lhs n-eqn) → Dec (∃ λ 𝑥s → ∃ λ (εq : UnificationEquation 𝑥s) → checkable εq × εq ∈ up) u-checkable? = {!!} postulate substituteFormula : (VariableName → Term) → Formula → Formula record Unifier' : Set where field unifier-left unifier-right : VariableName → Term open Unifier' record _Unifies_and_ (υ : Unifier') (φ₁ φ₂ : Formula) : Set where field unification-law : substituteFormula (unifier-left υ) φ₁ ≡ substituteFormula (unifier-right υ) φ₂
{ "alphanum_fraction": 0.6308448611, "avg_line_length": 40.6837209302, "ext": "agda", "hexsha": "55b692ed9eb4b39aa2f2f39e2288c3d6567dd2e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/UnificationStuff.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/UnificationStuff.agda", "max_line_length": 222, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/UnificationStuff.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3549, "size": 8747 }
{-# OPTIONS --experimental-irrelevance #-} record NonStrict (A : Set) : Set where constructor [_] field ..! : A open NonStrict map-ns : {A B : Set} (f : A → B) → NonStrict A → NonStrict B map-ns f [ x ] = [ f x ] open import Agda.Builtin.Nat data Vec (A : Set) : NonStrict Nat → Set where [] : Vec A [ 0 ] _∷_ : .{n : Nat} → A → Vec A [ n ] → Vec A [ suc n ] map : ∀ {A B} .{n} (f : A → B) → Vec A [ n ] → Vec B [ n ] map f [] = [] map f (x ∷ xs) = (f x) ∷ (map f xs)
{ "alphanum_fraction": 0.5092402464, "avg_line_length": 22.1363636364, "ext": "agda", "hexsha": "07fceb23fe0ff2360f6493c8066faa5cb5f777cf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/NonStrictField.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/NonStrictField.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/NonStrictField.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 192, "size": 487 }
data Nat : Set where zero : Nat suc : (n : Nat) → Nat test₁ : (n : Nat) → Nat test₁ n with zero ... | x = {!x!} data Tree : Set where leaf : Tree node : Tree → Tree → Tree test₂ : (n : Tree) → Tree test₂ n₁ with leaf ... | n = {!n!}
{ "alphanum_fraction": 0.5368852459, "avg_line_length": 15.25, "ext": "agda", "hexsha": "11c6a9a972de708a31f31dc921cd96e613b7921c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1820.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1820.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1820.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 93, "size": 244 }
{- This second-order signature was created from the following second-order syntax description: syntax Sub | S type L : 0-ary T : 0-ary term vr : L -> T sb : L.T T -> T theory (C) x y : T |> sb (a. x[], y[]) = x[] (L) x : T |> sb (a. vr(a), x[]) = x[] (R) a : L x : L.T |> sb (b. x[b], vr(a[])) = x[a[]] (A) x : (L,L).T y : L.T z : T |> sb (a. sb (b. x[a,b], y[a]), z[]) = sb (b. sb (a. x[a, b], z[]), sb (a. y[a], z[])) -} module Sub.Signature where open import SOAS.Context -- Type declaration data ST : Set where L : ST T : ST open import SOAS.Syntax.Signature ST public open import SOAS.Syntax.Build ST public -- Operator symbols data Sₒ : Set where vrₒ sbₒ : Sₒ -- Term signature S:Sig : Signature Sₒ S:Sig = sig λ { vrₒ → (⊢₀ L) ⟼₁ T ; sbₒ → (L ⊢₁ T) , (⊢₀ T) ⟼₂ T } open Signature S:Sig public
{ "alphanum_fraction": 0.5381008206, "avg_line_length": 18.1489361702, "ext": "agda", "hexsha": "1d23485fd36364e58e2fb2eb654c6a432d307f5e", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Sub/Signature.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Sub/Signature.agda", "max_line_length": 120, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Sub/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 352, "size": 853 }
-- Andreas, 2017-05-24, issue #2590 -- Making variables visible by case splitting in with-clauses -- {-# OPTIONS -v interaction.case:20 #-} -- {-# OPTIONS -v reify:100 #-} -- {-# OPTIONS -v tc.display:100 #-} open import Agda.Builtin.Nat test1 : {x : Nat} → Nat test1 with Set ... | q = {!.x!} -- C-c C-c -- Expected result: -- test1 {x} | q = ? data Any (x : Nat) : Set where any : Any x postulate zonk : ∀{x} → Any x → Nat test2 : {x y : Nat} → Any y → Nat test2 p with zonk p ... | q = {!.y!} -- C-c C-c -- Expected result: -- test2 {y = y} p | q = ?
{ "alphanum_fraction": 0.5608465608, "avg_line_length": 19.5517241379, "ext": "agda", "hexsha": "03c7f8a9f0344fab0197340c90009500dcde2fe9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/interaction/Issue2590.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/interaction/Issue2590.agda", "max_line_length": 61, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/interaction/Issue2590.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 207, "size": 567 }
------------------------------------------------------------------------ -- Fixpoint combinators ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} open import Partiality-algebra as PA hiding (id; _∘_) module Partiality-algebra.Fixpoints where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude hiding (T; ⊥) open import Bijection equality-with-J using (_↔_) import Equivalence equality-with-J as Eq open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import Monad equality-with-J open import Univalence-axiom equality-with-J open import Partiality-algebra.Monotone open import Partiality-algebra.Omega-continuous import Partiality-algebra.Properties as PAP open [_⟶_]⊑ -- The development below, up to fix-is-least, is (very similar to) -- Kleene's fixed-point theorem. private module Fix₀ {a p q} {A : Type a} {P : Partiality-algebra p q A} where open Partiality-algebra P open PAP P -- Repeated composition of a monotone function with itself. comp : [ P ⟶ P ]⊑ → ℕ → [ P ⟶ P ]⊑ comp f zero = id⊑ comp f (suc n) = f ∘⊑ comp f n -- Pre-composition with the function is equal to post-composition -- with the function. pre≡post : ∀ f n → comp f n ∘⊑ f ≡ f ∘⊑ comp f n pre≡post f zero = f ∎ pre≡post f (suc n) = (f ∘⊑ comp f n) ∘⊑ f ≡⟨ ∘⊑-assoc f (comp f n) ⟩ f ∘⊑ (comp f n ∘⊑ f) ≡⟨ cong (f ∘⊑_) $ pre≡post f n ⟩∎ f ∘⊑ (f ∘⊑ comp f n) ∎ -- Repeated application of a monotone function to never. app : [ P ⟶ P ]⊑ → ℕ → T app f n = function (comp f n) never -- An increasing sequence consisting of repeated applications of the -- given monotone function to never. fix-sequence : [ P ⟶ P ]⊑ → Increasing-sequence fix-sequence f = app f , fix-sequence-increasing where abstract fix-sequence-increasing : ∀ n → function (comp f n) never ⊑ function (f ∘⊑ comp f n) never fix-sequence-increasing n = function (comp f n) never ⊑⟨ monotone (comp f n) (never⊑ (function f never)) ⟩ function (comp f n) (function f never) ⊑⟨⟩ function (comp f n ∘⊑ f) never ≡⟨ cong (λ g → function g never) $ pre≡post f n ⟩⊑ function (f ∘⊑ comp f n) never ■ -- Taking the tail of this sequence amounts to the same thing as -- applying the function to each element in the sequence. tailˢ-fix-sequence : (f : [ P ⟶ P ]⊑) → tailˢ (fix-sequence f) ≡ [ f $ fix-sequence f ]-inc tailˢ-fix-sequence f = _↔_.to equality-characterisation-increasing λ _ → refl -- The sequence has the same least upper bound as the sequence you get -- if you apply the function to each element of the sequence. ⨆-fix-sequence : (f : [ P ⟶ P ]⊑) → ⨆ (fix-sequence f) ≡ ⨆ [ f $ fix-sequence f ]-inc ⨆-fix-sequence f = ⨆ (fix-sequence f) ≡⟨ sym $ ⨆tail≡⨆ _ ⟩ ⨆ (tailˢ (fix-sequence f)) ≡⟨ cong ⨆ (tailˢ-fix-sequence f) ⟩∎ ⨆ [ f $ fix-sequence f ]-inc ∎ -- A fixpoint combinator. fix : [ P ⟶ P ]⊑ → T fix f = ⨆ (fix-sequence f) -- The fixpoint combinator produces fixpoints for ω-continuous -- arguments. fix-is-fixpoint-combinator : (fω : [ P ⟶ P ]) → let f : [ P ⟶ P ]⊑ f = [_⟶_].monotone-function fω in fix f ≡ function f (fix f) fix-is-fixpoint-combinator fω = fix f ≡⟨⟩ ⨆ (fix-sequence f) ≡⟨ ⨆-fix-sequence f ⟩ ⨆ [ f $ fix-sequence f ]-inc ≡⟨ sym $ [_⟶_].ω-continuous fω _ ⟩ function f (⨆ (fix-sequence f)) ≡⟨⟩ function f (fix f) ∎ where f : [ P ⟶ P ]⊑ f = [_⟶_].monotone-function fω -- The result of the fixpoint combinator is smaller than or equal to -- every post-fixpoint. fix-is-least : (f : [ P ⟶ P ]⊑) → ∀ x → function f x ⊑ x → fix f ⊑ x fix-is-least f x fx⊑x = least-upper-bound _ _ lemma where lemma : ∀ n → function (comp f n) never ⊑ x lemma zero = never⊑ x lemma (suc n) = function (f ∘⊑ comp f n) never ⊑⟨⟩ function f (function (comp f n) never) ⊑⟨ monotone f (lemma n) ⟩ function f x ⊑⟨ fx⊑x ⟩■ x ■ -- A restricted homomorphism property. comp-∘ : ∀ f n → comp (f ∘⊑ f) n ≡ comp f n ∘⊑ comp f n comp-∘ f zero = id⊑ ∎ comp-∘ f (suc n) = (f ∘⊑ f) ∘⊑ comp (f ∘⊑ f) n ≡⟨ cong ((f ∘⊑ f) ∘⊑_) (comp-∘ f n) ⟩ (f ∘⊑ f) ∘⊑ (comp f n ∘⊑ comp f n) ≡⟨ lemma f f (comp f n) _ ⟩ f ∘⊑ ((f ∘⊑ comp f n) ∘⊑ comp f n) ≡⟨ cong ((_∘⊑ comp f n) ∘ (f ∘⊑_)) $ sym $ pre≡post f n ⟩ f ∘⊑ ((comp f n ∘⊑ f) ∘⊑ comp f n) ≡⟨ sym $ lemma f (comp f n) f _ ⟩∎ (f ∘⊑ comp f n) ∘⊑ (f ∘⊑ comp f n) ∎ where lemma : (f g h k : [ P ⟶ P ]⊑) → (f ∘⊑ g) ∘⊑ (h ∘⊑ k) ≡ f ∘⊑ ((g ∘⊑ h) ∘⊑ k) lemma f g h k = (f ∘⊑ g) ∘⊑ (h ∘⊑ k) ≡⟨ ∘⊑-assoc f g ⟩ f ∘⊑ (g ∘⊑ (h ∘⊑ k)) ≡⟨ cong (f ∘⊑_) $ ∘⊑-assoc g h ⟩∎ f ∘⊑ ((g ∘⊑ h) ∘⊑ k) ∎ -- The function comp f is homomorphic with respect to _+_/_∘⊑_. comp-+∘ : ∀ f m {n} → comp f (m + n) ≡ comp f m ∘⊑ comp f n comp-+∘ f zero {n} = comp f n ∎ comp-+∘ f (suc m) {n} = f ∘⊑ comp f (m + n) ≡⟨ cong (f ∘⊑_) $ comp-+∘ f m ⟩ f ∘⊑ (comp f m ∘⊑ comp f n) ≡⟨ ∘⊑-assoc f (comp f m) ⟩∎ (f ∘⊑ comp f m) ∘⊑ comp f n ∎ -- Taking steps that are "twice as large" does not affect the end -- result. fix-∘ : (f : [ P ⟶ P ]⊑) → fix (f ∘⊑ f) ≡ fix f fix-∘ f = antisymmetry (least-upper-bound _ _ λ n → function (comp (f ∘⊑ f) n) never ≡⟨ cong (λ f → function f never) $ comp-∘ f n ⟩⊑ function (comp f n ∘⊑ comp f n) never ≡⟨ cong (λ f → function f never) $ sym $ comp-+∘ f n ⟩⊑ function (comp f (n + n)) never ⊑⟨ upper-bound (fix-sequence f) (n + n) ⟩■ ⨆ (fix-sequence f) ■) (⨆-mono λ n → function (comp f n) never ⊑⟨ monotone (comp f n) (never⊑ _) ⟩ function (comp f n) (function (comp f n) never) ⊑⟨⟩ function (comp f n ∘⊑ comp f n) never ≡⟨ cong (λ f → function f never) $ sym $ comp-∘ f n ⟩⊑ function (comp (f ∘⊑ f) n) never ■) open Fix₀ -- N-ary Scott induction. module N-ary (open Partiality-algebra) {a p q r} n (As : Fin n → Type a) (Ps : ∀ i → Partiality-algebra p q (As i)) (P : (∀ i → T (Ps i)) → Type r) (P⊥ : P (λ i → never (Ps i))) (P⨆ : (ss : ∀ i → Increasing-sequence (Ps i)) → (∀ n → P (λ i → _[_] (Ps i) (ss i) n)) → P (λ i → ⨆ (Ps i) (ss i))) (fs : ∀ i → [ Ps i ⟶ Ps i ]⊑) where -- Generalised. fix-induction′ : (∀ n → P (λ i → app (fs i) n) → P (λ i → app (fs i) (suc n))) → P (fix ∘ fs) fix-induction′ step = $⟨ lemma ⟩ (∀ n → P (λ i → app (fs i) n)) ↝⟨ P⨆ _ ⟩ P (λ i → ⨆ (Ps i) (fix-sequence (fs i))) ↝⟨ id ⟩□ P (fix ∘ fs) □ where lemma : ∀ n → P (λ i → function (comp (fs i) n) (never (Ps i))) lemma zero = P⊥ lemma (suc n) = $⟨ lemma n ⟩ P (λ i → app (fs i) n) ↝⟨ step n ⟩□ P (λ i → function (fs i) (app (fs i) n)) □ -- Basic. fix-induction : (∀ xs → P xs → P (λ i → function (fs i) (xs i))) → P (fix ∘ fs) fix-induction step = fix-induction′ (λ n → step (λ i → app (fs i) n)) open N-ary public module Fix {a p q} {A : Type a} {P : Partiality-algebra p q A} where open Partiality-algebra P -- Unary Scott induction. fix-induction₁ : ∀ {r} (Q : T → Type r) → Q never → (∀ s → (∀ n → Q (s [ n ])) → Q (⨆ s)) → (f : [ P ⟶ P ]⊑) → (∀ x → Q x → Q (function f x)) → Q (fix f) fix-induction₁ Q Q⊥ Q⨆ f step = fix-induction 1 [ const A , ⊥-elim ] [ const P , (λ i → ⊥-elim i) ] (Q ∘ (_$ fzero)) Q⊥ (Q⨆ ∘ (_$ fzero)) [ const f , (λ x → ⊥-elim x) ] (step ∘ (_$ fzero)) open Fix₀ {P = P} public open Fix public
{ "alphanum_fraction": 0.5018918589, "avg_line_length": 33.1700404858, "ext": "agda", "hexsha": "30ca50f677383b2cd41976dcd64b0a989cc232dd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-algebra/Fixpoints.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-algebra/Fixpoints.agda", "max_line_length": 110, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-algebra/Fixpoints.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 3317, "size": 8193 }
{-# OPTIONS --without-K #-} module sets.nat.algebra where open import equality.core open import algebra.monoid.core open import sets.nat.core open import sets.nat.properties +-monoid : Monoid _ +-monoid = record { carrier = ℕ ; is-mon = record { id = λ _ → 0 ; _∘_ = _+_ ; left-unit = +-left-unit ; right-unit = +-right-unit ; associativity = λ x y z → +-associativity z y x } } *-monoid : Monoid _ *-monoid = record { carrier = ℕ ; is-mon = record { id = λ _ → 1 ; _∘_ = _*_ ; left-unit = *-left-unit ; right-unit = *-right-unit ; associativity = λ x y z → *-associativity z y x } }
{ "alphanum_fraction": 0.5927672956, "avg_line_length": 21.9310344828, "ext": "agda", "hexsha": "8ce81a733f0a3737be58a786837c40eb67247b6a", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/nat/algebra.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/nat/algebra.agda", "max_line_length": 57, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/nat/algebra.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 207, "size": 636 }
module List.Permutation.Base.Bag (A : Set) where open import Data.List open import Data.List.Any as Any open import Data.List.Any.BagAndSetEquality open import Data.List.Any.Properties open import Data.Sum renaming (_⊎_ to _∨_) open import Function open import Function.Inverse hiding (sym ; _∘_ ; id) open import Function.Related as Related hiding (_∼[_]_) open import List.Permutation.Base A import Relation.Binary.EqReasoning as EqR open import Relation.Binary.PropositionalEquality as P hiding (sym) open Any.Membership-≡ open EqR ([ bag ]-Equality A) open Related.EquationalReasoning renaming (_∎ to _□) infix 4 _≈-bag_ _≈-bag_ : ∀ {a} {A : Set a} → List A → List A → Set a xs ≈-bag ys = xs ∼[ bag ] ys sym-≈-bag : {xs ys : List A} → xs ≈-bag ys → ys ≈-bag xs sym-≈-bag {xs} {ys} xs≈ys {z} = record { to = Inverse.from xs≈ys ; from = Inverse.to xs≈ys ; inverse-of = record { left-inverse-of = Inverse.right-inverse-of xs≈ys ; right-inverse-of = Inverse.left-inverse-of xs≈ys } } refl-≈-bag : {xs : List A} → xs ≈-bag xs refl-≈-bag {xs} = begin xs ∎ ∨↔ : ∀{a b}{A : Set a}{B : Set b} → (A ∨ B) ↔ (B ∨ A) ∨↔ = record { to = P.→-to-⟶ ∨→ ; from = P.→-to-⟶ ∨→ ; inverse-of = record { left-inverse-of = v→∘v→ ; right-inverse-of = v→∘v→ } } where ∨→ : ∀{a b}{A : Set a}{B : Set b} → (A ∨ B) → (B ∨ A) ∨→ (inj₁ x) = inj₂ x ∨→ (inj₂ x) = inj₁ x v→∘v→ : ∀{a b}{A : Set a}{B : Set b}(a∨b : A ∨ B) → ∨→ (∨→ a∨b) ≡ a∨b v→∘v→ (inj₁ _) = refl v→∘v→ (inj₂ _) = refl xy≈-bag-yx : {x y : A} → x ∷ y ∷ [] ≈-bag y ∷ x ∷ [] xy≈-bag-yx {x} {y} {z} = z ∈ x ∷ y ∷ [] ↔⟨ sym $ ++↔ {xs = x ∷ []} {ys = y ∷ []} ⟩ (z ∈ x ∷ [] ∨ z ∈ y ∷ []) ↔⟨ ∨↔ ⟩ (z ∈ y ∷ [] ∨ z ∈ x ∷ []) ↔⟨ ++↔ ⟩ z ∈ y ∷ x ∷ [] □ lemma-/-≈-bag : {y : A}{xs ys : List A} → xs / y ⟶ ys → xs ≈-bag (y ∷ ys) lemma-/-≈-bag /head = refl-≈-bag lemma-/-≈-bag (/tail {x} {y} {xs} {ys} xs/y⟶ys) = begin x ∷ xs ≈⟨ ∷-cong refl (lemma-/-≈-bag xs/y⟶ys) ⟩ x ∷ y ∷ ys ≈⟨ ++-cong xy≈-bag-yx refl-≈-bag ⟩ y ∷ x ∷ ys ∎ lemma-∼-≈-bag : {xs ys : List A} → xs ∼ ys → xs ≈-bag ys lemma-∼-≈-bag ∼[] = refl-≈-bag lemma-∼-≈-bag (∼x {x} {xs} {ys} {xs'} {ys'} xs/x⟶xs' ys/x⟶ys' xs'∼ys') = begin xs ≈⟨ lemma-/-≈-bag xs/x⟶xs' ⟩ x ∷ xs' ≈⟨ ∷-cong refl (lemma-∼-≈-bag xs'∼ys') ⟩ x ∷ ys' ≈⟨ sym-≈-bag (lemma-/-≈-bag ys/x⟶ys') ⟩ ys ∎
{ "alphanum_fraction": 0.5179098188, "avg_line_length": 30.8181818182, "ext": "agda", "hexsha": "0ef0fe6c942d9307706017cf7f178fb23a5e9581", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/List/Permutation/Base/Bag.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/List/Permutation/Base/Bag.agda", "max_line_length": 78, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/List/Permutation/Base/Bag.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 1143, "size": 2373 }
module DataRecordInductive where module NotMutual where record Nil (A : Set) : Set where constructor [] record Cons (A X : Set) : Set where constructor _∷_ field head : A tail : X open Cons data List (A : Set) : Set where nil : Nil A → List A cons : Cons A (List A) → List A -- works module Constr where map : {A B : Set} → (A → B) → List A → List B map f (nil []) = nil [] map f (cons (x ∷ xs)) = cons (f x ∷ map f xs) -- works, since projections are size preserving module Proj where map : {A B : Set} → (A → B) → List A → List B map f (nil _) = nil [] map f (cons p) = cons (f (head p) ∷ map f (tail p)) module Mutual where mutual data List (A : Set) : Set where nil : Nil A → List A cons : Cons A → List A record Nil (A : Set) : Set where constructor [] -- since Cons is inductive, we are not creating colists record Cons (A : Set) : Set where inductive constructor _∷_ field head : A tail : List A open Cons -- works module Constr where map : {A B : Set} → (A → B) → List A → List B map f (nil []) = nil [] map f (cons (x ∷ xs)) = cons (f x ∷ map f xs) -- works, since projections of an inductive record are size-preserving module Proj where map : {A B : Set} → (A → B) → List A → List B map f (nil _) = nil [] map f (cons p) = cons (f (head p) ∷ map f (tail p))
{ "alphanum_fraction": 0.5401755571, "avg_line_length": 22.4393939394, "ext": "agda", "hexsha": "350c260bace00e0f4d23b468abe033840940f151", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/DataRecordInductive.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/DataRecordInductive.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/DataRecordInductive.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 482, "size": 1481 }
module Tactic.Monoid.Reflect where open import Prelude open import Tactic.Reflection open import Tactic.Reflection.Match open import Control.Monad.Zero open import Control.Monad.State open import Container.Traversable open import Tactic.Monoid.Exp open import Tactic.Reflection.Parse renaming (parseEqn to parseEq) private data ExpF (A : Set) : Set where eVar : Nat → ExpF A eZero : ExpF A ePlus : A → A → ExpF A instance FunctorExpF : Functor ExpF fmap {{FunctorExpF}} _ (eVar i) = eVar i fmap {{FunctorExpF}} _ eZero = eZero fmap {{FunctorExpF}} f (ePlus x y) = ePlus (f x) (f y) TraversableExpF : Traversable ExpF traverse {{TraversableExpF}} f (eVar i) = pure (eVar i) traverse {{TraversableExpF}} f eZero = pure eZero traverse {{TraversableExpF}} f (ePlus x y) = ⦇ ePlus (f x) (f y) ⦈ mkExp : ExpF Exp → Exp mkExp (eVar i) = var i mkExp eZero = ε mkExp (ePlus x y) = x ⊕ y module _ (match : Term → Maybe (ExpF Term)) where parseEqn : Term → ParseTerm TC (Exp × Exp) parseEqn v = parseEq eVar match mkExp v parseGoal : Term → TC ((Exp × Exp) × List Term) parseGoal v = runParse (parseEqn v) private match<> : ∀ {a} {A : Set a} → Monoid A → TC (Term → Maybe (Vec Term 2)) match<> {A = A} dict = do `A ← quoteTC A `plus ← quoteTC (Monoid._<>_ dict) extendContext (vArg `A) $ extendContext (vArg $ weaken 1 `A) $ match 2 <$> normalise (safeApply (weaken 2 `plus) (vArg (safe (var 0 []) _) ∷ vArg (safe (var 1 []) _) ∷ [])) matchEmpty : ∀ {a} {A : Set a} → Monoid A → TC (Term → Bool) matchEmpty dict = do v ← quoteTC (Monoid.mempty dict) pure (isYes ∘ (v ==_)) monoidMatcher : ∀ {a} {A : Set a} → Monoid A → TC (Term → Maybe (ExpF Term)) monoidMatcher dict = withNormalisation true $ do isZ ← matchEmpty dict isP ← match<> dict pure λ v → guard! (isZ v) (pure eZero) <|> do x ∷ y ∷ [] ← isP v pure (ePlus x y) private lookupEnv : ∀ {a} {A : Set a} {{_ : Monoid A}} → List A → Nat → A lookupEnv xs i = maybe mempty id (index xs i) quoteList : List Term → Term quoteList = foldr (λ x xs → con₂ (quote List._∷_) x xs) (con₀ (quote List.[])) quoteEnv : Term → List Term → Term quoteEnv dict xs = def (quote lookupEnv) (iArg dict ∷ vArg (quoteList xs) ∷ [])
{ "alphanum_fraction": 0.6046803176, "avg_line_length": 31.0779220779, "ext": "agda", "hexsha": "8e91bfdd31b79fa8e50b142742617b39d8689eee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Tactic/Monoid/Reflect.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Tactic/Monoid/Reflect.agda", "max_line_length": 88, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Tactic/Monoid/Reflect.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 810, "size": 2393 }
{-# OPTIONS --type-in-type #-} Ty : Set; Ty = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι : Ty; ι = λ _ ι _ → ι arr : Ty → Ty → Ty; arr = λ A B Ty ι arr → arr (A Ty ι arr) (B Ty ι arr) Con : Set;Con = (Con : Set) (nil : Con) (snoc : Con → Ty → Con) → Con nil : Con;nil = λ Con nil snoc → nil snoc : Con → Ty → Con;snoc = λ Γ A Con nil snoc → snoc (Γ Con nil snoc) A Var : Con → Ty → Set;Var = λ Γ A → (Var : Con → Ty → Set) (vz : (Γ : _)(A : _) → Var (snoc Γ A) A) (vs : (Γ : _)(B A : _) → Var Γ A → Var (snoc Γ B) A) → Var Γ A vz : ∀{Γ A} → Var (snoc Γ A) A;vz = λ Var vz vs → vz _ _ vs : ∀{Γ B A} → Var Γ A → Var (snoc Γ B) A;vs = λ x Var vz vs → vs _ _ _ (x Var vz vs) Tm : Con → Ty → Set;Tm = λ Γ A → (Tm : Con → Ty → Set) (var : (Γ : _) (A : _) → Var Γ A → Tm Γ A) (lam : (Γ : _) (A B : _) → Tm (snoc Γ A) B → Tm Γ (arr A B)) (app : (Γ : _) (A B : _) → Tm Γ (arr A B) → Tm Γ A → Tm Γ B) → Tm Γ A var : ∀{Γ A} → Var Γ A → Tm Γ A;var = λ x Tm var lam app → var _ _ x lam : ∀{Γ A B} → Tm (snoc Γ A) B → Tm Γ (arr A B);lam = λ t Tm var lam app → lam _ _ _ (t Tm var lam app) app : ∀{Γ A B} → Tm Γ (arr A B) → Tm Γ A → Tm Γ B;app = λ t u Tm var lam app → app _ _ _ (t Tm var lam app) (u Tm var lam app) v0 : ∀{Γ A} → Tm (snoc Γ A) A;v0 = var vz v1 : ∀{Γ A B} → Tm (snoc (snoc Γ A) B) A;v1 = var (vs vz) v2 : ∀{Γ A B C} → Tm (snoc (snoc (snoc Γ A) B) C) A;v2 = var (vs (vs vz)) v3 : ∀{Γ A B C D} → Tm (snoc (snoc (snoc (snoc Γ A) B) C) D) A;v3 = var (vs (vs (vs vz))) v4 : ∀{Γ A B C D E} → Tm (snoc (snoc (snoc (snoc (snoc Γ A) B) C) D) E) A;v4 = var (vs (vs (vs (vs vz)))) test : ∀{Γ A} → Tm Γ (arr (arr A A) (arr A A));test = lam (lam (app v1 (app v1 (app v1 (app v1 (app v1 (app v1 v0))))))) {-# OPTIONS --type-in-type #-} Ty1 : Set; Ty1 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι1 : Ty1; ι1 = λ _ ι1 _ → ι1 arr1 : Ty1 → Ty1 → Ty1; arr1 = λ A B Ty1 ι1 arr1 → arr1 (A Ty1 ι1 arr1) (B Ty1 ι1 arr1) Con1 : Set;Con1 = (Con1 : Set) (nil : Con1) (snoc : Con1 → Ty1 → Con1) → Con1 nil1 : Con1;nil1 = λ Con1 nil1 snoc → nil1 snoc1 : Con1 → Ty1 → Con1;snoc1 = λ Γ A Con1 nil1 snoc1 → snoc1 (Γ Con1 nil1 snoc1) A Var1 : Con1 → Ty1 → Set;Var1 = λ Γ A → (Var1 : Con1 → Ty1 → Set) (vz : (Γ : _)(A : _) → Var1 (snoc1 Γ A) A) (vs : (Γ : _)(B A : _) → Var1 Γ A → Var1 (snoc1 Γ B) A) → Var1 Γ A vz1 : ∀{Γ A} → Var1 (snoc1 Γ A) A;vz1 = λ Var1 vz1 vs → vz1 _ _ vs1 : ∀{Γ B A} → Var1 Γ A → Var1 (snoc1 Γ B) A;vs1 = λ x Var1 vz1 vs1 → vs1 _ _ _ (x Var1 vz1 vs1) Tm1 : Con1 → Ty1 → Set;Tm1 = λ Γ A → (Tm1 : Con1 → Ty1 → Set) (var : (Γ : _) (A : _) → Var1 Γ A → Tm1 Γ A) (lam : (Γ : _) (A B : _) → Tm1 (snoc1 Γ A) B → Tm1 Γ (arr1 A B)) (app : (Γ : _) (A B : _) → Tm1 Γ (arr1 A B) → Tm1 Γ A → Tm1 Γ B) → Tm1 Γ A var1 : ∀{Γ A} → Var1 Γ A → Tm1 Γ A;var1 = λ x Tm1 var1 lam app → var1 _ _ x lam1 : ∀{Γ A B} → Tm1 (snoc1 Γ A) B → Tm1 Γ (arr1 A B);lam1 = λ t Tm1 var1 lam1 app → lam1 _ _ _ (t Tm1 var1 lam1 app) app1 : ∀{Γ A B} → Tm1 Γ (arr1 A B) → Tm1 Γ A → Tm1 Γ B;app1 = λ t u Tm1 var1 lam1 app1 → app1 _ _ _ (t Tm1 var1 lam1 app1) (u Tm1 var1 lam1 app1) v01 : ∀{Γ A} → Tm1 (snoc1 Γ A) A;v01 = var1 vz1 v11 : ∀{Γ A B} → Tm1 (snoc1 (snoc1 Γ A) B) A;v11 = var1 (vs1 vz1) v21 : ∀{Γ A B C} → Tm1 (snoc1 (snoc1 (snoc1 Γ A) B) C) A;v21 = var1 (vs1 (vs1 vz1)) v31 : ∀{Γ A B C D} → Tm1 (snoc1 (snoc1 (snoc1 (snoc1 Γ A) B) C) D) A;v31 = var1 (vs1 (vs1 (vs1 vz1))) v41 : ∀{Γ A B C D E} → Tm1 (snoc1 (snoc1 (snoc1 (snoc1 (snoc1 Γ A) B) C) D) E) A;v41 = var1 (vs1 (vs1 (vs1 (vs1 vz1)))) test1 : ∀{Γ A} → Tm1 Γ (arr1 (arr1 A A) (arr1 A A));test1 = lam1 (lam1 (app1 v11 (app1 v11 (app1 v11 (app1 v11 (app1 v11 (app1 v11 v01))))))) {-# OPTIONS --type-in-type #-} Ty2 : Set; Ty2 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι2 : Ty2; ι2 = λ _ ι2 _ → ι2 arr2 : Ty2 → Ty2 → Ty2; arr2 = λ A B Ty2 ι2 arr2 → arr2 (A Ty2 ι2 arr2) (B Ty2 ι2 arr2) Con2 : Set;Con2 = (Con2 : Set) (nil : Con2) (snoc : Con2 → Ty2 → Con2) → Con2 nil2 : Con2;nil2 = λ Con2 nil2 snoc → nil2 snoc2 : Con2 → Ty2 → Con2;snoc2 = λ Γ A Con2 nil2 snoc2 → snoc2 (Γ Con2 nil2 snoc2) A Var2 : Con2 → Ty2 → Set;Var2 = λ Γ A → (Var2 : Con2 → Ty2 → Set) (vz : (Γ : _)(A : _) → Var2 (snoc2 Γ A) A) (vs : (Γ : _)(B A : _) → Var2 Γ A → Var2 (snoc2 Γ B) A) → Var2 Γ A vz2 : ∀{Γ A} → Var2 (snoc2 Γ A) A;vz2 = λ Var2 vz2 vs → vz2 _ _ vs2 : ∀{Γ B A} → Var2 Γ A → Var2 (snoc2 Γ B) A;vs2 = λ x Var2 vz2 vs2 → vs2 _ _ _ (x Var2 vz2 vs2) Tm2 : Con2 → Ty2 → Set;Tm2 = λ Γ A → (Tm2 : Con2 → Ty2 → Set) (var : (Γ : _) (A : _) → Var2 Γ A → Tm2 Γ A) (lam : (Γ : _) (A B : _) → Tm2 (snoc2 Γ A) B → Tm2 Γ (arr2 A B)) (app : (Γ : _) (A B : _) → Tm2 Γ (arr2 A B) → Tm2 Γ A → Tm2 Γ B) → Tm2 Γ A var2 : ∀{Γ A} → Var2 Γ A → Tm2 Γ A;var2 = λ x Tm2 var2 lam app → var2 _ _ x lam2 : ∀{Γ A B} → Tm2 (snoc2 Γ A) B → Tm2 Γ (arr2 A B);lam2 = λ t Tm2 var2 lam2 app → lam2 _ _ _ (t Tm2 var2 lam2 app) app2 : ∀{Γ A B} → Tm2 Γ (arr2 A B) → Tm2 Γ A → Tm2 Γ B;app2 = λ t u Tm2 var2 lam2 app2 → app2 _ _ _ (t Tm2 var2 lam2 app2) (u Tm2 var2 lam2 app2) v02 : ∀{Γ A} → Tm2 (snoc2 Γ A) A;v02 = var2 vz2 v12 : ∀{Γ A B} → Tm2 (snoc2 (snoc2 Γ A) B) A;v12 = var2 (vs2 vz2) v22 : ∀{Γ A B C} → Tm2 (snoc2 (snoc2 (snoc2 Γ A) B) C) A;v22 = var2 (vs2 (vs2 vz2)) v32 : ∀{Γ A B C D} → Tm2 (snoc2 (snoc2 (snoc2 (snoc2 Γ A) B) C) D) A;v32 = var2 (vs2 (vs2 (vs2 vz2))) v42 : ∀{Γ A B C D E} → Tm2 (snoc2 (snoc2 (snoc2 (snoc2 (snoc2 Γ A) B) C) D) E) A;v42 = var2 (vs2 (vs2 (vs2 (vs2 vz2)))) test2 : ∀{Γ A} → Tm2 Γ (arr2 (arr2 A A) (arr2 A A));test2 = lam2 (lam2 (app2 v12 (app2 v12 (app2 v12 (app2 v12 (app2 v12 (app2 v12 v02))))))) {-# OPTIONS --type-in-type #-} Ty3 : Set; Ty3 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι3 : Ty3; ι3 = λ _ ι3 _ → ι3 arr3 : Ty3 → Ty3 → Ty3; arr3 = λ A B Ty3 ι3 arr3 → arr3 (A Ty3 ι3 arr3) (B Ty3 ι3 arr3) Con3 : Set;Con3 = (Con3 : Set) (nil : Con3) (snoc : Con3 → Ty3 → Con3) → Con3 nil3 : Con3;nil3 = λ Con3 nil3 snoc → nil3 snoc3 : Con3 → Ty3 → Con3;snoc3 = λ Γ A Con3 nil3 snoc3 → snoc3 (Γ Con3 nil3 snoc3) A Var3 : Con3 → Ty3 → Set;Var3 = λ Γ A → (Var3 : Con3 → Ty3 → Set) (vz : (Γ : _)(A : _) → Var3 (snoc3 Γ A) A) (vs : (Γ : _)(B A : _) → Var3 Γ A → Var3 (snoc3 Γ B) A) → Var3 Γ A vz3 : ∀{Γ A} → Var3 (snoc3 Γ A) A;vz3 = λ Var3 vz3 vs → vz3 _ _ vs3 : ∀{Γ B A} → Var3 Γ A → Var3 (snoc3 Γ B) A;vs3 = λ x Var3 vz3 vs3 → vs3 _ _ _ (x Var3 vz3 vs3) Tm3 : Con3 → Ty3 → Set;Tm3 = λ Γ A → (Tm3 : Con3 → Ty3 → Set) (var : (Γ : _) (A : _) → Var3 Γ A → Tm3 Γ A) (lam : (Γ : _) (A B : _) → Tm3 (snoc3 Γ A) B → Tm3 Γ (arr3 A B)) (app : (Γ : _) (A B : _) → Tm3 Γ (arr3 A B) → Tm3 Γ A → Tm3 Γ B) → Tm3 Γ A var3 : ∀{Γ A} → Var3 Γ A → Tm3 Γ A;var3 = λ x Tm3 var3 lam app → var3 _ _ x lam3 : ∀{Γ A B} → Tm3 (snoc3 Γ A) B → Tm3 Γ (arr3 A B);lam3 = λ t Tm3 var3 lam3 app → lam3 _ _ _ (t Tm3 var3 lam3 app) app3 : ∀{Γ A B} → Tm3 Γ (arr3 A B) → Tm3 Γ A → Tm3 Γ B;app3 = λ t u Tm3 var3 lam3 app3 → app3 _ _ _ (t Tm3 var3 lam3 app3) (u Tm3 var3 lam3 app3) v03 : ∀{Γ A} → Tm3 (snoc3 Γ A) A;v03 = var3 vz3 v13 : ∀{Γ A B} → Tm3 (snoc3 (snoc3 Γ A) B) A;v13 = var3 (vs3 vz3) v23 : ∀{Γ A B C} → Tm3 (snoc3 (snoc3 (snoc3 Γ A) B) C) A;v23 = var3 (vs3 (vs3 vz3)) v33 : ∀{Γ A B C D} → Tm3 (snoc3 (snoc3 (snoc3 (snoc3 Γ A) B) C) D) A;v33 = var3 (vs3 (vs3 (vs3 vz3))) v43 : ∀{Γ A B C D E} → Tm3 (snoc3 (snoc3 (snoc3 (snoc3 (snoc3 Γ A) B) C) D) E) A;v43 = var3 (vs3 (vs3 (vs3 (vs3 vz3)))) test3 : ∀{Γ A} → Tm3 Γ (arr3 (arr3 A A) (arr3 A A));test3 = lam3 (lam3 (app3 v13 (app3 v13 (app3 v13 (app3 v13 (app3 v13 (app3 v13 v03))))))) {-# OPTIONS --type-in-type #-} Ty4 : Set; Ty4 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι4 : Ty4; ι4 = λ _ ι4 _ → ι4 arr4 : Ty4 → Ty4 → Ty4; arr4 = λ A B Ty4 ι4 arr4 → arr4 (A Ty4 ι4 arr4) (B Ty4 ι4 arr4) Con4 : Set;Con4 = (Con4 : Set) (nil : Con4) (snoc : Con4 → Ty4 → Con4) → Con4 nil4 : Con4;nil4 = λ Con4 nil4 snoc → nil4 snoc4 : Con4 → Ty4 → Con4;snoc4 = λ Γ A Con4 nil4 snoc4 → snoc4 (Γ Con4 nil4 snoc4) A Var4 : Con4 → Ty4 → Set;Var4 = λ Γ A → (Var4 : Con4 → Ty4 → Set) (vz : (Γ : _)(A : _) → Var4 (snoc4 Γ A) A) (vs : (Γ : _)(B A : _) → Var4 Γ A → Var4 (snoc4 Γ B) A) → Var4 Γ A vz4 : ∀{Γ A} → Var4 (snoc4 Γ A) A;vz4 = λ Var4 vz4 vs → vz4 _ _ vs4 : ∀{Γ B A} → Var4 Γ A → Var4 (snoc4 Γ B) A;vs4 = λ x Var4 vz4 vs4 → vs4 _ _ _ (x Var4 vz4 vs4) Tm4 : Con4 → Ty4 → Set;Tm4 = λ Γ A → (Tm4 : Con4 → Ty4 → Set) (var : (Γ : _) (A : _) → Var4 Γ A → Tm4 Γ A) (lam : (Γ : _) (A B : _) → Tm4 (snoc4 Γ A) B → Tm4 Γ (arr4 A B)) (app : (Γ : _) (A B : _) → Tm4 Γ (arr4 A B) → Tm4 Γ A → Tm4 Γ B) → Tm4 Γ A var4 : ∀{Γ A} → Var4 Γ A → Tm4 Γ A;var4 = λ x Tm4 var4 lam app → var4 _ _ x lam4 : ∀{Γ A B} → Tm4 (snoc4 Γ A) B → Tm4 Γ (arr4 A B);lam4 = λ t Tm4 var4 lam4 app → lam4 _ _ _ (t Tm4 var4 lam4 app) app4 : ∀{Γ A B} → Tm4 Γ (arr4 A B) → Tm4 Γ A → Tm4 Γ B;app4 = λ t u Tm4 var4 lam4 app4 → app4 _ _ _ (t Tm4 var4 lam4 app4) (u Tm4 var4 lam4 app4) v04 : ∀{Γ A} → Tm4 (snoc4 Γ A) A;v04 = var4 vz4 v14 : ∀{Γ A B} → Tm4 (snoc4 (snoc4 Γ A) B) A;v14 = var4 (vs4 vz4) v24 : ∀{Γ A B C} → Tm4 (snoc4 (snoc4 (snoc4 Γ A) B) C) A;v24 = var4 (vs4 (vs4 vz4)) v34 : ∀{Γ A B C D} → Tm4 (snoc4 (snoc4 (snoc4 (snoc4 Γ A) B) C) D) A;v34 = var4 (vs4 (vs4 (vs4 vz4))) v44 : ∀{Γ A B C D E} → Tm4 (snoc4 (snoc4 (snoc4 (snoc4 (snoc4 Γ A) B) C) D) E) A;v44 = var4 (vs4 (vs4 (vs4 (vs4 vz4)))) test4 : ∀{Γ A} → Tm4 Γ (arr4 (arr4 A A) (arr4 A A));test4 = lam4 (lam4 (app4 v14 (app4 v14 (app4 v14 (app4 v14 (app4 v14 (app4 v14 v04))))))) {-# OPTIONS --type-in-type #-} Ty5 : Set; Ty5 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι5 : Ty5; ι5 = λ _ ι5 _ → ι5 arr5 : Ty5 → Ty5 → Ty5; arr5 = λ A B Ty5 ι5 arr5 → arr5 (A Ty5 ι5 arr5) (B Ty5 ι5 arr5) Con5 : Set;Con5 = (Con5 : Set) (nil : Con5) (snoc : Con5 → Ty5 → Con5) → Con5 nil5 : Con5;nil5 = λ Con5 nil5 snoc → nil5 snoc5 : Con5 → Ty5 → Con5;snoc5 = λ Γ A Con5 nil5 snoc5 → snoc5 (Γ Con5 nil5 snoc5) A Var5 : Con5 → Ty5 → Set;Var5 = λ Γ A → (Var5 : Con5 → Ty5 → Set) (vz : (Γ : _)(A : _) → Var5 (snoc5 Γ A) A) (vs : (Γ : _)(B A : _) → Var5 Γ A → Var5 (snoc5 Γ B) A) → Var5 Γ A vz5 : ∀{Γ A} → Var5 (snoc5 Γ A) A;vz5 = λ Var5 vz5 vs → vz5 _ _ vs5 : ∀{Γ B A} → Var5 Γ A → Var5 (snoc5 Γ B) A;vs5 = λ x Var5 vz5 vs5 → vs5 _ _ _ (x Var5 vz5 vs5) Tm5 : Con5 → Ty5 → Set;Tm5 = λ Γ A → (Tm5 : Con5 → Ty5 → Set) (var : (Γ : _) (A : _) → Var5 Γ A → Tm5 Γ A) (lam : (Γ : _) (A B : _) → Tm5 (snoc5 Γ A) B → Tm5 Γ (arr5 A B)) (app : (Γ : _) (A B : _) → Tm5 Γ (arr5 A B) → Tm5 Γ A → Tm5 Γ B) → Tm5 Γ A var5 : ∀{Γ A} → Var5 Γ A → Tm5 Γ A;var5 = λ x Tm5 var5 lam app → var5 _ _ x lam5 : ∀{Γ A B} → Tm5 (snoc5 Γ A) B → Tm5 Γ (arr5 A B);lam5 = λ t Tm5 var5 lam5 app → lam5 _ _ _ (t Tm5 var5 lam5 app) app5 : ∀{Γ A B} → Tm5 Γ (arr5 A B) → Tm5 Γ A → Tm5 Γ B;app5 = λ t u Tm5 var5 lam5 app5 → app5 _ _ _ (t Tm5 var5 lam5 app5) (u Tm5 var5 lam5 app5) v05 : ∀{Γ A} → Tm5 (snoc5 Γ A) A;v05 = var5 vz5 v15 : ∀{Γ A B} → Tm5 (snoc5 (snoc5 Γ A) B) A;v15 = var5 (vs5 vz5) v25 : ∀{Γ A B C} → Tm5 (snoc5 (snoc5 (snoc5 Γ A) B) C) A;v25 = var5 (vs5 (vs5 vz5)) v35 : ∀{Γ A B C D} → Tm5 (snoc5 (snoc5 (snoc5 (snoc5 Γ A) B) C) D) A;v35 = var5 (vs5 (vs5 (vs5 vz5))) v45 : ∀{Γ A B C D E} → Tm5 (snoc5 (snoc5 (snoc5 (snoc5 (snoc5 Γ A) B) C) D) E) A;v45 = var5 (vs5 (vs5 (vs5 (vs5 vz5)))) test5 : ∀{Γ A} → Tm5 Γ (arr5 (arr5 A A) (arr5 A A));test5 = lam5 (lam5 (app5 v15 (app5 v15 (app5 v15 (app5 v15 (app5 v15 (app5 v15 v05))))))) {-# OPTIONS --type-in-type #-} Ty6 : Set; Ty6 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι6 : Ty6; ι6 = λ _ ι6 _ → ι6 arr6 : Ty6 → Ty6 → Ty6; arr6 = λ A B Ty6 ι6 arr6 → arr6 (A Ty6 ι6 arr6) (B Ty6 ι6 arr6) Con6 : Set;Con6 = (Con6 : Set) (nil : Con6) (snoc : Con6 → Ty6 → Con6) → Con6 nil6 : Con6;nil6 = λ Con6 nil6 snoc → nil6 snoc6 : Con6 → Ty6 → Con6;snoc6 = λ Γ A Con6 nil6 snoc6 → snoc6 (Γ Con6 nil6 snoc6) A Var6 : Con6 → Ty6 → Set;Var6 = λ Γ A → (Var6 : Con6 → Ty6 → Set) (vz : (Γ : _)(A : _) → Var6 (snoc6 Γ A) A) (vs : (Γ : _)(B A : _) → Var6 Γ A → Var6 (snoc6 Γ B) A) → Var6 Γ A vz6 : ∀{Γ A} → Var6 (snoc6 Γ A) A;vz6 = λ Var6 vz6 vs → vz6 _ _ vs6 : ∀{Γ B A} → Var6 Γ A → Var6 (snoc6 Γ B) A;vs6 = λ x Var6 vz6 vs6 → vs6 _ _ _ (x Var6 vz6 vs6) Tm6 : Con6 → Ty6 → Set;Tm6 = λ Γ A → (Tm6 : Con6 → Ty6 → Set) (var : (Γ : _) (A : _) → Var6 Γ A → Tm6 Γ A) (lam : (Γ : _) (A B : _) → Tm6 (snoc6 Γ A) B → Tm6 Γ (arr6 A B)) (app : (Γ : _) (A B : _) → Tm6 Γ (arr6 A B) → Tm6 Γ A → Tm6 Γ B) → Tm6 Γ A var6 : ∀{Γ A} → Var6 Γ A → Tm6 Γ A;var6 = λ x Tm6 var6 lam app → var6 _ _ x lam6 : ∀{Γ A B} → Tm6 (snoc6 Γ A) B → Tm6 Γ (arr6 A B);lam6 = λ t Tm6 var6 lam6 app → lam6 _ _ _ (t Tm6 var6 lam6 app) app6 : ∀{Γ A B} → Tm6 Γ (arr6 A B) → Tm6 Γ A → Tm6 Γ B;app6 = λ t u Tm6 var6 lam6 app6 → app6 _ _ _ (t Tm6 var6 lam6 app6) (u Tm6 var6 lam6 app6) v06 : ∀{Γ A} → Tm6 (snoc6 Γ A) A;v06 = var6 vz6 v16 : ∀{Γ A B} → Tm6 (snoc6 (snoc6 Γ A) B) A;v16 = var6 (vs6 vz6) v26 : ∀{Γ A B C} → Tm6 (snoc6 (snoc6 (snoc6 Γ A) B) C) A;v26 = var6 (vs6 (vs6 vz6)) v36 : ∀{Γ A B C D} → Tm6 (snoc6 (snoc6 (snoc6 (snoc6 Γ A) B) C) D) A;v36 = var6 (vs6 (vs6 (vs6 vz6))) v46 : ∀{Γ A B C D E} → Tm6 (snoc6 (snoc6 (snoc6 (snoc6 (snoc6 Γ A) B) C) D) E) A;v46 = var6 (vs6 (vs6 (vs6 (vs6 vz6)))) test6 : ∀{Γ A} → Tm6 Γ (arr6 (arr6 A A) (arr6 A A));test6 = lam6 (lam6 (app6 v16 (app6 v16 (app6 v16 (app6 v16 (app6 v16 (app6 v16 v06))))))) {-# OPTIONS --type-in-type #-} Ty7 : Set; Ty7 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι7 : Ty7; ι7 = λ _ ι7 _ → ι7 arr7 : Ty7 → Ty7 → Ty7; arr7 = λ A B Ty7 ι7 arr7 → arr7 (A Ty7 ι7 arr7) (B Ty7 ι7 arr7) Con7 : Set;Con7 = (Con7 : Set) (nil : Con7) (snoc : Con7 → Ty7 → Con7) → Con7 nil7 : Con7;nil7 = λ Con7 nil7 snoc → nil7 snoc7 : Con7 → Ty7 → Con7;snoc7 = λ Γ A Con7 nil7 snoc7 → snoc7 (Γ Con7 nil7 snoc7) A Var7 : Con7 → Ty7 → Set;Var7 = λ Γ A → (Var7 : Con7 → Ty7 → Set) (vz : (Γ : _)(A : _) → Var7 (snoc7 Γ A) A) (vs : (Γ : _)(B A : _) → Var7 Γ A → Var7 (snoc7 Γ B) A) → Var7 Γ A vz7 : ∀{Γ A} → Var7 (snoc7 Γ A) A;vz7 = λ Var7 vz7 vs → vz7 _ _ vs7 : ∀{Γ B A} → Var7 Γ A → Var7 (snoc7 Γ B) A;vs7 = λ x Var7 vz7 vs7 → vs7 _ _ _ (x Var7 vz7 vs7) Tm7 : Con7 → Ty7 → Set;Tm7 = λ Γ A → (Tm7 : Con7 → Ty7 → Set) (var : (Γ : _) (A : _) → Var7 Γ A → Tm7 Γ A) (lam : (Γ : _) (A B : _) → Tm7 (snoc7 Γ A) B → Tm7 Γ (arr7 A B)) (app : (Γ : _) (A B : _) → Tm7 Γ (arr7 A B) → Tm7 Γ A → Tm7 Γ B) → Tm7 Γ A var7 : ∀{Γ A} → Var7 Γ A → Tm7 Γ A;var7 = λ x Tm7 var7 lam app → var7 _ _ x lam7 : ∀{Γ A B} → Tm7 (snoc7 Γ A) B → Tm7 Γ (arr7 A B);lam7 = λ t Tm7 var7 lam7 app → lam7 _ _ _ (t Tm7 var7 lam7 app) app7 : ∀{Γ A B} → Tm7 Γ (arr7 A B) → Tm7 Γ A → Tm7 Γ B;app7 = λ t u Tm7 var7 lam7 app7 → app7 _ _ _ (t Tm7 var7 lam7 app7) (u Tm7 var7 lam7 app7) v07 : ∀{Γ A} → Tm7 (snoc7 Γ A) A;v07 = var7 vz7 v17 : ∀{Γ A B} → Tm7 (snoc7 (snoc7 Γ A) B) A;v17 = var7 (vs7 vz7) v27 : ∀{Γ A B C} → Tm7 (snoc7 (snoc7 (snoc7 Γ A) B) C) A;v27 = var7 (vs7 (vs7 vz7)) v37 : ∀{Γ A B C D} → Tm7 (snoc7 (snoc7 (snoc7 (snoc7 Γ A) B) C) D) A;v37 = var7 (vs7 (vs7 (vs7 vz7))) v47 : ∀{Γ A B C D E} → Tm7 (snoc7 (snoc7 (snoc7 (snoc7 (snoc7 Γ A) B) C) D) E) A;v47 = var7 (vs7 (vs7 (vs7 (vs7 vz7)))) test7 : ∀{Γ A} → Tm7 Γ (arr7 (arr7 A A) (arr7 A A));test7 = lam7 (lam7 (app7 v17 (app7 v17 (app7 v17 (app7 v17 (app7 v17 (app7 v17 v07))))))) {-# OPTIONS --type-in-type #-} Ty8 : Set; Ty8 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι8 : Ty8; ι8 = λ _ ι8 _ → ι8 arr8 : Ty8 → Ty8 → Ty8; arr8 = λ A B Ty8 ι8 arr8 → arr8 (A Ty8 ι8 arr8) (B Ty8 ι8 arr8) Con8 : Set;Con8 = (Con8 : Set) (nil : Con8) (snoc : Con8 → Ty8 → Con8) → Con8 nil8 : Con8;nil8 = λ Con8 nil8 snoc → nil8 snoc8 : Con8 → Ty8 → Con8;snoc8 = λ Γ A Con8 nil8 snoc8 → snoc8 (Γ Con8 nil8 snoc8) A Var8 : Con8 → Ty8 → Set;Var8 = λ Γ A → (Var8 : Con8 → Ty8 → Set) (vz : (Γ : _)(A : _) → Var8 (snoc8 Γ A) A) (vs : (Γ : _)(B A : _) → Var8 Γ A → Var8 (snoc8 Γ B) A) → Var8 Γ A vz8 : ∀{Γ A} → Var8 (snoc8 Γ A) A;vz8 = λ Var8 vz8 vs → vz8 _ _ vs8 : ∀{Γ B A} → Var8 Γ A → Var8 (snoc8 Γ B) A;vs8 = λ x Var8 vz8 vs8 → vs8 _ _ _ (x Var8 vz8 vs8) Tm8 : Con8 → Ty8 → Set;Tm8 = λ Γ A → (Tm8 : Con8 → Ty8 → Set) (var : (Γ : _) (A : _) → Var8 Γ A → Tm8 Γ A) (lam : (Γ : _) (A B : _) → Tm8 (snoc8 Γ A) B → Tm8 Γ (arr8 A B)) (app : (Γ : _) (A B : _) → Tm8 Γ (arr8 A B) → Tm8 Γ A → Tm8 Γ B) → Tm8 Γ A var8 : ∀{Γ A} → Var8 Γ A → Tm8 Γ A;var8 = λ x Tm8 var8 lam app → var8 _ _ x lam8 : ∀{Γ A B} → Tm8 (snoc8 Γ A) B → Tm8 Γ (arr8 A B);lam8 = λ t Tm8 var8 lam8 app → lam8 _ _ _ (t Tm8 var8 lam8 app) app8 : ∀{Γ A B} → Tm8 Γ (arr8 A B) → Tm8 Γ A → Tm8 Γ B;app8 = λ t u Tm8 var8 lam8 app8 → app8 _ _ _ (t Tm8 var8 lam8 app8) (u Tm8 var8 lam8 app8) v08 : ∀{Γ A} → Tm8 (snoc8 Γ A) A;v08 = var8 vz8 v18 : ∀{Γ A B} → Tm8 (snoc8 (snoc8 Γ A) B) A;v18 = var8 (vs8 vz8) v28 : ∀{Γ A B C} → Tm8 (snoc8 (snoc8 (snoc8 Γ A) B) C) A;v28 = var8 (vs8 (vs8 vz8)) v38 : ∀{Γ A B C D} → Tm8 (snoc8 (snoc8 (snoc8 (snoc8 Γ A) B) C) D) A;v38 = var8 (vs8 (vs8 (vs8 vz8))) v48 : ∀{Γ A B C D E} → Tm8 (snoc8 (snoc8 (snoc8 (snoc8 (snoc8 Γ A) B) C) D) E) A;v48 = var8 (vs8 (vs8 (vs8 (vs8 vz8)))) test8 : ∀{Γ A} → Tm8 Γ (arr8 (arr8 A A) (arr8 A A));test8 = lam8 (lam8 (app8 v18 (app8 v18 (app8 v18 (app8 v18 (app8 v18 (app8 v18 v08))))))) {-# OPTIONS --type-in-type #-} Ty9 : Set; Ty9 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι9 : Ty9; ι9 = λ _ ι9 _ → ι9 arr9 : Ty9 → Ty9 → Ty9; arr9 = λ A B Ty9 ι9 arr9 → arr9 (A Ty9 ι9 arr9) (B Ty9 ι9 arr9) Con9 : Set;Con9 = (Con9 : Set) (nil : Con9) (snoc : Con9 → Ty9 → Con9) → Con9 nil9 : Con9;nil9 = λ Con9 nil9 snoc → nil9 snoc9 : Con9 → Ty9 → Con9;snoc9 = λ Γ A Con9 nil9 snoc9 → snoc9 (Γ Con9 nil9 snoc9) A Var9 : Con9 → Ty9 → Set;Var9 = λ Γ A → (Var9 : Con9 → Ty9 → Set) (vz : (Γ : _)(A : _) → Var9 (snoc9 Γ A) A) (vs : (Γ : _)(B A : _) → Var9 Γ A → Var9 (snoc9 Γ B) A) → Var9 Γ A vz9 : ∀{Γ A} → Var9 (snoc9 Γ A) A;vz9 = λ Var9 vz9 vs → vz9 _ _ vs9 : ∀{Γ B A} → Var9 Γ A → Var9 (snoc9 Γ B) A;vs9 = λ x Var9 vz9 vs9 → vs9 _ _ _ (x Var9 vz9 vs9) Tm9 : Con9 → Ty9 → Set;Tm9 = λ Γ A → (Tm9 : Con9 → Ty9 → Set) (var : (Γ : _) (A : _) → Var9 Γ A → Tm9 Γ A) (lam : (Γ : _) (A B : _) → Tm9 (snoc9 Γ A) B → Tm9 Γ (arr9 A B)) (app : (Γ : _) (A B : _) → Tm9 Γ (arr9 A B) → Tm9 Γ A → Tm9 Γ B) → Tm9 Γ A var9 : ∀{Γ A} → Var9 Γ A → Tm9 Γ A;var9 = λ x Tm9 var9 lam app → var9 _ _ x lam9 : ∀{Γ A B} → Tm9 (snoc9 Γ A) B → Tm9 Γ (arr9 A B);lam9 = λ t Tm9 var9 lam9 app → lam9 _ _ _ (t Tm9 var9 lam9 app) app9 : ∀{Γ A B} → Tm9 Γ (arr9 A B) → Tm9 Γ A → Tm9 Γ B;app9 = λ t u Tm9 var9 lam9 app9 → app9 _ _ _ (t Tm9 var9 lam9 app9) (u Tm9 var9 lam9 app9) v09 : ∀{Γ A} → Tm9 (snoc9 Γ A) A;v09 = var9 vz9 v19 : ∀{Γ A B} → Tm9 (snoc9 (snoc9 Γ A) B) A;v19 = var9 (vs9 vz9) v29 : ∀{Γ A B C} → Tm9 (snoc9 (snoc9 (snoc9 Γ A) B) C) A;v29 = var9 (vs9 (vs9 vz9)) v39 : ∀{Γ A B C D} → Tm9 (snoc9 (snoc9 (snoc9 (snoc9 Γ A) B) C) D) A;v39 = var9 (vs9 (vs9 (vs9 vz9))) v49 : ∀{Γ A B C D E} → Tm9 (snoc9 (snoc9 (snoc9 (snoc9 (snoc9 Γ A) B) C) D) E) A;v49 = var9 (vs9 (vs9 (vs9 (vs9 vz9)))) test9 : ∀{Γ A} → Tm9 Γ (arr9 (arr9 A A) (arr9 A A));test9 = lam9 (lam9 (app9 v19 (app9 v19 (app9 v19 (app9 v19 (app9 v19 (app9 v19 v09))))))) {-# OPTIONS --type-in-type #-} Ty10 : Set; Ty10 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι10 : Ty10; ι10 = λ _ ι10 _ → ι10 arr10 : Ty10 → Ty10 → Ty10; arr10 = λ A B Ty10 ι10 arr10 → arr10 (A Ty10 ι10 arr10) (B Ty10 ι10 arr10) Con10 : Set;Con10 = (Con10 : Set) (nil : Con10) (snoc : Con10 → Ty10 → Con10) → Con10 nil10 : Con10;nil10 = λ Con10 nil10 snoc → nil10 snoc10 : Con10 → Ty10 → Con10;snoc10 = λ Γ A Con10 nil10 snoc10 → snoc10 (Γ Con10 nil10 snoc10) A Var10 : Con10 → Ty10 → Set;Var10 = λ Γ A → (Var10 : Con10 → Ty10 → Set) (vz : (Γ : _)(A : _) → Var10 (snoc10 Γ A) A) (vs : (Γ : _)(B A : _) → Var10 Γ A → Var10 (snoc10 Γ B) A) → Var10 Γ A vz10 : ∀{Γ A} → Var10 (snoc10 Γ A) A;vz10 = λ Var10 vz10 vs → vz10 _ _ vs10 : ∀{Γ B A} → Var10 Γ A → Var10 (snoc10 Γ B) A;vs10 = λ x Var10 vz10 vs10 → vs10 _ _ _ (x Var10 vz10 vs10) Tm10 : Con10 → Ty10 → Set;Tm10 = λ Γ A → (Tm10 : Con10 → Ty10 → Set) (var : (Γ : _) (A : _) → Var10 Γ A → Tm10 Γ A) (lam : (Γ : _) (A B : _) → Tm10 (snoc10 Γ A) B → Tm10 Γ (arr10 A B)) (app : (Γ : _) (A B : _) → Tm10 Γ (arr10 A B) → Tm10 Γ A → Tm10 Γ B) → Tm10 Γ A var10 : ∀{Γ A} → Var10 Γ A → Tm10 Γ A;var10 = λ x Tm10 var10 lam app → var10 _ _ x lam10 : ∀{Γ A B} → Tm10 (snoc10 Γ A) B → Tm10 Γ (arr10 A B);lam10 = λ t Tm10 var10 lam10 app → lam10 _ _ _ (t Tm10 var10 lam10 app) app10 : ∀{Γ A B} → Tm10 Γ (arr10 A B) → Tm10 Γ A → Tm10 Γ B;app10 = λ t u Tm10 var10 lam10 app10 → app10 _ _ _ (t Tm10 var10 lam10 app10) (u Tm10 var10 lam10 app10) v010 : ∀{Γ A} → Tm10 (snoc10 Γ A) A;v010 = var10 vz10 v110 : ∀{Γ A B} → Tm10 (snoc10 (snoc10 Γ A) B) A;v110 = var10 (vs10 vz10) v210 : ∀{Γ A B C} → Tm10 (snoc10 (snoc10 (snoc10 Γ A) B) C) A;v210 = var10 (vs10 (vs10 vz10)) v310 : ∀{Γ A B C D} → Tm10 (snoc10 (snoc10 (snoc10 (snoc10 Γ A) B) C) D) A;v310 = var10 (vs10 (vs10 (vs10 vz10))) v410 : ∀{Γ A B C D E} → Tm10 (snoc10 (snoc10 (snoc10 (snoc10 (snoc10 Γ A) B) C) D) E) A;v410 = var10 (vs10 (vs10 (vs10 (vs10 vz10)))) test10 : ∀{Γ A} → Tm10 Γ (arr10 (arr10 A A) (arr10 A A));test10 = lam10 (lam10 (app10 v110 (app10 v110 (app10 v110 (app10 v110 (app10 v110 (app10 v110 v010))))))) {-# OPTIONS --type-in-type #-} Ty11 : Set; Ty11 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι11 : Ty11; ι11 = λ _ ι11 _ → ι11 arr11 : Ty11 → Ty11 → Ty11; arr11 = λ A B Ty11 ι11 arr11 → arr11 (A Ty11 ι11 arr11) (B Ty11 ι11 arr11) Con11 : Set;Con11 = (Con11 : Set) (nil : Con11) (snoc : Con11 → Ty11 → Con11) → Con11 nil11 : Con11;nil11 = λ Con11 nil11 snoc → nil11 snoc11 : Con11 → Ty11 → Con11;snoc11 = λ Γ A Con11 nil11 snoc11 → snoc11 (Γ Con11 nil11 snoc11) A Var11 : Con11 → Ty11 → Set;Var11 = λ Γ A → (Var11 : Con11 → Ty11 → Set) (vz : (Γ : _)(A : _) → Var11 (snoc11 Γ A) A) (vs : (Γ : _)(B A : _) → Var11 Γ A → Var11 (snoc11 Γ B) A) → Var11 Γ A vz11 : ∀{Γ A} → Var11 (snoc11 Γ A) A;vz11 = λ Var11 vz11 vs → vz11 _ _ vs11 : ∀{Γ B A} → Var11 Γ A → Var11 (snoc11 Γ B) A;vs11 = λ x Var11 vz11 vs11 → vs11 _ _ _ (x Var11 vz11 vs11) Tm11 : Con11 → Ty11 → Set;Tm11 = λ Γ A → (Tm11 : Con11 → Ty11 → Set) (var : (Γ : _) (A : _) → Var11 Γ A → Tm11 Γ A) (lam : (Γ : _) (A B : _) → Tm11 (snoc11 Γ A) B → Tm11 Γ (arr11 A B)) (app : (Γ : _) (A B : _) → Tm11 Γ (arr11 A B) → Tm11 Γ A → Tm11 Γ B) → Tm11 Γ A var11 : ∀{Γ A} → Var11 Γ A → Tm11 Γ A;var11 = λ x Tm11 var11 lam app → var11 _ _ x lam11 : ∀{Γ A B} → Tm11 (snoc11 Γ A) B → Tm11 Γ (arr11 A B);lam11 = λ t Tm11 var11 lam11 app → lam11 _ _ _ (t Tm11 var11 lam11 app) app11 : ∀{Γ A B} → Tm11 Γ (arr11 A B) → Tm11 Γ A → Tm11 Γ B;app11 = λ t u Tm11 var11 lam11 app11 → app11 _ _ _ (t Tm11 var11 lam11 app11) (u Tm11 var11 lam11 app11) v011 : ∀{Γ A} → Tm11 (snoc11 Γ A) A;v011 = var11 vz11 v111 : ∀{Γ A B} → Tm11 (snoc11 (snoc11 Γ A) B) A;v111 = var11 (vs11 vz11) v211 : ∀{Γ A B C} → Tm11 (snoc11 (snoc11 (snoc11 Γ A) B) C) A;v211 = var11 (vs11 (vs11 vz11)) v311 : ∀{Γ A B C D} → Tm11 (snoc11 (snoc11 (snoc11 (snoc11 Γ A) B) C) D) A;v311 = var11 (vs11 (vs11 (vs11 vz11))) v411 : ∀{Γ A B C D E} → Tm11 (snoc11 (snoc11 (snoc11 (snoc11 (snoc11 Γ A) B) C) D) E) A;v411 = var11 (vs11 (vs11 (vs11 (vs11 vz11)))) test11 : ∀{Γ A} → Tm11 Γ (arr11 (arr11 A A) (arr11 A A));test11 = lam11 (lam11 (app11 v111 (app11 v111 (app11 v111 (app11 v111 (app11 v111 (app11 v111 v011))))))) {-# OPTIONS --type-in-type #-} Ty12 : Set; Ty12 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι12 : Ty12; ι12 = λ _ ι12 _ → ι12 arr12 : Ty12 → Ty12 → Ty12; arr12 = λ A B Ty12 ι12 arr12 → arr12 (A Ty12 ι12 arr12) (B Ty12 ι12 arr12) Con12 : Set;Con12 = (Con12 : Set) (nil : Con12) (snoc : Con12 → Ty12 → Con12) → Con12 nil12 : Con12;nil12 = λ Con12 nil12 snoc → nil12 snoc12 : Con12 → Ty12 → Con12;snoc12 = λ Γ A Con12 nil12 snoc12 → snoc12 (Γ Con12 nil12 snoc12) A Var12 : Con12 → Ty12 → Set;Var12 = λ Γ A → (Var12 : Con12 → Ty12 → Set) (vz : (Γ : _)(A : _) → Var12 (snoc12 Γ A) A) (vs : (Γ : _)(B A : _) → Var12 Γ A → Var12 (snoc12 Γ B) A) → Var12 Γ A vz12 : ∀{Γ A} → Var12 (snoc12 Γ A) A;vz12 = λ Var12 vz12 vs → vz12 _ _ vs12 : ∀{Γ B A} → Var12 Γ A → Var12 (snoc12 Γ B) A;vs12 = λ x Var12 vz12 vs12 → vs12 _ _ _ (x Var12 vz12 vs12) Tm12 : Con12 → Ty12 → Set;Tm12 = λ Γ A → (Tm12 : Con12 → Ty12 → Set) (var : (Γ : _) (A : _) → Var12 Γ A → Tm12 Γ A) (lam : (Γ : _) (A B : _) → Tm12 (snoc12 Γ A) B → Tm12 Γ (arr12 A B)) (app : (Γ : _) (A B : _) → Tm12 Γ (arr12 A B) → Tm12 Γ A → Tm12 Γ B) → Tm12 Γ A var12 : ∀{Γ A} → Var12 Γ A → Tm12 Γ A;var12 = λ x Tm12 var12 lam app → var12 _ _ x lam12 : ∀{Γ A B} → Tm12 (snoc12 Γ A) B → Tm12 Γ (arr12 A B);lam12 = λ t Tm12 var12 lam12 app → lam12 _ _ _ (t Tm12 var12 lam12 app) app12 : ∀{Γ A B} → Tm12 Γ (arr12 A B) → Tm12 Γ A → Tm12 Γ B;app12 = λ t u Tm12 var12 lam12 app12 → app12 _ _ _ (t Tm12 var12 lam12 app12) (u Tm12 var12 lam12 app12) v012 : ∀{Γ A} → Tm12 (snoc12 Γ A) A;v012 = var12 vz12 v112 : ∀{Γ A B} → Tm12 (snoc12 (snoc12 Γ A) B) A;v112 = var12 (vs12 vz12) v212 : ∀{Γ A B C} → Tm12 (snoc12 (snoc12 (snoc12 Γ A) B) C) A;v212 = var12 (vs12 (vs12 vz12)) v312 : ∀{Γ A B C D} → Tm12 (snoc12 (snoc12 (snoc12 (snoc12 Γ A) B) C) D) A;v312 = var12 (vs12 (vs12 (vs12 vz12))) v412 : ∀{Γ A B C D E} → Tm12 (snoc12 (snoc12 (snoc12 (snoc12 (snoc12 Γ A) B) C) D) E) A;v412 = var12 (vs12 (vs12 (vs12 (vs12 vz12)))) test12 : ∀{Γ A} → Tm12 Γ (arr12 (arr12 A A) (arr12 A A));test12 = lam12 (lam12 (app12 v112 (app12 v112 (app12 v112 (app12 v112 (app12 v112 (app12 v112 v012))))))) {-# OPTIONS --type-in-type #-} Ty13 : Set; Ty13 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι13 : Ty13; ι13 = λ _ ι13 _ → ι13 arr13 : Ty13 → Ty13 → Ty13; arr13 = λ A B Ty13 ι13 arr13 → arr13 (A Ty13 ι13 arr13) (B Ty13 ι13 arr13) Con13 : Set;Con13 = (Con13 : Set) (nil : Con13) (snoc : Con13 → Ty13 → Con13) → Con13 nil13 : Con13;nil13 = λ Con13 nil13 snoc → nil13 snoc13 : Con13 → Ty13 → Con13;snoc13 = λ Γ A Con13 nil13 snoc13 → snoc13 (Γ Con13 nil13 snoc13) A Var13 : Con13 → Ty13 → Set;Var13 = λ Γ A → (Var13 : Con13 → Ty13 → Set) (vz : (Γ : _)(A : _) → Var13 (snoc13 Γ A) A) (vs : (Γ : _)(B A : _) → Var13 Γ A → Var13 (snoc13 Γ B) A) → Var13 Γ A vz13 : ∀{Γ A} → Var13 (snoc13 Γ A) A;vz13 = λ Var13 vz13 vs → vz13 _ _ vs13 : ∀{Γ B A} → Var13 Γ A → Var13 (snoc13 Γ B) A;vs13 = λ x Var13 vz13 vs13 → vs13 _ _ _ (x Var13 vz13 vs13) Tm13 : Con13 → Ty13 → Set;Tm13 = λ Γ A → (Tm13 : Con13 → Ty13 → Set) (var : (Γ : _) (A : _) → Var13 Γ A → Tm13 Γ A) (lam : (Γ : _) (A B : _) → Tm13 (snoc13 Γ A) B → Tm13 Γ (arr13 A B)) (app : (Γ : _) (A B : _) → Tm13 Γ (arr13 A B) → Tm13 Γ A → Tm13 Γ B) → Tm13 Γ A var13 : ∀{Γ A} → Var13 Γ A → Tm13 Γ A;var13 = λ x Tm13 var13 lam app → var13 _ _ x lam13 : ∀{Γ A B} → Tm13 (snoc13 Γ A) B → Tm13 Γ (arr13 A B);lam13 = λ t Tm13 var13 lam13 app → lam13 _ _ _ (t Tm13 var13 lam13 app) app13 : ∀{Γ A B} → Tm13 Γ (arr13 A B) → Tm13 Γ A → Tm13 Γ B;app13 = λ t u Tm13 var13 lam13 app13 → app13 _ _ _ (t Tm13 var13 lam13 app13) (u Tm13 var13 lam13 app13) v013 : ∀{Γ A} → Tm13 (snoc13 Γ A) A;v013 = var13 vz13 v113 : ∀{Γ A B} → Tm13 (snoc13 (snoc13 Γ A) B) A;v113 = var13 (vs13 vz13) v213 : ∀{Γ A B C} → Tm13 (snoc13 (snoc13 (snoc13 Γ A) B) C) A;v213 = var13 (vs13 (vs13 vz13)) v313 : ∀{Γ A B C D} → Tm13 (snoc13 (snoc13 (snoc13 (snoc13 Γ A) B) C) D) A;v313 = var13 (vs13 (vs13 (vs13 vz13))) v413 : ∀{Γ A B C D E} → Tm13 (snoc13 (snoc13 (snoc13 (snoc13 (snoc13 Γ A) B) C) D) E) A;v413 = var13 (vs13 (vs13 (vs13 (vs13 vz13)))) test13 : ∀{Γ A} → Tm13 Γ (arr13 (arr13 A A) (arr13 A A));test13 = lam13 (lam13 (app13 v113 (app13 v113 (app13 v113 (app13 v113 (app13 v113 (app13 v113 v013))))))) {-# OPTIONS --type-in-type #-} Ty14 : Set; Ty14 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι14 : Ty14; ι14 = λ _ ι14 _ → ι14 arr14 : Ty14 → Ty14 → Ty14; arr14 = λ A B Ty14 ι14 arr14 → arr14 (A Ty14 ι14 arr14) (B Ty14 ι14 arr14) Con14 : Set;Con14 = (Con14 : Set) (nil : Con14) (snoc : Con14 → Ty14 → Con14) → Con14 nil14 : Con14;nil14 = λ Con14 nil14 snoc → nil14 snoc14 : Con14 → Ty14 → Con14;snoc14 = λ Γ A Con14 nil14 snoc14 → snoc14 (Γ Con14 nil14 snoc14) A Var14 : Con14 → Ty14 → Set;Var14 = λ Γ A → (Var14 : Con14 → Ty14 → Set) (vz : (Γ : _)(A : _) → Var14 (snoc14 Γ A) A) (vs : (Γ : _)(B A : _) → Var14 Γ A → Var14 (snoc14 Γ B) A) → Var14 Γ A vz14 : ∀{Γ A} → Var14 (snoc14 Γ A) A;vz14 = λ Var14 vz14 vs → vz14 _ _ vs14 : ∀{Γ B A} → Var14 Γ A → Var14 (snoc14 Γ B) A;vs14 = λ x Var14 vz14 vs14 → vs14 _ _ _ (x Var14 vz14 vs14) Tm14 : Con14 → Ty14 → Set;Tm14 = λ Γ A → (Tm14 : Con14 → Ty14 → Set) (var : (Γ : _) (A : _) → Var14 Γ A → Tm14 Γ A) (lam : (Γ : _) (A B : _) → Tm14 (snoc14 Γ A) B → Tm14 Γ (arr14 A B)) (app : (Γ : _) (A B : _) → Tm14 Γ (arr14 A B) → Tm14 Γ A → Tm14 Γ B) → Tm14 Γ A var14 : ∀{Γ A} → Var14 Γ A → Tm14 Γ A;var14 = λ x Tm14 var14 lam app → var14 _ _ x lam14 : ∀{Γ A B} → Tm14 (snoc14 Γ A) B → Tm14 Γ (arr14 A B);lam14 = λ t Tm14 var14 lam14 app → lam14 _ _ _ (t Tm14 var14 lam14 app) app14 : ∀{Γ A B} → Tm14 Γ (arr14 A B) → Tm14 Γ A → Tm14 Γ B;app14 = λ t u Tm14 var14 lam14 app14 → app14 _ _ _ (t Tm14 var14 lam14 app14) (u Tm14 var14 lam14 app14) v014 : ∀{Γ A} → Tm14 (snoc14 Γ A) A;v014 = var14 vz14 v114 : ∀{Γ A B} → Tm14 (snoc14 (snoc14 Γ A) B) A;v114 = var14 (vs14 vz14) v214 : ∀{Γ A B C} → Tm14 (snoc14 (snoc14 (snoc14 Γ A) B) C) A;v214 = var14 (vs14 (vs14 vz14)) v314 : ∀{Γ A B C D} → Tm14 (snoc14 (snoc14 (snoc14 (snoc14 Γ A) B) C) D) A;v314 = var14 (vs14 (vs14 (vs14 vz14))) v414 : ∀{Γ A B C D E} → Tm14 (snoc14 (snoc14 (snoc14 (snoc14 (snoc14 Γ A) B) C) D) E) A;v414 = var14 (vs14 (vs14 (vs14 (vs14 vz14)))) test14 : ∀{Γ A} → Tm14 Γ (arr14 (arr14 A A) (arr14 A A));test14 = lam14 (lam14 (app14 v114 (app14 v114 (app14 v114 (app14 v114 (app14 v114 (app14 v114 v014))))))) {-# OPTIONS --type-in-type #-} Ty15 : Set; Ty15 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι15 : Ty15; ι15 = λ _ ι15 _ → ι15 arr15 : Ty15 → Ty15 → Ty15; arr15 = λ A B Ty15 ι15 arr15 → arr15 (A Ty15 ι15 arr15) (B Ty15 ι15 arr15) Con15 : Set;Con15 = (Con15 : Set) (nil : Con15) (snoc : Con15 → Ty15 → Con15) → Con15 nil15 : Con15;nil15 = λ Con15 nil15 snoc → nil15 snoc15 : Con15 → Ty15 → Con15;snoc15 = λ Γ A Con15 nil15 snoc15 → snoc15 (Γ Con15 nil15 snoc15) A Var15 : Con15 → Ty15 → Set;Var15 = λ Γ A → (Var15 : Con15 → Ty15 → Set) (vz : (Γ : _)(A : _) → Var15 (snoc15 Γ A) A) (vs : (Γ : _)(B A : _) → Var15 Γ A → Var15 (snoc15 Γ B) A) → Var15 Γ A vz15 : ∀{Γ A} → Var15 (snoc15 Γ A) A;vz15 = λ Var15 vz15 vs → vz15 _ _ vs15 : ∀{Γ B A} → Var15 Γ A → Var15 (snoc15 Γ B) A;vs15 = λ x Var15 vz15 vs15 → vs15 _ _ _ (x Var15 vz15 vs15) Tm15 : Con15 → Ty15 → Set;Tm15 = λ Γ A → (Tm15 : Con15 → Ty15 → Set) (var : (Γ : _) (A : _) → Var15 Γ A → Tm15 Γ A) (lam : (Γ : _) (A B : _) → Tm15 (snoc15 Γ A) B → Tm15 Γ (arr15 A B)) (app : (Γ : _) (A B : _) → Tm15 Γ (arr15 A B) → Tm15 Γ A → Tm15 Γ B) → Tm15 Γ A var15 : ∀{Γ A} → Var15 Γ A → Tm15 Γ A;var15 = λ x Tm15 var15 lam app → var15 _ _ x lam15 : ∀{Γ A B} → Tm15 (snoc15 Γ A) B → Tm15 Γ (arr15 A B);lam15 = λ t Tm15 var15 lam15 app → lam15 _ _ _ (t Tm15 var15 lam15 app) app15 : ∀{Γ A B} → Tm15 Γ (arr15 A B) → Tm15 Γ A → Tm15 Γ B;app15 = λ t u Tm15 var15 lam15 app15 → app15 _ _ _ (t Tm15 var15 lam15 app15) (u Tm15 var15 lam15 app15) v015 : ∀{Γ A} → Tm15 (snoc15 Γ A) A;v015 = var15 vz15 v115 : ∀{Γ A B} → Tm15 (snoc15 (snoc15 Γ A) B) A;v115 = var15 (vs15 vz15) v215 : ∀{Γ A B C} → Tm15 (snoc15 (snoc15 (snoc15 Γ A) B) C) A;v215 = var15 (vs15 (vs15 vz15)) v315 : ∀{Γ A B C D} → Tm15 (snoc15 (snoc15 (snoc15 (snoc15 Γ A) B) C) D) A;v315 = var15 (vs15 (vs15 (vs15 vz15))) v415 : ∀{Γ A B C D E} → Tm15 (snoc15 (snoc15 (snoc15 (snoc15 (snoc15 Γ A) B) C) D) E) A;v415 = var15 (vs15 (vs15 (vs15 (vs15 vz15)))) test15 : ∀{Γ A} → Tm15 Γ (arr15 (arr15 A A) (arr15 A A));test15 = lam15 (lam15 (app15 v115 (app15 v115 (app15 v115 (app15 v115 (app15 v115 (app15 v115 v015))))))) {-# OPTIONS --type-in-type #-} Ty16 : Set; Ty16 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι16 : Ty16; ι16 = λ _ ι16 _ → ι16 arr16 : Ty16 → Ty16 → Ty16; arr16 = λ A B Ty16 ι16 arr16 → arr16 (A Ty16 ι16 arr16) (B Ty16 ι16 arr16) Con16 : Set;Con16 = (Con16 : Set) (nil : Con16) (snoc : Con16 → Ty16 → Con16) → Con16 nil16 : Con16;nil16 = λ Con16 nil16 snoc → nil16 snoc16 : Con16 → Ty16 → Con16;snoc16 = λ Γ A Con16 nil16 snoc16 → snoc16 (Γ Con16 nil16 snoc16) A Var16 : Con16 → Ty16 → Set;Var16 = λ Γ A → (Var16 : Con16 → Ty16 → Set) (vz : (Γ : _)(A : _) → Var16 (snoc16 Γ A) A) (vs : (Γ : _)(B A : _) → Var16 Γ A → Var16 (snoc16 Γ B) A) → Var16 Γ A vz16 : ∀{Γ A} → Var16 (snoc16 Γ A) A;vz16 = λ Var16 vz16 vs → vz16 _ _ vs16 : ∀{Γ B A} → Var16 Γ A → Var16 (snoc16 Γ B) A;vs16 = λ x Var16 vz16 vs16 → vs16 _ _ _ (x Var16 vz16 vs16) Tm16 : Con16 → Ty16 → Set;Tm16 = λ Γ A → (Tm16 : Con16 → Ty16 → Set) (var : (Γ : _) (A : _) → Var16 Γ A → Tm16 Γ A) (lam : (Γ : _) (A B : _) → Tm16 (snoc16 Γ A) B → Tm16 Γ (arr16 A B)) (app : (Γ : _) (A B : _) → Tm16 Γ (arr16 A B) → Tm16 Γ A → Tm16 Γ B) → Tm16 Γ A var16 : ∀{Γ A} → Var16 Γ A → Tm16 Γ A;var16 = λ x Tm16 var16 lam app → var16 _ _ x lam16 : ∀{Γ A B} → Tm16 (snoc16 Γ A) B → Tm16 Γ (arr16 A B);lam16 = λ t Tm16 var16 lam16 app → lam16 _ _ _ (t Tm16 var16 lam16 app) app16 : ∀{Γ A B} → Tm16 Γ (arr16 A B) → Tm16 Γ A → Tm16 Γ B;app16 = λ t u Tm16 var16 lam16 app16 → app16 _ _ _ (t Tm16 var16 lam16 app16) (u Tm16 var16 lam16 app16) v016 : ∀{Γ A} → Tm16 (snoc16 Γ A) A;v016 = var16 vz16 v116 : ∀{Γ A B} → Tm16 (snoc16 (snoc16 Γ A) B) A;v116 = var16 (vs16 vz16) v216 : ∀{Γ A B C} → Tm16 (snoc16 (snoc16 (snoc16 Γ A) B) C) A;v216 = var16 (vs16 (vs16 vz16)) v316 : ∀{Γ A B C D} → Tm16 (snoc16 (snoc16 (snoc16 (snoc16 Γ A) B) C) D) A;v316 = var16 (vs16 (vs16 (vs16 vz16))) v416 : ∀{Γ A B C D E} → Tm16 (snoc16 (snoc16 (snoc16 (snoc16 (snoc16 Γ A) B) C) D) E) A;v416 = var16 (vs16 (vs16 (vs16 (vs16 vz16)))) test16 : ∀{Γ A} → Tm16 Γ (arr16 (arr16 A A) (arr16 A A));test16 = lam16 (lam16 (app16 v116 (app16 v116 (app16 v116 (app16 v116 (app16 v116 (app16 v116 v016))))))) {-# OPTIONS --type-in-type #-} Ty17 : Set; Ty17 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι17 : Ty17; ι17 = λ _ ι17 _ → ι17 arr17 : Ty17 → Ty17 → Ty17; arr17 = λ A B Ty17 ι17 arr17 → arr17 (A Ty17 ι17 arr17) (B Ty17 ι17 arr17) Con17 : Set;Con17 = (Con17 : Set) (nil : Con17) (snoc : Con17 → Ty17 → Con17) → Con17 nil17 : Con17;nil17 = λ Con17 nil17 snoc → nil17 snoc17 : Con17 → Ty17 → Con17;snoc17 = λ Γ A Con17 nil17 snoc17 → snoc17 (Γ Con17 nil17 snoc17) A Var17 : Con17 → Ty17 → Set;Var17 = λ Γ A → (Var17 : Con17 → Ty17 → Set) (vz : (Γ : _)(A : _) → Var17 (snoc17 Γ A) A) (vs : (Γ : _)(B A : _) → Var17 Γ A → Var17 (snoc17 Γ B) A) → Var17 Γ A vz17 : ∀{Γ A} → Var17 (snoc17 Γ A) A;vz17 = λ Var17 vz17 vs → vz17 _ _ vs17 : ∀{Γ B A} → Var17 Γ A → Var17 (snoc17 Γ B) A;vs17 = λ x Var17 vz17 vs17 → vs17 _ _ _ (x Var17 vz17 vs17) Tm17 : Con17 → Ty17 → Set;Tm17 = λ Γ A → (Tm17 : Con17 → Ty17 → Set) (var : (Γ : _) (A : _) → Var17 Γ A → Tm17 Γ A) (lam : (Γ : _) (A B : _) → Tm17 (snoc17 Γ A) B → Tm17 Γ (arr17 A B)) (app : (Γ : _) (A B : _) → Tm17 Γ (arr17 A B) → Tm17 Γ A → Tm17 Γ B) → Tm17 Γ A var17 : ∀{Γ A} → Var17 Γ A → Tm17 Γ A;var17 = λ x Tm17 var17 lam app → var17 _ _ x lam17 : ∀{Γ A B} → Tm17 (snoc17 Γ A) B → Tm17 Γ (arr17 A B);lam17 = λ t Tm17 var17 lam17 app → lam17 _ _ _ (t Tm17 var17 lam17 app) app17 : ∀{Γ A B} → Tm17 Γ (arr17 A B) → Tm17 Γ A → Tm17 Γ B;app17 = λ t u Tm17 var17 lam17 app17 → app17 _ _ _ (t Tm17 var17 lam17 app17) (u Tm17 var17 lam17 app17) v017 : ∀{Γ A} → Tm17 (snoc17 Γ A) A;v017 = var17 vz17 v117 : ∀{Γ A B} → Tm17 (snoc17 (snoc17 Γ A) B) A;v117 = var17 (vs17 vz17) v217 : ∀{Γ A B C} → Tm17 (snoc17 (snoc17 (snoc17 Γ A) B) C) A;v217 = var17 (vs17 (vs17 vz17)) v317 : ∀{Γ A B C D} → Tm17 (snoc17 (snoc17 (snoc17 (snoc17 Γ A) B) C) D) A;v317 = var17 (vs17 (vs17 (vs17 vz17))) v417 : ∀{Γ A B C D E} → Tm17 (snoc17 (snoc17 (snoc17 (snoc17 (snoc17 Γ A) B) C) D) E) A;v417 = var17 (vs17 (vs17 (vs17 (vs17 vz17)))) test17 : ∀{Γ A} → Tm17 Γ (arr17 (arr17 A A) (arr17 A A));test17 = lam17 (lam17 (app17 v117 (app17 v117 (app17 v117 (app17 v117 (app17 v117 (app17 v117 v017))))))) {-# OPTIONS --type-in-type #-} Ty18 : Set; Ty18 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι18 : Ty18; ι18 = λ _ ι18 _ → ι18 arr18 : Ty18 → Ty18 → Ty18; arr18 = λ A B Ty18 ι18 arr18 → arr18 (A Ty18 ι18 arr18) (B Ty18 ι18 arr18) Con18 : Set;Con18 = (Con18 : Set) (nil : Con18) (snoc : Con18 → Ty18 → Con18) → Con18 nil18 : Con18;nil18 = λ Con18 nil18 snoc → nil18 snoc18 : Con18 → Ty18 → Con18;snoc18 = λ Γ A Con18 nil18 snoc18 → snoc18 (Γ Con18 nil18 snoc18) A Var18 : Con18 → Ty18 → Set;Var18 = λ Γ A → (Var18 : Con18 → Ty18 → Set) (vz : (Γ : _)(A : _) → Var18 (snoc18 Γ A) A) (vs : (Γ : _)(B A : _) → Var18 Γ A → Var18 (snoc18 Γ B) A) → Var18 Γ A vz18 : ∀{Γ A} → Var18 (snoc18 Γ A) A;vz18 = λ Var18 vz18 vs → vz18 _ _ vs18 : ∀{Γ B A} → Var18 Γ A → Var18 (snoc18 Γ B) A;vs18 = λ x Var18 vz18 vs18 → vs18 _ _ _ (x Var18 vz18 vs18) Tm18 : Con18 → Ty18 → Set;Tm18 = λ Γ A → (Tm18 : Con18 → Ty18 → Set) (var : (Γ : _) (A : _) → Var18 Γ A → Tm18 Γ A) (lam : (Γ : _) (A B : _) → Tm18 (snoc18 Γ A) B → Tm18 Γ (arr18 A B)) (app : (Γ : _) (A B : _) → Tm18 Γ (arr18 A B) → Tm18 Γ A → Tm18 Γ B) → Tm18 Γ A var18 : ∀{Γ A} → Var18 Γ A → Tm18 Γ A;var18 = λ x Tm18 var18 lam app → var18 _ _ x lam18 : ∀{Γ A B} → Tm18 (snoc18 Γ A) B → Tm18 Γ (arr18 A B);lam18 = λ t Tm18 var18 lam18 app → lam18 _ _ _ (t Tm18 var18 lam18 app) app18 : ∀{Γ A B} → Tm18 Γ (arr18 A B) → Tm18 Γ A → Tm18 Γ B;app18 = λ t u Tm18 var18 lam18 app18 → app18 _ _ _ (t Tm18 var18 lam18 app18) (u Tm18 var18 lam18 app18) v018 : ∀{Γ A} → Tm18 (snoc18 Γ A) A;v018 = var18 vz18 v118 : ∀{Γ A B} → Tm18 (snoc18 (snoc18 Γ A) B) A;v118 = var18 (vs18 vz18) v218 : ∀{Γ A B C} → Tm18 (snoc18 (snoc18 (snoc18 Γ A) B) C) A;v218 = var18 (vs18 (vs18 vz18)) v318 : ∀{Γ A B C D} → Tm18 (snoc18 (snoc18 (snoc18 (snoc18 Γ A) B) C) D) A;v318 = var18 (vs18 (vs18 (vs18 vz18))) v418 : ∀{Γ A B C D E} → Tm18 (snoc18 (snoc18 (snoc18 (snoc18 (snoc18 Γ A) B) C) D) E) A;v418 = var18 (vs18 (vs18 (vs18 (vs18 vz18)))) test18 : ∀{Γ A} → Tm18 Γ (arr18 (arr18 A A) (arr18 A A));test18 = lam18 (lam18 (app18 v118 (app18 v118 (app18 v118 (app18 v118 (app18 v118 (app18 v118 v018))))))) {-# OPTIONS --type-in-type #-} Ty19 : Set; Ty19 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι19 : Ty19; ι19 = λ _ ι19 _ → ι19 arr19 : Ty19 → Ty19 → Ty19; arr19 = λ A B Ty19 ι19 arr19 → arr19 (A Ty19 ι19 arr19) (B Ty19 ι19 arr19) Con19 : Set;Con19 = (Con19 : Set) (nil : Con19) (snoc : Con19 → Ty19 → Con19) → Con19 nil19 : Con19;nil19 = λ Con19 nil19 snoc → nil19 snoc19 : Con19 → Ty19 → Con19;snoc19 = λ Γ A Con19 nil19 snoc19 → snoc19 (Γ Con19 nil19 snoc19) A Var19 : Con19 → Ty19 → Set;Var19 = λ Γ A → (Var19 : Con19 → Ty19 → Set) (vz : (Γ : _)(A : _) → Var19 (snoc19 Γ A) A) (vs : (Γ : _)(B A : _) → Var19 Γ A → Var19 (snoc19 Γ B) A) → Var19 Γ A vz19 : ∀{Γ A} → Var19 (snoc19 Γ A) A;vz19 = λ Var19 vz19 vs → vz19 _ _ vs19 : ∀{Γ B A} → Var19 Γ A → Var19 (snoc19 Γ B) A;vs19 = λ x Var19 vz19 vs19 → vs19 _ _ _ (x Var19 vz19 vs19) Tm19 : Con19 → Ty19 → Set;Tm19 = λ Γ A → (Tm19 : Con19 → Ty19 → Set) (var : (Γ : _) (A : _) → Var19 Γ A → Tm19 Γ A) (lam : (Γ : _) (A B : _) → Tm19 (snoc19 Γ A) B → Tm19 Γ (arr19 A B)) (app : (Γ : _) (A B : _) → Tm19 Γ (arr19 A B) → Tm19 Γ A → Tm19 Γ B) → Tm19 Γ A var19 : ∀{Γ A} → Var19 Γ A → Tm19 Γ A;var19 = λ x Tm19 var19 lam app → var19 _ _ x lam19 : ∀{Γ A B} → Tm19 (snoc19 Γ A) B → Tm19 Γ (arr19 A B);lam19 = λ t Tm19 var19 lam19 app → lam19 _ _ _ (t Tm19 var19 lam19 app) app19 : ∀{Γ A B} → Tm19 Γ (arr19 A B) → Tm19 Γ A → Tm19 Γ B;app19 = λ t u Tm19 var19 lam19 app19 → app19 _ _ _ (t Tm19 var19 lam19 app19) (u Tm19 var19 lam19 app19) v019 : ∀{Γ A} → Tm19 (snoc19 Γ A) A;v019 = var19 vz19 v119 : ∀{Γ A B} → Tm19 (snoc19 (snoc19 Γ A) B) A;v119 = var19 (vs19 vz19) v219 : ∀{Γ A B C} → Tm19 (snoc19 (snoc19 (snoc19 Γ A) B) C) A;v219 = var19 (vs19 (vs19 vz19)) v319 : ∀{Γ A B C D} → Tm19 (snoc19 (snoc19 (snoc19 (snoc19 Γ A) B) C) D) A;v319 = var19 (vs19 (vs19 (vs19 vz19))) v419 : ∀{Γ A B C D E} → Tm19 (snoc19 (snoc19 (snoc19 (snoc19 (snoc19 Γ A) B) C) D) E) A;v419 = var19 (vs19 (vs19 (vs19 (vs19 vz19)))) test19 : ∀{Γ A} → Tm19 Γ (arr19 (arr19 A A) (arr19 A A));test19 = lam19 (lam19 (app19 v119 (app19 v119 (app19 v119 (app19 v119 (app19 v119 (app19 v119 v019))))))) {-# OPTIONS --type-in-type #-} Ty20 : Set; Ty20 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι20 : Ty20; ι20 = λ _ ι20 _ → ι20 arr20 : Ty20 → Ty20 → Ty20; arr20 = λ A B Ty20 ι20 arr20 → arr20 (A Ty20 ι20 arr20) (B Ty20 ι20 arr20) Con20 : Set;Con20 = (Con20 : Set) (nil : Con20) (snoc : Con20 → Ty20 → Con20) → Con20 nil20 : Con20;nil20 = λ Con20 nil20 snoc → nil20 snoc20 : Con20 → Ty20 → Con20;snoc20 = λ Γ A Con20 nil20 snoc20 → snoc20 (Γ Con20 nil20 snoc20) A Var20 : Con20 → Ty20 → Set;Var20 = λ Γ A → (Var20 : Con20 → Ty20 → Set) (vz : (Γ : _)(A : _) → Var20 (snoc20 Γ A) A) (vs : (Γ : _)(B A : _) → Var20 Γ A → Var20 (snoc20 Γ B) A) → Var20 Γ A vz20 : ∀{Γ A} → Var20 (snoc20 Γ A) A;vz20 = λ Var20 vz20 vs → vz20 _ _ vs20 : ∀{Γ B A} → Var20 Γ A → Var20 (snoc20 Γ B) A;vs20 = λ x Var20 vz20 vs20 → vs20 _ _ _ (x Var20 vz20 vs20) Tm20 : Con20 → Ty20 → Set;Tm20 = λ Γ A → (Tm20 : Con20 → Ty20 → Set) (var : (Γ : _) (A : _) → Var20 Γ A → Tm20 Γ A) (lam : (Γ : _) (A B : _) → Tm20 (snoc20 Γ A) B → Tm20 Γ (arr20 A B)) (app : (Γ : _) (A B : _) → Tm20 Γ (arr20 A B) → Tm20 Γ A → Tm20 Γ B) → Tm20 Γ A var20 : ∀{Γ A} → Var20 Γ A → Tm20 Γ A;var20 = λ x Tm20 var20 lam app → var20 _ _ x lam20 : ∀{Γ A B} → Tm20 (snoc20 Γ A) B → Tm20 Γ (arr20 A B);lam20 = λ t Tm20 var20 lam20 app → lam20 _ _ _ (t Tm20 var20 lam20 app) app20 : ∀{Γ A B} → Tm20 Γ (arr20 A B) → Tm20 Γ A → Tm20 Γ B;app20 = λ t u Tm20 var20 lam20 app20 → app20 _ _ _ (t Tm20 var20 lam20 app20) (u Tm20 var20 lam20 app20) v020 : ∀{Γ A} → Tm20 (snoc20 Γ A) A;v020 = var20 vz20 v120 : ∀{Γ A B} → Tm20 (snoc20 (snoc20 Γ A) B) A;v120 = var20 (vs20 vz20) v220 : ∀{Γ A B C} → Tm20 (snoc20 (snoc20 (snoc20 Γ A) B) C) A;v220 = var20 (vs20 (vs20 vz20)) v320 : ∀{Γ A B C D} → Tm20 (snoc20 (snoc20 (snoc20 (snoc20 Γ A) B) C) D) A;v320 = var20 (vs20 (vs20 (vs20 vz20))) v420 : ∀{Γ A B C D E} → Tm20 (snoc20 (snoc20 (snoc20 (snoc20 (snoc20 Γ A) B) C) D) E) A;v420 = var20 (vs20 (vs20 (vs20 (vs20 vz20)))) test20 : ∀{Γ A} → Tm20 Γ (arr20 (arr20 A A) (arr20 A A));test20 = lam20 (lam20 (app20 v120 (app20 v120 (app20 v120 (app20 v120 (app20 v120 (app20 v120 v020))))))) {-# OPTIONS --type-in-type #-} Ty21 : Set; Ty21 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι21 : Ty21; ι21 = λ _ ι21 _ → ι21 arr21 : Ty21 → Ty21 → Ty21; arr21 = λ A B Ty21 ι21 arr21 → arr21 (A Ty21 ι21 arr21) (B Ty21 ι21 arr21) Con21 : Set;Con21 = (Con21 : Set) (nil : Con21) (snoc : Con21 → Ty21 → Con21) → Con21 nil21 : Con21;nil21 = λ Con21 nil21 snoc → nil21 snoc21 : Con21 → Ty21 → Con21;snoc21 = λ Γ A Con21 nil21 snoc21 → snoc21 (Γ Con21 nil21 snoc21) A Var21 : Con21 → Ty21 → Set;Var21 = λ Γ A → (Var21 : Con21 → Ty21 → Set) (vz : (Γ : _)(A : _) → Var21 (snoc21 Γ A) A) (vs : (Γ : _)(B A : _) → Var21 Γ A → Var21 (snoc21 Γ B) A) → Var21 Γ A vz21 : ∀{Γ A} → Var21 (snoc21 Γ A) A;vz21 = λ Var21 vz21 vs → vz21 _ _ vs21 : ∀{Γ B A} → Var21 Γ A → Var21 (snoc21 Γ B) A;vs21 = λ x Var21 vz21 vs21 → vs21 _ _ _ (x Var21 vz21 vs21) Tm21 : Con21 → Ty21 → Set;Tm21 = λ Γ A → (Tm21 : Con21 → Ty21 → Set) (var : (Γ : _) (A : _) → Var21 Γ A → Tm21 Γ A) (lam : (Γ : _) (A B : _) → Tm21 (snoc21 Γ A) B → Tm21 Γ (arr21 A B)) (app : (Γ : _) (A B : _) → Tm21 Γ (arr21 A B) → Tm21 Γ A → Tm21 Γ B) → Tm21 Γ A var21 : ∀{Γ A} → Var21 Γ A → Tm21 Γ A;var21 = λ x Tm21 var21 lam app → var21 _ _ x lam21 : ∀{Γ A B} → Tm21 (snoc21 Γ A) B → Tm21 Γ (arr21 A B);lam21 = λ t Tm21 var21 lam21 app → lam21 _ _ _ (t Tm21 var21 lam21 app) app21 : ∀{Γ A B} → Tm21 Γ (arr21 A B) → Tm21 Γ A → Tm21 Γ B;app21 = λ t u Tm21 var21 lam21 app21 → app21 _ _ _ (t Tm21 var21 lam21 app21) (u Tm21 var21 lam21 app21) v021 : ∀{Γ A} → Tm21 (snoc21 Γ A) A;v021 = var21 vz21 v121 : ∀{Γ A B} → Tm21 (snoc21 (snoc21 Γ A) B) A;v121 = var21 (vs21 vz21) v221 : ∀{Γ A B C} → Tm21 (snoc21 (snoc21 (snoc21 Γ A) B) C) A;v221 = var21 (vs21 (vs21 vz21)) v321 : ∀{Γ A B C D} → Tm21 (snoc21 (snoc21 (snoc21 (snoc21 Γ A) B) C) D) A;v321 = var21 (vs21 (vs21 (vs21 vz21))) v421 : ∀{Γ A B C D E} → Tm21 (snoc21 (snoc21 (snoc21 (snoc21 (snoc21 Γ A) B) C) D) E) A;v421 = var21 (vs21 (vs21 (vs21 (vs21 vz21)))) test21 : ∀{Γ A} → Tm21 Γ (arr21 (arr21 A A) (arr21 A A));test21 = lam21 (lam21 (app21 v121 (app21 v121 (app21 v121 (app21 v121 (app21 v121 (app21 v121 v021))))))) {-# OPTIONS --type-in-type #-} Ty22 : Set; Ty22 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι22 : Ty22; ι22 = λ _ ι22 _ → ι22 arr22 : Ty22 → Ty22 → Ty22; arr22 = λ A B Ty22 ι22 arr22 → arr22 (A Ty22 ι22 arr22) (B Ty22 ι22 arr22) Con22 : Set;Con22 = (Con22 : Set) (nil : Con22) (snoc : Con22 → Ty22 → Con22) → Con22 nil22 : Con22;nil22 = λ Con22 nil22 snoc → nil22 snoc22 : Con22 → Ty22 → Con22;snoc22 = λ Γ A Con22 nil22 snoc22 → snoc22 (Γ Con22 nil22 snoc22) A Var22 : Con22 → Ty22 → Set;Var22 = λ Γ A → (Var22 : Con22 → Ty22 → Set) (vz : (Γ : _)(A : _) → Var22 (snoc22 Γ A) A) (vs : (Γ : _)(B A : _) → Var22 Γ A → Var22 (snoc22 Γ B) A) → Var22 Γ A vz22 : ∀{Γ A} → Var22 (snoc22 Γ A) A;vz22 = λ Var22 vz22 vs → vz22 _ _ vs22 : ∀{Γ B A} → Var22 Γ A → Var22 (snoc22 Γ B) A;vs22 = λ x Var22 vz22 vs22 → vs22 _ _ _ (x Var22 vz22 vs22) Tm22 : Con22 → Ty22 → Set;Tm22 = λ Γ A → (Tm22 : Con22 → Ty22 → Set) (var : (Γ : _) (A : _) → Var22 Γ A → Tm22 Γ A) (lam : (Γ : _) (A B : _) → Tm22 (snoc22 Γ A) B → Tm22 Γ (arr22 A B)) (app : (Γ : _) (A B : _) → Tm22 Γ (arr22 A B) → Tm22 Γ A → Tm22 Γ B) → Tm22 Γ A var22 : ∀{Γ A} → Var22 Γ A → Tm22 Γ A;var22 = λ x Tm22 var22 lam app → var22 _ _ x lam22 : ∀{Γ A B} → Tm22 (snoc22 Γ A) B → Tm22 Γ (arr22 A B);lam22 = λ t Tm22 var22 lam22 app → lam22 _ _ _ (t Tm22 var22 lam22 app) app22 : ∀{Γ A B} → Tm22 Γ (arr22 A B) → Tm22 Γ A → Tm22 Γ B;app22 = λ t u Tm22 var22 lam22 app22 → app22 _ _ _ (t Tm22 var22 lam22 app22) (u Tm22 var22 lam22 app22) v022 : ∀{Γ A} → Tm22 (snoc22 Γ A) A;v022 = var22 vz22 v122 : ∀{Γ A B} → Tm22 (snoc22 (snoc22 Γ A) B) A;v122 = var22 (vs22 vz22) v222 : ∀{Γ A B C} → Tm22 (snoc22 (snoc22 (snoc22 Γ A) B) C) A;v222 = var22 (vs22 (vs22 vz22)) v322 : ∀{Γ A B C D} → Tm22 (snoc22 (snoc22 (snoc22 (snoc22 Γ A) B) C) D) A;v322 = var22 (vs22 (vs22 (vs22 vz22))) v422 : ∀{Γ A B C D E} → Tm22 (snoc22 (snoc22 (snoc22 (snoc22 (snoc22 Γ A) B) C) D) E) A;v422 = var22 (vs22 (vs22 (vs22 (vs22 vz22)))) test22 : ∀{Γ A} → Tm22 Γ (arr22 (arr22 A A) (arr22 A A));test22 = lam22 (lam22 (app22 v122 (app22 v122 (app22 v122 (app22 v122 (app22 v122 (app22 v122 v022))))))) {-# OPTIONS --type-in-type #-} Ty23 : Set; Ty23 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι23 : Ty23; ι23 = λ _ ι23 _ → ι23 arr23 : Ty23 → Ty23 → Ty23; arr23 = λ A B Ty23 ι23 arr23 → arr23 (A Ty23 ι23 arr23) (B Ty23 ι23 arr23) Con23 : Set;Con23 = (Con23 : Set) (nil : Con23) (snoc : Con23 → Ty23 → Con23) → Con23 nil23 : Con23;nil23 = λ Con23 nil23 snoc → nil23 snoc23 : Con23 → Ty23 → Con23;snoc23 = λ Γ A Con23 nil23 snoc23 → snoc23 (Γ Con23 nil23 snoc23) A Var23 : Con23 → Ty23 → Set;Var23 = λ Γ A → (Var23 : Con23 → Ty23 → Set) (vz : (Γ : _)(A : _) → Var23 (snoc23 Γ A) A) (vs : (Γ : _)(B A : _) → Var23 Γ A → Var23 (snoc23 Γ B) A) → Var23 Γ A vz23 : ∀{Γ A} → Var23 (snoc23 Γ A) A;vz23 = λ Var23 vz23 vs → vz23 _ _ vs23 : ∀{Γ B A} → Var23 Γ A → Var23 (snoc23 Γ B) A;vs23 = λ x Var23 vz23 vs23 → vs23 _ _ _ (x Var23 vz23 vs23) Tm23 : Con23 → Ty23 → Set;Tm23 = λ Γ A → (Tm23 : Con23 → Ty23 → Set) (var : (Γ : _) (A : _) → Var23 Γ A → Tm23 Γ A) (lam : (Γ : _) (A B : _) → Tm23 (snoc23 Γ A) B → Tm23 Γ (arr23 A B)) (app : (Γ : _) (A B : _) → Tm23 Γ (arr23 A B) → Tm23 Γ A → Tm23 Γ B) → Tm23 Γ A var23 : ∀{Γ A} → Var23 Γ A → Tm23 Γ A;var23 = λ x Tm23 var23 lam app → var23 _ _ x lam23 : ∀{Γ A B} → Tm23 (snoc23 Γ A) B → Tm23 Γ (arr23 A B);lam23 = λ t Tm23 var23 lam23 app → lam23 _ _ _ (t Tm23 var23 lam23 app) app23 : ∀{Γ A B} → Tm23 Γ (arr23 A B) → Tm23 Γ A → Tm23 Γ B;app23 = λ t u Tm23 var23 lam23 app23 → app23 _ _ _ (t Tm23 var23 lam23 app23) (u Tm23 var23 lam23 app23) v023 : ∀{Γ A} → Tm23 (snoc23 Γ A) A;v023 = var23 vz23 v123 : ∀{Γ A B} → Tm23 (snoc23 (snoc23 Γ A) B) A;v123 = var23 (vs23 vz23) v223 : ∀{Γ A B C} → Tm23 (snoc23 (snoc23 (snoc23 Γ A) B) C) A;v223 = var23 (vs23 (vs23 vz23)) v323 : ∀{Γ A B C D} → Tm23 (snoc23 (snoc23 (snoc23 (snoc23 Γ A) B) C) D) A;v323 = var23 (vs23 (vs23 (vs23 vz23))) v423 : ∀{Γ A B C D E} → Tm23 (snoc23 (snoc23 (snoc23 (snoc23 (snoc23 Γ A) B) C) D) E) A;v423 = var23 (vs23 (vs23 (vs23 (vs23 vz23)))) test23 : ∀{Γ A} → Tm23 Γ (arr23 (arr23 A A) (arr23 A A));test23 = lam23 (lam23 (app23 v123 (app23 v123 (app23 v123 (app23 v123 (app23 v123 (app23 v123 v023))))))) {-# OPTIONS --type-in-type #-} Ty24 : Set; Ty24 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι24 : Ty24; ι24 = λ _ ι24 _ → ι24 arr24 : Ty24 → Ty24 → Ty24; arr24 = λ A B Ty24 ι24 arr24 → arr24 (A Ty24 ι24 arr24) (B Ty24 ι24 arr24) Con24 : Set;Con24 = (Con24 : Set) (nil : Con24) (snoc : Con24 → Ty24 → Con24) → Con24 nil24 : Con24;nil24 = λ Con24 nil24 snoc → nil24 snoc24 : Con24 → Ty24 → Con24;snoc24 = λ Γ A Con24 nil24 snoc24 → snoc24 (Γ Con24 nil24 snoc24) A Var24 : Con24 → Ty24 → Set;Var24 = λ Γ A → (Var24 : Con24 → Ty24 → Set) (vz : (Γ : _)(A : _) → Var24 (snoc24 Γ A) A) (vs : (Γ : _)(B A : _) → Var24 Γ A → Var24 (snoc24 Γ B) A) → Var24 Γ A vz24 : ∀{Γ A} → Var24 (snoc24 Γ A) A;vz24 = λ Var24 vz24 vs → vz24 _ _ vs24 : ∀{Γ B A} → Var24 Γ A → Var24 (snoc24 Γ B) A;vs24 = λ x Var24 vz24 vs24 → vs24 _ _ _ (x Var24 vz24 vs24) Tm24 : Con24 → Ty24 → Set;Tm24 = λ Γ A → (Tm24 : Con24 → Ty24 → Set) (var : (Γ : _) (A : _) → Var24 Γ A → Tm24 Γ A) (lam : (Γ : _) (A B : _) → Tm24 (snoc24 Γ A) B → Tm24 Γ (arr24 A B)) (app : (Γ : _) (A B : _) → Tm24 Γ (arr24 A B) → Tm24 Γ A → Tm24 Γ B) → Tm24 Γ A var24 : ∀{Γ A} → Var24 Γ A → Tm24 Γ A;var24 = λ x Tm24 var24 lam app → var24 _ _ x lam24 : ∀{Γ A B} → Tm24 (snoc24 Γ A) B → Tm24 Γ (arr24 A B);lam24 = λ t Tm24 var24 lam24 app → lam24 _ _ _ (t Tm24 var24 lam24 app) app24 : ∀{Γ A B} → Tm24 Γ (arr24 A B) → Tm24 Γ A → Tm24 Γ B;app24 = λ t u Tm24 var24 lam24 app24 → app24 _ _ _ (t Tm24 var24 lam24 app24) (u Tm24 var24 lam24 app24) v024 : ∀{Γ A} → Tm24 (snoc24 Γ A) A;v024 = var24 vz24 v124 : ∀{Γ A B} → Tm24 (snoc24 (snoc24 Γ A) B) A;v124 = var24 (vs24 vz24) v224 : ∀{Γ A B C} → Tm24 (snoc24 (snoc24 (snoc24 Γ A) B) C) A;v224 = var24 (vs24 (vs24 vz24)) v324 : ∀{Γ A B C D} → Tm24 (snoc24 (snoc24 (snoc24 (snoc24 Γ A) B) C) D) A;v324 = var24 (vs24 (vs24 (vs24 vz24))) v424 : ∀{Γ A B C D E} → Tm24 (snoc24 (snoc24 (snoc24 (snoc24 (snoc24 Γ A) B) C) D) E) A;v424 = var24 (vs24 (vs24 (vs24 (vs24 vz24)))) test24 : ∀{Γ A} → Tm24 Γ (arr24 (arr24 A A) (arr24 A A));test24 = lam24 (lam24 (app24 v124 (app24 v124 (app24 v124 (app24 v124 (app24 v124 (app24 v124 v024))))))) {-# OPTIONS --type-in-type #-} Ty25 : Set; Ty25 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι25 : Ty25; ι25 = λ _ ι25 _ → ι25 arr25 : Ty25 → Ty25 → Ty25; arr25 = λ A B Ty25 ι25 arr25 → arr25 (A Ty25 ι25 arr25) (B Ty25 ι25 arr25) Con25 : Set;Con25 = (Con25 : Set) (nil : Con25) (snoc : Con25 → Ty25 → Con25) → Con25 nil25 : Con25;nil25 = λ Con25 nil25 snoc → nil25 snoc25 : Con25 → Ty25 → Con25;snoc25 = λ Γ A Con25 nil25 snoc25 → snoc25 (Γ Con25 nil25 snoc25) A Var25 : Con25 → Ty25 → Set;Var25 = λ Γ A → (Var25 : Con25 → Ty25 → Set) (vz : (Γ : _)(A : _) → Var25 (snoc25 Γ A) A) (vs : (Γ : _)(B A : _) → Var25 Γ A → Var25 (snoc25 Γ B) A) → Var25 Γ A vz25 : ∀{Γ A} → Var25 (snoc25 Γ A) A;vz25 = λ Var25 vz25 vs → vz25 _ _ vs25 : ∀{Γ B A} → Var25 Γ A → Var25 (snoc25 Γ B) A;vs25 = λ x Var25 vz25 vs25 → vs25 _ _ _ (x Var25 vz25 vs25) Tm25 : Con25 → Ty25 → Set;Tm25 = λ Γ A → (Tm25 : Con25 → Ty25 → Set) (var : (Γ : _) (A : _) → Var25 Γ A → Tm25 Γ A) (lam : (Γ : _) (A B : _) → Tm25 (snoc25 Γ A) B → Tm25 Γ (arr25 A B)) (app : (Γ : _) (A B : _) → Tm25 Γ (arr25 A B) → Tm25 Γ A → Tm25 Γ B) → Tm25 Γ A var25 : ∀{Γ A} → Var25 Γ A → Tm25 Γ A;var25 = λ x Tm25 var25 lam app → var25 _ _ x lam25 : ∀{Γ A B} → Tm25 (snoc25 Γ A) B → Tm25 Γ (arr25 A B);lam25 = λ t Tm25 var25 lam25 app → lam25 _ _ _ (t Tm25 var25 lam25 app) app25 : ∀{Γ A B} → Tm25 Γ (arr25 A B) → Tm25 Γ A → Tm25 Γ B;app25 = λ t u Tm25 var25 lam25 app25 → app25 _ _ _ (t Tm25 var25 lam25 app25) (u Tm25 var25 lam25 app25) v025 : ∀{Γ A} → Tm25 (snoc25 Γ A) A;v025 = var25 vz25 v125 : ∀{Γ A B} → Tm25 (snoc25 (snoc25 Γ A) B) A;v125 = var25 (vs25 vz25) v225 : ∀{Γ A B C} → Tm25 (snoc25 (snoc25 (snoc25 Γ A) B) C) A;v225 = var25 (vs25 (vs25 vz25)) v325 : ∀{Γ A B C D} → Tm25 (snoc25 (snoc25 (snoc25 (snoc25 Γ A) B) C) D) A;v325 = var25 (vs25 (vs25 (vs25 vz25))) v425 : ∀{Γ A B C D E} → Tm25 (snoc25 (snoc25 (snoc25 (snoc25 (snoc25 Γ A) B) C) D) E) A;v425 = var25 (vs25 (vs25 (vs25 (vs25 vz25)))) test25 : ∀{Γ A} → Tm25 Γ (arr25 (arr25 A A) (arr25 A A));test25 = lam25 (lam25 (app25 v125 (app25 v125 (app25 v125 (app25 v125 (app25 v125 (app25 v125 v025))))))) {-# OPTIONS --type-in-type #-} Ty26 : Set; Ty26 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι26 : Ty26; ι26 = λ _ ι26 _ → ι26 arr26 : Ty26 → Ty26 → Ty26; arr26 = λ A B Ty26 ι26 arr26 → arr26 (A Ty26 ι26 arr26) (B Ty26 ι26 arr26) Con26 : Set;Con26 = (Con26 : Set) (nil : Con26) (snoc : Con26 → Ty26 → Con26) → Con26 nil26 : Con26;nil26 = λ Con26 nil26 snoc → nil26 snoc26 : Con26 → Ty26 → Con26;snoc26 = λ Γ A Con26 nil26 snoc26 → snoc26 (Γ Con26 nil26 snoc26) A Var26 : Con26 → Ty26 → Set;Var26 = λ Γ A → (Var26 : Con26 → Ty26 → Set) (vz : (Γ : _)(A : _) → Var26 (snoc26 Γ A) A) (vs : (Γ : _)(B A : _) → Var26 Γ A → Var26 (snoc26 Γ B) A) → Var26 Γ A vz26 : ∀{Γ A} → Var26 (snoc26 Γ A) A;vz26 = λ Var26 vz26 vs → vz26 _ _ vs26 : ∀{Γ B A} → Var26 Γ A → Var26 (snoc26 Γ B) A;vs26 = λ x Var26 vz26 vs26 → vs26 _ _ _ (x Var26 vz26 vs26) Tm26 : Con26 → Ty26 → Set;Tm26 = λ Γ A → (Tm26 : Con26 → Ty26 → Set) (var : (Γ : _) (A : _) → Var26 Γ A → Tm26 Γ A) (lam : (Γ : _) (A B : _) → Tm26 (snoc26 Γ A) B → Tm26 Γ (arr26 A B)) (app : (Γ : _) (A B : _) → Tm26 Γ (arr26 A B) → Tm26 Γ A → Tm26 Γ B) → Tm26 Γ A var26 : ∀{Γ A} → Var26 Γ A → Tm26 Γ A;var26 = λ x Tm26 var26 lam app → var26 _ _ x lam26 : ∀{Γ A B} → Tm26 (snoc26 Γ A) B → Tm26 Γ (arr26 A B);lam26 = λ t Tm26 var26 lam26 app → lam26 _ _ _ (t Tm26 var26 lam26 app) app26 : ∀{Γ A B} → Tm26 Γ (arr26 A B) → Tm26 Γ A → Tm26 Γ B;app26 = λ t u Tm26 var26 lam26 app26 → app26 _ _ _ (t Tm26 var26 lam26 app26) (u Tm26 var26 lam26 app26) v026 : ∀{Γ A} → Tm26 (snoc26 Γ A) A;v026 = var26 vz26 v126 : ∀{Γ A B} → Tm26 (snoc26 (snoc26 Γ A) B) A;v126 = var26 (vs26 vz26) v226 : ∀{Γ A B C} → Tm26 (snoc26 (snoc26 (snoc26 Γ A) B) C) A;v226 = var26 (vs26 (vs26 vz26)) v326 : ∀{Γ A B C D} → Tm26 (snoc26 (snoc26 (snoc26 (snoc26 Γ A) B) C) D) A;v326 = var26 (vs26 (vs26 (vs26 vz26))) v426 : ∀{Γ A B C D E} → Tm26 (snoc26 (snoc26 (snoc26 (snoc26 (snoc26 Γ A) B) C) D) E) A;v426 = var26 (vs26 (vs26 (vs26 (vs26 vz26)))) test26 : ∀{Γ A} → Tm26 Γ (arr26 (arr26 A A) (arr26 A A));test26 = lam26 (lam26 (app26 v126 (app26 v126 (app26 v126 (app26 v126 (app26 v126 (app26 v126 v026))))))) {-# OPTIONS --type-in-type #-} Ty27 : Set; Ty27 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι27 : Ty27; ι27 = λ _ ι27 _ → ι27 arr27 : Ty27 → Ty27 → Ty27; arr27 = λ A B Ty27 ι27 arr27 → arr27 (A Ty27 ι27 arr27) (B Ty27 ι27 arr27) Con27 : Set;Con27 = (Con27 : Set) (nil : Con27) (snoc : Con27 → Ty27 → Con27) → Con27 nil27 : Con27;nil27 = λ Con27 nil27 snoc → nil27 snoc27 : Con27 → Ty27 → Con27;snoc27 = λ Γ A Con27 nil27 snoc27 → snoc27 (Γ Con27 nil27 snoc27) A Var27 : Con27 → Ty27 → Set;Var27 = λ Γ A → (Var27 : Con27 → Ty27 → Set) (vz : (Γ : _)(A : _) → Var27 (snoc27 Γ A) A) (vs : (Γ : _)(B A : _) → Var27 Γ A → Var27 (snoc27 Γ B) A) → Var27 Γ A vz27 : ∀{Γ A} → Var27 (snoc27 Γ A) A;vz27 = λ Var27 vz27 vs → vz27 _ _ vs27 : ∀{Γ B A} → Var27 Γ A → Var27 (snoc27 Γ B) A;vs27 = λ x Var27 vz27 vs27 → vs27 _ _ _ (x Var27 vz27 vs27) Tm27 : Con27 → Ty27 → Set;Tm27 = λ Γ A → (Tm27 : Con27 → Ty27 → Set) (var : (Γ : _) (A : _) → Var27 Γ A → Tm27 Γ A) (lam : (Γ : _) (A B : _) → Tm27 (snoc27 Γ A) B → Tm27 Γ (arr27 A B)) (app : (Γ : _) (A B : _) → Tm27 Γ (arr27 A B) → Tm27 Γ A → Tm27 Γ B) → Tm27 Γ A var27 : ∀{Γ A} → Var27 Γ A → Tm27 Γ A;var27 = λ x Tm27 var27 lam app → var27 _ _ x lam27 : ∀{Γ A B} → Tm27 (snoc27 Γ A) B → Tm27 Γ (arr27 A B);lam27 = λ t Tm27 var27 lam27 app → lam27 _ _ _ (t Tm27 var27 lam27 app) app27 : ∀{Γ A B} → Tm27 Γ (arr27 A B) → Tm27 Γ A → Tm27 Γ B;app27 = λ t u Tm27 var27 lam27 app27 → app27 _ _ _ (t Tm27 var27 lam27 app27) (u Tm27 var27 lam27 app27) v027 : ∀{Γ A} → Tm27 (snoc27 Γ A) A;v027 = var27 vz27 v127 : ∀{Γ A B} → Tm27 (snoc27 (snoc27 Γ A) B) A;v127 = var27 (vs27 vz27) v227 : ∀{Γ A B C} → Tm27 (snoc27 (snoc27 (snoc27 Γ A) B) C) A;v227 = var27 (vs27 (vs27 vz27)) v327 : ∀{Γ A B C D} → Tm27 (snoc27 (snoc27 (snoc27 (snoc27 Γ A) B) C) D) A;v327 = var27 (vs27 (vs27 (vs27 vz27))) v427 : ∀{Γ A B C D E} → Tm27 (snoc27 (snoc27 (snoc27 (snoc27 (snoc27 Γ A) B) C) D) E) A;v427 = var27 (vs27 (vs27 (vs27 (vs27 vz27)))) test27 : ∀{Γ A} → Tm27 Γ (arr27 (arr27 A A) (arr27 A A));test27 = lam27 (lam27 (app27 v127 (app27 v127 (app27 v127 (app27 v127 (app27 v127 (app27 v127 v027))))))) {-# OPTIONS --type-in-type #-} Ty28 : Set; Ty28 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι28 : Ty28; ι28 = λ _ ι28 _ → ι28 arr28 : Ty28 → Ty28 → Ty28; arr28 = λ A B Ty28 ι28 arr28 → arr28 (A Ty28 ι28 arr28) (B Ty28 ι28 arr28) Con28 : Set;Con28 = (Con28 : Set) (nil : Con28) (snoc : Con28 → Ty28 → Con28) → Con28 nil28 : Con28;nil28 = λ Con28 nil28 snoc → nil28 snoc28 : Con28 → Ty28 → Con28;snoc28 = λ Γ A Con28 nil28 snoc28 → snoc28 (Γ Con28 nil28 snoc28) A Var28 : Con28 → Ty28 → Set;Var28 = λ Γ A → (Var28 : Con28 → Ty28 → Set) (vz : (Γ : _)(A : _) → Var28 (snoc28 Γ A) A) (vs : (Γ : _)(B A : _) → Var28 Γ A → Var28 (snoc28 Γ B) A) → Var28 Γ A vz28 : ∀{Γ A} → Var28 (snoc28 Γ A) A;vz28 = λ Var28 vz28 vs → vz28 _ _ vs28 : ∀{Γ B A} → Var28 Γ A → Var28 (snoc28 Γ B) A;vs28 = λ x Var28 vz28 vs28 → vs28 _ _ _ (x Var28 vz28 vs28) Tm28 : Con28 → Ty28 → Set;Tm28 = λ Γ A → (Tm28 : Con28 → Ty28 → Set) (var : (Γ : _) (A : _) → Var28 Γ A → Tm28 Γ A) (lam : (Γ : _) (A B : _) → Tm28 (snoc28 Γ A) B → Tm28 Γ (arr28 A B)) (app : (Γ : _) (A B : _) → Tm28 Γ (arr28 A B) → Tm28 Γ A → Tm28 Γ B) → Tm28 Γ A var28 : ∀{Γ A} → Var28 Γ A → Tm28 Γ A;var28 = λ x Tm28 var28 lam app → var28 _ _ x lam28 : ∀{Γ A B} → Tm28 (snoc28 Γ A) B → Tm28 Γ (arr28 A B);lam28 = λ t Tm28 var28 lam28 app → lam28 _ _ _ (t Tm28 var28 lam28 app) app28 : ∀{Γ A B} → Tm28 Γ (arr28 A B) → Tm28 Γ A → Tm28 Γ B;app28 = λ t u Tm28 var28 lam28 app28 → app28 _ _ _ (t Tm28 var28 lam28 app28) (u Tm28 var28 lam28 app28) v028 : ∀{Γ A} → Tm28 (snoc28 Γ A) A;v028 = var28 vz28 v128 : ∀{Γ A B} → Tm28 (snoc28 (snoc28 Γ A) B) A;v128 = var28 (vs28 vz28) v228 : ∀{Γ A B C} → Tm28 (snoc28 (snoc28 (snoc28 Γ A) B) C) A;v228 = var28 (vs28 (vs28 vz28)) v328 : ∀{Γ A B C D} → Tm28 (snoc28 (snoc28 (snoc28 (snoc28 Γ A) B) C) D) A;v328 = var28 (vs28 (vs28 (vs28 vz28))) v428 : ∀{Γ A B C D E} → Tm28 (snoc28 (snoc28 (snoc28 (snoc28 (snoc28 Γ A) B) C) D) E) A;v428 = var28 (vs28 (vs28 (vs28 (vs28 vz28)))) test28 : ∀{Γ A} → Tm28 Γ (arr28 (arr28 A A) (arr28 A A));test28 = lam28 (lam28 (app28 v128 (app28 v128 (app28 v128 (app28 v128 (app28 v128 (app28 v128 v028))))))) {-# OPTIONS --type-in-type #-} Ty29 : Set; Ty29 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι29 : Ty29; ι29 = λ _ ι29 _ → ι29 arr29 : Ty29 → Ty29 → Ty29; arr29 = λ A B Ty29 ι29 arr29 → arr29 (A Ty29 ι29 arr29) (B Ty29 ι29 arr29) Con29 : Set;Con29 = (Con29 : Set) (nil : Con29) (snoc : Con29 → Ty29 → Con29) → Con29 nil29 : Con29;nil29 = λ Con29 nil29 snoc → nil29 snoc29 : Con29 → Ty29 → Con29;snoc29 = λ Γ A Con29 nil29 snoc29 → snoc29 (Γ Con29 nil29 snoc29) A Var29 : Con29 → Ty29 → Set;Var29 = λ Γ A → (Var29 : Con29 → Ty29 → Set) (vz : (Γ : _)(A : _) → Var29 (snoc29 Γ A) A) (vs : (Γ : _)(B A : _) → Var29 Γ A → Var29 (snoc29 Γ B) A) → Var29 Γ A vz29 : ∀{Γ A} → Var29 (snoc29 Γ A) A;vz29 = λ Var29 vz29 vs → vz29 _ _ vs29 : ∀{Γ B A} → Var29 Γ A → Var29 (snoc29 Γ B) A;vs29 = λ x Var29 vz29 vs29 → vs29 _ _ _ (x Var29 vz29 vs29) Tm29 : Con29 → Ty29 → Set;Tm29 = λ Γ A → (Tm29 : Con29 → Ty29 → Set) (var : (Γ : _) (A : _) → Var29 Γ A → Tm29 Γ A) (lam : (Γ : _) (A B : _) → Tm29 (snoc29 Γ A) B → Tm29 Γ (arr29 A B)) (app : (Γ : _) (A B : _) → Tm29 Γ (arr29 A B) → Tm29 Γ A → Tm29 Γ B) → Tm29 Γ A var29 : ∀{Γ A} → Var29 Γ A → Tm29 Γ A;var29 = λ x Tm29 var29 lam app → var29 _ _ x lam29 : ∀{Γ A B} → Tm29 (snoc29 Γ A) B → Tm29 Γ (arr29 A B);lam29 = λ t Tm29 var29 lam29 app → lam29 _ _ _ (t Tm29 var29 lam29 app) app29 : ∀{Γ A B} → Tm29 Γ (arr29 A B) → Tm29 Γ A → Tm29 Γ B;app29 = λ t u Tm29 var29 lam29 app29 → app29 _ _ _ (t Tm29 var29 lam29 app29) (u Tm29 var29 lam29 app29) v029 : ∀{Γ A} → Tm29 (snoc29 Γ A) A;v029 = var29 vz29 v129 : ∀{Γ A B} → Tm29 (snoc29 (snoc29 Γ A) B) A;v129 = var29 (vs29 vz29) v229 : ∀{Γ A B C} → Tm29 (snoc29 (snoc29 (snoc29 Γ A) B) C) A;v229 = var29 (vs29 (vs29 vz29)) v329 : ∀{Γ A B C D} → Tm29 (snoc29 (snoc29 (snoc29 (snoc29 Γ A) B) C) D) A;v329 = var29 (vs29 (vs29 (vs29 vz29))) v429 : ∀{Γ A B C D E} → Tm29 (snoc29 (snoc29 (snoc29 (snoc29 (snoc29 Γ A) B) C) D) E) A;v429 = var29 (vs29 (vs29 (vs29 (vs29 vz29)))) test29 : ∀{Γ A} → Tm29 Γ (arr29 (arr29 A A) (arr29 A A));test29 = lam29 (lam29 (app29 v129 (app29 v129 (app29 v129 (app29 v129 (app29 v129 (app29 v129 v029))))))) {-# OPTIONS --type-in-type #-} Ty30 : Set; Ty30 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι30 : Ty30; ι30 = λ _ ι30 _ → ι30 arr30 : Ty30 → Ty30 → Ty30; arr30 = λ A B Ty30 ι30 arr30 → arr30 (A Ty30 ι30 arr30) (B Ty30 ι30 arr30) Con30 : Set;Con30 = (Con30 : Set) (nil : Con30) (snoc : Con30 → Ty30 → Con30) → Con30 nil30 : Con30;nil30 = λ Con30 nil30 snoc → nil30 snoc30 : Con30 → Ty30 → Con30;snoc30 = λ Γ A Con30 nil30 snoc30 → snoc30 (Γ Con30 nil30 snoc30) A Var30 : Con30 → Ty30 → Set;Var30 = λ Γ A → (Var30 : Con30 → Ty30 → Set) (vz : (Γ : _)(A : _) → Var30 (snoc30 Γ A) A) (vs : (Γ : _)(B A : _) → Var30 Γ A → Var30 (snoc30 Γ B) A) → Var30 Γ A vz30 : ∀{Γ A} → Var30 (snoc30 Γ A) A;vz30 = λ Var30 vz30 vs → vz30 _ _ vs30 : ∀{Γ B A} → Var30 Γ A → Var30 (snoc30 Γ B) A;vs30 = λ x Var30 vz30 vs30 → vs30 _ _ _ (x Var30 vz30 vs30) Tm30 : Con30 → Ty30 → Set;Tm30 = λ Γ A → (Tm30 : Con30 → Ty30 → Set) (var : (Γ : _) (A : _) → Var30 Γ A → Tm30 Γ A) (lam : (Γ : _) (A B : _) → Tm30 (snoc30 Γ A) B → Tm30 Γ (arr30 A B)) (app : (Γ : _) (A B : _) → Tm30 Γ (arr30 A B) → Tm30 Γ A → Tm30 Γ B) → Tm30 Γ A var30 : ∀{Γ A} → Var30 Γ A → Tm30 Γ A;var30 = λ x Tm30 var30 lam app → var30 _ _ x lam30 : ∀{Γ A B} → Tm30 (snoc30 Γ A) B → Tm30 Γ (arr30 A B);lam30 = λ t Tm30 var30 lam30 app → lam30 _ _ _ (t Tm30 var30 lam30 app) app30 : ∀{Γ A B} → Tm30 Γ (arr30 A B) → Tm30 Γ A → Tm30 Γ B;app30 = λ t u Tm30 var30 lam30 app30 → app30 _ _ _ (t Tm30 var30 lam30 app30) (u Tm30 var30 lam30 app30) v030 : ∀{Γ A} → Tm30 (snoc30 Γ A) A;v030 = var30 vz30 v130 : ∀{Γ A B} → Tm30 (snoc30 (snoc30 Γ A) B) A;v130 = var30 (vs30 vz30) v230 : ∀{Γ A B C} → Tm30 (snoc30 (snoc30 (snoc30 Γ A) B) C) A;v230 = var30 (vs30 (vs30 vz30)) v330 : ∀{Γ A B C D} → Tm30 (snoc30 (snoc30 (snoc30 (snoc30 Γ A) B) C) D) A;v330 = var30 (vs30 (vs30 (vs30 vz30))) v430 : ∀{Γ A B C D E} → Tm30 (snoc30 (snoc30 (snoc30 (snoc30 (snoc30 Γ A) B) C) D) E) A;v430 = var30 (vs30 (vs30 (vs30 (vs30 vz30)))) test30 : ∀{Γ A} → Tm30 Γ (arr30 (arr30 A A) (arr30 A A));test30 = lam30 (lam30 (app30 v130 (app30 v130 (app30 v130 (app30 v130 (app30 v130 (app30 v130 v030))))))) {-# OPTIONS --type-in-type #-} Ty31 : Set; Ty31 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι31 : Ty31; ι31 = λ _ ι31 _ → ι31 arr31 : Ty31 → Ty31 → Ty31; arr31 = λ A B Ty31 ι31 arr31 → arr31 (A Ty31 ι31 arr31) (B Ty31 ι31 arr31) Con31 : Set;Con31 = (Con31 : Set) (nil : Con31) (snoc : Con31 → Ty31 → Con31) → Con31 nil31 : Con31;nil31 = λ Con31 nil31 snoc → nil31 snoc31 : Con31 → Ty31 → Con31;snoc31 = λ Γ A Con31 nil31 snoc31 → snoc31 (Γ Con31 nil31 snoc31) A Var31 : Con31 → Ty31 → Set;Var31 = λ Γ A → (Var31 : Con31 → Ty31 → Set) (vz : (Γ : _)(A : _) → Var31 (snoc31 Γ A) A) (vs : (Γ : _)(B A : _) → Var31 Γ A → Var31 (snoc31 Γ B) A) → Var31 Γ A vz31 : ∀{Γ A} → Var31 (snoc31 Γ A) A;vz31 = λ Var31 vz31 vs → vz31 _ _ vs31 : ∀{Γ B A} → Var31 Γ A → Var31 (snoc31 Γ B) A;vs31 = λ x Var31 vz31 vs31 → vs31 _ _ _ (x Var31 vz31 vs31) Tm31 : Con31 → Ty31 → Set;Tm31 = λ Γ A → (Tm31 : Con31 → Ty31 → Set) (var : (Γ : _) (A : _) → Var31 Γ A → Tm31 Γ A) (lam : (Γ : _) (A B : _) → Tm31 (snoc31 Γ A) B → Tm31 Γ (arr31 A B)) (app : (Γ : _) (A B : _) → Tm31 Γ (arr31 A B) → Tm31 Γ A → Tm31 Γ B) → Tm31 Γ A var31 : ∀{Γ A} → Var31 Γ A → Tm31 Γ A;var31 = λ x Tm31 var31 lam app → var31 _ _ x lam31 : ∀{Γ A B} → Tm31 (snoc31 Γ A) B → Tm31 Γ (arr31 A B);lam31 = λ t Tm31 var31 lam31 app → lam31 _ _ _ (t Tm31 var31 lam31 app) app31 : ∀{Γ A B} → Tm31 Γ (arr31 A B) → Tm31 Γ A → Tm31 Γ B;app31 = λ t u Tm31 var31 lam31 app31 → app31 _ _ _ (t Tm31 var31 lam31 app31) (u Tm31 var31 lam31 app31) v031 : ∀{Γ A} → Tm31 (snoc31 Γ A) A;v031 = var31 vz31 v131 : ∀{Γ A B} → Tm31 (snoc31 (snoc31 Γ A) B) A;v131 = var31 (vs31 vz31) v231 : ∀{Γ A B C} → Tm31 (snoc31 (snoc31 (snoc31 Γ A) B) C) A;v231 = var31 (vs31 (vs31 vz31)) v331 : ∀{Γ A B C D} → Tm31 (snoc31 (snoc31 (snoc31 (snoc31 Γ A) B) C) D) A;v331 = var31 (vs31 (vs31 (vs31 vz31))) v431 : ∀{Γ A B C D E} → Tm31 (snoc31 (snoc31 (snoc31 (snoc31 (snoc31 Γ A) B) C) D) E) A;v431 = var31 (vs31 (vs31 (vs31 (vs31 vz31)))) test31 : ∀{Γ A} → Tm31 Γ (arr31 (arr31 A A) (arr31 A A));test31 = lam31 (lam31 (app31 v131 (app31 v131 (app31 v131 (app31 v131 (app31 v131 (app31 v131 v031))))))) {-# OPTIONS --type-in-type #-} Ty32 : Set; Ty32 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι32 : Ty32; ι32 = λ _ ι32 _ → ι32 arr32 : Ty32 → Ty32 → Ty32; arr32 = λ A B Ty32 ι32 arr32 → arr32 (A Ty32 ι32 arr32) (B Ty32 ι32 arr32) Con32 : Set;Con32 = (Con32 : Set) (nil : Con32) (snoc : Con32 → Ty32 → Con32) → Con32 nil32 : Con32;nil32 = λ Con32 nil32 snoc → nil32 snoc32 : Con32 → Ty32 → Con32;snoc32 = λ Γ A Con32 nil32 snoc32 → snoc32 (Γ Con32 nil32 snoc32) A Var32 : Con32 → Ty32 → Set;Var32 = λ Γ A → (Var32 : Con32 → Ty32 → Set) (vz : (Γ : _)(A : _) → Var32 (snoc32 Γ A) A) (vs : (Γ : _)(B A : _) → Var32 Γ A → Var32 (snoc32 Γ B) A) → Var32 Γ A vz32 : ∀{Γ A} → Var32 (snoc32 Γ A) A;vz32 = λ Var32 vz32 vs → vz32 _ _ vs32 : ∀{Γ B A} → Var32 Γ A → Var32 (snoc32 Γ B) A;vs32 = λ x Var32 vz32 vs32 → vs32 _ _ _ (x Var32 vz32 vs32) Tm32 : Con32 → Ty32 → Set;Tm32 = λ Γ A → (Tm32 : Con32 → Ty32 → Set) (var : (Γ : _) (A : _) → Var32 Γ A → Tm32 Γ A) (lam : (Γ : _) (A B : _) → Tm32 (snoc32 Γ A) B → Tm32 Γ (arr32 A B)) (app : (Γ : _) (A B : _) → Tm32 Γ (arr32 A B) → Tm32 Γ A → Tm32 Γ B) → Tm32 Γ A var32 : ∀{Γ A} → Var32 Γ A → Tm32 Γ A;var32 = λ x Tm32 var32 lam app → var32 _ _ x lam32 : ∀{Γ A B} → Tm32 (snoc32 Γ A) B → Tm32 Γ (arr32 A B);lam32 = λ t Tm32 var32 lam32 app → lam32 _ _ _ (t Tm32 var32 lam32 app) app32 : ∀{Γ A B} → Tm32 Γ (arr32 A B) → Tm32 Γ A → Tm32 Γ B;app32 = λ t u Tm32 var32 lam32 app32 → app32 _ _ _ (t Tm32 var32 lam32 app32) (u Tm32 var32 lam32 app32) v032 : ∀{Γ A} → Tm32 (snoc32 Γ A) A;v032 = var32 vz32 v132 : ∀{Γ A B} → Tm32 (snoc32 (snoc32 Γ A) B) A;v132 = var32 (vs32 vz32) v232 : ∀{Γ A B C} → Tm32 (snoc32 (snoc32 (snoc32 Γ A) B) C) A;v232 = var32 (vs32 (vs32 vz32)) v332 : ∀{Γ A B C D} → Tm32 (snoc32 (snoc32 (snoc32 (snoc32 Γ A) B) C) D) A;v332 = var32 (vs32 (vs32 (vs32 vz32))) v432 : ∀{Γ A B C D E} → Tm32 (snoc32 (snoc32 (snoc32 (snoc32 (snoc32 Γ A) B) C) D) E) A;v432 = var32 (vs32 (vs32 (vs32 (vs32 vz32)))) test32 : ∀{Γ A} → Tm32 Γ (arr32 (arr32 A A) (arr32 A A));test32 = lam32 (lam32 (app32 v132 (app32 v132 (app32 v132 (app32 v132 (app32 v132 (app32 v132 v032))))))) {-# OPTIONS --type-in-type #-} Ty33 : Set; Ty33 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι33 : Ty33; ι33 = λ _ ι33 _ → ι33 arr33 : Ty33 → Ty33 → Ty33; arr33 = λ A B Ty33 ι33 arr33 → arr33 (A Ty33 ι33 arr33) (B Ty33 ι33 arr33) Con33 : Set;Con33 = (Con33 : Set) (nil : Con33) (snoc : Con33 → Ty33 → Con33) → Con33 nil33 : Con33;nil33 = λ Con33 nil33 snoc → nil33 snoc33 : Con33 → Ty33 → Con33;snoc33 = λ Γ A Con33 nil33 snoc33 → snoc33 (Γ Con33 nil33 snoc33) A Var33 : Con33 → Ty33 → Set;Var33 = λ Γ A → (Var33 : Con33 → Ty33 → Set) (vz : (Γ : _)(A : _) → Var33 (snoc33 Γ A) A) (vs : (Γ : _)(B A : _) → Var33 Γ A → Var33 (snoc33 Γ B) A) → Var33 Γ A vz33 : ∀{Γ A} → Var33 (snoc33 Γ A) A;vz33 = λ Var33 vz33 vs → vz33 _ _ vs33 : ∀{Γ B A} → Var33 Γ A → Var33 (snoc33 Γ B) A;vs33 = λ x Var33 vz33 vs33 → vs33 _ _ _ (x Var33 vz33 vs33) Tm33 : Con33 → Ty33 → Set;Tm33 = λ Γ A → (Tm33 : Con33 → Ty33 → Set) (var : (Γ : _) (A : _) → Var33 Γ A → Tm33 Γ A) (lam : (Γ : _) (A B : _) → Tm33 (snoc33 Γ A) B → Tm33 Γ (arr33 A B)) (app : (Γ : _) (A B : _) → Tm33 Γ (arr33 A B) → Tm33 Γ A → Tm33 Γ B) → Tm33 Γ A var33 : ∀{Γ A} → Var33 Γ A → Tm33 Γ A;var33 = λ x Tm33 var33 lam app → var33 _ _ x lam33 : ∀{Γ A B} → Tm33 (snoc33 Γ A) B → Tm33 Γ (arr33 A B);lam33 = λ t Tm33 var33 lam33 app → lam33 _ _ _ (t Tm33 var33 lam33 app) app33 : ∀{Γ A B} → Tm33 Γ (arr33 A B) → Tm33 Γ A → Tm33 Γ B;app33 = λ t u Tm33 var33 lam33 app33 → app33 _ _ _ (t Tm33 var33 lam33 app33) (u Tm33 var33 lam33 app33) v033 : ∀{Γ A} → Tm33 (snoc33 Γ A) A;v033 = var33 vz33 v133 : ∀{Γ A B} → Tm33 (snoc33 (snoc33 Γ A) B) A;v133 = var33 (vs33 vz33) v233 : ∀{Γ A B C} → Tm33 (snoc33 (snoc33 (snoc33 Γ A) B) C) A;v233 = var33 (vs33 (vs33 vz33)) v333 : ∀{Γ A B C D} → Tm33 (snoc33 (snoc33 (snoc33 (snoc33 Γ A) B) C) D) A;v333 = var33 (vs33 (vs33 (vs33 vz33))) v433 : ∀{Γ A B C D E} → Tm33 (snoc33 (snoc33 (snoc33 (snoc33 (snoc33 Γ A) B) C) D) E) A;v433 = var33 (vs33 (vs33 (vs33 (vs33 vz33)))) test33 : ∀{Γ A} → Tm33 Γ (arr33 (arr33 A A) (arr33 A A));test33 = lam33 (lam33 (app33 v133 (app33 v133 (app33 v133 (app33 v133 (app33 v133 (app33 v133 v033))))))) {-# OPTIONS --type-in-type #-} Ty34 : Set; Ty34 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι34 : Ty34; ι34 = λ _ ι34 _ → ι34 arr34 : Ty34 → Ty34 → Ty34; arr34 = λ A B Ty34 ι34 arr34 → arr34 (A Ty34 ι34 arr34) (B Ty34 ι34 arr34) Con34 : Set;Con34 = (Con34 : Set) (nil : Con34) (snoc : Con34 → Ty34 → Con34) → Con34 nil34 : Con34;nil34 = λ Con34 nil34 snoc → nil34 snoc34 : Con34 → Ty34 → Con34;snoc34 = λ Γ A Con34 nil34 snoc34 → snoc34 (Γ Con34 nil34 snoc34) A Var34 : Con34 → Ty34 → Set;Var34 = λ Γ A → (Var34 : Con34 → Ty34 → Set) (vz : (Γ : _)(A : _) → Var34 (snoc34 Γ A) A) (vs : (Γ : _)(B A : _) → Var34 Γ A → Var34 (snoc34 Γ B) A) → Var34 Γ A vz34 : ∀{Γ A} → Var34 (snoc34 Γ A) A;vz34 = λ Var34 vz34 vs → vz34 _ _ vs34 : ∀{Γ B A} → Var34 Γ A → Var34 (snoc34 Γ B) A;vs34 = λ x Var34 vz34 vs34 → vs34 _ _ _ (x Var34 vz34 vs34) Tm34 : Con34 → Ty34 → Set;Tm34 = λ Γ A → (Tm34 : Con34 → Ty34 → Set) (var : (Γ : _) (A : _) → Var34 Γ A → Tm34 Γ A) (lam : (Γ : _) (A B : _) → Tm34 (snoc34 Γ A) B → Tm34 Γ (arr34 A B)) (app : (Γ : _) (A B : _) → Tm34 Γ (arr34 A B) → Tm34 Γ A → Tm34 Γ B) → Tm34 Γ A var34 : ∀{Γ A} → Var34 Γ A → Tm34 Γ A;var34 = λ x Tm34 var34 lam app → var34 _ _ x lam34 : ∀{Γ A B} → Tm34 (snoc34 Γ A) B → Tm34 Γ (arr34 A B);lam34 = λ t Tm34 var34 lam34 app → lam34 _ _ _ (t Tm34 var34 lam34 app) app34 : ∀{Γ A B} → Tm34 Γ (arr34 A B) → Tm34 Γ A → Tm34 Γ B;app34 = λ t u Tm34 var34 lam34 app34 → app34 _ _ _ (t Tm34 var34 lam34 app34) (u Tm34 var34 lam34 app34) v034 : ∀{Γ A} → Tm34 (snoc34 Γ A) A;v034 = var34 vz34 v134 : ∀{Γ A B} → Tm34 (snoc34 (snoc34 Γ A) B) A;v134 = var34 (vs34 vz34) v234 : ∀{Γ A B C} → Tm34 (snoc34 (snoc34 (snoc34 Γ A) B) C) A;v234 = var34 (vs34 (vs34 vz34)) v334 : ∀{Γ A B C D} → Tm34 (snoc34 (snoc34 (snoc34 (snoc34 Γ A) B) C) D) A;v334 = var34 (vs34 (vs34 (vs34 vz34))) v434 : ∀{Γ A B C D E} → Tm34 (snoc34 (snoc34 (snoc34 (snoc34 (snoc34 Γ A) B) C) D) E) A;v434 = var34 (vs34 (vs34 (vs34 (vs34 vz34)))) test34 : ∀{Γ A} → Tm34 Γ (arr34 (arr34 A A) (arr34 A A));test34 = lam34 (lam34 (app34 v134 (app34 v134 (app34 v134 (app34 v134 (app34 v134 (app34 v134 v034))))))) {-# OPTIONS --type-in-type #-} Ty35 : Set; Ty35 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι35 : Ty35; ι35 = λ _ ι35 _ → ι35 arr35 : Ty35 → Ty35 → Ty35; arr35 = λ A B Ty35 ι35 arr35 → arr35 (A Ty35 ι35 arr35) (B Ty35 ι35 arr35) Con35 : Set;Con35 = (Con35 : Set) (nil : Con35) (snoc : Con35 → Ty35 → Con35) → Con35 nil35 : Con35;nil35 = λ Con35 nil35 snoc → nil35 snoc35 : Con35 → Ty35 → Con35;snoc35 = λ Γ A Con35 nil35 snoc35 → snoc35 (Γ Con35 nil35 snoc35) A Var35 : Con35 → Ty35 → Set;Var35 = λ Γ A → (Var35 : Con35 → Ty35 → Set) (vz : (Γ : _)(A : _) → Var35 (snoc35 Γ A) A) (vs : (Γ : _)(B A : _) → Var35 Γ A → Var35 (snoc35 Γ B) A) → Var35 Γ A vz35 : ∀{Γ A} → Var35 (snoc35 Γ A) A;vz35 = λ Var35 vz35 vs → vz35 _ _ vs35 : ∀{Γ B A} → Var35 Γ A → Var35 (snoc35 Γ B) A;vs35 = λ x Var35 vz35 vs35 → vs35 _ _ _ (x Var35 vz35 vs35) Tm35 : Con35 → Ty35 → Set;Tm35 = λ Γ A → (Tm35 : Con35 → Ty35 → Set) (var : (Γ : _) (A : _) → Var35 Γ A → Tm35 Γ A) (lam : (Γ : _) (A B : _) → Tm35 (snoc35 Γ A) B → Tm35 Γ (arr35 A B)) (app : (Γ : _) (A B : _) → Tm35 Γ (arr35 A B) → Tm35 Γ A → Tm35 Γ B) → Tm35 Γ A var35 : ∀{Γ A} → Var35 Γ A → Tm35 Γ A;var35 = λ x Tm35 var35 lam app → var35 _ _ x lam35 : ∀{Γ A B} → Tm35 (snoc35 Γ A) B → Tm35 Γ (arr35 A B);lam35 = λ t Tm35 var35 lam35 app → lam35 _ _ _ (t Tm35 var35 lam35 app) app35 : ∀{Γ A B} → Tm35 Γ (arr35 A B) → Tm35 Γ A → Tm35 Γ B;app35 = λ t u Tm35 var35 lam35 app35 → app35 _ _ _ (t Tm35 var35 lam35 app35) (u Tm35 var35 lam35 app35) v035 : ∀{Γ A} → Tm35 (snoc35 Γ A) A;v035 = var35 vz35 v135 : ∀{Γ A B} → Tm35 (snoc35 (snoc35 Γ A) B) A;v135 = var35 (vs35 vz35) v235 : ∀{Γ A B C} → Tm35 (snoc35 (snoc35 (snoc35 Γ A) B) C) A;v235 = var35 (vs35 (vs35 vz35)) v335 : ∀{Γ A B C D} → Tm35 (snoc35 (snoc35 (snoc35 (snoc35 Γ A) B) C) D) A;v335 = var35 (vs35 (vs35 (vs35 vz35))) v435 : ∀{Γ A B C D E} → Tm35 (snoc35 (snoc35 (snoc35 (snoc35 (snoc35 Γ A) B) C) D) E) A;v435 = var35 (vs35 (vs35 (vs35 (vs35 vz35)))) test35 : ∀{Γ A} → Tm35 Γ (arr35 (arr35 A A) (arr35 A A));test35 = lam35 (lam35 (app35 v135 (app35 v135 (app35 v135 (app35 v135 (app35 v135 (app35 v135 v035))))))) {-# OPTIONS --type-in-type #-} Ty36 : Set; Ty36 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι36 : Ty36; ι36 = λ _ ι36 _ → ι36 arr36 : Ty36 → Ty36 → Ty36; arr36 = λ A B Ty36 ι36 arr36 → arr36 (A Ty36 ι36 arr36) (B Ty36 ι36 arr36) Con36 : Set;Con36 = (Con36 : Set) (nil : Con36) (snoc : Con36 → Ty36 → Con36) → Con36 nil36 : Con36;nil36 = λ Con36 nil36 snoc → nil36 snoc36 : Con36 → Ty36 → Con36;snoc36 = λ Γ A Con36 nil36 snoc36 → snoc36 (Γ Con36 nil36 snoc36) A Var36 : Con36 → Ty36 → Set;Var36 = λ Γ A → (Var36 : Con36 → Ty36 → Set) (vz : (Γ : _)(A : _) → Var36 (snoc36 Γ A) A) (vs : (Γ : _)(B A : _) → Var36 Γ A → Var36 (snoc36 Γ B) A) → Var36 Γ A vz36 : ∀{Γ A} → Var36 (snoc36 Γ A) A;vz36 = λ Var36 vz36 vs → vz36 _ _ vs36 : ∀{Γ B A} → Var36 Γ A → Var36 (snoc36 Γ B) A;vs36 = λ x Var36 vz36 vs36 → vs36 _ _ _ (x Var36 vz36 vs36) Tm36 : Con36 → Ty36 → Set;Tm36 = λ Γ A → (Tm36 : Con36 → Ty36 → Set) (var : (Γ : _) (A : _) → Var36 Γ A → Tm36 Γ A) (lam : (Γ : _) (A B : _) → Tm36 (snoc36 Γ A) B → Tm36 Γ (arr36 A B)) (app : (Γ : _) (A B : _) → Tm36 Γ (arr36 A B) → Tm36 Γ A → Tm36 Γ B) → Tm36 Γ A var36 : ∀{Γ A} → Var36 Γ A → Tm36 Γ A;var36 = λ x Tm36 var36 lam app → var36 _ _ x lam36 : ∀{Γ A B} → Tm36 (snoc36 Γ A) B → Tm36 Γ (arr36 A B);lam36 = λ t Tm36 var36 lam36 app → lam36 _ _ _ (t Tm36 var36 lam36 app) app36 : ∀{Γ A B} → Tm36 Γ (arr36 A B) → Tm36 Γ A → Tm36 Γ B;app36 = λ t u Tm36 var36 lam36 app36 → app36 _ _ _ (t Tm36 var36 lam36 app36) (u Tm36 var36 lam36 app36) v036 : ∀{Γ A} → Tm36 (snoc36 Γ A) A;v036 = var36 vz36 v136 : ∀{Γ A B} → Tm36 (snoc36 (snoc36 Γ A) B) A;v136 = var36 (vs36 vz36) v236 : ∀{Γ A B C} → Tm36 (snoc36 (snoc36 (snoc36 Γ A) B) C) A;v236 = var36 (vs36 (vs36 vz36)) v336 : ∀{Γ A B C D} → Tm36 (snoc36 (snoc36 (snoc36 (snoc36 Γ A) B) C) D) A;v336 = var36 (vs36 (vs36 (vs36 vz36))) v436 : ∀{Γ A B C D E} → Tm36 (snoc36 (snoc36 (snoc36 (snoc36 (snoc36 Γ A) B) C) D) E) A;v436 = var36 (vs36 (vs36 (vs36 (vs36 vz36)))) test36 : ∀{Γ A} → Tm36 Γ (arr36 (arr36 A A) (arr36 A A));test36 = lam36 (lam36 (app36 v136 (app36 v136 (app36 v136 (app36 v136 (app36 v136 (app36 v136 v036))))))) {-# OPTIONS --type-in-type #-} Ty37 : Set; Ty37 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι37 : Ty37; ι37 = λ _ ι37 _ → ι37 arr37 : Ty37 → Ty37 → Ty37; arr37 = λ A B Ty37 ι37 arr37 → arr37 (A Ty37 ι37 arr37) (B Ty37 ι37 arr37) Con37 : Set;Con37 = (Con37 : Set) (nil : Con37) (snoc : Con37 → Ty37 → Con37) → Con37 nil37 : Con37;nil37 = λ Con37 nil37 snoc → nil37 snoc37 : Con37 → Ty37 → Con37;snoc37 = λ Γ A Con37 nil37 snoc37 → snoc37 (Γ Con37 nil37 snoc37) A Var37 : Con37 → Ty37 → Set;Var37 = λ Γ A → (Var37 : Con37 → Ty37 → Set) (vz : (Γ : _)(A : _) → Var37 (snoc37 Γ A) A) (vs : (Γ : _)(B A : _) → Var37 Γ A → Var37 (snoc37 Γ B) A) → Var37 Γ A vz37 : ∀{Γ A} → Var37 (snoc37 Γ A) A;vz37 = λ Var37 vz37 vs → vz37 _ _ vs37 : ∀{Γ B A} → Var37 Γ A → Var37 (snoc37 Γ B) A;vs37 = λ x Var37 vz37 vs37 → vs37 _ _ _ (x Var37 vz37 vs37) Tm37 : Con37 → Ty37 → Set;Tm37 = λ Γ A → (Tm37 : Con37 → Ty37 → Set) (var : (Γ : _) (A : _) → Var37 Γ A → Tm37 Γ A) (lam : (Γ : _) (A B : _) → Tm37 (snoc37 Γ A) B → Tm37 Γ (arr37 A B)) (app : (Γ : _) (A B : _) → Tm37 Γ (arr37 A B) → Tm37 Γ A → Tm37 Γ B) → Tm37 Γ A var37 : ∀{Γ A} → Var37 Γ A → Tm37 Γ A;var37 = λ x Tm37 var37 lam app → var37 _ _ x lam37 : ∀{Γ A B} → Tm37 (snoc37 Γ A) B → Tm37 Γ (arr37 A B);lam37 = λ t Tm37 var37 lam37 app → lam37 _ _ _ (t Tm37 var37 lam37 app) app37 : ∀{Γ A B} → Tm37 Γ (arr37 A B) → Tm37 Γ A → Tm37 Γ B;app37 = λ t u Tm37 var37 lam37 app37 → app37 _ _ _ (t Tm37 var37 lam37 app37) (u Tm37 var37 lam37 app37) v037 : ∀{Γ A} → Tm37 (snoc37 Γ A) A;v037 = var37 vz37 v137 : ∀{Γ A B} → Tm37 (snoc37 (snoc37 Γ A) B) A;v137 = var37 (vs37 vz37) v237 : ∀{Γ A B C} → Tm37 (snoc37 (snoc37 (snoc37 Γ A) B) C) A;v237 = var37 (vs37 (vs37 vz37)) v337 : ∀{Γ A B C D} → Tm37 (snoc37 (snoc37 (snoc37 (snoc37 Γ A) B) C) D) A;v337 = var37 (vs37 (vs37 (vs37 vz37))) v437 : ∀{Γ A B C D E} → Tm37 (snoc37 (snoc37 (snoc37 (snoc37 (snoc37 Γ A) B) C) D) E) A;v437 = var37 (vs37 (vs37 (vs37 (vs37 vz37)))) test37 : ∀{Γ A} → Tm37 Γ (arr37 (arr37 A A) (arr37 A A));test37 = lam37 (lam37 (app37 v137 (app37 v137 (app37 v137 (app37 v137 (app37 v137 (app37 v137 v037))))))) {-# OPTIONS --type-in-type #-} Ty38 : Set; Ty38 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι38 : Ty38; ι38 = λ _ ι38 _ → ι38 arr38 : Ty38 → Ty38 → Ty38; arr38 = λ A B Ty38 ι38 arr38 → arr38 (A Ty38 ι38 arr38) (B Ty38 ι38 arr38) Con38 : Set;Con38 = (Con38 : Set) (nil : Con38) (snoc : Con38 → Ty38 → Con38) → Con38 nil38 : Con38;nil38 = λ Con38 nil38 snoc → nil38 snoc38 : Con38 → Ty38 → Con38;snoc38 = λ Γ A Con38 nil38 snoc38 → snoc38 (Γ Con38 nil38 snoc38) A Var38 : Con38 → Ty38 → Set;Var38 = λ Γ A → (Var38 : Con38 → Ty38 → Set) (vz : (Γ : _)(A : _) → Var38 (snoc38 Γ A) A) (vs : (Γ : _)(B A : _) → Var38 Γ A → Var38 (snoc38 Γ B) A) → Var38 Γ A vz38 : ∀{Γ A} → Var38 (snoc38 Γ A) A;vz38 = λ Var38 vz38 vs → vz38 _ _ vs38 : ∀{Γ B A} → Var38 Γ A → Var38 (snoc38 Γ B) A;vs38 = λ x Var38 vz38 vs38 → vs38 _ _ _ (x Var38 vz38 vs38) Tm38 : Con38 → Ty38 → Set;Tm38 = λ Γ A → (Tm38 : Con38 → Ty38 → Set) (var : (Γ : _) (A : _) → Var38 Γ A → Tm38 Γ A) (lam : (Γ : _) (A B : _) → Tm38 (snoc38 Γ A) B → Tm38 Γ (arr38 A B)) (app : (Γ : _) (A B : _) → Tm38 Γ (arr38 A B) → Tm38 Γ A → Tm38 Γ B) → Tm38 Γ A var38 : ∀{Γ A} → Var38 Γ A → Tm38 Γ A;var38 = λ x Tm38 var38 lam app → var38 _ _ x lam38 : ∀{Γ A B} → Tm38 (snoc38 Γ A) B → Tm38 Γ (arr38 A B);lam38 = λ t Tm38 var38 lam38 app → lam38 _ _ _ (t Tm38 var38 lam38 app) app38 : ∀{Γ A B} → Tm38 Γ (arr38 A B) → Tm38 Γ A → Tm38 Γ B;app38 = λ t u Tm38 var38 lam38 app38 → app38 _ _ _ (t Tm38 var38 lam38 app38) (u Tm38 var38 lam38 app38) v038 : ∀{Γ A} → Tm38 (snoc38 Γ A) A;v038 = var38 vz38 v138 : ∀{Γ A B} → Tm38 (snoc38 (snoc38 Γ A) B) A;v138 = var38 (vs38 vz38) v238 : ∀{Γ A B C} → Tm38 (snoc38 (snoc38 (snoc38 Γ A) B) C) A;v238 = var38 (vs38 (vs38 vz38)) v338 : ∀{Γ A B C D} → Tm38 (snoc38 (snoc38 (snoc38 (snoc38 Γ A) B) C) D) A;v338 = var38 (vs38 (vs38 (vs38 vz38))) v438 : ∀{Γ A B C D E} → Tm38 (snoc38 (snoc38 (snoc38 (snoc38 (snoc38 Γ A) B) C) D) E) A;v438 = var38 (vs38 (vs38 (vs38 (vs38 vz38)))) test38 : ∀{Γ A} → Tm38 Γ (arr38 (arr38 A A) (arr38 A A));test38 = lam38 (lam38 (app38 v138 (app38 v138 (app38 v138 (app38 v138 (app38 v138 (app38 v138 v038))))))) {-# OPTIONS --type-in-type #-} Ty39 : Set; Ty39 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι39 : Ty39; ι39 = λ _ ι39 _ → ι39 arr39 : Ty39 → Ty39 → Ty39; arr39 = λ A B Ty39 ι39 arr39 → arr39 (A Ty39 ι39 arr39) (B Ty39 ι39 arr39) Con39 : Set;Con39 = (Con39 : Set) (nil : Con39) (snoc : Con39 → Ty39 → Con39) → Con39 nil39 : Con39;nil39 = λ Con39 nil39 snoc → nil39 snoc39 : Con39 → Ty39 → Con39;snoc39 = λ Γ A Con39 nil39 snoc39 → snoc39 (Γ Con39 nil39 snoc39) A Var39 : Con39 → Ty39 → Set;Var39 = λ Γ A → (Var39 : Con39 → Ty39 → Set) (vz : (Γ : _)(A : _) → Var39 (snoc39 Γ A) A) (vs : (Γ : _)(B A : _) → Var39 Γ A → Var39 (snoc39 Γ B) A) → Var39 Γ A vz39 : ∀{Γ A} → Var39 (snoc39 Γ A) A;vz39 = λ Var39 vz39 vs → vz39 _ _ vs39 : ∀{Γ B A} → Var39 Γ A → Var39 (snoc39 Γ B) A;vs39 = λ x Var39 vz39 vs39 → vs39 _ _ _ (x Var39 vz39 vs39) Tm39 : Con39 → Ty39 → Set;Tm39 = λ Γ A → (Tm39 : Con39 → Ty39 → Set) (var : (Γ : _) (A : _) → Var39 Γ A → Tm39 Γ A) (lam : (Γ : _) (A B : _) → Tm39 (snoc39 Γ A) B → Tm39 Γ (arr39 A B)) (app : (Γ : _) (A B : _) → Tm39 Γ (arr39 A B) → Tm39 Γ A → Tm39 Γ B) → Tm39 Γ A var39 : ∀{Γ A} → Var39 Γ A → Tm39 Γ A;var39 = λ x Tm39 var39 lam app → var39 _ _ x lam39 : ∀{Γ A B} → Tm39 (snoc39 Γ A) B → Tm39 Γ (arr39 A B);lam39 = λ t Tm39 var39 lam39 app → lam39 _ _ _ (t Tm39 var39 lam39 app) app39 : ∀{Γ A B} → Tm39 Γ (arr39 A B) → Tm39 Γ A → Tm39 Γ B;app39 = λ t u Tm39 var39 lam39 app39 → app39 _ _ _ (t Tm39 var39 lam39 app39) (u Tm39 var39 lam39 app39) v039 : ∀{Γ A} → Tm39 (snoc39 Γ A) A;v039 = var39 vz39 v139 : ∀{Γ A B} → Tm39 (snoc39 (snoc39 Γ A) B) A;v139 = var39 (vs39 vz39) v239 : ∀{Γ A B C} → Tm39 (snoc39 (snoc39 (snoc39 Γ A) B) C) A;v239 = var39 (vs39 (vs39 vz39)) v339 : ∀{Γ A B C D} → Tm39 (snoc39 (snoc39 (snoc39 (snoc39 Γ A) B) C) D) A;v339 = var39 (vs39 (vs39 (vs39 vz39))) v439 : ∀{Γ A B C D E} → Tm39 (snoc39 (snoc39 (snoc39 (snoc39 (snoc39 Γ A) B) C) D) E) A;v439 = var39 (vs39 (vs39 (vs39 (vs39 vz39)))) test39 : ∀{Γ A} → Tm39 Γ (arr39 (arr39 A A) (arr39 A A));test39 = lam39 (lam39 (app39 v139 (app39 v139 (app39 v139 (app39 v139 (app39 v139 (app39 v139 v039))))))) {-# OPTIONS --type-in-type #-} Ty40 : Set; Ty40 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι40 : Ty40; ι40 = λ _ ι40 _ → ι40 arr40 : Ty40 → Ty40 → Ty40; arr40 = λ A B Ty40 ι40 arr40 → arr40 (A Ty40 ι40 arr40) (B Ty40 ι40 arr40) Con40 : Set;Con40 = (Con40 : Set) (nil : Con40) (snoc : Con40 → Ty40 → Con40) → Con40 nil40 : Con40;nil40 = λ Con40 nil40 snoc → nil40 snoc40 : Con40 → Ty40 → Con40;snoc40 = λ Γ A Con40 nil40 snoc40 → snoc40 (Γ Con40 nil40 snoc40) A Var40 : Con40 → Ty40 → Set;Var40 = λ Γ A → (Var40 : Con40 → Ty40 → Set) (vz : (Γ : _)(A : _) → Var40 (snoc40 Γ A) A) (vs : (Γ : _)(B A : _) → Var40 Γ A → Var40 (snoc40 Γ B) A) → Var40 Γ A vz40 : ∀{Γ A} → Var40 (snoc40 Γ A) A;vz40 = λ Var40 vz40 vs → vz40 _ _ vs40 : ∀{Γ B A} → Var40 Γ A → Var40 (snoc40 Γ B) A;vs40 = λ x Var40 vz40 vs40 → vs40 _ _ _ (x Var40 vz40 vs40) Tm40 : Con40 → Ty40 → Set;Tm40 = λ Γ A → (Tm40 : Con40 → Ty40 → Set) (var : (Γ : _) (A : _) → Var40 Γ A → Tm40 Γ A) (lam : (Γ : _) (A B : _) → Tm40 (snoc40 Γ A) B → Tm40 Γ (arr40 A B)) (app : (Γ : _) (A B : _) → Tm40 Γ (arr40 A B) → Tm40 Γ A → Tm40 Γ B) → Tm40 Γ A var40 : ∀{Γ A} → Var40 Γ A → Tm40 Γ A;var40 = λ x Tm40 var40 lam app → var40 _ _ x lam40 : ∀{Γ A B} → Tm40 (snoc40 Γ A) B → Tm40 Γ (arr40 A B);lam40 = λ t Tm40 var40 lam40 app → lam40 _ _ _ (t Tm40 var40 lam40 app) app40 : ∀{Γ A B} → Tm40 Γ (arr40 A B) → Tm40 Γ A → Tm40 Γ B;app40 = λ t u Tm40 var40 lam40 app40 → app40 _ _ _ (t Tm40 var40 lam40 app40) (u Tm40 var40 lam40 app40) v040 : ∀{Γ A} → Tm40 (snoc40 Γ A) A;v040 = var40 vz40 v140 : ∀{Γ A B} → Tm40 (snoc40 (snoc40 Γ A) B) A;v140 = var40 (vs40 vz40) v240 : ∀{Γ A B C} → Tm40 (snoc40 (snoc40 (snoc40 Γ A) B) C) A;v240 = var40 (vs40 (vs40 vz40)) v340 : ∀{Γ A B C D} → Tm40 (snoc40 (snoc40 (snoc40 (snoc40 Γ A) B) C) D) A;v340 = var40 (vs40 (vs40 (vs40 vz40))) v440 : ∀{Γ A B C D E} → Tm40 (snoc40 (snoc40 (snoc40 (snoc40 (snoc40 Γ A) B) C) D) E) A;v440 = var40 (vs40 (vs40 (vs40 (vs40 vz40)))) test40 : ∀{Γ A} → Tm40 Γ (arr40 (arr40 A A) (arr40 A A));test40 = lam40 (lam40 (app40 v140 (app40 v140 (app40 v140 (app40 v140 (app40 v140 (app40 v140 v040))))))) {-# OPTIONS --type-in-type #-} Ty41 : Set; Ty41 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι41 : Ty41; ι41 = λ _ ι41 _ → ι41 arr41 : Ty41 → Ty41 → Ty41; arr41 = λ A B Ty41 ι41 arr41 → arr41 (A Ty41 ι41 arr41) (B Ty41 ι41 arr41) Con41 : Set;Con41 = (Con41 : Set) (nil : Con41) (snoc : Con41 → Ty41 → Con41) → Con41 nil41 : Con41;nil41 = λ Con41 nil41 snoc → nil41 snoc41 : Con41 → Ty41 → Con41;snoc41 = λ Γ A Con41 nil41 snoc41 → snoc41 (Γ Con41 nil41 snoc41) A Var41 : Con41 → Ty41 → Set;Var41 = λ Γ A → (Var41 : Con41 → Ty41 → Set) (vz : (Γ : _)(A : _) → Var41 (snoc41 Γ A) A) (vs : (Γ : _)(B A : _) → Var41 Γ A → Var41 (snoc41 Γ B) A) → Var41 Γ A vz41 : ∀{Γ A} → Var41 (snoc41 Γ A) A;vz41 = λ Var41 vz41 vs → vz41 _ _ vs41 : ∀{Γ B A} → Var41 Γ A → Var41 (snoc41 Γ B) A;vs41 = λ x Var41 vz41 vs41 → vs41 _ _ _ (x Var41 vz41 vs41) Tm41 : Con41 → Ty41 → Set;Tm41 = λ Γ A → (Tm41 : Con41 → Ty41 → Set) (var : (Γ : _) (A : _) → Var41 Γ A → Tm41 Γ A) (lam : (Γ : _) (A B : _) → Tm41 (snoc41 Γ A) B → Tm41 Γ (arr41 A B)) (app : (Γ : _) (A B : _) → Tm41 Γ (arr41 A B) → Tm41 Γ A → Tm41 Γ B) → Tm41 Γ A var41 : ∀{Γ A} → Var41 Γ A → Tm41 Γ A;var41 = λ x Tm41 var41 lam app → var41 _ _ x lam41 : ∀{Γ A B} → Tm41 (snoc41 Γ A) B → Tm41 Γ (arr41 A B);lam41 = λ t Tm41 var41 lam41 app → lam41 _ _ _ (t Tm41 var41 lam41 app) app41 : ∀{Γ A B} → Tm41 Γ (arr41 A B) → Tm41 Γ A → Tm41 Γ B;app41 = λ t u Tm41 var41 lam41 app41 → app41 _ _ _ (t Tm41 var41 lam41 app41) (u Tm41 var41 lam41 app41) v041 : ∀{Γ A} → Tm41 (snoc41 Γ A) A;v041 = var41 vz41 v141 : ∀{Γ A B} → Tm41 (snoc41 (snoc41 Γ A) B) A;v141 = var41 (vs41 vz41) v241 : ∀{Γ A B C} → Tm41 (snoc41 (snoc41 (snoc41 Γ A) B) C) A;v241 = var41 (vs41 (vs41 vz41)) v341 : ∀{Γ A B C D} → Tm41 (snoc41 (snoc41 (snoc41 (snoc41 Γ A) B) C) D) A;v341 = var41 (vs41 (vs41 (vs41 vz41))) v441 : ∀{Γ A B C D E} → Tm41 (snoc41 (snoc41 (snoc41 (snoc41 (snoc41 Γ A) B) C) D) E) A;v441 = var41 (vs41 (vs41 (vs41 (vs41 vz41)))) test41 : ∀{Γ A} → Tm41 Γ (arr41 (arr41 A A) (arr41 A A));test41 = lam41 (lam41 (app41 v141 (app41 v141 (app41 v141 (app41 v141 (app41 v141 (app41 v141 v041))))))) {-# OPTIONS --type-in-type #-} Ty42 : Set; Ty42 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι42 : Ty42; ι42 = λ _ ι42 _ → ι42 arr42 : Ty42 → Ty42 → Ty42; arr42 = λ A B Ty42 ι42 arr42 → arr42 (A Ty42 ι42 arr42) (B Ty42 ι42 arr42) Con42 : Set;Con42 = (Con42 : Set) (nil : Con42) (snoc : Con42 → Ty42 → Con42) → Con42 nil42 : Con42;nil42 = λ Con42 nil42 snoc → nil42 snoc42 : Con42 → Ty42 → Con42;snoc42 = λ Γ A Con42 nil42 snoc42 → snoc42 (Γ Con42 nil42 snoc42) A Var42 : Con42 → Ty42 → Set;Var42 = λ Γ A → (Var42 : Con42 → Ty42 → Set) (vz : (Γ : _)(A : _) → Var42 (snoc42 Γ A) A) (vs : (Γ : _)(B A : _) → Var42 Γ A → Var42 (snoc42 Γ B) A) → Var42 Γ A vz42 : ∀{Γ A} → Var42 (snoc42 Γ A) A;vz42 = λ Var42 vz42 vs → vz42 _ _ vs42 : ∀{Γ B A} → Var42 Γ A → Var42 (snoc42 Γ B) A;vs42 = λ x Var42 vz42 vs42 → vs42 _ _ _ (x Var42 vz42 vs42) Tm42 : Con42 → Ty42 → Set;Tm42 = λ Γ A → (Tm42 : Con42 → Ty42 → Set) (var : (Γ : _) (A : _) → Var42 Γ A → Tm42 Γ A) (lam : (Γ : _) (A B : _) → Tm42 (snoc42 Γ A) B → Tm42 Γ (arr42 A B)) (app : (Γ : _) (A B : _) → Tm42 Γ (arr42 A B) → Tm42 Γ A → Tm42 Γ B) → Tm42 Γ A var42 : ∀{Γ A} → Var42 Γ A → Tm42 Γ A;var42 = λ x Tm42 var42 lam app → var42 _ _ x lam42 : ∀{Γ A B} → Tm42 (snoc42 Γ A) B → Tm42 Γ (arr42 A B);lam42 = λ t Tm42 var42 lam42 app → lam42 _ _ _ (t Tm42 var42 lam42 app) app42 : ∀{Γ A B} → Tm42 Γ (arr42 A B) → Tm42 Γ A → Tm42 Γ B;app42 = λ t u Tm42 var42 lam42 app42 → app42 _ _ _ (t Tm42 var42 lam42 app42) (u Tm42 var42 lam42 app42) v042 : ∀{Γ A} → Tm42 (snoc42 Γ A) A;v042 = var42 vz42 v142 : ∀{Γ A B} → Tm42 (snoc42 (snoc42 Γ A) B) A;v142 = var42 (vs42 vz42) v242 : ∀{Γ A B C} → Tm42 (snoc42 (snoc42 (snoc42 Γ A) B) C) A;v242 = var42 (vs42 (vs42 vz42)) v342 : ∀{Γ A B C D} → Tm42 (snoc42 (snoc42 (snoc42 (snoc42 Γ A) B) C) D) A;v342 = var42 (vs42 (vs42 (vs42 vz42))) v442 : ∀{Γ A B C D E} → Tm42 (snoc42 (snoc42 (snoc42 (snoc42 (snoc42 Γ A) B) C) D) E) A;v442 = var42 (vs42 (vs42 (vs42 (vs42 vz42)))) test42 : ∀{Γ A} → Tm42 Γ (arr42 (arr42 A A) (arr42 A A));test42 = lam42 (lam42 (app42 v142 (app42 v142 (app42 v142 (app42 v142 (app42 v142 (app42 v142 v042))))))) {-# OPTIONS --type-in-type #-} Ty43 : Set; Ty43 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι43 : Ty43; ι43 = λ _ ι43 _ → ι43 arr43 : Ty43 → Ty43 → Ty43; arr43 = λ A B Ty43 ι43 arr43 → arr43 (A Ty43 ι43 arr43) (B Ty43 ι43 arr43) Con43 : Set;Con43 = (Con43 : Set) (nil : Con43) (snoc : Con43 → Ty43 → Con43) → Con43 nil43 : Con43;nil43 = λ Con43 nil43 snoc → nil43 snoc43 : Con43 → Ty43 → Con43;snoc43 = λ Γ A Con43 nil43 snoc43 → snoc43 (Γ Con43 nil43 snoc43) A Var43 : Con43 → Ty43 → Set;Var43 = λ Γ A → (Var43 : Con43 → Ty43 → Set) (vz : (Γ : _)(A : _) → Var43 (snoc43 Γ A) A) (vs : (Γ : _)(B A : _) → Var43 Γ A → Var43 (snoc43 Γ B) A) → Var43 Γ A vz43 : ∀{Γ A} → Var43 (snoc43 Γ A) A;vz43 = λ Var43 vz43 vs → vz43 _ _ vs43 : ∀{Γ B A} → Var43 Γ A → Var43 (snoc43 Γ B) A;vs43 = λ x Var43 vz43 vs43 → vs43 _ _ _ (x Var43 vz43 vs43) Tm43 : Con43 → Ty43 → Set;Tm43 = λ Γ A → (Tm43 : Con43 → Ty43 → Set) (var : (Γ : _) (A : _) → Var43 Γ A → Tm43 Γ A) (lam : (Γ : _) (A B : _) → Tm43 (snoc43 Γ A) B → Tm43 Γ (arr43 A B)) (app : (Γ : _) (A B : _) → Tm43 Γ (arr43 A B) → Tm43 Γ A → Tm43 Γ B) → Tm43 Γ A var43 : ∀{Γ A} → Var43 Γ A → Tm43 Γ A;var43 = λ x Tm43 var43 lam app → var43 _ _ x lam43 : ∀{Γ A B} → Tm43 (snoc43 Γ A) B → Tm43 Γ (arr43 A B);lam43 = λ t Tm43 var43 lam43 app → lam43 _ _ _ (t Tm43 var43 lam43 app) app43 : ∀{Γ A B} → Tm43 Γ (arr43 A B) → Tm43 Γ A → Tm43 Γ B;app43 = λ t u Tm43 var43 lam43 app43 → app43 _ _ _ (t Tm43 var43 lam43 app43) (u Tm43 var43 lam43 app43) v043 : ∀{Γ A} → Tm43 (snoc43 Γ A) A;v043 = var43 vz43 v143 : ∀{Γ A B} → Tm43 (snoc43 (snoc43 Γ A) B) A;v143 = var43 (vs43 vz43) v243 : ∀{Γ A B C} → Tm43 (snoc43 (snoc43 (snoc43 Γ A) B) C) A;v243 = var43 (vs43 (vs43 vz43)) v343 : ∀{Γ A B C D} → Tm43 (snoc43 (snoc43 (snoc43 (snoc43 Γ A) B) C) D) A;v343 = var43 (vs43 (vs43 (vs43 vz43))) v443 : ∀{Γ A B C D E} → Tm43 (snoc43 (snoc43 (snoc43 (snoc43 (snoc43 Γ A) B) C) D) E) A;v443 = var43 (vs43 (vs43 (vs43 (vs43 vz43)))) test43 : ∀{Γ A} → Tm43 Γ (arr43 (arr43 A A) (arr43 A A));test43 = lam43 (lam43 (app43 v143 (app43 v143 (app43 v143 (app43 v143 (app43 v143 (app43 v143 v043))))))) {-# OPTIONS --type-in-type #-} Ty44 : Set; Ty44 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι44 : Ty44; ι44 = λ _ ι44 _ → ι44 arr44 : Ty44 → Ty44 → Ty44; arr44 = λ A B Ty44 ι44 arr44 → arr44 (A Ty44 ι44 arr44) (B Ty44 ι44 arr44) Con44 : Set;Con44 = (Con44 : Set) (nil : Con44) (snoc : Con44 → Ty44 → Con44) → Con44 nil44 : Con44;nil44 = λ Con44 nil44 snoc → nil44 snoc44 : Con44 → Ty44 → Con44;snoc44 = λ Γ A Con44 nil44 snoc44 → snoc44 (Γ Con44 nil44 snoc44) A Var44 : Con44 → Ty44 → Set;Var44 = λ Γ A → (Var44 : Con44 → Ty44 → Set) (vz : (Γ : _)(A : _) → Var44 (snoc44 Γ A) A) (vs : (Γ : _)(B A : _) → Var44 Γ A → Var44 (snoc44 Γ B) A) → Var44 Γ A vz44 : ∀{Γ A} → Var44 (snoc44 Γ A) A;vz44 = λ Var44 vz44 vs → vz44 _ _ vs44 : ∀{Γ B A} → Var44 Γ A → Var44 (snoc44 Γ B) A;vs44 = λ x Var44 vz44 vs44 → vs44 _ _ _ (x Var44 vz44 vs44) Tm44 : Con44 → Ty44 → Set;Tm44 = λ Γ A → (Tm44 : Con44 → Ty44 → Set) (var : (Γ : _) (A : _) → Var44 Γ A → Tm44 Γ A) (lam : (Γ : _) (A B : _) → Tm44 (snoc44 Γ A) B → Tm44 Γ (arr44 A B)) (app : (Γ : _) (A B : _) → Tm44 Γ (arr44 A B) → Tm44 Γ A → Tm44 Γ B) → Tm44 Γ A var44 : ∀{Γ A} → Var44 Γ A → Tm44 Γ A;var44 = λ x Tm44 var44 lam app → var44 _ _ x lam44 : ∀{Γ A B} → Tm44 (snoc44 Γ A) B → Tm44 Γ (arr44 A B);lam44 = λ t Tm44 var44 lam44 app → lam44 _ _ _ (t Tm44 var44 lam44 app) app44 : ∀{Γ A B} → Tm44 Γ (arr44 A B) → Tm44 Γ A → Tm44 Γ B;app44 = λ t u Tm44 var44 lam44 app44 → app44 _ _ _ (t Tm44 var44 lam44 app44) (u Tm44 var44 lam44 app44) v044 : ∀{Γ A} → Tm44 (snoc44 Γ A) A;v044 = var44 vz44 v144 : ∀{Γ A B} → Tm44 (snoc44 (snoc44 Γ A) B) A;v144 = var44 (vs44 vz44) v244 : ∀{Γ A B C} → Tm44 (snoc44 (snoc44 (snoc44 Γ A) B) C) A;v244 = var44 (vs44 (vs44 vz44)) v344 : ∀{Γ A B C D} → Tm44 (snoc44 (snoc44 (snoc44 (snoc44 Γ A) B) C) D) A;v344 = var44 (vs44 (vs44 (vs44 vz44))) v444 : ∀{Γ A B C D E} → Tm44 (snoc44 (snoc44 (snoc44 (snoc44 (snoc44 Γ A) B) C) D) E) A;v444 = var44 (vs44 (vs44 (vs44 (vs44 vz44)))) test44 : ∀{Γ A} → Tm44 Γ (arr44 (arr44 A A) (arr44 A A));test44 = lam44 (lam44 (app44 v144 (app44 v144 (app44 v144 (app44 v144 (app44 v144 (app44 v144 v044))))))) {-# OPTIONS --type-in-type #-} Ty45 : Set; Ty45 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι45 : Ty45; ι45 = λ _ ι45 _ → ι45 arr45 : Ty45 → Ty45 → Ty45; arr45 = λ A B Ty45 ι45 arr45 → arr45 (A Ty45 ι45 arr45) (B Ty45 ι45 arr45) Con45 : Set;Con45 = (Con45 : Set) (nil : Con45) (snoc : Con45 → Ty45 → Con45) → Con45 nil45 : Con45;nil45 = λ Con45 nil45 snoc → nil45 snoc45 : Con45 → Ty45 → Con45;snoc45 = λ Γ A Con45 nil45 snoc45 → snoc45 (Γ Con45 nil45 snoc45) A Var45 : Con45 → Ty45 → Set;Var45 = λ Γ A → (Var45 : Con45 → Ty45 → Set) (vz : (Γ : _)(A : _) → Var45 (snoc45 Γ A) A) (vs : (Γ : _)(B A : _) → Var45 Γ A → Var45 (snoc45 Γ B) A) → Var45 Γ A vz45 : ∀{Γ A} → Var45 (snoc45 Γ A) A;vz45 = λ Var45 vz45 vs → vz45 _ _ vs45 : ∀{Γ B A} → Var45 Γ A → Var45 (snoc45 Γ B) A;vs45 = λ x Var45 vz45 vs45 → vs45 _ _ _ (x Var45 vz45 vs45) Tm45 : Con45 → Ty45 → Set;Tm45 = λ Γ A → (Tm45 : Con45 → Ty45 → Set) (var : (Γ : _) (A : _) → Var45 Γ A → Tm45 Γ A) (lam : (Γ : _) (A B : _) → Tm45 (snoc45 Γ A) B → Tm45 Γ (arr45 A B)) (app : (Γ : _) (A B : _) → Tm45 Γ (arr45 A B) → Tm45 Γ A → Tm45 Γ B) → Tm45 Γ A var45 : ∀{Γ A} → Var45 Γ A → Tm45 Γ A;var45 = λ x Tm45 var45 lam app → var45 _ _ x lam45 : ∀{Γ A B} → Tm45 (snoc45 Γ A) B → Tm45 Γ (arr45 A B);lam45 = λ t Tm45 var45 lam45 app → lam45 _ _ _ (t Tm45 var45 lam45 app) app45 : ∀{Γ A B} → Tm45 Γ (arr45 A B) → Tm45 Γ A → Tm45 Γ B;app45 = λ t u Tm45 var45 lam45 app45 → app45 _ _ _ (t Tm45 var45 lam45 app45) (u Tm45 var45 lam45 app45) v045 : ∀{Γ A} → Tm45 (snoc45 Γ A) A;v045 = var45 vz45 v145 : ∀{Γ A B} → Tm45 (snoc45 (snoc45 Γ A) B) A;v145 = var45 (vs45 vz45) v245 : ∀{Γ A B C} → Tm45 (snoc45 (snoc45 (snoc45 Γ A) B) C) A;v245 = var45 (vs45 (vs45 vz45)) v345 : ∀{Γ A B C D} → Tm45 (snoc45 (snoc45 (snoc45 (snoc45 Γ A) B) C) D) A;v345 = var45 (vs45 (vs45 (vs45 vz45))) v445 : ∀{Γ A B C D E} → Tm45 (snoc45 (snoc45 (snoc45 (snoc45 (snoc45 Γ A) B) C) D) E) A;v445 = var45 (vs45 (vs45 (vs45 (vs45 vz45)))) test45 : ∀{Γ A} → Tm45 Γ (arr45 (arr45 A A) (arr45 A A));test45 = lam45 (lam45 (app45 v145 (app45 v145 (app45 v145 (app45 v145 (app45 v145 (app45 v145 v045))))))) {-# OPTIONS --type-in-type #-} Ty46 : Set; Ty46 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι46 : Ty46; ι46 = λ _ ι46 _ → ι46 arr46 : Ty46 → Ty46 → Ty46; arr46 = λ A B Ty46 ι46 arr46 → arr46 (A Ty46 ι46 arr46) (B Ty46 ι46 arr46) Con46 : Set;Con46 = (Con46 : Set) (nil : Con46) (snoc : Con46 → Ty46 → Con46) → Con46 nil46 : Con46;nil46 = λ Con46 nil46 snoc → nil46 snoc46 : Con46 → Ty46 → Con46;snoc46 = λ Γ A Con46 nil46 snoc46 → snoc46 (Γ Con46 nil46 snoc46) A Var46 : Con46 → Ty46 → Set;Var46 = λ Γ A → (Var46 : Con46 → Ty46 → Set) (vz : (Γ : _)(A : _) → Var46 (snoc46 Γ A) A) (vs : (Γ : _)(B A : _) → Var46 Γ A → Var46 (snoc46 Γ B) A) → Var46 Γ A vz46 : ∀{Γ A} → Var46 (snoc46 Γ A) A;vz46 = λ Var46 vz46 vs → vz46 _ _ vs46 : ∀{Γ B A} → Var46 Γ A → Var46 (snoc46 Γ B) A;vs46 = λ x Var46 vz46 vs46 → vs46 _ _ _ (x Var46 vz46 vs46) Tm46 : Con46 → Ty46 → Set;Tm46 = λ Γ A → (Tm46 : Con46 → Ty46 → Set) (var : (Γ : _) (A : _) → Var46 Γ A → Tm46 Γ A) (lam : (Γ : _) (A B : _) → Tm46 (snoc46 Γ A) B → Tm46 Γ (arr46 A B)) (app : (Γ : _) (A B : _) → Tm46 Γ (arr46 A B) → Tm46 Γ A → Tm46 Γ B) → Tm46 Γ A var46 : ∀{Γ A} → Var46 Γ A → Tm46 Γ A;var46 = λ x Tm46 var46 lam app → var46 _ _ x lam46 : ∀{Γ A B} → Tm46 (snoc46 Γ A) B → Tm46 Γ (arr46 A B);lam46 = λ t Tm46 var46 lam46 app → lam46 _ _ _ (t Tm46 var46 lam46 app) app46 : ∀{Γ A B} → Tm46 Γ (arr46 A B) → Tm46 Γ A → Tm46 Γ B;app46 = λ t u Tm46 var46 lam46 app46 → app46 _ _ _ (t Tm46 var46 lam46 app46) (u Tm46 var46 lam46 app46) v046 : ∀{Γ A} → Tm46 (snoc46 Γ A) A;v046 = var46 vz46 v146 : ∀{Γ A B} → Tm46 (snoc46 (snoc46 Γ A) B) A;v146 = var46 (vs46 vz46) v246 : ∀{Γ A B C} → Tm46 (snoc46 (snoc46 (snoc46 Γ A) B) C) A;v246 = var46 (vs46 (vs46 vz46)) v346 : ∀{Γ A B C D} → Tm46 (snoc46 (snoc46 (snoc46 (snoc46 Γ A) B) C) D) A;v346 = var46 (vs46 (vs46 (vs46 vz46))) v446 : ∀{Γ A B C D E} → Tm46 (snoc46 (snoc46 (snoc46 (snoc46 (snoc46 Γ A) B) C) D) E) A;v446 = var46 (vs46 (vs46 (vs46 (vs46 vz46)))) test46 : ∀{Γ A} → Tm46 Γ (arr46 (arr46 A A) (arr46 A A));test46 = lam46 (lam46 (app46 v146 (app46 v146 (app46 v146 (app46 v146 (app46 v146 (app46 v146 v046))))))) {-# OPTIONS --type-in-type #-} Ty47 : Set; Ty47 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι47 : Ty47; ι47 = λ _ ι47 _ → ι47 arr47 : Ty47 → Ty47 → Ty47; arr47 = λ A B Ty47 ι47 arr47 → arr47 (A Ty47 ι47 arr47) (B Ty47 ι47 arr47) Con47 : Set;Con47 = (Con47 : Set) (nil : Con47) (snoc : Con47 → Ty47 → Con47) → Con47 nil47 : Con47;nil47 = λ Con47 nil47 snoc → nil47 snoc47 : Con47 → Ty47 → Con47;snoc47 = λ Γ A Con47 nil47 snoc47 → snoc47 (Γ Con47 nil47 snoc47) A Var47 : Con47 → Ty47 → Set;Var47 = λ Γ A → (Var47 : Con47 → Ty47 → Set) (vz : (Γ : _)(A : _) → Var47 (snoc47 Γ A) A) (vs : (Γ : _)(B A : _) → Var47 Γ A → Var47 (snoc47 Γ B) A) → Var47 Γ A vz47 : ∀{Γ A} → Var47 (snoc47 Γ A) A;vz47 = λ Var47 vz47 vs → vz47 _ _ vs47 : ∀{Γ B A} → Var47 Γ A → Var47 (snoc47 Γ B) A;vs47 = λ x Var47 vz47 vs47 → vs47 _ _ _ (x Var47 vz47 vs47) Tm47 : Con47 → Ty47 → Set;Tm47 = λ Γ A → (Tm47 : Con47 → Ty47 → Set) (var : (Γ : _) (A : _) → Var47 Γ A → Tm47 Γ A) (lam : (Γ : _) (A B : _) → Tm47 (snoc47 Γ A) B → Tm47 Γ (arr47 A B)) (app : (Γ : _) (A B : _) → Tm47 Γ (arr47 A B) → Tm47 Γ A → Tm47 Γ B) → Tm47 Γ A var47 : ∀{Γ A} → Var47 Γ A → Tm47 Γ A;var47 = λ x Tm47 var47 lam app → var47 _ _ x lam47 : ∀{Γ A B} → Tm47 (snoc47 Γ A) B → Tm47 Γ (arr47 A B);lam47 = λ t Tm47 var47 lam47 app → lam47 _ _ _ (t Tm47 var47 lam47 app) app47 : ∀{Γ A B} → Tm47 Γ (arr47 A B) → Tm47 Γ A → Tm47 Γ B;app47 = λ t u Tm47 var47 lam47 app47 → app47 _ _ _ (t Tm47 var47 lam47 app47) (u Tm47 var47 lam47 app47) v047 : ∀{Γ A} → Tm47 (snoc47 Γ A) A;v047 = var47 vz47 v147 : ∀{Γ A B} → Tm47 (snoc47 (snoc47 Γ A) B) A;v147 = var47 (vs47 vz47) v247 : ∀{Γ A B C} → Tm47 (snoc47 (snoc47 (snoc47 Γ A) B) C) A;v247 = var47 (vs47 (vs47 vz47)) v347 : ∀{Γ A B C D} → Tm47 (snoc47 (snoc47 (snoc47 (snoc47 Γ A) B) C) D) A;v347 = var47 (vs47 (vs47 (vs47 vz47))) v447 : ∀{Γ A B C D E} → Tm47 (snoc47 (snoc47 (snoc47 (snoc47 (snoc47 Γ A) B) C) D) E) A;v447 = var47 (vs47 (vs47 (vs47 (vs47 vz47)))) test47 : ∀{Γ A} → Tm47 Γ (arr47 (arr47 A A) (arr47 A A));test47 = lam47 (lam47 (app47 v147 (app47 v147 (app47 v147 (app47 v147 (app47 v147 (app47 v147 v047))))))) {-# OPTIONS --type-in-type #-} Ty48 : Set; Ty48 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι48 : Ty48; ι48 = λ _ ι48 _ → ι48 arr48 : Ty48 → Ty48 → Ty48; arr48 = λ A B Ty48 ι48 arr48 → arr48 (A Ty48 ι48 arr48) (B Ty48 ι48 arr48) Con48 : Set;Con48 = (Con48 : Set) (nil : Con48) (snoc : Con48 → Ty48 → Con48) → Con48 nil48 : Con48;nil48 = λ Con48 nil48 snoc → nil48 snoc48 : Con48 → Ty48 → Con48;snoc48 = λ Γ A Con48 nil48 snoc48 → snoc48 (Γ Con48 nil48 snoc48) A Var48 : Con48 → Ty48 → Set;Var48 = λ Γ A → (Var48 : Con48 → Ty48 → Set) (vz : (Γ : _)(A : _) → Var48 (snoc48 Γ A) A) (vs : (Γ : _)(B A : _) → Var48 Γ A → Var48 (snoc48 Γ B) A) → Var48 Γ A vz48 : ∀{Γ A} → Var48 (snoc48 Γ A) A;vz48 = λ Var48 vz48 vs → vz48 _ _ vs48 : ∀{Γ B A} → Var48 Γ A → Var48 (snoc48 Γ B) A;vs48 = λ x Var48 vz48 vs48 → vs48 _ _ _ (x Var48 vz48 vs48) Tm48 : Con48 → Ty48 → Set;Tm48 = λ Γ A → (Tm48 : Con48 → Ty48 → Set) (var : (Γ : _) (A : _) → Var48 Γ A → Tm48 Γ A) (lam : (Γ : _) (A B : _) → Tm48 (snoc48 Γ A) B → Tm48 Γ (arr48 A B)) (app : (Γ : _) (A B : _) → Tm48 Γ (arr48 A B) → Tm48 Γ A → Tm48 Γ B) → Tm48 Γ A var48 : ∀{Γ A} → Var48 Γ A → Tm48 Γ A;var48 = λ x Tm48 var48 lam app → var48 _ _ x lam48 : ∀{Γ A B} → Tm48 (snoc48 Γ A) B → Tm48 Γ (arr48 A B);lam48 = λ t Tm48 var48 lam48 app → lam48 _ _ _ (t Tm48 var48 lam48 app) app48 : ∀{Γ A B} → Tm48 Γ (arr48 A B) → Tm48 Γ A → Tm48 Γ B;app48 = λ t u Tm48 var48 lam48 app48 → app48 _ _ _ (t Tm48 var48 lam48 app48) (u Tm48 var48 lam48 app48) v048 : ∀{Γ A} → Tm48 (snoc48 Γ A) A;v048 = var48 vz48 v148 : ∀{Γ A B} → Tm48 (snoc48 (snoc48 Γ A) B) A;v148 = var48 (vs48 vz48) v248 : ∀{Γ A B C} → Tm48 (snoc48 (snoc48 (snoc48 Γ A) B) C) A;v248 = var48 (vs48 (vs48 vz48)) v348 : ∀{Γ A B C D} → Tm48 (snoc48 (snoc48 (snoc48 (snoc48 Γ A) B) C) D) A;v348 = var48 (vs48 (vs48 (vs48 vz48))) v448 : ∀{Γ A B C D E} → Tm48 (snoc48 (snoc48 (snoc48 (snoc48 (snoc48 Γ A) B) C) D) E) A;v448 = var48 (vs48 (vs48 (vs48 (vs48 vz48)))) test48 : ∀{Γ A} → Tm48 Γ (arr48 (arr48 A A) (arr48 A A));test48 = lam48 (lam48 (app48 v148 (app48 v148 (app48 v148 (app48 v148 (app48 v148 (app48 v148 v048))))))) {-# OPTIONS --type-in-type #-} Ty49 : Set; Ty49 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι49 : Ty49; ι49 = λ _ ι49 _ → ι49 arr49 : Ty49 → Ty49 → Ty49; arr49 = λ A B Ty49 ι49 arr49 → arr49 (A Ty49 ι49 arr49) (B Ty49 ι49 arr49) Con49 : Set;Con49 = (Con49 : Set) (nil : Con49) (snoc : Con49 → Ty49 → Con49) → Con49 nil49 : Con49;nil49 = λ Con49 nil49 snoc → nil49 snoc49 : Con49 → Ty49 → Con49;snoc49 = λ Γ A Con49 nil49 snoc49 → snoc49 (Γ Con49 nil49 snoc49) A Var49 : Con49 → Ty49 → Set;Var49 = λ Γ A → (Var49 : Con49 → Ty49 → Set) (vz : (Γ : _)(A : _) → Var49 (snoc49 Γ A) A) (vs : (Γ : _)(B A : _) → Var49 Γ A → Var49 (snoc49 Γ B) A) → Var49 Γ A vz49 : ∀{Γ A} → Var49 (snoc49 Γ A) A;vz49 = λ Var49 vz49 vs → vz49 _ _ vs49 : ∀{Γ B A} → Var49 Γ A → Var49 (snoc49 Γ B) A;vs49 = λ x Var49 vz49 vs49 → vs49 _ _ _ (x Var49 vz49 vs49) Tm49 : Con49 → Ty49 → Set;Tm49 = λ Γ A → (Tm49 : Con49 → Ty49 → Set) (var : (Γ : _) (A : _) → Var49 Γ A → Tm49 Γ A) (lam : (Γ : _) (A B : _) → Tm49 (snoc49 Γ A) B → Tm49 Γ (arr49 A B)) (app : (Γ : _) (A B : _) → Tm49 Γ (arr49 A B) → Tm49 Γ A → Tm49 Γ B) → Tm49 Γ A var49 : ∀{Γ A} → Var49 Γ A → Tm49 Γ A;var49 = λ x Tm49 var49 lam app → var49 _ _ x lam49 : ∀{Γ A B} → Tm49 (snoc49 Γ A) B → Tm49 Γ (arr49 A B);lam49 = λ t Tm49 var49 lam49 app → lam49 _ _ _ (t Tm49 var49 lam49 app) app49 : ∀{Γ A B} → Tm49 Γ (arr49 A B) → Tm49 Γ A → Tm49 Γ B;app49 = λ t u Tm49 var49 lam49 app49 → app49 _ _ _ (t Tm49 var49 lam49 app49) (u Tm49 var49 lam49 app49) v049 : ∀{Γ A} → Tm49 (snoc49 Γ A) A;v049 = var49 vz49 v149 : ∀{Γ A B} → Tm49 (snoc49 (snoc49 Γ A) B) A;v149 = var49 (vs49 vz49) v249 : ∀{Γ A B C} → Tm49 (snoc49 (snoc49 (snoc49 Γ A) B) C) A;v249 = var49 (vs49 (vs49 vz49)) v349 : ∀{Γ A B C D} → Tm49 (snoc49 (snoc49 (snoc49 (snoc49 Γ A) B) C) D) A;v349 = var49 (vs49 (vs49 (vs49 vz49))) v449 : ∀{Γ A B C D E} → Tm49 (snoc49 (snoc49 (snoc49 (snoc49 (snoc49 Γ A) B) C) D) E) A;v449 = var49 (vs49 (vs49 (vs49 (vs49 vz49)))) test49 : ∀{Γ A} → Tm49 Γ (arr49 (arr49 A A) (arr49 A A));test49 = lam49 (lam49 (app49 v149 (app49 v149 (app49 v149 (app49 v149 (app49 v149 (app49 v149 v049))))))) {-# OPTIONS --type-in-type #-} Ty50 : Set; Ty50 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι50 : Ty50; ι50 = λ _ ι50 _ → ι50 arr50 : Ty50 → Ty50 → Ty50; arr50 = λ A B Ty50 ι50 arr50 → arr50 (A Ty50 ι50 arr50) (B Ty50 ι50 arr50) Con50 : Set;Con50 = (Con50 : Set) (nil : Con50) (snoc : Con50 → Ty50 → Con50) → Con50 nil50 : Con50;nil50 = λ Con50 nil50 snoc → nil50 snoc50 : Con50 → Ty50 → Con50;snoc50 = λ Γ A Con50 nil50 snoc50 → snoc50 (Γ Con50 nil50 snoc50) A Var50 : Con50 → Ty50 → Set;Var50 = λ Γ A → (Var50 : Con50 → Ty50 → Set) (vz : (Γ : _)(A : _) → Var50 (snoc50 Γ A) A) (vs : (Γ : _)(B A : _) → Var50 Γ A → Var50 (snoc50 Γ B) A) → Var50 Γ A vz50 : ∀{Γ A} → Var50 (snoc50 Γ A) A;vz50 = λ Var50 vz50 vs → vz50 _ _ vs50 : ∀{Γ B A} → Var50 Γ A → Var50 (snoc50 Γ B) A;vs50 = λ x Var50 vz50 vs50 → vs50 _ _ _ (x Var50 vz50 vs50) Tm50 : Con50 → Ty50 → Set;Tm50 = λ Γ A → (Tm50 : Con50 → Ty50 → Set) (var : (Γ : _) (A : _) → Var50 Γ A → Tm50 Γ A) (lam : (Γ : _) (A B : _) → Tm50 (snoc50 Γ A) B → Tm50 Γ (arr50 A B)) (app : (Γ : _) (A B : _) → Tm50 Γ (arr50 A B) → Tm50 Γ A → Tm50 Γ B) → Tm50 Γ A var50 : ∀{Γ A} → Var50 Γ A → Tm50 Γ A;var50 = λ x Tm50 var50 lam app → var50 _ _ x lam50 : ∀{Γ A B} → Tm50 (snoc50 Γ A) B → Tm50 Γ (arr50 A B);lam50 = λ t Tm50 var50 lam50 app → lam50 _ _ _ (t Tm50 var50 lam50 app) app50 : ∀{Γ A B} → Tm50 Γ (arr50 A B) → Tm50 Γ A → Tm50 Γ B;app50 = λ t u Tm50 var50 lam50 app50 → app50 _ _ _ (t Tm50 var50 lam50 app50) (u Tm50 var50 lam50 app50) v050 : ∀{Γ A} → Tm50 (snoc50 Γ A) A;v050 = var50 vz50 v150 : ∀{Γ A B} → Tm50 (snoc50 (snoc50 Γ A) B) A;v150 = var50 (vs50 vz50) v250 : ∀{Γ A B C} → Tm50 (snoc50 (snoc50 (snoc50 Γ A) B) C) A;v250 = var50 (vs50 (vs50 vz50)) v350 : ∀{Γ A B C D} → Tm50 (snoc50 (snoc50 (snoc50 (snoc50 Γ A) B) C) D) A;v350 = var50 (vs50 (vs50 (vs50 vz50))) v450 : ∀{Γ A B C D E} → Tm50 (snoc50 (snoc50 (snoc50 (snoc50 (snoc50 Γ A) B) C) D) E) A;v450 = var50 (vs50 (vs50 (vs50 (vs50 vz50)))) test50 : ∀{Γ A} → Tm50 Γ (arr50 (arr50 A A) (arr50 A A));test50 = lam50 (lam50 (app50 v150 (app50 v150 (app50 v150 (app50 v150 (app50 v150 (app50 v150 v050))))))) {-# OPTIONS --type-in-type #-} Ty51 : Set; Ty51 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι51 : Ty51; ι51 = λ _ ι51 _ → ι51 arr51 : Ty51 → Ty51 → Ty51; arr51 = λ A B Ty51 ι51 arr51 → arr51 (A Ty51 ι51 arr51) (B Ty51 ι51 arr51) Con51 : Set;Con51 = (Con51 : Set) (nil : Con51) (snoc : Con51 → Ty51 → Con51) → Con51 nil51 : Con51;nil51 = λ Con51 nil51 snoc → nil51 snoc51 : Con51 → Ty51 → Con51;snoc51 = λ Γ A Con51 nil51 snoc51 → snoc51 (Γ Con51 nil51 snoc51) A Var51 : Con51 → Ty51 → Set;Var51 = λ Γ A → (Var51 : Con51 → Ty51 → Set) (vz : (Γ : _)(A : _) → Var51 (snoc51 Γ A) A) (vs : (Γ : _)(B A : _) → Var51 Γ A → Var51 (snoc51 Γ B) A) → Var51 Γ A vz51 : ∀{Γ A} → Var51 (snoc51 Γ A) A;vz51 = λ Var51 vz51 vs → vz51 _ _ vs51 : ∀{Γ B A} → Var51 Γ A → Var51 (snoc51 Γ B) A;vs51 = λ x Var51 vz51 vs51 → vs51 _ _ _ (x Var51 vz51 vs51) Tm51 : Con51 → Ty51 → Set;Tm51 = λ Γ A → (Tm51 : Con51 → Ty51 → Set) (var : (Γ : _) (A : _) → Var51 Γ A → Tm51 Γ A) (lam : (Γ : _) (A B : _) → Tm51 (snoc51 Γ A) B → Tm51 Γ (arr51 A B)) (app : (Γ : _) (A B : _) → Tm51 Γ (arr51 A B) → Tm51 Γ A → Tm51 Γ B) → Tm51 Γ A var51 : ∀{Γ A} → Var51 Γ A → Tm51 Γ A;var51 = λ x Tm51 var51 lam app → var51 _ _ x lam51 : ∀{Γ A B} → Tm51 (snoc51 Γ A) B → Tm51 Γ (arr51 A B);lam51 = λ t Tm51 var51 lam51 app → lam51 _ _ _ (t Tm51 var51 lam51 app) app51 : ∀{Γ A B} → Tm51 Γ (arr51 A B) → Tm51 Γ A → Tm51 Γ B;app51 = λ t u Tm51 var51 lam51 app51 → app51 _ _ _ (t Tm51 var51 lam51 app51) (u Tm51 var51 lam51 app51) v051 : ∀{Γ A} → Tm51 (snoc51 Γ A) A;v051 = var51 vz51 v151 : ∀{Γ A B} → Tm51 (snoc51 (snoc51 Γ A) B) A;v151 = var51 (vs51 vz51) v251 : ∀{Γ A B C} → Tm51 (snoc51 (snoc51 (snoc51 Γ A) B) C) A;v251 = var51 (vs51 (vs51 vz51)) v351 : ∀{Γ A B C D} → Tm51 (snoc51 (snoc51 (snoc51 (snoc51 Γ A) B) C) D) A;v351 = var51 (vs51 (vs51 (vs51 vz51))) v451 : ∀{Γ A B C D E} → Tm51 (snoc51 (snoc51 (snoc51 (snoc51 (snoc51 Γ A) B) C) D) E) A;v451 = var51 (vs51 (vs51 (vs51 (vs51 vz51)))) test51 : ∀{Γ A} → Tm51 Γ (arr51 (arr51 A A) (arr51 A A));test51 = lam51 (lam51 (app51 v151 (app51 v151 (app51 v151 (app51 v151 (app51 v151 (app51 v151 v051))))))) {-# OPTIONS --type-in-type #-} Ty52 : Set; Ty52 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι52 : Ty52; ι52 = λ _ ι52 _ → ι52 arr52 : Ty52 → Ty52 → Ty52; arr52 = λ A B Ty52 ι52 arr52 → arr52 (A Ty52 ι52 arr52) (B Ty52 ι52 arr52) Con52 : Set;Con52 = (Con52 : Set) (nil : Con52) (snoc : Con52 → Ty52 → Con52) → Con52 nil52 : Con52;nil52 = λ Con52 nil52 snoc → nil52 snoc52 : Con52 → Ty52 → Con52;snoc52 = λ Γ A Con52 nil52 snoc52 → snoc52 (Γ Con52 nil52 snoc52) A Var52 : Con52 → Ty52 → Set;Var52 = λ Γ A → (Var52 : Con52 → Ty52 → Set) (vz : (Γ : _)(A : _) → Var52 (snoc52 Γ A) A) (vs : (Γ : _)(B A : _) → Var52 Γ A → Var52 (snoc52 Γ B) A) → Var52 Γ A vz52 : ∀{Γ A} → Var52 (snoc52 Γ A) A;vz52 = λ Var52 vz52 vs → vz52 _ _ vs52 : ∀{Γ B A} → Var52 Γ A → Var52 (snoc52 Γ B) A;vs52 = λ x Var52 vz52 vs52 → vs52 _ _ _ (x Var52 vz52 vs52) Tm52 : Con52 → Ty52 → Set;Tm52 = λ Γ A → (Tm52 : Con52 → Ty52 → Set) (var : (Γ : _) (A : _) → Var52 Γ A → Tm52 Γ A) (lam : (Γ : _) (A B : _) → Tm52 (snoc52 Γ A) B → Tm52 Γ (arr52 A B)) (app : (Γ : _) (A B : _) → Tm52 Γ (arr52 A B) → Tm52 Γ A → Tm52 Γ B) → Tm52 Γ A var52 : ∀{Γ A} → Var52 Γ A → Tm52 Γ A;var52 = λ x Tm52 var52 lam app → var52 _ _ x lam52 : ∀{Γ A B} → Tm52 (snoc52 Γ A) B → Tm52 Γ (arr52 A B);lam52 = λ t Tm52 var52 lam52 app → lam52 _ _ _ (t Tm52 var52 lam52 app) app52 : ∀{Γ A B} → Tm52 Γ (arr52 A B) → Tm52 Γ A → Tm52 Γ B;app52 = λ t u Tm52 var52 lam52 app52 → app52 _ _ _ (t Tm52 var52 lam52 app52) (u Tm52 var52 lam52 app52) v052 : ∀{Γ A} → Tm52 (snoc52 Γ A) A;v052 = var52 vz52 v152 : ∀{Γ A B} → Tm52 (snoc52 (snoc52 Γ A) B) A;v152 = var52 (vs52 vz52) v252 : ∀{Γ A B C} → Tm52 (snoc52 (snoc52 (snoc52 Γ A) B) C) A;v252 = var52 (vs52 (vs52 vz52)) v352 : ∀{Γ A B C D} → Tm52 (snoc52 (snoc52 (snoc52 (snoc52 Γ A) B) C) D) A;v352 = var52 (vs52 (vs52 (vs52 vz52))) v452 : ∀{Γ A B C D E} → Tm52 (snoc52 (snoc52 (snoc52 (snoc52 (snoc52 Γ A) B) C) D) E) A;v452 = var52 (vs52 (vs52 (vs52 (vs52 vz52)))) test52 : ∀{Γ A} → Tm52 Γ (arr52 (arr52 A A) (arr52 A A));test52 = lam52 (lam52 (app52 v152 (app52 v152 (app52 v152 (app52 v152 (app52 v152 (app52 v152 v052))))))) {-# OPTIONS --type-in-type #-} Ty53 : Set; Ty53 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι53 : Ty53; ι53 = λ _ ι53 _ → ι53 arr53 : Ty53 → Ty53 → Ty53; arr53 = λ A B Ty53 ι53 arr53 → arr53 (A Ty53 ι53 arr53) (B Ty53 ι53 arr53) Con53 : Set;Con53 = (Con53 : Set) (nil : Con53) (snoc : Con53 → Ty53 → Con53) → Con53 nil53 : Con53;nil53 = λ Con53 nil53 snoc → nil53 snoc53 : Con53 → Ty53 → Con53;snoc53 = λ Γ A Con53 nil53 snoc53 → snoc53 (Γ Con53 nil53 snoc53) A Var53 : Con53 → Ty53 → Set;Var53 = λ Γ A → (Var53 : Con53 → Ty53 → Set) (vz : (Γ : _)(A : _) → Var53 (snoc53 Γ A) A) (vs : (Γ : _)(B A : _) → Var53 Γ A → Var53 (snoc53 Γ B) A) → Var53 Γ A vz53 : ∀{Γ A} → Var53 (snoc53 Γ A) A;vz53 = λ Var53 vz53 vs → vz53 _ _ vs53 : ∀{Γ B A} → Var53 Γ A → Var53 (snoc53 Γ B) A;vs53 = λ x Var53 vz53 vs53 → vs53 _ _ _ (x Var53 vz53 vs53) Tm53 : Con53 → Ty53 → Set;Tm53 = λ Γ A → (Tm53 : Con53 → Ty53 → Set) (var : (Γ : _) (A : _) → Var53 Γ A → Tm53 Γ A) (lam : (Γ : _) (A B : _) → Tm53 (snoc53 Γ A) B → Tm53 Γ (arr53 A B)) (app : (Γ : _) (A B : _) → Tm53 Γ (arr53 A B) → Tm53 Γ A → Tm53 Γ B) → Tm53 Γ A var53 : ∀{Γ A} → Var53 Γ A → Tm53 Γ A;var53 = λ x Tm53 var53 lam app → var53 _ _ x lam53 : ∀{Γ A B} → Tm53 (snoc53 Γ A) B → Tm53 Γ (arr53 A B);lam53 = λ t Tm53 var53 lam53 app → lam53 _ _ _ (t Tm53 var53 lam53 app) app53 : ∀{Γ A B} → Tm53 Γ (arr53 A B) → Tm53 Γ A → Tm53 Γ B;app53 = λ t u Tm53 var53 lam53 app53 → app53 _ _ _ (t Tm53 var53 lam53 app53) (u Tm53 var53 lam53 app53) v053 : ∀{Γ A} → Tm53 (snoc53 Γ A) A;v053 = var53 vz53 v153 : ∀{Γ A B} → Tm53 (snoc53 (snoc53 Γ A) B) A;v153 = var53 (vs53 vz53) v253 : ∀{Γ A B C} → Tm53 (snoc53 (snoc53 (snoc53 Γ A) B) C) A;v253 = var53 (vs53 (vs53 vz53)) v353 : ∀{Γ A B C D} → Tm53 (snoc53 (snoc53 (snoc53 (snoc53 Γ A) B) C) D) A;v353 = var53 (vs53 (vs53 (vs53 vz53))) v453 : ∀{Γ A B C D E} → Tm53 (snoc53 (snoc53 (snoc53 (snoc53 (snoc53 Γ A) B) C) D) E) A;v453 = var53 (vs53 (vs53 (vs53 (vs53 vz53)))) test53 : ∀{Γ A} → Tm53 Γ (arr53 (arr53 A A) (arr53 A A));test53 = lam53 (lam53 (app53 v153 (app53 v153 (app53 v153 (app53 v153 (app53 v153 (app53 v153 v053))))))) {-# OPTIONS --type-in-type #-} Ty54 : Set; Ty54 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι54 : Ty54; ι54 = λ _ ι54 _ → ι54 arr54 : Ty54 → Ty54 → Ty54; arr54 = λ A B Ty54 ι54 arr54 → arr54 (A Ty54 ι54 arr54) (B Ty54 ι54 arr54) Con54 : Set;Con54 = (Con54 : Set) (nil : Con54) (snoc : Con54 → Ty54 → Con54) → Con54 nil54 : Con54;nil54 = λ Con54 nil54 snoc → nil54 snoc54 : Con54 → Ty54 → Con54;snoc54 = λ Γ A Con54 nil54 snoc54 → snoc54 (Γ Con54 nil54 snoc54) A Var54 : Con54 → Ty54 → Set;Var54 = λ Γ A → (Var54 : Con54 → Ty54 → Set) (vz : (Γ : _)(A : _) → Var54 (snoc54 Γ A) A) (vs : (Γ : _)(B A : _) → Var54 Γ A → Var54 (snoc54 Γ B) A) → Var54 Γ A vz54 : ∀{Γ A} → Var54 (snoc54 Γ A) A;vz54 = λ Var54 vz54 vs → vz54 _ _ vs54 : ∀{Γ B A} → Var54 Γ A → Var54 (snoc54 Γ B) A;vs54 = λ x Var54 vz54 vs54 → vs54 _ _ _ (x Var54 vz54 vs54) Tm54 : Con54 → Ty54 → Set;Tm54 = λ Γ A → (Tm54 : Con54 → Ty54 → Set) (var : (Γ : _) (A : _) → Var54 Γ A → Tm54 Γ A) (lam : (Γ : _) (A B : _) → Tm54 (snoc54 Γ A) B → Tm54 Γ (arr54 A B)) (app : (Γ : _) (A B : _) → Tm54 Γ (arr54 A B) → Tm54 Γ A → Tm54 Γ B) → Tm54 Γ A var54 : ∀{Γ A} → Var54 Γ A → Tm54 Γ A;var54 = λ x Tm54 var54 lam app → var54 _ _ x lam54 : ∀{Γ A B} → Tm54 (snoc54 Γ A) B → Tm54 Γ (arr54 A B);lam54 = λ t Tm54 var54 lam54 app → lam54 _ _ _ (t Tm54 var54 lam54 app) app54 : ∀{Γ A B} → Tm54 Γ (arr54 A B) → Tm54 Γ A → Tm54 Γ B;app54 = λ t u Tm54 var54 lam54 app54 → app54 _ _ _ (t Tm54 var54 lam54 app54) (u Tm54 var54 lam54 app54) v054 : ∀{Γ A} → Tm54 (snoc54 Γ A) A;v054 = var54 vz54 v154 : ∀{Γ A B} → Tm54 (snoc54 (snoc54 Γ A) B) A;v154 = var54 (vs54 vz54) v254 : ∀{Γ A B C} → Tm54 (snoc54 (snoc54 (snoc54 Γ A) B) C) A;v254 = var54 (vs54 (vs54 vz54)) v354 : ∀{Γ A B C D} → Tm54 (snoc54 (snoc54 (snoc54 (snoc54 Γ A) B) C) D) A;v354 = var54 (vs54 (vs54 (vs54 vz54))) v454 : ∀{Γ A B C D E} → Tm54 (snoc54 (snoc54 (snoc54 (snoc54 (snoc54 Γ A) B) C) D) E) A;v454 = var54 (vs54 (vs54 (vs54 (vs54 vz54)))) test54 : ∀{Γ A} → Tm54 Γ (arr54 (arr54 A A) (arr54 A A));test54 = lam54 (lam54 (app54 v154 (app54 v154 (app54 v154 (app54 v154 (app54 v154 (app54 v154 v054))))))) {-# OPTIONS --type-in-type #-} Ty55 : Set; Ty55 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι55 : Ty55; ι55 = λ _ ι55 _ → ι55 arr55 : Ty55 → Ty55 → Ty55; arr55 = λ A B Ty55 ι55 arr55 → arr55 (A Ty55 ι55 arr55) (B Ty55 ι55 arr55) Con55 : Set;Con55 = (Con55 : Set) (nil : Con55) (snoc : Con55 → Ty55 → Con55) → Con55 nil55 : Con55;nil55 = λ Con55 nil55 snoc → nil55 snoc55 : Con55 → Ty55 → Con55;snoc55 = λ Γ A Con55 nil55 snoc55 → snoc55 (Γ Con55 nil55 snoc55) A Var55 : Con55 → Ty55 → Set;Var55 = λ Γ A → (Var55 : Con55 → Ty55 → Set) (vz : (Γ : _)(A : _) → Var55 (snoc55 Γ A) A) (vs : (Γ : _)(B A : _) → Var55 Γ A → Var55 (snoc55 Γ B) A) → Var55 Γ A vz55 : ∀{Γ A} → Var55 (snoc55 Γ A) A;vz55 = λ Var55 vz55 vs → vz55 _ _ vs55 : ∀{Γ B A} → Var55 Γ A → Var55 (snoc55 Γ B) A;vs55 = λ x Var55 vz55 vs55 → vs55 _ _ _ (x Var55 vz55 vs55) Tm55 : Con55 → Ty55 → Set;Tm55 = λ Γ A → (Tm55 : Con55 → Ty55 → Set) (var : (Γ : _) (A : _) → Var55 Γ A → Tm55 Γ A) (lam : (Γ : _) (A B : _) → Tm55 (snoc55 Γ A) B → Tm55 Γ (arr55 A B)) (app : (Γ : _) (A B : _) → Tm55 Γ (arr55 A B) → Tm55 Γ A → Tm55 Γ B) → Tm55 Γ A var55 : ∀{Γ A} → Var55 Γ A → Tm55 Γ A;var55 = λ x Tm55 var55 lam app → var55 _ _ x lam55 : ∀{Γ A B} → Tm55 (snoc55 Γ A) B → Tm55 Γ (arr55 A B);lam55 = λ t Tm55 var55 lam55 app → lam55 _ _ _ (t Tm55 var55 lam55 app) app55 : ∀{Γ A B} → Tm55 Γ (arr55 A B) → Tm55 Γ A → Tm55 Γ B;app55 = λ t u Tm55 var55 lam55 app55 → app55 _ _ _ (t Tm55 var55 lam55 app55) (u Tm55 var55 lam55 app55) v055 : ∀{Γ A} → Tm55 (snoc55 Γ A) A;v055 = var55 vz55 v155 : ∀{Γ A B} → Tm55 (snoc55 (snoc55 Γ A) B) A;v155 = var55 (vs55 vz55) v255 : ∀{Γ A B C} → Tm55 (snoc55 (snoc55 (snoc55 Γ A) B) C) A;v255 = var55 (vs55 (vs55 vz55)) v355 : ∀{Γ A B C D} → Tm55 (snoc55 (snoc55 (snoc55 (snoc55 Γ A) B) C) D) A;v355 = var55 (vs55 (vs55 (vs55 vz55))) v455 : ∀{Γ A B C D E} → Tm55 (snoc55 (snoc55 (snoc55 (snoc55 (snoc55 Γ A) B) C) D) E) A;v455 = var55 (vs55 (vs55 (vs55 (vs55 vz55)))) test55 : ∀{Γ A} → Tm55 Γ (arr55 (arr55 A A) (arr55 A A));test55 = lam55 (lam55 (app55 v155 (app55 v155 (app55 v155 (app55 v155 (app55 v155 (app55 v155 v055))))))) {-# OPTIONS --type-in-type #-} Ty56 : Set; Ty56 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι56 : Ty56; ι56 = λ _ ι56 _ → ι56 arr56 : Ty56 → Ty56 → Ty56; arr56 = λ A B Ty56 ι56 arr56 → arr56 (A Ty56 ι56 arr56) (B Ty56 ι56 arr56) Con56 : Set;Con56 = (Con56 : Set) (nil : Con56) (snoc : Con56 → Ty56 → Con56) → Con56 nil56 : Con56;nil56 = λ Con56 nil56 snoc → nil56 snoc56 : Con56 → Ty56 → Con56;snoc56 = λ Γ A Con56 nil56 snoc56 → snoc56 (Γ Con56 nil56 snoc56) A Var56 : Con56 → Ty56 → Set;Var56 = λ Γ A → (Var56 : Con56 → Ty56 → Set) (vz : (Γ : _)(A : _) → Var56 (snoc56 Γ A) A) (vs : (Γ : _)(B A : _) → Var56 Γ A → Var56 (snoc56 Γ B) A) → Var56 Γ A vz56 : ∀{Γ A} → Var56 (snoc56 Γ A) A;vz56 = λ Var56 vz56 vs → vz56 _ _ vs56 : ∀{Γ B A} → Var56 Γ A → Var56 (snoc56 Γ B) A;vs56 = λ x Var56 vz56 vs56 → vs56 _ _ _ (x Var56 vz56 vs56) Tm56 : Con56 → Ty56 → Set;Tm56 = λ Γ A → (Tm56 : Con56 → Ty56 → Set) (var : (Γ : _) (A : _) → Var56 Γ A → Tm56 Γ A) (lam : (Γ : _) (A B : _) → Tm56 (snoc56 Γ A) B → Tm56 Γ (arr56 A B)) (app : (Γ : _) (A B : _) → Tm56 Γ (arr56 A B) → Tm56 Γ A → Tm56 Γ B) → Tm56 Γ A var56 : ∀{Γ A} → Var56 Γ A → Tm56 Γ A;var56 = λ x Tm56 var56 lam app → var56 _ _ x lam56 : ∀{Γ A B} → Tm56 (snoc56 Γ A) B → Tm56 Γ (arr56 A B);lam56 = λ t Tm56 var56 lam56 app → lam56 _ _ _ (t Tm56 var56 lam56 app) app56 : ∀{Γ A B} → Tm56 Γ (arr56 A B) → Tm56 Γ A → Tm56 Γ B;app56 = λ t u Tm56 var56 lam56 app56 → app56 _ _ _ (t Tm56 var56 lam56 app56) (u Tm56 var56 lam56 app56) v056 : ∀{Γ A} → Tm56 (snoc56 Γ A) A;v056 = var56 vz56 v156 : ∀{Γ A B} → Tm56 (snoc56 (snoc56 Γ A) B) A;v156 = var56 (vs56 vz56) v256 : ∀{Γ A B C} → Tm56 (snoc56 (snoc56 (snoc56 Γ A) B) C) A;v256 = var56 (vs56 (vs56 vz56)) v356 : ∀{Γ A B C D} → Tm56 (snoc56 (snoc56 (snoc56 (snoc56 Γ A) B) C) D) A;v356 = var56 (vs56 (vs56 (vs56 vz56))) v456 : ∀{Γ A B C D E} → Tm56 (snoc56 (snoc56 (snoc56 (snoc56 (snoc56 Γ A) B) C) D) E) A;v456 = var56 (vs56 (vs56 (vs56 (vs56 vz56)))) test56 : ∀{Γ A} → Tm56 Γ (arr56 (arr56 A A) (arr56 A A));test56 = lam56 (lam56 (app56 v156 (app56 v156 (app56 v156 (app56 v156 (app56 v156 (app56 v156 v056))))))) {-# OPTIONS --type-in-type #-} Ty57 : Set; Ty57 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι57 : Ty57; ι57 = λ _ ι57 _ → ι57 arr57 : Ty57 → Ty57 → Ty57; arr57 = λ A B Ty57 ι57 arr57 → arr57 (A Ty57 ι57 arr57) (B Ty57 ι57 arr57) Con57 : Set;Con57 = (Con57 : Set) (nil : Con57) (snoc : Con57 → Ty57 → Con57) → Con57 nil57 : Con57;nil57 = λ Con57 nil57 snoc → nil57 snoc57 : Con57 → Ty57 → Con57;snoc57 = λ Γ A Con57 nil57 snoc57 → snoc57 (Γ Con57 nil57 snoc57) A Var57 : Con57 → Ty57 → Set;Var57 = λ Γ A → (Var57 : Con57 → Ty57 → Set) (vz : (Γ : _)(A : _) → Var57 (snoc57 Γ A) A) (vs : (Γ : _)(B A : _) → Var57 Γ A → Var57 (snoc57 Γ B) A) → Var57 Γ A vz57 : ∀{Γ A} → Var57 (snoc57 Γ A) A;vz57 = λ Var57 vz57 vs → vz57 _ _ vs57 : ∀{Γ B A} → Var57 Γ A → Var57 (snoc57 Γ B) A;vs57 = λ x Var57 vz57 vs57 → vs57 _ _ _ (x Var57 vz57 vs57) Tm57 : Con57 → Ty57 → Set;Tm57 = λ Γ A → (Tm57 : Con57 → Ty57 → Set) (var : (Γ : _) (A : _) → Var57 Γ A → Tm57 Γ A) (lam : (Γ : _) (A B : _) → Tm57 (snoc57 Γ A) B → Tm57 Γ (arr57 A B)) (app : (Γ : _) (A B : _) → Tm57 Γ (arr57 A B) → Tm57 Γ A → Tm57 Γ B) → Tm57 Γ A var57 : ∀{Γ A} → Var57 Γ A → Tm57 Γ A;var57 = λ x Tm57 var57 lam app → var57 _ _ x lam57 : ∀{Γ A B} → Tm57 (snoc57 Γ A) B → Tm57 Γ (arr57 A B);lam57 = λ t Tm57 var57 lam57 app → lam57 _ _ _ (t Tm57 var57 lam57 app) app57 : ∀{Γ A B} → Tm57 Γ (arr57 A B) → Tm57 Γ A → Tm57 Γ B;app57 = λ t u Tm57 var57 lam57 app57 → app57 _ _ _ (t Tm57 var57 lam57 app57) (u Tm57 var57 lam57 app57) v057 : ∀{Γ A} → Tm57 (snoc57 Γ A) A;v057 = var57 vz57 v157 : ∀{Γ A B} → Tm57 (snoc57 (snoc57 Γ A) B) A;v157 = var57 (vs57 vz57) v257 : ∀{Γ A B C} → Tm57 (snoc57 (snoc57 (snoc57 Γ A) B) C) A;v257 = var57 (vs57 (vs57 vz57)) v357 : ∀{Γ A B C D} → Tm57 (snoc57 (snoc57 (snoc57 (snoc57 Γ A) B) C) D) A;v357 = var57 (vs57 (vs57 (vs57 vz57))) v457 : ∀{Γ A B C D E} → Tm57 (snoc57 (snoc57 (snoc57 (snoc57 (snoc57 Γ A) B) C) D) E) A;v457 = var57 (vs57 (vs57 (vs57 (vs57 vz57)))) test57 : ∀{Γ A} → Tm57 Γ (arr57 (arr57 A A) (arr57 A A));test57 = lam57 (lam57 (app57 v157 (app57 v157 (app57 v157 (app57 v157 (app57 v157 (app57 v157 v057))))))) {-# OPTIONS --type-in-type #-} Ty58 : Set; Ty58 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι58 : Ty58; ι58 = λ _ ι58 _ → ι58 arr58 : Ty58 → Ty58 → Ty58; arr58 = λ A B Ty58 ι58 arr58 → arr58 (A Ty58 ι58 arr58) (B Ty58 ι58 arr58) Con58 : Set;Con58 = (Con58 : Set) (nil : Con58) (snoc : Con58 → Ty58 → Con58) → Con58 nil58 : Con58;nil58 = λ Con58 nil58 snoc → nil58 snoc58 : Con58 → Ty58 → Con58;snoc58 = λ Γ A Con58 nil58 snoc58 → snoc58 (Γ Con58 nil58 snoc58) A Var58 : Con58 → Ty58 → Set;Var58 = λ Γ A → (Var58 : Con58 → Ty58 → Set) (vz : (Γ : _)(A : _) → Var58 (snoc58 Γ A) A) (vs : (Γ : _)(B A : _) → Var58 Γ A → Var58 (snoc58 Γ B) A) → Var58 Γ A vz58 : ∀{Γ A} → Var58 (snoc58 Γ A) A;vz58 = λ Var58 vz58 vs → vz58 _ _ vs58 : ∀{Γ B A} → Var58 Γ A → Var58 (snoc58 Γ B) A;vs58 = λ x Var58 vz58 vs58 → vs58 _ _ _ (x Var58 vz58 vs58) Tm58 : Con58 → Ty58 → Set;Tm58 = λ Γ A → (Tm58 : Con58 → Ty58 → Set) (var : (Γ : _) (A : _) → Var58 Γ A → Tm58 Γ A) (lam : (Γ : _) (A B : _) → Tm58 (snoc58 Γ A) B → Tm58 Γ (arr58 A B)) (app : (Γ : _) (A B : _) → Tm58 Γ (arr58 A B) → Tm58 Γ A → Tm58 Γ B) → Tm58 Γ A var58 : ∀{Γ A} → Var58 Γ A → Tm58 Γ A;var58 = λ x Tm58 var58 lam app → var58 _ _ x lam58 : ∀{Γ A B} → Tm58 (snoc58 Γ A) B → Tm58 Γ (arr58 A B);lam58 = λ t Tm58 var58 lam58 app → lam58 _ _ _ (t Tm58 var58 lam58 app) app58 : ∀{Γ A B} → Tm58 Γ (arr58 A B) → Tm58 Γ A → Tm58 Γ B;app58 = λ t u Tm58 var58 lam58 app58 → app58 _ _ _ (t Tm58 var58 lam58 app58) (u Tm58 var58 lam58 app58) v058 : ∀{Γ A} → Tm58 (snoc58 Γ A) A;v058 = var58 vz58 v158 : ∀{Γ A B} → Tm58 (snoc58 (snoc58 Γ A) B) A;v158 = var58 (vs58 vz58) v258 : ∀{Γ A B C} → Tm58 (snoc58 (snoc58 (snoc58 Γ A) B) C) A;v258 = var58 (vs58 (vs58 vz58)) v358 : ∀{Γ A B C D} → Tm58 (snoc58 (snoc58 (snoc58 (snoc58 Γ A) B) C) D) A;v358 = var58 (vs58 (vs58 (vs58 vz58))) v458 : ∀{Γ A B C D E} → Tm58 (snoc58 (snoc58 (snoc58 (snoc58 (snoc58 Γ A) B) C) D) E) A;v458 = var58 (vs58 (vs58 (vs58 (vs58 vz58)))) test58 : ∀{Γ A} → Tm58 Γ (arr58 (arr58 A A) (arr58 A A));test58 = lam58 (lam58 (app58 v158 (app58 v158 (app58 v158 (app58 v158 (app58 v158 (app58 v158 v058))))))) {-# OPTIONS --type-in-type #-} Ty59 : Set; Ty59 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι59 : Ty59; ι59 = λ _ ι59 _ → ι59 arr59 : Ty59 → Ty59 → Ty59; arr59 = λ A B Ty59 ι59 arr59 → arr59 (A Ty59 ι59 arr59) (B Ty59 ι59 arr59) Con59 : Set;Con59 = (Con59 : Set) (nil : Con59) (snoc : Con59 → Ty59 → Con59) → Con59 nil59 : Con59;nil59 = λ Con59 nil59 snoc → nil59 snoc59 : Con59 → Ty59 → Con59;snoc59 = λ Γ A Con59 nil59 snoc59 → snoc59 (Γ Con59 nil59 snoc59) A Var59 : Con59 → Ty59 → Set;Var59 = λ Γ A → (Var59 : Con59 → Ty59 → Set) (vz : (Γ : _)(A : _) → Var59 (snoc59 Γ A) A) (vs : (Γ : _)(B A : _) → Var59 Γ A → Var59 (snoc59 Γ B) A) → Var59 Γ A vz59 : ∀{Γ A} → Var59 (snoc59 Γ A) A;vz59 = λ Var59 vz59 vs → vz59 _ _ vs59 : ∀{Γ B A} → Var59 Γ A → Var59 (snoc59 Γ B) A;vs59 = λ x Var59 vz59 vs59 → vs59 _ _ _ (x Var59 vz59 vs59) Tm59 : Con59 → Ty59 → Set;Tm59 = λ Γ A → (Tm59 : Con59 → Ty59 → Set) (var : (Γ : _) (A : _) → Var59 Γ A → Tm59 Γ A) (lam : (Γ : _) (A B : _) → Tm59 (snoc59 Γ A) B → Tm59 Γ (arr59 A B)) (app : (Γ : _) (A B : _) → Tm59 Γ (arr59 A B) → Tm59 Γ A → Tm59 Γ B) → Tm59 Γ A var59 : ∀{Γ A} → Var59 Γ A → Tm59 Γ A;var59 = λ x Tm59 var59 lam app → var59 _ _ x lam59 : ∀{Γ A B} → Tm59 (snoc59 Γ A) B → Tm59 Γ (arr59 A B);lam59 = λ t Tm59 var59 lam59 app → lam59 _ _ _ (t Tm59 var59 lam59 app) app59 : ∀{Γ A B} → Tm59 Γ (arr59 A B) → Tm59 Γ A → Tm59 Γ B;app59 = λ t u Tm59 var59 lam59 app59 → app59 _ _ _ (t Tm59 var59 lam59 app59) (u Tm59 var59 lam59 app59) v059 : ∀{Γ A} → Tm59 (snoc59 Γ A) A;v059 = var59 vz59 v159 : ∀{Γ A B} → Tm59 (snoc59 (snoc59 Γ A) B) A;v159 = var59 (vs59 vz59) v259 : ∀{Γ A B C} → Tm59 (snoc59 (snoc59 (snoc59 Γ A) B) C) A;v259 = var59 (vs59 (vs59 vz59)) v359 : ∀{Γ A B C D} → Tm59 (snoc59 (snoc59 (snoc59 (snoc59 Γ A) B) C) D) A;v359 = var59 (vs59 (vs59 (vs59 vz59))) v459 : ∀{Γ A B C D E} → Tm59 (snoc59 (snoc59 (snoc59 (snoc59 (snoc59 Γ A) B) C) D) E) A;v459 = var59 (vs59 (vs59 (vs59 (vs59 vz59)))) test59 : ∀{Γ A} → Tm59 Γ (arr59 (arr59 A A) (arr59 A A));test59 = lam59 (lam59 (app59 v159 (app59 v159 (app59 v159 (app59 v159 (app59 v159 (app59 v159 v059))))))) {-# OPTIONS --type-in-type #-} Ty60 : Set; Ty60 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι60 : Ty60; ι60 = λ _ ι60 _ → ι60 arr60 : Ty60 → Ty60 → Ty60; arr60 = λ A B Ty60 ι60 arr60 → arr60 (A Ty60 ι60 arr60) (B Ty60 ι60 arr60) Con60 : Set;Con60 = (Con60 : Set) (nil : Con60) (snoc : Con60 → Ty60 → Con60) → Con60 nil60 : Con60;nil60 = λ Con60 nil60 snoc → nil60 snoc60 : Con60 → Ty60 → Con60;snoc60 = λ Γ A Con60 nil60 snoc60 → snoc60 (Γ Con60 nil60 snoc60) A Var60 : Con60 → Ty60 → Set;Var60 = λ Γ A → (Var60 : Con60 → Ty60 → Set) (vz : (Γ : _)(A : _) → Var60 (snoc60 Γ A) A) (vs : (Γ : _)(B A : _) → Var60 Γ A → Var60 (snoc60 Γ B) A) → Var60 Γ A vz60 : ∀{Γ A} → Var60 (snoc60 Γ A) A;vz60 = λ Var60 vz60 vs → vz60 _ _ vs60 : ∀{Γ B A} → Var60 Γ A → Var60 (snoc60 Γ B) A;vs60 = λ x Var60 vz60 vs60 → vs60 _ _ _ (x Var60 vz60 vs60) Tm60 : Con60 → Ty60 → Set;Tm60 = λ Γ A → (Tm60 : Con60 → Ty60 → Set) (var : (Γ : _) (A : _) → Var60 Γ A → Tm60 Γ A) (lam : (Γ : _) (A B : _) → Tm60 (snoc60 Γ A) B → Tm60 Γ (arr60 A B)) (app : (Γ : _) (A B : _) → Tm60 Γ (arr60 A B) → Tm60 Γ A → Tm60 Γ B) → Tm60 Γ A var60 : ∀{Γ A} → Var60 Γ A → Tm60 Γ A;var60 = λ x Tm60 var60 lam app → var60 _ _ x lam60 : ∀{Γ A B} → Tm60 (snoc60 Γ A) B → Tm60 Γ (arr60 A B);lam60 = λ t Tm60 var60 lam60 app → lam60 _ _ _ (t Tm60 var60 lam60 app) app60 : ∀{Γ A B} → Tm60 Γ (arr60 A B) → Tm60 Γ A → Tm60 Γ B;app60 = λ t u Tm60 var60 lam60 app60 → app60 _ _ _ (t Tm60 var60 lam60 app60) (u Tm60 var60 lam60 app60) v060 : ∀{Γ A} → Tm60 (snoc60 Γ A) A;v060 = var60 vz60 v160 : ∀{Γ A B} → Tm60 (snoc60 (snoc60 Γ A) B) A;v160 = var60 (vs60 vz60) v260 : ∀{Γ A B C} → Tm60 (snoc60 (snoc60 (snoc60 Γ A) B) C) A;v260 = var60 (vs60 (vs60 vz60)) v360 : ∀{Γ A B C D} → Tm60 (snoc60 (snoc60 (snoc60 (snoc60 Γ A) B) C) D) A;v360 = var60 (vs60 (vs60 (vs60 vz60))) v460 : ∀{Γ A B C D E} → Tm60 (snoc60 (snoc60 (snoc60 (snoc60 (snoc60 Γ A) B) C) D) E) A;v460 = var60 (vs60 (vs60 (vs60 (vs60 vz60)))) test60 : ∀{Γ A} → Tm60 Γ (arr60 (arr60 A A) (arr60 A A));test60 = lam60 (lam60 (app60 v160 (app60 v160 (app60 v160 (app60 v160 (app60 v160 (app60 v160 v060))))))) {-# OPTIONS --type-in-type #-} Ty61 : Set; Ty61 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι61 : Ty61; ι61 = λ _ ι61 _ → ι61 arr61 : Ty61 → Ty61 → Ty61; arr61 = λ A B Ty61 ι61 arr61 → arr61 (A Ty61 ι61 arr61) (B Ty61 ι61 arr61) Con61 : Set;Con61 = (Con61 : Set) (nil : Con61) (snoc : Con61 → Ty61 → Con61) → Con61 nil61 : Con61;nil61 = λ Con61 nil61 snoc → nil61 snoc61 : Con61 → Ty61 → Con61;snoc61 = λ Γ A Con61 nil61 snoc61 → snoc61 (Γ Con61 nil61 snoc61) A Var61 : Con61 → Ty61 → Set;Var61 = λ Γ A → (Var61 : Con61 → Ty61 → Set) (vz : (Γ : _)(A : _) → Var61 (snoc61 Γ A) A) (vs : (Γ : _)(B A : _) → Var61 Γ A → Var61 (snoc61 Γ B) A) → Var61 Γ A vz61 : ∀{Γ A} → Var61 (snoc61 Γ A) A;vz61 = λ Var61 vz61 vs → vz61 _ _ vs61 : ∀{Γ B A} → Var61 Γ A → Var61 (snoc61 Γ B) A;vs61 = λ x Var61 vz61 vs61 → vs61 _ _ _ (x Var61 vz61 vs61) Tm61 : Con61 → Ty61 → Set;Tm61 = λ Γ A → (Tm61 : Con61 → Ty61 → Set) (var : (Γ : _) (A : _) → Var61 Γ A → Tm61 Γ A) (lam : (Γ : _) (A B : _) → Tm61 (snoc61 Γ A) B → Tm61 Γ (arr61 A B)) (app : (Γ : _) (A B : _) → Tm61 Γ (arr61 A B) → Tm61 Γ A → Tm61 Γ B) → Tm61 Γ A var61 : ∀{Γ A} → Var61 Γ A → Tm61 Γ A;var61 = λ x Tm61 var61 lam app → var61 _ _ x lam61 : ∀{Γ A B} → Tm61 (snoc61 Γ A) B → Tm61 Γ (arr61 A B);lam61 = λ t Tm61 var61 lam61 app → lam61 _ _ _ (t Tm61 var61 lam61 app) app61 : ∀{Γ A B} → Tm61 Γ (arr61 A B) → Tm61 Γ A → Tm61 Γ B;app61 = λ t u Tm61 var61 lam61 app61 → app61 _ _ _ (t Tm61 var61 lam61 app61) (u Tm61 var61 lam61 app61) v061 : ∀{Γ A} → Tm61 (snoc61 Γ A) A;v061 = var61 vz61 v161 : ∀{Γ A B} → Tm61 (snoc61 (snoc61 Γ A) B) A;v161 = var61 (vs61 vz61) v261 : ∀{Γ A B C} → Tm61 (snoc61 (snoc61 (snoc61 Γ A) B) C) A;v261 = var61 (vs61 (vs61 vz61)) v361 : ∀{Γ A B C D} → Tm61 (snoc61 (snoc61 (snoc61 (snoc61 Γ A) B) C) D) A;v361 = var61 (vs61 (vs61 (vs61 vz61))) v461 : ∀{Γ A B C D E} → Tm61 (snoc61 (snoc61 (snoc61 (snoc61 (snoc61 Γ A) B) C) D) E) A;v461 = var61 (vs61 (vs61 (vs61 (vs61 vz61)))) test61 : ∀{Γ A} → Tm61 Γ (arr61 (arr61 A A) (arr61 A A));test61 = lam61 (lam61 (app61 v161 (app61 v161 (app61 v161 (app61 v161 (app61 v161 (app61 v161 v061))))))) {-# OPTIONS --type-in-type #-} Ty62 : Set; Ty62 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι62 : Ty62; ι62 = λ _ ι62 _ → ι62 arr62 : Ty62 → Ty62 → Ty62; arr62 = λ A B Ty62 ι62 arr62 → arr62 (A Ty62 ι62 arr62) (B Ty62 ι62 arr62) Con62 : Set;Con62 = (Con62 : Set) (nil : Con62) (snoc : Con62 → Ty62 → Con62) → Con62 nil62 : Con62;nil62 = λ Con62 nil62 snoc → nil62 snoc62 : Con62 → Ty62 → Con62;snoc62 = λ Γ A Con62 nil62 snoc62 → snoc62 (Γ Con62 nil62 snoc62) A Var62 : Con62 → Ty62 → Set;Var62 = λ Γ A → (Var62 : Con62 → Ty62 → Set) (vz : (Γ : _)(A : _) → Var62 (snoc62 Γ A) A) (vs : (Γ : _)(B A : _) → Var62 Γ A → Var62 (snoc62 Γ B) A) → Var62 Γ A vz62 : ∀{Γ A} → Var62 (snoc62 Γ A) A;vz62 = λ Var62 vz62 vs → vz62 _ _ vs62 : ∀{Γ B A} → Var62 Γ A → Var62 (snoc62 Γ B) A;vs62 = λ x Var62 vz62 vs62 → vs62 _ _ _ (x Var62 vz62 vs62) Tm62 : Con62 → Ty62 → Set;Tm62 = λ Γ A → (Tm62 : Con62 → Ty62 → Set) (var : (Γ : _) (A : _) → Var62 Γ A → Tm62 Γ A) (lam : (Γ : _) (A B : _) → Tm62 (snoc62 Γ A) B → Tm62 Γ (arr62 A B)) (app : (Γ : _) (A B : _) → Tm62 Γ (arr62 A B) → Tm62 Γ A → Tm62 Γ B) → Tm62 Γ A var62 : ∀{Γ A} → Var62 Γ A → Tm62 Γ A;var62 = λ x Tm62 var62 lam app → var62 _ _ x lam62 : ∀{Γ A B} → Tm62 (snoc62 Γ A) B → Tm62 Γ (arr62 A B);lam62 = λ t Tm62 var62 lam62 app → lam62 _ _ _ (t Tm62 var62 lam62 app) app62 : ∀{Γ A B} → Tm62 Γ (arr62 A B) → Tm62 Γ A → Tm62 Γ B;app62 = λ t u Tm62 var62 lam62 app62 → app62 _ _ _ (t Tm62 var62 lam62 app62) (u Tm62 var62 lam62 app62) v062 : ∀{Γ A} → Tm62 (snoc62 Γ A) A;v062 = var62 vz62 v162 : ∀{Γ A B} → Tm62 (snoc62 (snoc62 Γ A) B) A;v162 = var62 (vs62 vz62) v262 : ∀{Γ A B C} → Tm62 (snoc62 (snoc62 (snoc62 Γ A) B) C) A;v262 = var62 (vs62 (vs62 vz62)) v362 : ∀{Γ A B C D} → Tm62 (snoc62 (snoc62 (snoc62 (snoc62 Γ A) B) C) D) A;v362 = var62 (vs62 (vs62 (vs62 vz62))) v462 : ∀{Γ A B C D E} → Tm62 (snoc62 (snoc62 (snoc62 (snoc62 (snoc62 Γ A) B) C) D) E) A;v462 = var62 (vs62 (vs62 (vs62 (vs62 vz62)))) test62 : ∀{Γ A} → Tm62 Γ (arr62 (arr62 A A) (arr62 A A));test62 = lam62 (lam62 (app62 v162 (app62 v162 (app62 v162 (app62 v162 (app62 v162 (app62 v162 v062))))))) {-# OPTIONS --type-in-type #-} Ty63 : Set; Ty63 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι63 : Ty63; ι63 = λ _ ι63 _ → ι63 arr63 : Ty63 → Ty63 → Ty63; arr63 = λ A B Ty63 ι63 arr63 → arr63 (A Ty63 ι63 arr63) (B Ty63 ι63 arr63) Con63 : Set;Con63 = (Con63 : Set) (nil : Con63) (snoc : Con63 → Ty63 → Con63) → Con63 nil63 : Con63;nil63 = λ Con63 nil63 snoc → nil63 snoc63 : Con63 → Ty63 → Con63;snoc63 = λ Γ A Con63 nil63 snoc63 → snoc63 (Γ Con63 nil63 snoc63) A Var63 : Con63 → Ty63 → Set;Var63 = λ Γ A → (Var63 : Con63 → Ty63 → Set) (vz : (Γ : _)(A : _) → Var63 (snoc63 Γ A) A) (vs : (Γ : _)(B A : _) → Var63 Γ A → Var63 (snoc63 Γ B) A) → Var63 Γ A vz63 : ∀{Γ A} → Var63 (snoc63 Γ A) A;vz63 = λ Var63 vz63 vs → vz63 _ _ vs63 : ∀{Γ B A} → Var63 Γ A → Var63 (snoc63 Γ B) A;vs63 = λ x Var63 vz63 vs63 → vs63 _ _ _ (x Var63 vz63 vs63) Tm63 : Con63 → Ty63 → Set;Tm63 = λ Γ A → (Tm63 : Con63 → Ty63 → Set) (var : (Γ : _) (A : _) → Var63 Γ A → Tm63 Γ A) (lam : (Γ : _) (A B : _) → Tm63 (snoc63 Γ A) B → Tm63 Γ (arr63 A B)) (app : (Γ : _) (A B : _) → Tm63 Γ (arr63 A B) → Tm63 Γ A → Tm63 Γ B) → Tm63 Γ A var63 : ∀{Γ A} → Var63 Γ A → Tm63 Γ A;var63 = λ x Tm63 var63 lam app → var63 _ _ x lam63 : ∀{Γ A B} → Tm63 (snoc63 Γ A) B → Tm63 Γ (arr63 A B);lam63 = λ t Tm63 var63 lam63 app → lam63 _ _ _ (t Tm63 var63 lam63 app) app63 : ∀{Γ A B} → Tm63 Γ (arr63 A B) → Tm63 Γ A → Tm63 Γ B;app63 = λ t u Tm63 var63 lam63 app63 → app63 _ _ _ (t Tm63 var63 lam63 app63) (u Tm63 var63 lam63 app63) v063 : ∀{Γ A} → Tm63 (snoc63 Γ A) A;v063 = var63 vz63 v163 : ∀{Γ A B} → Tm63 (snoc63 (snoc63 Γ A) B) A;v163 = var63 (vs63 vz63) v263 : ∀{Γ A B C} → Tm63 (snoc63 (snoc63 (snoc63 Γ A) B) C) A;v263 = var63 (vs63 (vs63 vz63)) v363 : ∀{Γ A B C D} → Tm63 (snoc63 (snoc63 (snoc63 (snoc63 Γ A) B) C) D) A;v363 = var63 (vs63 (vs63 (vs63 vz63))) v463 : ∀{Γ A B C D E} → Tm63 (snoc63 (snoc63 (snoc63 (snoc63 (snoc63 Γ A) B) C) D) E) A;v463 = var63 (vs63 (vs63 (vs63 (vs63 vz63)))) test63 : ∀{Γ A} → Tm63 Γ (arr63 (arr63 A A) (arr63 A A));test63 = lam63 (lam63 (app63 v163 (app63 v163 (app63 v163 (app63 v163 (app63 v163 (app63 v163 v063))))))) {-# OPTIONS --type-in-type #-} Ty64 : Set; Ty64 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι64 : Ty64; ι64 = λ _ ι64 _ → ι64 arr64 : Ty64 → Ty64 → Ty64; arr64 = λ A B Ty64 ι64 arr64 → arr64 (A Ty64 ι64 arr64) (B Ty64 ι64 arr64) Con64 : Set;Con64 = (Con64 : Set) (nil : Con64) (snoc : Con64 → Ty64 → Con64) → Con64 nil64 : Con64;nil64 = λ Con64 nil64 snoc → nil64 snoc64 : Con64 → Ty64 → Con64;snoc64 = λ Γ A Con64 nil64 snoc64 → snoc64 (Γ Con64 nil64 snoc64) A Var64 : Con64 → Ty64 → Set;Var64 = λ Γ A → (Var64 : Con64 → Ty64 → Set) (vz : (Γ : _)(A : _) → Var64 (snoc64 Γ A) A) (vs : (Γ : _)(B A : _) → Var64 Γ A → Var64 (snoc64 Γ B) A) → Var64 Γ A vz64 : ∀{Γ A} → Var64 (snoc64 Γ A) A;vz64 = λ Var64 vz64 vs → vz64 _ _ vs64 : ∀{Γ B A} → Var64 Γ A → Var64 (snoc64 Γ B) A;vs64 = λ x Var64 vz64 vs64 → vs64 _ _ _ (x Var64 vz64 vs64) Tm64 : Con64 → Ty64 → Set;Tm64 = λ Γ A → (Tm64 : Con64 → Ty64 → Set) (var : (Γ : _) (A : _) → Var64 Γ A → Tm64 Γ A) (lam : (Γ : _) (A B : _) → Tm64 (snoc64 Γ A) B → Tm64 Γ (arr64 A B)) (app : (Γ : _) (A B : _) → Tm64 Γ (arr64 A B) → Tm64 Γ A → Tm64 Γ B) → Tm64 Γ A var64 : ∀{Γ A} → Var64 Γ A → Tm64 Γ A;var64 = λ x Tm64 var64 lam app → var64 _ _ x lam64 : ∀{Γ A B} → Tm64 (snoc64 Γ A) B → Tm64 Γ (arr64 A B);lam64 = λ t Tm64 var64 lam64 app → lam64 _ _ _ (t Tm64 var64 lam64 app) app64 : ∀{Γ A B} → Tm64 Γ (arr64 A B) → Tm64 Γ A → Tm64 Γ B;app64 = λ t u Tm64 var64 lam64 app64 → app64 _ _ _ (t Tm64 var64 lam64 app64) (u Tm64 var64 lam64 app64) v064 : ∀{Γ A} → Tm64 (snoc64 Γ A) A;v064 = var64 vz64 v164 : ∀{Γ A B} → Tm64 (snoc64 (snoc64 Γ A) B) A;v164 = var64 (vs64 vz64) v264 : ∀{Γ A B C} → Tm64 (snoc64 (snoc64 (snoc64 Γ A) B) C) A;v264 = var64 (vs64 (vs64 vz64)) v364 : ∀{Γ A B C D} → Tm64 (snoc64 (snoc64 (snoc64 (snoc64 Γ A) B) C) D) A;v364 = var64 (vs64 (vs64 (vs64 vz64))) v464 : ∀{Γ A B C D E} → Tm64 (snoc64 (snoc64 (snoc64 (snoc64 (snoc64 Γ A) B) C) D) E) A;v464 = var64 (vs64 (vs64 (vs64 (vs64 vz64)))) test64 : ∀{Γ A} → Tm64 Γ (arr64 (arr64 A A) (arr64 A A));test64 = lam64 (lam64 (app64 v164 (app64 v164 (app64 v164 (app64 v164 (app64 v164 (app64 v164 v064))))))) {-# OPTIONS --type-in-type #-} Ty65 : Set; Ty65 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι65 : Ty65; ι65 = λ _ ι65 _ → ι65 arr65 : Ty65 → Ty65 → Ty65; arr65 = λ A B Ty65 ι65 arr65 → arr65 (A Ty65 ι65 arr65) (B Ty65 ι65 arr65) Con65 : Set;Con65 = (Con65 : Set) (nil : Con65) (snoc : Con65 → Ty65 → Con65) → Con65 nil65 : Con65;nil65 = λ Con65 nil65 snoc → nil65 snoc65 : Con65 → Ty65 → Con65;snoc65 = λ Γ A Con65 nil65 snoc65 → snoc65 (Γ Con65 nil65 snoc65) A Var65 : Con65 → Ty65 → Set;Var65 = λ Γ A → (Var65 : Con65 → Ty65 → Set) (vz : (Γ : _)(A : _) → Var65 (snoc65 Γ A) A) (vs : (Γ : _)(B A : _) → Var65 Γ A → Var65 (snoc65 Γ B) A) → Var65 Γ A vz65 : ∀{Γ A} → Var65 (snoc65 Γ A) A;vz65 = λ Var65 vz65 vs → vz65 _ _ vs65 : ∀{Γ B A} → Var65 Γ A → Var65 (snoc65 Γ B) A;vs65 = λ x Var65 vz65 vs65 → vs65 _ _ _ (x Var65 vz65 vs65) Tm65 : Con65 → Ty65 → Set;Tm65 = λ Γ A → (Tm65 : Con65 → Ty65 → Set) (var : (Γ : _) (A : _) → Var65 Γ A → Tm65 Γ A) (lam : (Γ : _) (A B : _) → Tm65 (snoc65 Γ A) B → Tm65 Γ (arr65 A B)) (app : (Γ : _) (A B : _) → Tm65 Γ (arr65 A B) → Tm65 Γ A → Tm65 Γ B) → Tm65 Γ A var65 : ∀{Γ A} → Var65 Γ A → Tm65 Γ A;var65 = λ x Tm65 var65 lam app → var65 _ _ x lam65 : ∀{Γ A B} → Tm65 (snoc65 Γ A) B → Tm65 Γ (arr65 A B);lam65 = λ t Tm65 var65 lam65 app → lam65 _ _ _ (t Tm65 var65 lam65 app) app65 : ∀{Γ A B} → Tm65 Γ (arr65 A B) → Tm65 Γ A → Tm65 Γ B;app65 = λ t u Tm65 var65 lam65 app65 → app65 _ _ _ (t Tm65 var65 lam65 app65) (u Tm65 var65 lam65 app65) v065 : ∀{Γ A} → Tm65 (snoc65 Γ A) A;v065 = var65 vz65 v165 : ∀{Γ A B} → Tm65 (snoc65 (snoc65 Γ A) B) A;v165 = var65 (vs65 vz65) v265 : ∀{Γ A B C} → Tm65 (snoc65 (snoc65 (snoc65 Γ A) B) C) A;v265 = var65 (vs65 (vs65 vz65)) v365 : ∀{Γ A B C D} → Tm65 (snoc65 (snoc65 (snoc65 (snoc65 Γ A) B) C) D) A;v365 = var65 (vs65 (vs65 (vs65 vz65))) v465 : ∀{Γ A B C D E} → Tm65 (snoc65 (snoc65 (snoc65 (snoc65 (snoc65 Γ A) B) C) D) E) A;v465 = var65 (vs65 (vs65 (vs65 (vs65 vz65)))) test65 : ∀{Γ A} → Tm65 Γ (arr65 (arr65 A A) (arr65 A A));test65 = lam65 (lam65 (app65 v165 (app65 v165 (app65 v165 (app65 v165 (app65 v165 (app65 v165 v065))))))) {-# OPTIONS --type-in-type #-} Ty66 : Set; Ty66 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι66 : Ty66; ι66 = λ _ ι66 _ → ι66 arr66 : Ty66 → Ty66 → Ty66; arr66 = λ A B Ty66 ι66 arr66 → arr66 (A Ty66 ι66 arr66) (B Ty66 ι66 arr66) Con66 : Set;Con66 = (Con66 : Set) (nil : Con66) (snoc : Con66 → Ty66 → Con66) → Con66 nil66 : Con66;nil66 = λ Con66 nil66 snoc → nil66 snoc66 : Con66 → Ty66 → Con66;snoc66 = λ Γ A Con66 nil66 snoc66 → snoc66 (Γ Con66 nil66 snoc66) A Var66 : Con66 → Ty66 → Set;Var66 = λ Γ A → (Var66 : Con66 → Ty66 → Set) (vz : (Γ : _)(A : _) → Var66 (snoc66 Γ A) A) (vs : (Γ : _)(B A : _) → Var66 Γ A → Var66 (snoc66 Γ B) A) → Var66 Γ A vz66 : ∀{Γ A} → Var66 (snoc66 Γ A) A;vz66 = λ Var66 vz66 vs → vz66 _ _ vs66 : ∀{Γ B A} → Var66 Γ A → Var66 (snoc66 Γ B) A;vs66 = λ x Var66 vz66 vs66 → vs66 _ _ _ (x Var66 vz66 vs66) Tm66 : Con66 → Ty66 → Set;Tm66 = λ Γ A → (Tm66 : Con66 → Ty66 → Set) (var : (Γ : _) (A : _) → Var66 Γ A → Tm66 Γ A) (lam : (Γ : _) (A B : _) → Tm66 (snoc66 Γ A) B → Tm66 Γ (arr66 A B)) (app : (Γ : _) (A B : _) → Tm66 Γ (arr66 A B) → Tm66 Γ A → Tm66 Γ B) → Tm66 Γ A var66 : ∀{Γ A} → Var66 Γ A → Tm66 Γ A;var66 = λ x Tm66 var66 lam app → var66 _ _ x lam66 : ∀{Γ A B} → Tm66 (snoc66 Γ A) B → Tm66 Γ (arr66 A B);lam66 = λ t Tm66 var66 lam66 app → lam66 _ _ _ (t Tm66 var66 lam66 app) app66 : ∀{Γ A B} → Tm66 Γ (arr66 A B) → Tm66 Γ A → Tm66 Γ B;app66 = λ t u Tm66 var66 lam66 app66 → app66 _ _ _ (t Tm66 var66 lam66 app66) (u Tm66 var66 lam66 app66) v066 : ∀{Γ A} → Tm66 (snoc66 Γ A) A;v066 = var66 vz66 v166 : ∀{Γ A B} → Tm66 (snoc66 (snoc66 Γ A) B) A;v166 = var66 (vs66 vz66) v266 : ∀{Γ A B C} → Tm66 (snoc66 (snoc66 (snoc66 Γ A) B) C) A;v266 = var66 (vs66 (vs66 vz66)) v366 : ∀{Γ A B C D} → Tm66 (snoc66 (snoc66 (snoc66 (snoc66 Γ A) B) C) D) A;v366 = var66 (vs66 (vs66 (vs66 vz66))) v466 : ∀{Γ A B C D E} → Tm66 (snoc66 (snoc66 (snoc66 (snoc66 (snoc66 Γ A) B) C) D) E) A;v466 = var66 (vs66 (vs66 (vs66 (vs66 vz66)))) test66 : ∀{Γ A} → Tm66 Γ (arr66 (arr66 A A) (arr66 A A));test66 = lam66 (lam66 (app66 v166 (app66 v166 (app66 v166 (app66 v166 (app66 v166 (app66 v166 v066))))))) {-# OPTIONS --type-in-type #-} Ty67 : Set; Ty67 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι67 : Ty67; ι67 = λ _ ι67 _ → ι67 arr67 : Ty67 → Ty67 → Ty67; arr67 = λ A B Ty67 ι67 arr67 → arr67 (A Ty67 ι67 arr67) (B Ty67 ι67 arr67) Con67 : Set;Con67 = (Con67 : Set) (nil : Con67) (snoc : Con67 → Ty67 → Con67) → Con67 nil67 : Con67;nil67 = λ Con67 nil67 snoc → nil67 snoc67 : Con67 → Ty67 → Con67;snoc67 = λ Γ A Con67 nil67 snoc67 → snoc67 (Γ Con67 nil67 snoc67) A Var67 : Con67 → Ty67 → Set;Var67 = λ Γ A → (Var67 : Con67 → Ty67 → Set) (vz : (Γ : _)(A : _) → Var67 (snoc67 Γ A) A) (vs : (Γ : _)(B A : _) → Var67 Γ A → Var67 (snoc67 Γ B) A) → Var67 Γ A vz67 : ∀{Γ A} → Var67 (snoc67 Γ A) A;vz67 = λ Var67 vz67 vs → vz67 _ _ vs67 : ∀{Γ B A} → Var67 Γ A → Var67 (snoc67 Γ B) A;vs67 = λ x Var67 vz67 vs67 → vs67 _ _ _ (x Var67 vz67 vs67) Tm67 : Con67 → Ty67 → Set;Tm67 = λ Γ A → (Tm67 : Con67 → Ty67 → Set) (var : (Γ : _) (A : _) → Var67 Γ A → Tm67 Γ A) (lam : (Γ : _) (A B : _) → Tm67 (snoc67 Γ A) B → Tm67 Γ (arr67 A B)) (app : (Γ : _) (A B : _) → Tm67 Γ (arr67 A B) → Tm67 Γ A → Tm67 Γ B) → Tm67 Γ A var67 : ∀{Γ A} → Var67 Γ A → Tm67 Γ A;var67 = λ x Tm67 var67 lam app → var67 _ _ x lam67 : ∀{Γ A B} → Tm67 (snoc67 Γ A) B → Tm67 Γ (arr67 A B);lam67 = λ t Tm67 var67 lam67 app → lam67 _ _ _ (t Tm67 var67 lam67 app) app67 : ∀{Γ A B} → Tm67 Γ (arr67 A B) → Tm67 Γ A → Tm67 Γ B;app67 = λ t u Tm67 var67 lam67 app67 → app67 _ _ _ (t Tm67 var67 lam67 app67) (u Tm67 var67 lam67 app67) v067 : ∀{Γ A} → Tm67 (snoc67 Γ A) A;v067 = var67 vz67 v167 : ∀{Γ A B} → Tm67 (snoc67 (snoc67 Γ A) B) A;v167 = var67 (vs67 vz67) v267 : ∀{Γ A B C} → Tm67 (snoc67 (snoc67 (snoc67 Γ A) B) C) A;v267 = var67 (vs67 (vs67 vz67)) v367 : ∀{Γ A B C D} → Tm67 (snoc67 (snoc67 (snoc67 (snoc67 Γ A) B) C) D) A;v367 = var67 (vs67 (vs67 (vs67 vz67))) v467 : ∀{Γ A B C D E} → Tm67 (snoc67 (snoc67 (snoc67 (snoc67 (snoc67 Γ A) B) C) D) E) A;v467 = var67 (vs67 (vs67 (vs67 (vs67 vz67)))) test67 : ∀{Γ A} → Tm67 Γ (arr67 (arr67 A A) (arr67 A A));test67 = lam67 (lam67 (app67 v167 (app67 v167 (app67 v167 (app67 v167 (app67 v167 (app67 v167 v067))))))) {-# OPTIONS --type-in-type #-} Ty68 : Set; Ty68 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι68 : Ty68; ι68 = λ _ ι68 _ → ι68 arr68 : Ty68 → Ty68 → Ty68; arr68 = λ A B Ty68 ι68 arr68 → arr68 (A Ty68 ι68 arr68) (B Ty68 ι68 arr68) Con68 : Set;Con68 = (Con68 : Set) (nil : Con68) (snoc : Con68 → Ty68 → Con68) → Con68 nil68 : Con68;nil68 = λ Con68 nil68 snoc → nil68 snoc68 : Con68 → Ty68 → Con68;snoc68 = λ Γ A Con68 nil68 snoc68 → snoc68 (Γ Con68 nil68 snoc68) A Var68 : Con68 → Ty68 → Set;Var68 = λ Γ A → (Var68 : Con68 → Ty68 → Set) (vz : (Γ : _)(A : _) → Var68 (snoc68 Γ A) A) (vs : (Γ : _)(B A : _) → Var68 Γ A → Var68 (snoc68 Γ B) A) → Var68 Γ A vz68 : ∀{Γ A} → Var68 (snoc68 Γ A) A;vz68 = λ Var68 vz68 vs → vz68 _ _ vs68 : ∀{Γ B A} → Var68 Γ A → Var68 (snoc68 Γ B) A;vs68 = λ x Var68 vz68 vs68 → vs68 _ _ _ (x Var68 vz68 vs68) Tm68 : Con68 → Ty68 → Set;Tm68 = λ Γ A → (Tm68 : Con68 → Ty68 → Set) (var : (Γ : _) (A : _) → Var68 Γ A → Tm68 Γ A) (lam : (Γ : _) (A B : _) → Tm68 (snoc68 Γ A) B → Tm68 Γ (arr68 A B)) (app : (Γ : _) (A B : _) → Tm68 Γ (arr68 A B) → Tm68 Γ A → Tm68 Γ B) → Tm68 Γ A var68 : ∀{Γ A} → Var68 Γ A → Tm68 Γ A;var68 = λ x Tm68 var68 lam app → var68 _ _ x lam68 : ∀{Γ A B} → Tm68 (snoc68 Γ A) B → Tm68 Γ (arr68 A B);lam68 = λ t Tm68 var68 lam68 app → lam68 _ _ _ (t Tm68 var68 lam68 app) app68 : ∀{Γ A B} → Tm68 Γ (arr68 A B) → Tm68 Γ A → Tm68 Γ B;app68 = λ t u Tm68 var68 lam68 app68 → app68 _ _ _ (t Tm68 var68 lam68 app68) (u Tm68 var68 lam68 app68) v068 : ∀{Γ A} → Tm68 (snoc68 Γ A) A;v068 = var68 vz68 v168 : ∀{Γ A B} → Tm68 (snoc68 (snoc68 Γ A) B) A;v168 = var68 (vs68 vz68) v268 : ∀{Γ A B C} → Tm68 (snoc68 (snoc68 (snoc68 Γ A) B) C) A;v268 = var68 (vs68 (vs68 vz68)) v368 : ∀{Γ A B C D} → Tm68 (snoc68 (snoc68 (snoc68 (snoc68 Γ A) B) C) D) A;v368 = var68 (vs68 (vs68 (vs68 vz68))) v468 : ∀{Γ A B C D E} → Tm68 (snoc68 (snoc68 (snoc68 (snoc68 (snoc68 Γ A) B) C) D) E) A;v468 = var68 (vs68 (vs68 (vs68 (vs68 vz68)))) test68 : ∀{Γ A} → Tm68 Γ (arr68 (arr68 A A) (arr68 A A));test68 = lam68 (lam68 (app68 v168 (app68 v168 (app68 v168 (app68 v168 (app68 v168 (app68 v168 v068))))))) {-# OPTIONS --type-in-type #-} Ty69 : Set; Ty69 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι69 : Ty69; ι69 = λ _ ι69 _ → ι69 arr69 : Ty69 → Ty69 → Ty69; arr69 = λ A B Ty69 ι69 arr69 → arr69 (A Ty69 ι69 arr69) (B Ty69 ι69 arr69) Con69 : Set;Con69 = (Con69 : Set) (nil : Con69) (snoc : Con69 → Ty69 → Con69) → Con69 nil69 : Con69;nil69 = λ Con69 nil69 snoc → nil69 snoc69 : Con69 → Ty69 → Con69;snoc69 = λ Γ A Con69 nil69 snoc69 → snoc69 (Γ Con69 nil69 snoc69) A Var69 : Con69 → Ty69 → Set;Var69 = λ Γ A → (Var69 : Con69 → Ty69 → Set) (vz : (Γ : _)(A : _) → Var69 (snoc69 Γ A) A) (vs : (Γ : _)(B A : _) → Var69 Γ A → Var69 (snoc69 Γ B) A) → Var69 Γ A vz69 : ∀{Γ A} → Var69 (snoc69 Γ A) A;vz69 = λ Var69 vz69 vs → vz69 _ _ vs69 : ∀{Γ B A} → Var69 Γ A → Var69 (snoc69 Γ B) A;vs69 = λ x Var69 vz69 vs69 → vs69 _ _ _ (x Var69 vz69 vs69) Tm69 : Con69 → Ty69 → Set;Tm69 = λ Γ A → (Tm69 : Con69 → Ty69 → Set) (var : (Γ : _) (A : _) → Var69 Γ A → Tm69 Γ A) (lam : (Γ : _) (A B : _) → Tm69 (snoc69 Γ A) B → Tm69 Γ (arr69 A B)) (app : (Γ : _) (A B : _) → Tm69 Γ (arr69 A B) → Tm69 Γ A → Tm69 Γ B) → Tm69 Γ A var69 : ∀{Γ A} → Var69 Γ A → Tm69 Γ A;var69 = λ x Tm69 var69 lam app → var69 _ _ x lam69 : ∀{Γ A B} → Tm69 (snoc69 Γ A) B → Tm69 Γ (arr69 A B);lam69 = λ t Tm69 var69 lam69 app → lam69 _ _ _ (t Tm69 var69 lam69 app) app69 : ∀{Γ A B} → Tm69 Γ (arr69 A B) → Tm69 Γ A → Tm69 Γ B;app69 = λ t u Tm69 var69 lam69 app69 → app69 _ _ _ (t Tm69 var69 lam69 app69) (u Tm69 var69 lam69 app69) v069 : ∀{Γ A} → Tm69 (snoc69 Γ A) A;v069 = var69 vz69 v169 : ∀{Γ A B} → Tm69 (snoc69 (snoc69 Γ A) B) A;v169 = var69 (vs69 vz69) v269 : ∀{Γ A B C} → Tm69 (snoc69 (snoc69 (snoc69 Γ A) B) C) A;v269 = var69 (vs69 (vs69 vz69)) v369 : ∀{Γ A B C D} → Tm69 (snoc69 (snoc69 (snoc69 (snoc69 Γ A) B) C) D) A;v369 = var69 (vs69 (vs69 (vs69 vz69))) v469 : ∀{Γ A B C D E} → Tm69 (snoc69 (snoc69 (snoc69 (snoc69 (snoc69 Γ A) B) C) D) E) A;v469 = var69 (vs69 (vs69 (vs69 (vs69 vz69)))) test69 : ∀{Γ A} → Tm69 Γ (arr69 (arr69 A A) (arr69 A A));test69 = lam69 (lam69 (app69 v169 (app69 v169 (app69 v169 (app69 v169 (app69 v169 (app69 v169 v069))))))) {-# OPTIONS --type-in-type #-} Ty70 : Set; Ty70 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι70 : Ty70; ι70 = λ _ ι70 _ → ι70 arr70 : Ty70 → Ty70 → Ty70; arr70 = λ A B Ty70 ι70 arr70 → arr70 (A Ty70 ι70 arr70) (B Ty70 ι70 arr70) Con70 : Set;Con70 = (Con70 : Set) (nil : Con70) (snoc : Con70 → Ty70 → Con70) → Con70 nil70 : Con70;nil70 = λ Con70 nil70 snoc → nil70 snoc70 : Con70 → Ty70 → Con70;snoc70 = λ Γ A Con70 nil70 snoc70 → snoc70 (Γ Con70 nil70 snoc70) A Var70 : Con70 → Ty70 → Set;Var70 = λ Γ A → (Var70 : Con70 → Ty70 → Set) (vz : (Γ : _)(A : _) → Var70 (snoc70 Γ A) A) (vs : (Γ : _)(B A : _) → Var70 Γ A → Var70 (snoc70 Γ B) A) → Var70 Γ A vz70 : ∀{Γ A} → Var70 (snoc70 Γ A) A;vz70 = λ Var70 vz70 vs → vz70 _ _ vs70 : ∀{Γ B A} → Var70 Γ A → Var70 (snoc70 Γ B) A;vs70 = λ x Var70 vz70 vs70 → vs70 _ _ _ (x Var70 vz70 vs70) Tm70 : Con70 → Ty70 → Set;Tm70 = λ Γ A → (Tm70 : Con70 → Ty70 → Set) (var : (Γ : _) (A : _) → Var70 Γ A → Tm70 Γ A) (lam : (Γ : _) (A B : _) → Tm70 (snoc70 Γ A) B → Tm70 Γ (arr70 A B)) (app : (Γ : _) (A B : _) → Tm70 Γ (arr70 A B) → Tm70 Γ A → Tm70 Γ B) → Tm70 Γ A var70 : ∀{Γ A} → Var70 Γ A → Tm70 Γ A;var70 = λ x Tm70 var70 lam app → var70 _ _ x lam70 : ∀{Γ A B} → Tm70 (snoc70 Γ A) B → Tm70 Γ (arr70 A B);lam70 = λ t Tm70 var70 lam70 app → lam70 _ _ _ (t Tm70 var70 lam70 app) app70 : ∀{Γ A B} → Tm70 Γ (arr70 A B) → Tm70 Γ A → Tm70 Γ B;app70 = λ t u Tm70 var70 lam70 app70 → app70 _ _ _ (t Tm70 var70 lam70 app70) (u Tm70 var70 lam70 app70) v070 : ∀{Γ A} → Tm70 (snoc70 Γ A) A;v070 = var70 vz70 v170 : ∀{Γ A B} → Tm70 (snoc70 (snoc70 Γ A) B) A;v170 = var70 (vs70 vz70) v270 : ∀{Γ A B C} → Tm70 (snoc70 (snoc70 (snoc70 Γ A) B) C) A;v270 = var70 (vs70 (vs70 vz70)) v370 : ∀{Γ A B C D} → Tm70 (snoc70 (snoc70 (snoc70 (snoc70 Γ A) B) C) D) A;v370 = var70 (vs70 (vs70 (vs70 vz70))) v470 : ∀{Γ A B C D E} → Tm70 (snoc70 (snoc70 (snoc70 (snoc70 (snoc70 Γ A) B) C) D) E) A;v470 = var70 (vs70 (vs70 (vs70 (vs70 vz70)))) test70 : ∀{Γ A} → Tm70 Γ (arr70 (arr70 A A) (arr70 A A));test70 = lam70 (lam70 (app70 v170 (app70 v170 (app70 v170 (app70 v170 (app70 v170 (app70 v170 v070))))))) {-# OPTIONS --type-in-type #-} Ty71 : Set; Ty71 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι71 : Ty71; ι71 = λ _ ι71 _ → ι71 arr71 : Ty71 → Ty71 → Ty71; arr71 = λ A B Ty71 ι71 arr71 → arr71 (A Ty71 ι71 arr71) (B Ty71 ι71 arr71) Con71 : Set;Con71 = (Con71 : Set) (nil : Con71) (snoc : Con71 → Ty71 → Con71) → Con71 nil71 : Con71;nil71 = λ Con71 nil71 snoc → nil71 snoc71 : Con71 → Ty71 → Con71;snoc71 = λ Γ A Con71 nil71 snoc71 → snoc71 (Γ Con71 nil71 snoc71) A Var71 : Con71 → Ty71 → Set;Var71 = λ Γ A → (Var71 : Con71 → Ty71 → Set) (vz : (Γ : _)(A : _) → Var71 (snoc71 Γ A) A) (vs : (Γ : _)(B A : _) → Var71 Γ A → Var71 (snoc71 Γ B) A) → Var71 Γ A vz71 : ∀{Γ A} → Var71 (snoc71 Γ A) A;vz71 = λ Var71 vz71 vs → vz71 _ _ vs71 : ∀{Γ B A} → Var71 Γ A → Var71 (snoc71 Γ B) A;vs71 = λ x Var71 vz71 vs71 → vs71 _ _ _ (x Var71 vz71 vs71) Tm71 : Con71 → Ty71 → Set;Tm71 = λ Γ A → (Tm71 : Con71 → Ty71 → Set) (var : (Γ : _) (A : _) → Var71 Γ A → Tm71 Γ A) (lam : (Γ : _) (A B : _) → Tm71 (snoc71 Γ A) B → Tm71 Γ (arr71 A B)) (app : (Γ : _) (A B : _) → Tm71 Γ (arr71 A B) → Tm71 Γ A → Tm71 Γ B) → Tm71 Γ A var71 : ∀{Γ A} → Var71 Γ A → Tm71 Γ A;var71 = λ x Tm71 var71 lam app → var71 _ _ x lam71 : ∀{Γ A B} → Tm71 (snoc71 Γ A) B → Tm71 Γ (arr71 A B);lam71 = λ t Tm71 var71 lam71 app → lam71 _ _ _ (t Tm71 var71 lam71 app) app71 : ∀{Γ A B} → Tm71 Γ (arr71 A B) → Tm71 Γ A → Tm71 Γ B;app71 = λ t u Tm71 var71 lam71 app71 → app71 _ _ _ (t Tm71 var71 lam71 app71) (u Tm71 var71 lam71 app71) v071 : ∀{Γ A} → Tm71 (snoc71 Γ A) A;v071 = var71 vz71 v171 : ∀{Γ A B} → Tm71 (snoc71 (snoc71 Γ A) B) A;v171 = var71 (vs71 vz71) v271 : ∀{Γ A B C} → Tm71 (snoc71 (snoc71 (snoc71 Γ A) B) C) A;v271 = var71 (vs71 (vs71 vz71)) v371 : ∀{Γ A B C D} → Tm71 (snoc71 (snoc71 (snoc71 (snoc71 Γ A) B) C) D) A;v371 = var71 (vs71 (vs71 (vs71 vz71))) v471 : ∀{Γ A B C D E} → Tm71 (snoc71 (snoc71 (snoc71 (snoc71 (snoc71 Γ A) B) C) D) E) A;v471 = var71 (vs71 (vs71 (vs71 (vs71 vz71)))) test71 : ∀{Γ A} → Tm71 Γ (arr71 (arr71 A A) (arr71 A A));test71 = lam71 (lam71 (app71 v171 (app71 v171 (app71 v171 (app71 v171 (app71 v171 (app71 v171 v071))))))) {-# OPTIONS --type-in-type #-} Ty72 : Set; Ty72 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι72 : Ty72; ι72 = λ _ ι72 _ → ι72 arr72 : Ty72 → Ty72 → Ty72; arr72 = λ A B Ty72 ι72 arr72 → arr72 (A Ty72 ι72 arr72) (B Ty72 ι72 arr72) Con72 : Set;Con72 = (Con72 : Set) (nil : Con72) (snoc : Con72 → Ty72 → Con72) → Con72 nil72 : Con72;nil72 = λ Con72 nil72 snoc → nil72 snoc72 : Con72 → Ty72 → Con72;snoc72 = λ Γ A Con72 nil72 snoc72 → snoc72 (Γ Con72 nil72 snoc72) A Var72 : Con72 → Ty72 → Set;Var72 = λ Γ A → (Var72 : Con72 → Ty72 → Set) (vz : (Γ : _)(A : _) → Var72 (snoc72 Γ A) A) (vs : (Γ : _)(B A : _) → Var72 Γ A → Var72 (snoc72 Γ B) A) → Var72 Γ A vz72 : ∀{Γ A} → Var72 (snoc72 Γ A) A;vz72 = λ Var72 vz72 vs → vz72 _ _ vs72 : ∀{Γ B A} → Var72 Γ A → Var72 (snoc72 Γ B) A;vs72 = λ x Var72 vz72 vs72 → vs72 _ _ _ (x Var72 vz72 vs72) Tm72 : Con72 → Ty72 → Set;Tm72 = λ Γ A → (Tm72 : Con72 → Ty72 → Set) (var : (Γ : _) (A : _) → Var72 Γ A → Tm72 Γ A) (lam : (Γ : _) (A B : _) → Tm72 (snoc72 Γ A) B → Tm72 Γ (arr72 A B)) (app : (Γ : _) (A B : _) → Tm72 Γ (arr72 A B) → Tm72 Γ A → Tm72 Γ B) → Tm72 Γ A var72 : ∀{Γ A} → Var72 Γ A → Tm72 Γ A;var72 = λ x Tm72 var72 lam app → var72 _ _ x lam72 : ∀{Γ A B} → Tm72 (snoc72 Γ A) B → Tm72 Γ (arr72 A B);lam72 = λ t Tm72 var72 lam72 app → lam72 _ _ _ (t Tm72 var72 lam72 app) app72 : ∀{Γ A B} → Tm72 Γ (arr72 A B) → Tm72 Γ A → Tm72 Γ B;app72 = λ t u Tm72 var72 lam72 app72 → app72 _ _ _ (t Tm72 var72 lam72 app72) (u Tm72 var72 lam72 app72) v072 : ∀{Γ A} → Tm72 (snoc72 Γ A) A;v072 = var72 vz72 v172 : ∀{Γ A B} → Tm72 (snoc72 (snoc72 Γ A) B) A;v172 = var72 (vs72 vz72) v272 : ∀{Γ A B C} → Tm72 (snoc72 (snoc72 (snoc72 Γ A) B) C) A;v272 = var72 (vs72 (vs72 vz72)) v372 : ∀{Γ A B C D} → Tm72 (snoc72 (snoc72 (snoc72 (snoc72 Γ A) B) C) D) A;v372 = var72 (vs72 (vs72 (vs72 vz72))) v472 : ∀{Γ A B C D E} → Tm72 (snoc72 (snoc72 (snoc72 (snoc72 (snoc72 Γ A) B) C) D) E) A;v472 = var72 (vs72 (vs72 (vs72 (vs72 vz72)))) test72 : ∀{Γ A} → Tm72 Γ (arr72 (arr72 A A) (arr72 A A));test72 = lam72 (lam72 (app72 v172 (app72 v172 (app72 v172 (app72 v172 (app72 v172 (app72 v172 v072))))))) {-# OPTIONS --type-in-type #-} Ty73 : Set; Ty73 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι73 : Ty73; ι73 = λ _ ι73 _ → ι73 arr73 : Ty73 → Ty73 → Ty73; arr73 = λ A B Ty73 ι73 arr73 → arr73 (A Ty73 ι73 arr73) (B Ty73 ι73 arr73) Con73 : Set;Con73 = (Con73 : Set) (nil : Con73) (snoc : Con73 → Ty73 → Con73) → Con73 nil73 : Con73;nil73 = λ Con73 nil73 snoc → nil73 snoc73 : Con73 → Ty73 → Con73;snoc73 = λ Γ A Con73 nil73 snoc73 → snoc73 (Γ Con73 nil73 snoc73) A Var73 : Con73 → Ty73 → Set;Var73 = λ Γ A → (Var73 : Con73 → Ty73 → Set) (vz : (Γ : _)(A : _) → Var73 (snoc73 Γ A) A) (vs : (Γ : _)(B A : _) → Var73 Γ A → Var73 (snoc73 Γ B) A) → Var73 Γ A vz73 : ∀{Γ A} → Var73 (snoc73 Γ A) A;vz73 = λ Var73 vz73 vs → vz73 _ _ vs73 : ∀{Γ B A} → Var73 Γ A → Var73 (snoc73 Γ B) A;vs73 = λ x Var73 vz73 vs73 → vs73 _ _ _ (x Var73 vz73 vs73) Tm73 : Con73 → Ty73 → Set;Tm73 = λ Γ A → (Tm73 : Con73 → Ty73 → Set) (var : (Γ : _) (A : _) → Var73 Γ A → Tm73 Γ A) (lam : (Γ : _) (A B : _) → Tm73 (snoc73 Γ A) B → Tm73 Γ (arr73 A B)) (app : (Γ : _) (A B : _) → Tm73 Γ (arr73 A B) → Tm73 Γ A → Tm73 Γ B) → Tm73 Γ A var73 : ∀{Γ A} → Var73 Γ A → Tm73 Γ A;var73 = λ x Tm73 var73 lam app → var73 _ _ x lam73 : ∀{Γ A B} → Tm73 (snoc73 Γ A) B → Tm73 Γ (arr73 A B);lam73 = λ t Tm73 var73 lam73 app → lam73 _ _ _ (t Tm73 var73 lam73 app) app73 : ∀{Γ A B} → Tm73 Γ (arr73 A B) → Tm73 Γ A → Tm73 Γ B;app73 = λ t u Tm73 var73 lam73 app73 → app73 _ _ _ (t Tm73 var73 lam73 app73) (u Tm73 var73 lam73 app73) v073 : ∀{Γ A} → Tm73 (snoc73 Γ A) A;v073 = var73 vz73 v173 : ∀{Γ A B} → Tm73 (snoc73 (snoc73 Γ A) B) A;v173 = var73 (vs73 vz73) v273 : ∀{Γ A B C} → Tm73 (snoc73 (snoc73 (snoc73 Γ A) B) C) A;v273 = var73 (vs73 (vs73 vz73)) v373 : ∀{Γ A B C D} → Tm73 (snoc73 (snoc73 (snoc73 (snoc73 Γ A) B) C) D) A;v373 = var73 (vs73 (vs73 (vs73 vz73))) v473 : ∀{Γ A B C D E} → Tm73 (snoc73 (snoc73 (snoc73 (snoc73 (snoc73 Γ A) B) C) D) E) A;v473 = var73 (vs73 (vs73 (vs73 (vs73 vz73)))) test73 : ∀{Γ A} → Tm73 Γ (arr73 (arr73 A A) (arr73 A A));test73 = lam73 (lam73 (app73 v173 (app73 v173 (app73 v173 (app73 v173 (app73 v173 (app73 v173 v073))))))) {-# OPTIONS --type-in-type #-} Ty74 : Set; Ty74 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι74 : Ty74; ι74 = λ _ ι74 _ → ι74 arr74 : Ty74 → Ty74 → Ty74; arr74 = λ A B Ty74 ι74 arr74 → arr74 (A Ty74 ι74 arr74) (B Ty74 ι74 arr74) Con74 : Set;Con74 = (Con74 : Set) (nil : Con74) (snoc : Con74 → Ty74 → Con74) → Con74 nil74 : Con74;nil74 = λ Con74 nil74 snoc → nil74 snoc74 : Con74 → Ty74 → Con74;snoc74 = λ Γ A Con74 nil74 snoc74 → snoc74 (Γ Con74 nil74 snoc74) A Var74 : Con74 → Ty74 → Set;Var74 = λ Γ A → (Var74 : Con74 → Ty74 → Set) (vz : (Γ : _)(A : _) → Var74 (snoc74 Γ A) A) (vs : (Γ : _)(B A : _) → Var74 Γ A → Var74 (snoc74 Γ B) A) → Var74 Γ A vz74 : ∀{Γ A} → Var74 (snoc74 Γ A) A;vz74 = λ Var74 vz74 vs → vz74 _ _ vs74 : ∀{Γ B A} → Var74 Γ A → Var74 (snoc74 Γ B) A;vs74 = λ x Var74 vz74 vs74 → vs74 _ _ _ (x Var74 vz74 vs74) Tm74 : Con74 → Ty74 → Set;Tm74 = λ Γ A → (Tm74 : Con74 → Ty74 → Set) (var : (Γ : _) (A : _) → Var74 Γ A → Tm74 Γ A) (lam : (Γ : _) (A B : _) → Tm74 (snoc74 Γ A) B → Tm74 Γ (arr74 A B)) (app : (Γ : _) (A B : _) → Tm74 Γ (arr74 A B) → Tm74 Γ A → Tm74 Γ B) → Tm74 Γ A var74 : ∀{Γ A} → Var74 Γ A → Tm74 Γ A;var74 = λ x Tm74 var74 lam app → var74 _ _ x lam74 : ∀{Γ A B} → Tm74 (snoc74 Γ A) B → Tm74 Γ (arr74 A B);lam74 = λ t Tm74 var74 lam74 app → lam74 _ _ _ (t Tm74 var74 lam74 app) app74 : ∀{Γ A B} → Tm74 Γ (arr74 A B) → Tm74 Γ A → Tm74 Γ B;app74 = λ t u Tm74 var74 lam74 app74 → app74 _ _ _ (t Tm74 var74 lam74 app74) (u Tm74 var74 lam74 app74) v074 : ∀{Γ A} → Tm74 (snoc74 Γ A) A;v074 = var74 vz74 v174 : ∀{Γ A B} → Tm74 (snoc74 (snoc74 Γ A) B) A;v174 = var74 (vs74 vz74) v274 : ∀{Γ A B C} → Tm74 (snoc74 (snoc74 (snoc74 Γ A) B) C) A;v274 = var74 (vs74 (vs74 vz74)) v374 : ∀{Γ A B C D} → Tm74 (snoc74 (snoc74 (snoc74 (snoc74 Γ A) B) C) D) A;v374 = var74 (vs74 (vs74 (vs74 vz74))) v474 : ∀{Γ A B C D E} → Tm74 (snoc74 (snoc74 (snoc74 (snoc74 (snoc74 Γ A) B) C) D) E) A;v474 = var74 (vs74 (vs74 (vs74 (vs74 vz74)))) test74 : ∀{Γ A} → Tm74 Γ (arr74 (arr74 A A) (arr74 A A));test74 = lam74 (lam74 (app74 v174 (app74 v174 (app74 v174 (app74 v174 (app74 v174 (app74 v174 v074))))))) {-# OPTIONS --type-in-type #-} Ty75 : Set; Ty75 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι75 : Ty75; ι75 = λ _ ι75 _ → ι75 arr75 : Ty75 → Ty75 → Ty75; arr75 = λ A B Ty75 ι75 arr75 → arr75 (A Ty75 ι75 arr75) (B Ty75 ι75 arr75) Con75 : Set;Con75 = (Con75 : Set) (nil : Con75) (snoc : Con75 → Ty75 → Con75) → Con75 nil75 : Con75;nil75 = λ Con75 nil75 snoc → nil75 snoc75 : Con75 → Ty75 → Con75;snoc75 = λ Γ A Con75 nil75 snoc75 → snoc75 (Γ Con75 nil75 snoc75) A Var75 : Con75 → Ty75 → Set;Var75 = λ Γ A → (Var75 : Con75 → Ty75 → Set) (vz : (Γ : _)(A : _) → Var75 (snoc75 Γ A) A) (vs : (Γ : _)(B A : _) → Var75 Γ A → Var75 (snoc75 Γ B) A) → Var75 Γ A vz75 : ∀{Γ A} → Var75 (snoc75 Γ A) A;vz75 = λ Var75 vz75 vs → vz75 _ _ vs75 : ∀{Γ B A} → Var75 Γ A → Var75 (snoc75 Γ B) A;vs75 = λ x Var75 vz75 vs75 → vs75 _ _ _ (x Var75 vz75 vs75) Tm75 : Con75 → Ty75 → Set;Tm75 = λ Γ A → (Tm75 : Con75 → Ty75 → Set) (var : (Γ : _) (A : _) → Var75 Γ A → Tm75 Γ A) (lam : (Γ : _) (A B : _) → Tm75 (snoc75 Γ A) B → Tm75 Γ (arr75 A B)) (app : (Γ : _) (A B : _) → Tm75 Γ (arr75 A B) → Tm75 Γ A → Tm75 Γ B) → Tm75 Γ A var75 : ∀{Γ A} → Var75 Γ A → Tm75 Γ A;var75 = λ x Tm75 var75 lam app → var75 _ _ x lam75 : ∀{Γ A B} → Tm75 (snoc75 Γ A) B → Tm75 Γ (arr75 A B);lam75 = λ t Tm75 var75 lam75 app → lam75 _ _ _ (t Tm75 var75 lam75 app) app75 : ∀{Γ A B} → Tm75 Γ (arr75 A B) → Tm75 Γ A → Tm75 Γ B;app75 = λ t u Tm75 var75 lam75 app75 → app75 _ _ _ (t Tm75 var75 lam75 app75) (u Tm75 var75 lam75 app75) v075 : ∀{Γ A} → Tm75 (snoc75 Γ A) A;v075 = var75 vz75 v175 : ∀{Γ A B} → Tm75 (snoc75 (snoc75 Γ A) B) A;v175 = var75 (vs75 vz75) v275 : ∀{Γ A B C} → Tm75 (snoc75 (snoc75 (snoc75 Γ A) B) C) A;v275 = var75 (vs75 (vs75 vz75)) v375 : ∀{Γ A B C D} → Tm75 (snoc75 (snoc75 (snoc75 (snoc75 Γ A) B) C) D) A;v375 = var75 (vs75 (vs75 (vs75 vz75))) v475 : ∀{Γ A B C D E} → Tm75 (snoc75 (snoc75 (snoc75 (snoc75 (snoc75 Γ A) B) C) D) E) A;v475 = var75 (vs75 (vs75 (vs75 (vs75 vz75)))) test75 : ∀{Γ A} → Tm75 Γ (arr75 (arr75 A A) (arr75 A A));test75 = lam75 (lam75 (app75 v175 (app75 v175 (app75 v175 (app75 v175 (app75 v175 (app75 v175 v075))))))) {-# OPTIONS --type-in-type #-} Ty76 : Set; Ty76 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι76 : Ty76; ι76 = λ _ ι76 _ → ι76 arr76 : Ty76 → Ty76 → Ty76; arr76 = λ A B Ty76 ι76 arr76 → arr76 (A Ty76 ι76 arr76) (B Ty76 ι76 arr76) Con76 : Set;Con76 = (Con76 : Set) (nil : Con76) (snoc : Con76 → Ty76 → Con76) → Con76 nil76 : Con76;nil76 = λ Con76 nil76 snoc → nil76 snoc76 : Con76 → Ty76 → Con76;snoc76 = λ Γ A Con76 nil76 snoc76 → snoc76 (Γ Con76 nil76 snoc76) A Var76 : Con76 → Ty76 → Set;Var76 = λ Γ A → (Var76 : Con76 → Ty76 → Set) (vz : (Γ : _)(A : _) → Var76 (snoc76 Γ A) A) (vs : (Γ : _)(B A : _) → Var76 Γ A → Var76 (snoc76 Γ B) A) → Var76 Γ A vz76 : ∀{Γ A} → Var76 (snoc76 Γ A) A;vz76 = λ Var76 vz76 vs → vz76 _ _ vs76 : ∀{Γ B A} → Var76 Γ A → Var76 (snoc76 Γ B) A;vs76 = λ x Var76 vz76 vs76 → vs76 _ _ _ (x Var76 vz76 vs76) Tm76 : Con76 → Ty76 → Set;Tm76 = λ Γ A → (Tm76 : Con76 → Ty76 → Set) (var : (Γ : _) (A : _) → Var76 Γ A → Tm76 Γ A) (lam : (Γ : _) (A B : _) → Tm76 (snoc76 Γ A) B → Tm76 Γ (arr76 A B)) (app : (Γ : _) (A B : _) → Tm76 Γ (arr76 A B) → Tm76 Γ A → Tm76 Γ B) → Tm76 Γ A var76 : ∀{Γ A} → Var76 Γ A → Tm76 Γ A;var76 = λ x Tm76 var76 lam app → var76 _ _ x lam76 : ∀{Γ A B} → Tm76 (snoc76 Γ A) B → Tm76 Γ (arr76 A B);lam76 = λ t Tm76 var76 lam76 app → lam76 _ _ _ (t Tm76 var76 lam76 app) app76 : ∀{Γ A B} → Tm76 Γ (arr76 A B) → Tm76 Γ A → Tm76 Γ B;app76 = λ t u Tm76 var76 lam76 app76 → app76 _ _ _ (t Tm76 var76 lam76 app76) (u Tm76 var76 lam76 app76) v076 : ∀{Γ A} → Tm76 (snoc76 Γ A) A;v076 = var76 vz76 v176 : ∀{Γ A B} → Tm76 (snoc76 (snoc76 Γ A) B) A;v176 = var76 (vs76 vz76) v276 : ∀{Γ A B C} → Tm76 (snoc76 (snoc76 (snoc76 Γ A) B) C) A;v276 = var76 (vs76 (vs76 vz76)) v376 : ∀{Γ A B C D} → Tm76 (snoc76 (snoc76 (snoc76 (snoc76 Γ A) B) C) D) A;v376 = var76 (vs76 (vs76 (vs76 vz76))) v476 : ∀{Γ A B C D E} → Tm76 (snoc76 (snoc76 (snoc76 (snoc76 (snoc76 Γ A) B) C) D) E) A;v476 = var76 (vs76 (vs76 (vs76 (vs76 vz76)))) test76 : ∀{Γ A} → Tm76 Γ (arr76 (arr76 A A) (arr76 A A));test76 = lam76 (lam76 (app76 v176 (app76 v176 (app76 v176 (app76 v176 (app76 v176 (app76 v176 v076))))))) {-# OPTIONS --type-in-type #-} Ty77 : Set; Ty77 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι77 : Ty77; ι77 = λ _ ι77 _ → ι77 arr77 : Ty77 → Ty77 → Ty77; arr77 = λ A B Ty77 ι77 arr77 → arr77 (A Ty77 ι77 arr77) (B Ty77 ι77 arr77) Con77 : Set;Con77 = (Con77 : Set) (nil : Con77) (snoc : Con77 → Ty77 → Con77) → Con77 nil77 : Con77;nil77 = λ Con77 nil77 snoc → nil77 snoc77 : Con77 → Ty77 → Con77;snoc77 = λ Γ A Con77 nil77 snoc77 → snoc77 (Γ Con77 nil77 snoc77) A Var77 : Con77 → Ty77 → Set;Var77 = λ Γ A → (Var77 : Con77 → Ty77 → Set) (vz : (Γ : _)(A : _) → Var77 (snoc77 Γ A) A) (vs : (Γ : _)(B A : _) → Var77 Γ A → Var77 (snoc77 Γ B) A) → Var77 Γ A vz77 : ∀{Γ A} → Var77 (snoc77 Γ A) A;vz77 = λ Var77 vz77 vs → vz77 _ _ vs77 : ∀{Γ B A} → Var77 Γ A → Var77 (snoc77 Γ B) A;vs77 = λ x Var77 vz77 vs77 → vs77 _ _ _ (x Var77 vz77 vs77) Tm77 : Con77 → Ty77 → Set;Tm77 = λ Γ A → (Tm77 : Con77 → Ty77 → Set) (var : (Γ : _) (A : _) → Var77 Γ A → Tm77 Γ A) (lam : (Γ : _) (A B : _) → Tm77 (snoc77 Γ A) B → Tm77 Γ (arr77 A B)) (app : (Γ : _) (A B : _) → Tm77 Γ (arr77 A B) → Tm77 Γ A → Tm77 Γ B) → Tm77 Γ A var77 : ∀{Γ A} → Var77 Γ A → Tm77 Γ A;var77 = λ x Tm77 var77 lam app → var77 _ _ x lam77 : ∀{Γ A B} → Tm77 (snoc77 Γ A) B → Tm77 Γ (arr77 A B);lam77 = λ t Tm77 var77 lam77 app → lam77 _ _ _ (t Tm77 var77 lam77 app) app77 : ∀{Γ A B} → Tm77 Γ (arr77 A B) → Tm77 Γ A → Tm77 Γ B;app77 = λ t u Tm77 var77 lam77 app77 → app77 _ _ _ (t Tm77 var77 lam77 app77) (u Tm77 var77 lam77 app77) v077 : ∀{Γ A} → Tm77 (snoc77 Γ A) A;v077 = var77 vz77 v177 : ∀{Γ A B} → Tm77 (snoc77 (snoc77 Γ A) B) A;v177 = var77 (vs77 vz77) v277 : ∀{Γ A B C} → Tm77 (snoc77 (snoc77 (snoc77 Γ A) B) C) A;v277 = var77 (vs77 (vs77 vz77)) v377 : ∀{Γ A B C D} → Tm77 (snoc77 (snoc77 (snoc77 (snoc77 Γ A) B) C) D) A;v377 = var77 (vs77 (vs77 (vs77 vz77))) v477 : ∀{Γ A B C D E} → Tm77 (snoc77 (snoc77 (snoc77 (snoc77 (snoc77 Γ A) B) C) D) E) A;v477 = var77 (vs77 (vs77 (vs77 (vs77 vz77)))) test77 : ∀{Γ A} → Tm77 Γ (arr77 (arr77 A A) (arr77 A A));test77 = lam77 (lam77 (app77 v177 (app77 v177 (app77 v177 (app77 v177 (app77 v177 (app77 v177 v077))))))) {-# OPTIONS --type-in-type #-} Ty78 : Set; Ty78 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι78 : Ty78; ι78 = λ _ ι78 _ → ι78 arr78 : Ty78 → Ty78 → Ty78; arr78 = λ A B Ty78 ι78 arr78 → arr78 (A Ty78 ι78 arr78) (B Ty78 ι78 arr78) Con78 : Set;Con78 = (Con78 : Set) (nil : Con78) (snoc : Con78 → Ty78 → Con78) → Con78 nil78 : Con78;nil78 = λ Con78 nil78 snoc → nil78 snoc78 : Con78 → Ty78 → Con78;snoc78 = λ Γ A Con78 nil78 snoc78 → snoc78 (Γ Con78 nil78 snoc78) A Var78 : Con78 → Ty78 → Set;Var78 = λ Γ A → (Var78 : Con78 → Ty78 → Set) (vz : (Γ : _)(A : _) → Var78 (snoc78 Γ A) A) (vs : (Γ : _)(B A : _) → Var78 Γ A → Var78 (snoc78 Γ B) A) → Var78 Γ A vz78 : ∀{Γ A} → Var78 (snoc78 Γ A) A;vz78 = λ Var78 vz78 vs → vz78 _ _ vs78 : ∀{Γ B A} → Var78 Γ A → Var78 (snoc78 Γ B) A;vs78 = λ x Var78 vz78 vs78 → vs78 _ _ _ (x Var78 vz78 vs78) Tm78 : Con78 → Ty78 → Set;Tm78 = λ Γ A → (Tm78 : Con78 → Ty78 → Set) (var : (Γ : _) (A : _) → Var78 Γ A → Tm78 Γ A) (lam : (Γ : _) (A B : _) → Tm78 (snoc78 Γ A) B → Tm78 Γ (arr78 A B)) (app : (Γ : _) (A B : _) → Tm78 Γ (arr78 A B) → Tm78 Γ A → Tm78 Γ B) → Tm78 Γ A var78 : ∀{Γ A} → Var78 Γ A → Tm78 Γ A;var78 = λ x Tm78 var78 lam app → var78 _ _ x lam78 : ∀{Γ A B} → Tm78 (snoc78 Γ A) B → Tm78 Γ (arr78 A B);lam78 = λ t Tm78 var78 lam78 app → lam78 _ _ _ (t Tm78 var78 lam78 app) app78 : ∀{Γ A B} → Tm78 Γ (arr78 A B) → Tm78 Γ A → Tm78 Γ B;app78 = λ t u Tm78 var78 lam78 app78 → app78 _ _ _ (t Tm78 var78 lam78 app78) (u Tm78 var78 lam78 app78) v078 : ∀{Γ A} → Tm78 (snoc78 Γ A) A;v078 = var78 vz78 v178 : ∀{Γ A B} → Tm78 (snoc78 (snoc78 Γ A) B) A;v178 = var78 (vs78 vz78) v278 : ∀{Γ A B C} → Tm78 (snoc78 (snoc78 (snoc78 Γ A) B) C) A;v278 = var78 (vs78 (vs78 vz78)) v378 : ∀{Γ A B C D} → Tm78 (snoc78 (snoc78 (snoc78 (snoc78 Γ A) B) C) D) A;v378 = var78 (vs78 (vs78 (vs78 vz78))) v478 : ∀{Γ A B C D E} → Tm78 (snoc78 (snoc78 (snoc78 (snoc78 (snoc78 Γ A) B) C) D) E) A;v478 = var78 (vs78 (vs78 (vs78 (vs78 vz78)))) test78 : ∀{Γ A} → Tm78 Γ (arr78 (arr78 A A) (arr78 A A));test78 = lam78 (lam78 (app78 v178 (app78 v178 (app78 v178 (app78 v178 (app78 v178 (app78 v178 v078))))))) {-# OPTIONS --type-in-type #-} Ty79 : Set; Ty79 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι79 : Ty79; ι79 = λ _ ι79 _ → ι79 arr79 : Ty79 → Ty79 → Ty79; arr79 = λ A B Ty79 ι79 arr79 → arr79 (A Ty79 ι79 arr79) (B Ty79 ι79 arr79) Con79 : Set;Con79 = (Con79 : Set) (nil : Con79) (snoc : Con79 → Ty79 → Con79) → Con79 nil79 : Con79;nil79 = λ Con79 nil79 snoc → nil79 snoc79 : Con79 → Ty79 → Con79;snoc79 = λ Γ A Con79 nil79 snoc79 → snoc79 (Γ Con79 nil79 snoc79) A Var79 : Con79 → Ty79 → Set;Var79 = λ Γ A → (Var79 : Con79 → Ty79 → Set) (vz : (Γ : _)(A : _) → Var79 (snoc79 Γ A) A) (vs : (Γ : _)(B A : _) → Var79 Γ A → Var79 (snoc79 Γ B) A) → Var79 Γ A vz79 : ∀{Γ A} → Var79 (snoc79 Γ A) A;vz79 = λ Var79 vz79 vs → vz79 _ _ vs79 : ∀{Γ B A} → Var79 Γ A → Var79 (snoc79 Γ B) A;vs79 = λ x Var79 vz79 vs79 → vs79 _ _ _ (x Var79 vz79 vs79) Tm79 : Con79 → Ty79 → Set;Tm79 = λ Γ A → (Tm79 : Con79 → Ty79 → Set) (var : (Γ : _) (A : _) → Var79 Γ A → Tm79 Γ A) (lam : (Γ : _) (A B : _) → Tm79 (snoc79 Γ A) B → Tm79 Γ (arr79 A B)) (app : (Γ : _) (A B : _) → Tm79 Γ (arr79 A B) → Tm79 Γ A → Tm79 Γ B) → Tm79 Γ A var79 : ∀{Γ A} → Var79 Γ A → Tm79 Γ A;var79 = λ x Tm79 var79 lam app → var79 _ _ x lam79 : ∀{Γ A B} → Tm79 (snoc79 Γ A) B → Tm79 Γ (arr79 A B);lam79 = λ t Tm79 var79 lam79 app → lam79 _ _ _ (t Tm79 var79 lam79 app) app79 : ∀{Γ A B} → Tm79 Γ (arr79 A B) → Tm79 Γ A → Tm79 Γ B;app79 = λ t u Tm79 var79 lam79 app79 → app79 _ _ _ (t Tm79 var79 lam79 app79) (u Tm79 var79 lam79 app79) v079 : ∀{Γ A} → Tm79 (snoc79 Γ A) A;v079 = var79 vz79 v179 : ∀{Γ A B} → Tm79 (snoc79 (snoc79 Γ A) B) A;v179 = var79 (vs79 vz79) v279 : ∀{Γ A B C} → Tm79 (snoc79 (snoc79 (snoc79 Γ A) B) C) A;v279 = var79 (vs79 (vs79 vz79)) v379 : ∀{Γ A B C D} → Tm79 (snoc79 (snoc79 (snoc79 (snoc79 Γ A) B) C) D) A;v379 = var79 (vs79 (vs79 (vs79 vz79))) v479 : ∀{Γ A B C D E} → Tm79 (snoc79 (snoc79 (snoc79 (snoc79 (snoc79 Γ A) B) C) D) E) A;v479 = var79 (vs79 (vs79 (vs79 (vs79 vz79)))) test79 : ∀{Γ A} → Tm79 Γ (arr79 (arr79 A A) (arr79 A A));test79 = lam79 (lam79 (app79 v179 (app79 v179 (app79 v179 (app79 v179 (app79 v179 (app79 v179 v079))))))) {-# OPTIONS --type-in-type #-} Ty80 : Set; Ty80 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι80 : Ty80; ι80 = λ _ ι80 _ → ι80 arr80 : Ty80 → Ty80 → Ty80; arr80 = λ A B Ty80 ι80 arr80 → arr80 (A Ty80 ι80 arr80) (B Ty80 ι80 arr80) Con80 : Set;Con80 = (Con80 : Set) (nil : Con80) (snoc : Con80 → Ty80 → Con80) → Con80 nil80 : Con80;nil80 = λ Con80 nil80 snoc → nil80 snoc80 : Con80 → Ty80 → Con80;snoc80 = λ Γ A Con80 nil80 snoc80 → snoc80 (Γ Con80 nil80 snoc80) A Var80 : Con80 → Ty80 → Set;Var80 = λ Γ A → (Var80 : Con80 → Ty80 → Set) (vz : (Γ : _)(A : _) → Var80 (snoc80 Γ A) A) (vs : (Γ : _)(B A : _) → Var80 Γ A → Var80 (snoc80 Γ B) A) → Var80 Γ A vz80 : ∀{Γ A} → Var80 (snoc80 Γ A) A;vz80 = λ Var80 vz80 vs → vz80 _ _ vs80 : ∀{Γ B A} → Var80 Γ A → Var80 (snoc80 Γ B) A;vs80 = λ x Var80 vz80 vs80 → vs80 _ _ _ (x Var80 vz80 vs80) Tm80 : Con80 → Ty80 → Set;Tm80 = λ Γ A → (Tm80 : Con80 → Ty80 → Set) (var : (Γ : _) (A : _) → Var80 Γ A → Tm80 Γ A) (lam : (Γ : _) (A B : _) → Tm80 (snoc80 Γ A) B → Tm80 Γ (arr80 A B)) (app : (Γ : _) (A B : _) → Tm80 Γ (arr80 A B) → Tm80 Γ A → Tm80 Γ B) → Tm80 Γ A var80 : ∀{Γ A} → Var80 Γ A → Tm80 Γ A;var80 = λ x Tm80 var80 lam app → var80 _ _ x lam80 : ∀{Γ A B} → Tm80 (snoc80 Γ A) B → Tm80 Γ (arr80 A B);lam80 = λ t Tm80 var80 lam80 app → lam80 _ _ _ (t Tm80 var80 lam80 app) app80 : ∀{Γ A B} → Tm80 Γ (arr80 A B) → Tm80 Γ A → Tm80 Γ B;app80 = λ t u Tm80 var80 lam80 app80 → app80 _ _ _ (t Tm80 var80 lam80 app80) (u Tm80 var80 lam80 app80) v080 : ∀{Γ A} → Tm80 (snoc80 Γ A) A;v080 = var80 vz80 v180 : ∀{Γ A B} → Tm80 (snoc80 (snoc80 Γ A) B) A;v180 = var80 (vs80 vz80) v280 : ∀{Γ A B C} → Tm80 (snoc80 (snoc80 (snoc80 Γ A) B) C) A;v280 = var80 (vs80 (vs80 vz80)) v380 : ∀{Γ A B C D} → Tm80 (snoc80 (snoc80 (snoc80 (snoc80 Γ A) B) C) D) A;v380 = var80 (vs80 (vs80 (vs80 vz80))) v480 : ∀{Γ A B C D E} → Tm80 (snoc80 (snoc80 (snoc80 (snoc80 (snoc80 Γ A) B) C) D) E) A;v480 = var80 (vs80 (vs80 (vs80 (vs80 vz80)))) test80 : ∀{Γ A} → Tm80 Γ (arr80 (arr80 A A) (arr80 A A));test80 = lam80 (lam80 (app80 v180 (app80 v180 (app80 v180 (app80 v180 (app80 v180 (app80 v180 v080))))))) {-# OPTIONS --type-in-type #-} Ty81 : Set; Ty81 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι81 : Ty81; ι81 = λ _ ι81 _ → ι81 arr81 : Ty81 → Ty81 → Ty81; arr81 = λ A B Ty81 ι81 arr81 → arr81 (A Ty81 ι81 arr81) (B Ty81 ι81 arr81) Con81 : Set;Con81 = (Con81 : Set) (nil : Con81) (snoc : Con81 → Ty81 → Con81) → Con81 nil81 : Con81;nil81 = λ Con81 nil81 snoc → nil81 snoc81 : Con81 → Ty81 → Con81;snoc81 = λ Γ A Con81 nil81 snoc81 → snoc81 (Γ Con81 nil81 snoc81) A Var81 : Con81 → Ty81 → Set;Var81 = λ Γ A → (Var81 : Con81 → Ty81 → Set) (vz : (Γ : _)(A : _) → Var81 (snoc81 Γ A) A) (vs : (Γ : _)(B A : _) → Var81 Γ A → Var81 (snoc81 Γ B) A) → Var81 Γ A vz81 : ∀{Γ A} → Var81 (snoc81 Γ A) A;vz81 = λ Var81 vz81 vs → vz81 _ _ vs81 : ∀{Γ B A} → Var81 Γ A → Var81 (snoc81 Γ B) A;vs81 = λ x Var81 vz81 vs81 → vs81 _ _ _ (x Var81 vz81 vs81) Tm81 : Con81 → Ty81 → Set;Tm81 = λ Γ A → (Tm81 : Con81 → Ty81 → Set) (var : (Γ : _) (A : _) → Var81 Γ A → Tm81 Γ A) (lam : (Γ : _) (A B : _) → Tm81 (snoc81 Γ A) B → Tm81 Γ (arr81 A B)) (app : (Γ : _) (A B : _) → Tm81 Γ (arr81 A B) → Tm81 Γ A → Tm81 Γ B) → Tm81 Γ A var81 : ∀{Γ A} → Var81 Γ A → Tm81 Γ A;var81 = λ x Tm81 var81 lam app → var81 _ _ x lam81 : ∀{Γ A B} → Tm81 (snoc81 Γ A) B → Tm81 Γ (arr81 A B);lam81 = λ t Tm81 var81 lam81 app → lam81 _ _ _ (t Tm81 var81 lam81 app) app81 : ∀{Γ A B} → Tm81 Γ (arr81 A B) → Tm81 Γ A → Tm81 Γ B;app81 = λ t u Tm81 var81 lam81 app81 → app81 _ _ _ (t Tm81 var81 lam81 app81) (u Tm81 var81 lam81 app81) v081 : ∀{Γ A} → Tm81 (snoc81 Γ A) A;v081 = var81 vz81 v181 : ∀{Γ A B} → Tm81 (snoc81 (snoc81 Γ A) B) A;v181 = var81 (vs81 vz81) v281 : ∀{Γ A B C} → Tm81 (snoc81 (snoc81 (snoc81 Γ A) B) C) A;v281 = var81 (vs81 (vs81 vz81)) v381 : ∀{Γ A B C D} → Tm81 (snoc81 (snoc81 (snoc81 (snoc81 Γ A) B) C) D) A;v381 = var81 (vs81 (vs81 (vs81 vz81))) v481 : ∀{Γ A B C D E} → Tm81 (snoc81 (snoc81 (snoc81 (snoc81 (snoc81 Γ A) B) C) D) E) A;v481 = var81 (vs81 (vs81 (vs81 (vs81 vz81)))) test81 : ∀{Γ A} → Tm81 Γ (arr81 (arr81 A A) (arr81 A A));test81 = lam81 (lam81 (app81 v181 (app81 v181 (app81 v181 (app81 v181 (app81 v181 (app81 v181 v081))))))) {-# OPTIONS --type-in-type #-} Ty82 : Set; Ty82 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι82 : Ty82; ι82 = λ _ ι82 _ → ι82 arr82 : Ty82 → Ty82 → Ty82; arr82 = λ A B Ty82 ι82 arr82 → arr82 (A Ty82 ι82 arr82) (B Ty82 ι82 arr82) Con82 : Set;Con82 = (Con82 : Set) (nil : Con82) (snoc : Con82 → Ty82 → Con82) → Con82 nil82 : Con82;nil82 = λ Con82 nil82 snoc → nil82 snoc82 : Con82 → Ty82 → Con82;snoc82 = λ Γ A Con82 nil82 snoc82 → snoc82 (Γ Con82 nil82 snoc82) A Var82 : Con82 → Ty82 → Set;Var82 = λ Γ A → (Var82 : Con82 → Ty82 → Set) (vz : (Γ : _)(A : _) → Var82 (snoc82 Γ A) A) (vs : (Γ : _)(B A : _) → Var82 Γ A → Var82 (snoc82 Γ B) A) → Var82 Γ A vz82 : ∀{Γ A} → Var82 (snoc82 Γ A) A;vz82 = λ Var82 vz82 vs → vz82 _ _ vs82 : ∀{Γ B A} → Var82 Γ A → Var82 (snoc82 Γ B) A;vs82 = λ x Var82 vz82 vs82 → vs82 _ _ _ (x Var82 vz82 vs82) Tm82 : Con82 → Ty82 → Set;Tm82 = λ Γ A → (Tm82 : Con82 → Ty82 → Set) (var : (Γ : _) (A : _) → Var82 Γ A → Tm82 Γ A) (lam : (Γ : _) (A B : _) → Tm82 (snoc82 Γ A) B → Tm82 Γ (arr82 A B)) (app : (Γ : _) (A B : _) → Tm82 Γ (arr82 A B) → Tm82 Γ A → Tm82 Γ B) → Tm82 Γ A var82 : ∀{Γ A} → Var82 Γ A → Tm82 Γ A;var82 = λ x Tm82 var82 lam app → var82 _ _ x lam82 : ∀{Γ A B} → Tm82 (snoc82 Γ A) B → Tm82 Γ (arr82 A B);lam82 = λ t Tm82 var82 lam82 app → lam82 _ _ _ (t Tm82 var82 lam82 app) app82 : ∀{Γ A B} → Tm82 Γ (arr82 A B) → Tm82 Γ A → Tm82 Γ B;app82 = λ t u Tm82 var82 lam82 app82 → app82 _ _ _ (t Tm82 var82 lam82 app82) (u Tm82 var82 lam82 app82) v082 : ∀{Γ A} → Tm82 (snoc82 Γ A) A;v082 = var82 vz82 v182 : ∀{Γ A B} → Tm82 (snoc82 (snoc82 Γ A) B) A;v182 = var82 (vs82 vz82) v282 : ∀{Γ A B C} → Tm82 (snoc82 (snoc82 (snoc82 Γ A) B) C) A;v282 = var82 (vs82 (vs82 vz82)) v382 : ∀{Γ A B C D} → Tm82 (snoc82 (snoc82 (snoc82 (snoc82 Γ A) B) C) D) A;v382 = var82 (vs82 (vs82 (vs82 vz82))) v482 : ∀{Γ A B C D E} → Tm82 (snoc82 (snoc82 (snoc82 (snoc82 (snoc82 Γ A) B) C) D) E) A;v482 = var82 (vs82 (vs82 (vs82 (vs82 vz82)))) test82 : ∀{Γ A} → Tm82 Γ (arr82 (arr82 A A) (arr82 A A));test82 = lam82 (lam82 (app82 v182 (app82 v182 (app82 v182 (app82 v182 (app82 v182 (app82 v182 v082))))))) {-# OPTIONS --type-in-type #-} Ty83 : Set; Ty83 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι83 : Ty83; ι83 = λ _ ι83 _ → ι83 arr83 : Ty83 → Ty83 → Ty83; arr83 = λ A B Ty83 ι83 arr83 → arr83 (A Ty83 ι83 arr83) (B Ty83 ι83 arr83) Con83 : Set;Con83 = (Con83 : Set) (nil : Con83) (snoc : Con83 → Ty83 → Con83) → Con83 nil83 : Con83;nil83 = λ Con83 nil83 snoc → nil83 snoc83 : Con83 → Ty83 → Con83;snoc83 = λ Γ A Con83 nil83 snoc83 → snoc83 (Γ Con83 nil83 snoc83) A Var83 : Con83 → Ty83 → Set;Var83 = λ Γ A → (Var83 : Con83 → Ty83 → Set) (vz : (Γ : _)(A : _) → Var83 (snoc83 Γ A) A) (vs : (Γ : _)(B A : _) → Var83 Γ A → Var83 (snoc83 Γ B) A) → Var83 Γ A vz83 : ∀{Γ A} → Var83 (snoc83 Γ A) A;vz83 = λ Var83 vz83 vs → vz83 _ _ vs83 : ∀{Γ B A} → Var83 Γ A → Var83 (snoc83 Γ B) A;vs83 = λ x Var83 vz83 vs83 → vs83 _ _ _ (x Var83 vz83 vs83) Tm83 : Con83 → Ty83 → Set;Tm83 = λ Γ A → (Tm83 : Con83 → Ty83 → Set) (var : (Γ : _) (A : _) → Var83 Γ A → Tm83 Γ A) (lam : (Γ : _) (A B : _) → Tm83 (snoc83 Γ A) B → Tm83 Γ (arr83 A B)) (app : (Γ : _) (A B : _) → Tm83 Γ (arr83 A B) → Tm83 Γ A → Tm83 Γ B) → Tm83 Γ A var83 : ∀{Γ A} → Var83 Γ A → Tm83 Γ A;var83 = λ x Tm83 var83 lam app → var83 _ _ x lam83 : ∀{Γ A B} → Tm83 (snoc83 Γ A) B → Tm83 Γ (arr83 A B);lam83 = λ t Tm83 var83 lam83 app → lam83 _ _ _ (t Tm83 var83 lam83 app) app83 : ∀{Γ A B} → Tm83 Γ (arr83 A B) → Tm83 Γ A → Tm83 Γ B;app83 = λ t u Tm83 var83 lam83 app83 → app83 _ _ _ (t Tm83 var83 lam83 app83) (u Tm83 var83 lam83 app83) v083 : ∀{Γ A} → Tm83 (snoc83 Γ A) A;v083 = var83 vz83 v183 : ∀{Γ A B} → Tm83 (snoc83 (snoc83 Γ A) B) A;v183 = var83 (vs83 vz83) v283 : ∀{Γ A B C} → Tm83 (snoc83 (snoc83 (snoc83 Γ A) B) C) A;v283 = var83 (vs83 (vs83 vz83)) v383 : ∀{Γ A B C D} → Tm83 (snoc83 (snoc83 (snoc83 (snoc83 Γ A) B) C) D) A;v383 = var83 (vs83 (vs83 (vs83 vz83))) v483 : ∀{Γ A B C D E} → Tm83 (snoc83 (snoc83 (snoc83 (snoc83 (snoc83 Γ A) B) C) D) E) A;v483 = var83 (vs83 (vs83 (vs83 (vs83 vz83)))) test83 : ∀{Γ A} → Tm83 Γ (arr83 (arr83 A A) (arr83 A A));test83 = lam83 (lam83 (app83 v183 (app83 v183 (app83 v183 (app83 v183 (app83 v183 (app83 v183 v083))))))) {-# OPTIONS --type-in-type #-} Ty84 : Set; Ty84 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι84 : Ty84; ι84 = λ _ ι84 _ → ι84 arr84 : Ty84 → Ty84 → Ty84; arr84 = λ A B Ty84 ι84 arr84 → arr84 (A Ty84 ι84 arr84) (B Ty84 ι84 arr84) Con84 : Set;Con84 = (Con84 : Set) (nil : Con84) (snoc : Con84 → Ty84 → Con84) → Con84 nil84 : Con84;nil84 = λ Con84 nil84 snoc → nil84 snoc84 : Con84 → Ty84 → Con84;snoc84 = λ Γ A Con84 nil84 snoc84 → snoc84 (Γ Con84 nil84 snoc84) A Var84 : Con84 → Ty84 → Set;Var84 = λ Γ A → (Var84 : Con84 → Ty84 → Set) (vz : (Γ : _)(A : _) → Var84 (snoc84 Γ A) A) (vs : (Γ : _)(B A : _) → Var84 Γ A → Var84 (snoc84 Γ B) A) → Var84 Γ A vz84 : ∀{Γ A} → Var84 (snoc84 Γ A) A;vz84 = λ Var84 vz84 vs → vz84 _ _ vs84 : ∀{Γ B A} → Var84 Γ A → Var84 (snoc84 Γ B) A;vs84 = λ x Var84 vz84 vs84 → vs84 _ _ _ (x Var84 vz84 vs84) Tm84 : Con84 → Ty84 → Set;Tm84 = λ Γ A → (Tm84 : Con84 → Ty84 → Set) (var : (Γ : _) (A : _) → Var84 Γ A → Tm84 Γ A) (lam : (Γ : _) (A B : _) → Tm84 (snoc84 Γ A) B → Tm84 Γ (arr84 A B)) (app : (Γ : _) (A B : _) → Tm84 Γ (arr84 A B) → Tm84 Γ A → Tm84 Γ B) → Tm84 Γ A var84 : ∀{Γ A} → Var84 Γ A → Tm84 Γ A;var84 = λ x Tm84 var84 lam app → var84 _ _ x lam84 : ∀{Γ A B} → Tm84 (snoc84 Γ A) B → Tm84 Γ (arr84 A B);lam84 = λ t Tm84 var84 lam84 app → lam84 _ _ _ (t Tm84 var84 lam84 app) app84 : ∀{Γ A B} → Tm84 Γ (arr84 A B) → Tm84 Γ A → Tm84 Γ B;app84 = λ t u Tm84 var84 lam84 app84 → app84 _ _ _ (t Tm84 var84 lam84 app84) (u Tm84 var84 lam84 app84) v084 : ∀{Γ A} → Tm84 (snoc84 Γ A) A;v084 = var84 vz84 v184 : ∀{Γ A B} → Tm84 (snoc84 (snoc84 Γ A) B) A;v184 = var84 (vs84 vz84) v284 : ∀{Γ A B C} → Tm84 (snoc84 (snoc84 (snoc84 Γ A) B) C) A;v284 = var84 (vs84 (vs84 vz84)) v384 : ∀{Γ A B C D} → Tm84 (snoc84 (snoc84 (snoc84 (snoc84 Γ A) B) C) D) A;v384 = var84 (vs84 (vs84 (vs84 vz84))) v484 : ∀{Γ A B C D E} → Tm84 (snoc84 (snoc84 (snoc84 (snoc84 (snoc84 Γ A) B) C) D) E) A;v484 = var84 (vs84 (vs84 (vs84 (vs84 vz84)))) test84 : ∀{Γ A} → Tm84 Γ (arr84 (arr84 A A) (arr84 A A));test84 = lam84 (lam84 (app84 v184 (app84 v184 (app84 v184 (app84 v184 (app84 v184 (app84 v184 v084))))))) {-# OPTIONS --type-in-type #-} Ty85 : Set; Ty85 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι85 : Ty85; ι85 = λ _ ι85 _ → ι85 arr85 : Ty85 → Ty85 → Ty85; arr85 = λ A B Ty85 ι85 arr85 → arr85 (A Ty85 ι85 arr85) (B Ty85 ι85 arr85) Con85 : Set;Con85 = (Con85 : Set) (nil : Con85) (snoc : Con85 → Ty85 → Con85) → Con85 nil85 : Con85;nil85 = λ Con85 nil85 snoc → nil85 snoc85 : Con85 → Ty85 → Con85;snoc85 = λ Γ A Con85 nil85 snoc85 → snoc85 (Γ Con85 nil85 snoc85) A Var85 : Con85 → Ty85 → Set;Var85 = λ Γ A → (Var85 : Con85 → Ty85 → Set) (vz : (Γ : _)(A : _) → Var85 (snoc85 Γ A) A) (vs : (Γ : _)(B A : _) → Var85 Γ A → Var85 (snoc85 Γ B) A) → Var85 Γ A vz85 : ∀{Γ A} → Var85 (snoc85 Γ A) A;vz85 = λ Var85 vz85 vs → vz85 _ _ vs85 : ∀{Γ B A} → Var85 Γ A → Var85 (snoc85 Γ B) A;vs85 = λ x Var85 vz85 vs85 → vs85 _ _ _ (x Var85 vz85 vs85) Tm85 : Con85 → Ty85 → Set;Tm85 = λ Γ A → (Tm85 : Con85 → Ty85 → Set) (var : (Γ : _) (A : _) → Var85 Γ A → Tm85 Γ A) (lam : (Γ : _) (A B : _) → Tm85 (snoc85 Γ A) B → Tm85 Γ (arr85 A B)) (app : (Γ : _) (A B : _) → Tm85 Γ (arr85 A B) → Tm85 Γ A → Tm85 Γ B) → Tm85 Γ A var85 : ∀{Γ A} → Var85 Γ A → Tm85 Γ A;var85 = λ x Tm85 var85 lam app → var85 _ _ x lam85 : ∀{Γ A B} → Tm85 (snoc85 Γ A) B → Tm85 Γ (arr85 A B);lam85 = λ t Tm85 var85 lam85 app → lam85 _ _ _ (t Tm85 var85 lam85 app) app85 : ∀{Γ A B} → Tm85 Γ (arr85 A B) → Tm85 Γ A → Tm85 Γ B;app85 = λ t u Tm85 var85 lam85 app85 → app85 _ _ _ (t Tm85 var85 lam85 app85) (u Tm85 var85 lam85 app85) v085 : ∀{Γ A} → Tm85 (snoc85 Γ A) A;v085 = var85 vz85 v185 : ∀{Γ A B} → Tm85 (snoc85 (snoc85 Γ A) B) A;v185 = var85 (vs85 vz85) v285 : ∀{Γ A B C} → Tm85 (snoc85 (snoc85 (snoc85 Γ A) B) C) A;v285 = var85 (vs85 (vs85 vz85)) v385 : ∀{Γ A B C D} → Tm85 (snoc85 (snoc85 (snoc85 (snoc85 Γ A) B) C) D) A;v385 = var85 (vs85 (vs85 (vs85 vz85))) v485 : ∀{Γ A B C D E} → Tm85 (snoc85 (snoc85 (snoc85 (snoc85 (snoc85 Γ A) B) C) D) E) A;v485 = var85 (vs85 (vs85 (vs85 (vs85 vz85)))) test85 : ∀{Γ A} → Tm85 Γ (arr85 (arr85 A A) (arr85 A A));test85 = lam85 (lam85 (app85 v185 (app85 v185 (app85 v185 (app85 v185 (app85 v185 (app85 v185 v085))))))) {-# OPTIONS --type-in-type #-} Ty86 : Set; Ty86 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι86 : Ty86; ι86 = λ _ ι86 _ → ι86 arr86 : Ty86 → Ty86 → Ty86; arr86 = λ A B Ty86 ι86 arr86 → arr86 (A Ty86 ι86 arr86) (B Ty86 ι86 arr86) Con86 : Set;Con86 = (Con86 : Set) (nil : Con86) (snoc : Con86 → Ty86 → Con86) → Con86 nil86 : Con86;nil86 = λ Con86 nil86 snoc → nil86 snoc86 : Con86 → Ty86 → Con86;snoc86 = λ Γ A Con86 nil86 snoc86 → snoc86 (Γ Con86 nil86 snoc86) A Var86 : Con86 → Ty86 → Set;Var86 = λ Γ A → (Var86 : Con86 → Ty86 → Set) (vz : (Γ : _)(A : _) → Var86 (snoc86 Γ A) A) (vs : (Γ : _)(B A : _) → Var86 Γ A → Var86 (snoc86 Γ B) A) → Var86 Γ A vz86 : ∀{Γ A} → Var86 (snoc86 Γ A) A;vz86 = λ Var86 vz86 vs → vz86 _ _ vs86 : ∀{Γ B A} → Var86 Γ A → Var86 (snoc86 Γ B) A;vs86 = λ x Var86 vz86 vs86 → vs86 _ _ _ (x Var86 vz86 vs86) Tm86 : Con86 → Ty86 → Set;Tm86 = λ Γ A → (Tm86 : Con86 → Ty86 → Set) (var : (Γ : _) (A : _) → Var86 Γ A → Tm86 Γ A) (lam : (Γ : _) (A B : _) → Tm86 (snoc86 Γ A) B → Tm86 Γ (arr86 A B)) (app : (Γ : _) (A B : _) → Tm86 Γ (arr86 A B) → Tm86 Γ A → Tm86 Γ B) → Tm86 Γ A var86 : ∀{Γ A} → Var86 Γ A → Tm86 Γ A;var86 = λ x Tm86 var86 lam app → var86 _ _ x lam86 : ∀{Γ A B} → Tm86 (snoc86 Γ A) B → Tm86 Γ (arr86 A B);lam86 = λ t Tm86 var86 lam86 app → lam86 _ _ _ (t Tm86 var86 lam86 app) app86 : ∀{Γ A B} → Tm86 Γ (arr86 A B) → Tm86 Γ A → Tm86 Γ B;app86 = λ t u Tm86 var86 lam86 app86 → app86 _ _ _ (t Tm86 var86 lam86 app86) (u Tm86 var86 lam86 app86) v086 : ∀{Γ A} → Tm86 (snoc86 Γ A) A;v086 = var86 vz86 v186 : ∀{Γ A B} → Tm86 (snoc86 (snoc86 Γ A) B) A;v186 = var86 (vs86 vz86) v286 : ∀{Γ A B C} → Tm86 (snoc86 (snoc86 (snoc86 Γ A) B) C) A;v286 = var86 (vs86 (vs86 vz86)) v386 : ∀{Γ A B C D} → Tm86 (snoc86 (snoc86 (snoc86 (snoc86 Γ A) B) C) D) A;v386 = var86 (vs86 (vs86 (vs86 vz86))) v486 : ∀{Γ A B C D E} → Tm86 (snoc86 (snoc86 (snoc86 (snoc86 (snoc86 Γ A) B) C) D) E) A;v486 = var86 (vs86 (vs86 (vs86 (vs86 vz86)))) test86 : ∀{Γ A} → Tm86 Γ (arr86 (arr86 A A) (arr86 A A));test86 = lam86 (lam86 (app86 v186 (app86 v186 (app86 v186 (app86 v186 (app86 v186 (app86 v186 v086))))))) {-# OPTIONS --type-in-type #-} Ty87 : Set; Ty87 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι87 : Ty87; ι87 = λ _ ι87 _ → ι87 arr87 : Ty87 → Ty87 → Ty87; arr87 = λ A B Ty87 ι87 arr87 → arr87 (A Ty87 ι87 arr87) (B Ty87 ι87 arr87) Con87 : Set;Con87 = (Con87 : Set) (nil : Con87) (snoc : Con87 → Ty87 → Con87) → Con87 nil87 : Con87;nil87 = λ Con87 nil87 snoc → nil87 snoc87 : Con87 → Ty87 → Con87;snoc87 = λ Γ A Con87 nil87 snoc87 → snoc87 (Γ Con87 nil87 snoc87) A Var87 : Con87 → Ty87 → Set;Var87 = λ Γ A → (Var87 : Con87 → Ty87 → Set) (vz : (Γ : _)(A : _) → Var87 (snoc87 Γ A) A) (vs : (Γ : _)(B A : _) → Var87 Γ A → Var87 (snoc87 Γ B) A) → Var87 Γ A vz87 : ∀{Γ A} → Var87 (snoc87 Γ A) A;vz87 = λ Var87 vz87 vs → vz87 _ _ vs87 : ∀{Γ B A} → Var87 Γ A → Var87 (snoc87 Γ B) A;vs87 = λ x Var87 vz87 vs87 → vs87 _ _ _ (x Var87 vz87 vs87) Tm87 : Con87 → Ty87 → Set;Tm87 = λ Γ A → (Tm87 : Con87 → Ty87 → Set) (var : (Γ : _) (A : _) → Var87 Γ A → Tm87 Γ A) (lam : (Γ : _) (A B : _) → Tm87 (snoc87 Γ A) B → Tm87 Γ (arr87 A B)) (app : (Γ : _) (A B : _) → Tm87 Γ (arr87 A B) → Tm87 Γ A → Tm87 Γ B) → Tm87 Γ A var87 : ∀{Γ A} → Var87 Γ A → Tm87 Γ A;var87 = λ x Tm87 var87 lam app → var87 _ _ x lam87 : ∀{Γ A B} → Tm87 (snoc87 Γ A) B → Tm87 Γ (arr87 A B);lam87 = λ t Tm87 var87 lam87 app → lam87 _ _ _ (t Tm87 var87 lam87 app) app87 : ∀{Γ A B} → Tm87 Γ (arr87 A B) → Tm87 Γ A → Tm87 Γ B;app87 = λ t u Tm87 var87 lam87 app87 → app87 _ _ _ (t Tm87 var87 lam87 app87) (u Tm87 var87 lam87 app87) v087 : ∀{Γ A} → Tm87 (snoc87 Γ A) A;v087 = var87 vz87 v187 : ∀{Γ A B} → Tm87 (snoc87 (snoc87 Γ A) B) A;v187 = var87 (vs87 vz87) v287 : ∀{Γ A B C} → Tm87 (snoc87 (snoc87 (snoc87 Γ A) B) C) A;v287 = var87 (vs87 (vs87 vz87)) v387 : ∀{Γ A B C D} → Tm87 (snoc87 (snoc87 (snoc87 (snoc87 Γ A) B) C) D) A;v387 = var87 (vs87 (vs87 (vs87 vz87))) v487 : ∀{Γ A B C D E} → Tm87 (snoc87 (snoc87 (snoc87 (snoc87 (snoc87 Γ A) B) C) D) E) A;v487 = var87 (vs87 (vs87 (vs87 (vs87 vz87)))) test87 : ∀{Γ A} → Tm87 Γ (arr87 (arr87 A A) (arr87 A A));test87 = lam87 (lam87 (app87 v187 (app87 v187 (app87 v187 (app87 v187 (app87 v187 (app87 v187 v087))))))) {-# OPTIONS --type-in-type #-} Ty88 : Set; Ty88 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι88 : Ty88; ι88 = λ _ ι88 _ → ι88 arr88 : Ty88 → Ty88 → Ty88; arr88 = λ A B Ty88 ι88 arr88 → arr88 (A Ty88 ι88 arr88) (B Ty88 ι88 arr88) Con88 : Set;Con88 = (Con88 : Set) (nil : Con88) (snoc : Con88 → Ty88 → Con88) → Con88 nil88 : Con88;nil88 = λ Con88 nil88 snoc → nil88 snoc88 : Con88 → Ty88 → Con88;snoc88 = λ Γ A Con88 nil88 snoc88 → snoc88 (Γ Con88 nil88 snoc88) A Var88 : Con88 → Ty88 → Set;Var88 = λ Γ A → (Var88 : Con88 → Ty88 → Set) (vz : (Γ : _)(A : _) → Var88 (snoc88 Γ A) A) (vs : (Γ : _)(B A : _) → Var88 Γ A → Var88 (snoc88 Γ B) A) → Var88 Γ A vz88 : ∀{Γ A} → Var88 (snoc88 Γ A) A;vz88 = λ Var88 vz88 vs → vz88 _ _ vs88 : ∀{Γ B A} → Var88 Γ A → Var88 (snoc88 Γ B) A;vs88 = λ x Var88 vz88 vs88 → vs88 _ _ _ (x Var88 vz88 vs88) Tm88 : Con88 → Ty88 → Set;Tm88 = λ Γ A → (Tm88 : Con88 → Ty88 → Set) (var : (Γ : _) (A : _) → Var88 Γ A → Tm88 Γ A) (lam : (Γ : _) (A B : _) → Tm88 (snoc88 Γ A) B → Tm88 Γ (arr88 A B)) (app : (Γ : _) (A B : _) → Tm88 Γ (arr88 A B) → Tm88 Γ A → Tm88 Γ B) → Tm88 Γ A var88 : ∀{Γ A} → Var88 Γ A → Tm88 Γ A;var88 = λ x Tm88 var88 lam app → var88 _ _ x lam88 : ∀{Γ A B} → Tm88 (snoc88 Γ A) B → Tm88 Γ (arr88 A B);lam88 = λ t Tm88 var88 lam88 app → lam88 _ _ _ (t Tm88 var88 lam88 app) app88 : ∀{Γ A B} → Tm88 Γ (arr88 A B) → Tm88 Γ A → Tm88 Γ B;app88 = λ t u Tm88 var88 lam88 app88 → app88 _ _ _ (t Tm88 var88 lam88 app88) (u Tm88 var88 lam88 app88) v088 : ∀{Γ A} → Tm88 (snoc88 Γ A) A;v088 = var88 vz88 v188 : ∀{Γ A B} → Tm88 (snoc88 (snoc88 Γ A) B) A;v188 = var88 (vs88 vz88) v288 : ∀{Γ A B C} → Tm88 (snoc88 (snoc88 (snoc88 Γ A) B) C) A;v288 = var88 (vs88 (vs88 vz88)) v388 : ∀{Γ A B C D} → Tm88 (snoc88 (snoc88 (snoc88 (snoc88 Γ A) B) C) D) A;v388 = var88 (vs88 (vs88 (vs88 vz88))) v488 : ∀{Γ A B C D E} → Tm88 (snoc88 (snoc88 (snoc88 (snoc88 (snoc88 Γ A) B) C) D) E) A;v488 = var88 (vs88 (vs88 (vs88 (vs88 vz88)))) test88 : ∀{Γ A} → Tm88 Γ (arr88 (arr88 A A) (arr88 A A));test88 = lam88 (lam88 (app88 v188 (app88 v188 (app88 v188 (app88 v188 (app88 v188 (app88 v188 v088))))))) {-# OPTIONS --type-in-type #-} Ty89 : Set; Ty89 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι89 : Ty89; ι89 = λ _ ι89 _ → ι89 arr89 : Ty89 → Ty89 → Ty89; arr89 = λ A B Ty89 ι89 arr89 → arr89 (A Ty89 ι89 arr89) (B Ty89 ι89 arr89) Con89 : Set;Con89 = (Con89 : Set) (nil : Con89) (snoc : Con89 → Ty89 → Con89) → Con89 nil89 : Con89;nil89 = λ Con89 nil89 snoc → nil89 snoc89 : Con89 → Ty89 → Con89;snoc89 = λ Γ A Con89 nil89 snoc89 → snoc89 (Γ Con89 nil89 snoc89) A Var89 : Con89 → Ty89 → Set;Var89 = λ Γ A → (Var89 : Con89 → Ty89 → Set) (vz : (Γ : _)(A : _) → Var89 (snoc89 Γ A) A) (vs : (Γ : _)(B A : _) → Var89 Γ A → Var89 (snoc89 Γ B) A) → Var89 Γ A vz89 : ∀{Γ A} → Var89 (snoc89 Γ A) A;vz89 = λ Var89 vz89 vs → vz89 _ _ vs89 : ∀{Γ B A} → Var89 Γ A → Var89 (snoc89 Γ B) A;vs89 = λ x Var89 vz89 vs89 → vs89 _ _ _ (x Var89 vz89 vs89) Tm89 : Con89 → Ty89 → Set;Tm89 = λ Γ A → (Tm89 : Con89 → Ty89 → Set) (var : (Γ : _) (A : _) → Var89 Γ A → Tm89 Γ A) (lam : (Γ : _) (A B : _) → Tm89 (snoc89 Γ A) B → Tm89 Γ (arr89 A B)) (app : (Γ : _) (A B : _) → Tm89 Γ (arr89 A B) → Tm89 Γ A → Tm89 Γ B) → Tm89 Γ A var89 : ∀{Γ A} → Var89 Γ A → Tm89 Γ A;var89 = λ x Tm89 var89 lam app → var89 _ _ x lam89 : ∀{Γ A B} → Tm89 (snoc89 Γ A) B → Tm89 Γ (arr89 A B);lam89 = λ t Tm89 var89 lam89 app → lam89 _ _ _ (t Tm89 var89 lam89 app) app89 : ∀{Γ A B} → Tm89 Γ (arr89 A B) → Tm89 Γ A → Tm89 Γ B;app89 = λ t u Tm89 var89 lam89 app89 → app89 _ _ _ (t Tm89 var89 lam89 app89) (u Tm89 var89 lam89 app89) v089 : ∀{Γ A} → Tm89 (snoc89 Γ A) A;v089 = var89 vz89 v189 : ∀{Γ A B} → Tm89 (snoc89 (snoc89 Γ A) B) A;v189 = var89 (vs89 vz89) v289 : ∀{Γ A B C} → Tm89 (snoc89 (snoc89 (snoc89 Γ A) B) C) A;v289 = var89 (vs89 (vs89 vz89)) v389 : ∀{Γ A B C D} → Tm89 (snoc89 (snoc89 (snoc89 (snoc89 Γ A) B) C) D) A;v389 = var89 (vs89 (vs89 (vs89 vz89))) v489 : ∀{Γ A B C D E} → Tm89 (snoc89 (snoc89 (snoc89 (snoc89 (snoc89 Γ A) B) C) D) E) A;v489 = var89 (vs89 (vs89 (vs89 (vs89 vz89)))) test89 : ∀{Γ A} → Tm89 Γ (arr89 (arr89 A A) (arr89 A A));test89 = lam89 (lam89 (app89 v189 (app89 v189 (app89 v189 (app89 v189 (app89 v189 (app89 v189 v089))))))) {-# OPTIONS --type-in-type #-} Ty90 : Set; Ty90 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι90 : Ty90; ι90 = λ _ ι90 _ → ι90 arr90 : Ty90 → Ty90 → Ty90; arr90 = λ A B Ty90 ι90 arr90 → arr90 (A Ty90 ι90 arr90) (B Ty90 ι90 arr90) Con90 : Set;Con90 = (Con90 : Set) (nil : Con90) (snoc : Con90 → Ty90 → Con90) → Con90 nil90 : Con90;nil90 = λ Con90 nil90 snoc → nil90 snoc90 : Con90 → Ty90 → Con90;snoc90 = λ Γ A Con90 nil90 snoc90 → snoc90 (Γ Con90 nil90 snoc90) A Var90 : Con90 → Ty90 → Set;Var90 = λ Γ A → (Var90 : Con90 → Ty90 → Set) (vz : (Γ : _)(A : _) → Var90 (snoc90 Γ A) A) (vs : (Γ : _)(B A : _) → Var90 Γ A → Var90 (snoc90 Γ B) A) → Var90 Γ A vz90 : ∀{Γ A} → Var90 (snoc90 Γ A) A;vz90 = λ Var90 vz90 vs → vz90 _ _ vs90 : ∀{Γ B A} → Var90 Γ A → Var90 (snoc90 Γ B) A;vs90 = λ x Var90 vz90 vs90 → vs90 _ _ _ (x Var90 vz90 vs90) Tm90 : Con90 → Ty90 → Set;Tm90 = λ Γ A → (Tm90 : Con90 → Ty90 → Set) (var : (Γ : _) (A : _) → Var90 Γ A → Tm90 Γ A) (lam : (Γ : _) (A B : _) → Tm90 (snoc90 Γ A) B → Tm90 Γ (arr90 A B)) (app : (Γ : _) (A B : _) → Tm90 Γ (arr90 A B) → Tm90 Γ A → Tm90 Γ B) → Tm90 Γ A var90 : ∀{Γ A} → Var90 Γ A → Tm90 Γ A;var90 = λ x Tm90 var90 lam app → var90 _ _ x lam90 : ∀{Γ A B} → Tm90 (snoc90 Γ A) B → Tm90 Γ (arr90 A B);lam90 = λ t Tm90 var90 lam90 app → lam90 _ _ _ (t Tm90 var90 lam90 app) app90 : ∀{Γ A B} → Tm90 Γ (arr90 A B) → Tm90 Γ A → Tm90 Γ B;app90 = λ t u Tm90 var90 lam90 app90 → app90 _ _ _ (t Tm90 var90 lam90 app90) (u Tm90 var90 lam90 app90) v090 : ∀{Γ A} → Tm90 (snoc90 Γ A) A;v090 = var90 vz90 v190 : ∀{Γ A B} → Tm90 (snoc90 (snoc90 Γ A) B) A;v190 = var90 (vs90 vz90) v290 : ∀{Γ A B C} → Tm90 (snoc90 (snoc90 (snoc90 Γ A) B) C) A;v290 = var90 (vs90 (vs90 vz90)) v390 : ∀{Γ A B C D} → Tm90 (snoc90 (snoc90 (snoc90 (snoc90 Γ A) B) C) D) A;v390 = var90 (vs90 (vs90 (vs90 vz90))) v490 : ∀{Γ A B C D E} → Tm90 (snoc90 (snoc90 (snoc90 (snoc90 (snoc90 Γ A) B) C) D) E) A;v490 = var90 (vs90 (vs90 (vs90 (vs90 vz90)))) test90 : ∀{Γ A} → Tm90 Γ (arr90 (arr90 A A) (arr90 A A));test90 = lam90 (lam90 (app90 v190 (app90 v190 (app90 v190 (app90 v190 (app90 v190 (app90 v190 v090))))))) {-# OPTIONS --type-in-type #-} Ty91 : Set; Ty91 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι91 : Ty91; ι91 = λ _ ι91 _ → ι91 arr91 : Ty91 → Ty91 → Ty91; arr91 = λ A B Ty91 ι91 arr91 → arr91 (A Ty91 ι91 arr91) (B Ty91 ι91 arr91) Con91 : Set;Con91 = (Con91 : Set) (nil : Con91) (snoc : Con91 → Ty91 → Con91) → Con91 nil91 : Con91;nil91 = λ Con91 nil91 snoc → nil91 snoc91 : Con91 → Ty91 → Con91;snoc91 = λ Γ A Con91 nil91 snoc91 → snoc91 (Γ Con91 nil91 snoc91) A Var91 : Con91 → Ty91 → Set;Var91 = λ Γ A → (Var91 : Con91 → Ty91 → Set) (vz : (Γ : _)(A : _) → Var91 (snoc91 Γ A) A) (vs : (Γ : _)(B A : _) → Var91 Γ A → Var91 (snoc91 Γ B) A) → Var91 Γ A vz91 : ∀{Γ A} → Var91 (snoc91 Γ A) A;vz91 = λ Var91 vz91 vs → vz91 _ _ vs91 : ∀{Γ B A} → Var91 Γ A → Var91 (snoc91 Γ B) A;vs91 = λ x Var91 vz91 vs91 → vs91 _ _ _ (x Var91 vz91 vs91) Tm91 : Con91 → Ty91 → Set;Tm91 = λ Γ A → (Tm91 : Con91 → Ty91 → Set) (var : (Γ : _) (A : _) → Var91 Γ A → Tm91 Γ A) (lam : (Γ : _) (A B : _) → Tm91 (snoc91 Γ A) B → Tm91 Γ (arr91 A B)) (app : (Γ : _) (A B : _) → Tm91 Γ (arr91 A B) → Tm91 Γ A → Tm91 Γ B) → Tm91 Γ A var91 : ∀{Γ A} → Var91 Γ A → Tm91 Γ A;var91 = λ x Tm91 var91 lam app → var91 _ _ x lam91 : ∀{Γ A B} → Tm91 (snoc91 Γ A) B → Tm91 Γ (arr91 A B);lam91 = λ t Tm91 var91 lam91 app → lam91 _ _ _ (t Tm91 var91 lam91 app) app91 : ∀{Γ A B} → Tm91 Γ (arr91 A B) → Tm91 Γ A → Tm91 Γ B;app91 = λ t u Tm91 var91 lam91 app91 → app91 _ _ _ (t Tm91 var91 lam91 app91) (u Tm91 var91 lam91 app91) v091 : ∀{Γ A} → Tm91 (snoc91 Γ A) A;v091 = var91 vz91 v191 : ∀{Γ A B} → Tm91 (snoc91 (snoc91 Γ A) B) A;v191 = var91 (vs91 vz91) v291 : ∀{Γ A B C} → Tm91 (snoc91 (snoc91 (snoc91 Γ A) B) C) A;v291 = var91 (vs91 (vs91 vz91)) v391 : ∀{Γ A B C D} → Tm91 (snoc91 (snoc91 (snoc91 (snoc91 Γ A) B) C) D) A;v391 = var91 (vs91 (vs91 (vs91 vz91))) v491 : ∀{Γ A B C D E} → Tm91 (snoc91 (snoc91 (snoc91 (snoc91 (snoc91 Γ A) B) C) D) E) A;v491 = var91 (vs91 (vs91 (vs91 (vs91 vz91)))) test91 : ∀{Γ A} → Tm91 Γ (arr91 (arr91 A A) (arr91 A A));test91 = lam91 (lam91 (app91 v191 (app91 v191 (app91 v191 (app91 v191 (app91 v191 (app91 v191 v091))))))) {-# OPTIONS --type-in-type #-} Ty92 : Set; Ty92 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι92 : Ty92; ι92 = λ _ ι92 _ → ι92 arr92 : Ty92 → Ty92 → Ty92; arr92 = λ A B Ty92 ι92 arr92 → arr92 (A Ty92 ι92 arr92) (B Ty92 ι92 arr92) Con92 : Set;Con92 = (Con92 : Set) (nil : Con92) (snoc : Con92 → Ty92 → Con92) → Con92 nil92 : Con92;nil92 = λ Con92 nil92 snoc → nil92 snoc92 : Con92 → Ty92 → Con92;snoc92 = λ Γ A Con92 nil92 snoc92 → snoc92 (Γ Con92 nil92 snoc92) A Var92 : Con92 → Ty92 → Set;Var92 = λ Γ A → (Var92 : Con92 → Ty92 → Set) (vz : (Γ : _)(A : _) → Var92 (snoc92 Γ A) A) (vs : (Γ : _)(B A : _) → Var92 Γ A → Var92 (snoc92 Γ B) A) → Var92 Γ A vz92 : ∀{Γ A} → Var92 (snoc92 Γ A) A;vz92 = λ Var92 vz92 vs → vz92 _ _ vs92 : ∀{Γ B A} → Var92 Γ A → Var92 (snoc92 Γ B) A;vs92 = λ x Var92 vz92 vs92 → vs92 _ _ _ (x Var92 vz92 vs92) Tm92 : Con92 → Ty92 → Set;Tm92 = λ Γ A → (Tm92 : Con92 → Ty92 → Set) (var : (Γ : _) (A : _) → Var92 Γ A → Tm92 Γ A) (lam : (Γ : _) (A B : _) → Tm92 (snoc92 Γ A) B → Tm92 Γ (arr92 A B)) (app : (Γ : _) (A B : _) → Tm92 Γ (arr92 A B) → Tm92 Γ A → Tm92 Γ B) → Tm92 Γ A var92 : ∀{Γ A} → Var92 Γ A → Tm92 Γ A;var92 = λ x Tm92 var92 lam app → var92 _ _ x lam92 : ∀{Γ A B} → Tm92 (snoc92 Γ A) B → Tm92 Γ (arr92 A B);lam92 = λ t Tm92 var92 lam92 app → lam92 _ _ _ (t Tm92 var92 lam92 app) app92 : ∀{Γ A B} → Tm92 Γ (arr92 A B) → Tm92 Γ A → Tm92 Γ B;app92 = λ t u Tm92 var92 lam92 app92 → app92 _ _ _ (t Tm92 var92 lam92 app92) (u Tm92 var92 lam92 app92) v092 : ∀{Γ A} → Tm92 (snoc92 Γ A) A;v092 = var92 vz92 v192 : ∀{Γ A B} → Tm92 (snoc92 (snoc92 Γ A) B) A;v192 = var92 (vs92 vz92) v292 : ∀{Γ A B C} → Tm92 (snoc92 (snoc92 (snoc92 Γ A) B) C) A;v292 = var92 (vs92 (vs92 vz92)) v392 : ∀{Γ A B C D} → Tm92 (snoc92 (snoc92 (snoc92 (snoc92 Γ A) B) C) D) A;v392 = var92 (vs92 (vs92 (vs92 vz92))) v492 : ∀{Γ A B C D E} → Tm92 (snoc92 (snoc92 (snoc92 (snoc92 (snoc92 Γ A) B) C) D) E) A;v492 = var92 (vs92 (vs92 (vs92 (vs92 vz92)))) test92 : ∀{Γ A} → Tm92 Γ (arr92 (arr92 A A) (arr92 A A));test92 = lam92 (lam92 (app92 v192 (app92 v192 (app92 v192 (app92 v192 (app92 v192 (app92 v192 v092))))))) {-# OPTIONS --type-in-type #-} Ty93 : Set; Ty93 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι93 : Ty93; ι93 = λ _ ι93 _ → ι93 arr93 : Ty93 → Ty93 → Ty93; arr93 = λ A B Ty93 ι93 arr93 → arr93 (A Ty93 ι93 arr93) (B Ty93 ι93 arr93) Con93 : Set;Con93 = (Con93 : Set) (nil : Con93) (snoc : Con93 → Ty93 → Con93) → Con93 nil93 : Con93;nil93 = λ Con93 nil93 snoc → nil93 snoc93 : Con93 → Ty93 → Con93;snoc93 = λ Γ A Con93 nil93 snoc93 → snoc93 (Γ Con93 nil93 snoc93) A Var93 : Con93 → Ty93 → Set;Var93 = λ Γ A → (Var93 : Con93 → Ty93 → Set) (vz : (Γ : _)(A : _) → Var93 (snoc93 Γ A) A) (vs : (Γ : _)(B A : _) → Var93 Γ A → Var93 (snoc93 Γ B) A) → Var93 Γ A vz93 : ∀{Γ A} → Var93 (snoc93 Γ A) A;vz93 = λ Var93 vz93 vs → vz93 _ _ vs93 : ∀{Γ B A} → Var93 Γ A → Var93 (snoc93 Γ B) A;vs93 = λ x Var93 vz93 vs93 → vs93 _ _ _ (x Var93 vz93 vs93) Tm93 : Con93 → Ty93 → Set;Tm93 = λ Γ A → (Tm93 : Con93 → Ty93 → Set) (var : (Γ : _) (A : _) → Var93 Γ A → Tm93 Γ A) (lam : (Γ : _) (A B : _) → Tm93 (snoc93 Γ A) B → Tm93 Γ (arr93 A B)) (app : (Γ : _) (A B : _) → Tm93 Γ (arr93 A B) → Tm93 Γ A → Tm93 Γ B) → Tm93 Γ A var93 : ∀{Γ A} → Var93 Γ A → Tm93 Γ A;var93 = λ x Tm93 var93 lam app → var93 _ _ x lam93 : ∀{Γ A B} → Tm93 (snoc93 Γ A) B → Tm93 Γ (arr93 A B);lam93 = λ t Tm93 var93 lam93 app → lam93 _ _ _ (t Tm93 var93 lam93 app) app93 : ∀{Γ A B} → Tm93 Γ (arr93 A B) → Tm93 Γ A → Tm93 Γ B;app93 = λ t u Tm93 var93 lam93 app93 → app93 _ _ _ (t Tm93 var93 lam93 app93) (u Tm93 var93 lam93 app93) v093 : ∀{Γ A} → Tm93 (snoc93 Γ A) A;v093 = var93 vz93 v193 : ∀{Γ A B} → Tm93 (snoc93 (snoc93 Γ A) B) A;v193 = var93 (vs93 vz93) v293 : ∀{Γ A B C} → Tm93 (snoc93 (snoc93 (snoc93 Γ A) B) C) A;v293 = var93 (vs93 (vs93 vz93)) v393 : ∀{Γ A B C D} → Tm93 (snoc93 (snoc93 (snoc93 (snoc93 Γ A) B) C) D) A;v393 = var93 (vs93 (vs93 (vs93 vz93))) v493 : ∀{Γ A B C D E} → Tm93 (snoc93 (snoc93 (snoc93 (snoc93 (snoc93 Γ A) B) C) D) E) A;v493 = var93 (vs93 (vs93 (vs93 (vs93 vz93)))) test93 : ∀{Γ A} → Tm93 Γ (arr93 (arr93 A A) (arr93 A A));test93 = lam93 (lam93 (app93 v193 (app93 v193 (app93 v193 (app93 v193 (app93 v193 (app93 v193 v093))))))) {-# OPTIONS --type-in-type #-} Ty94 : Set; Ty94 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι94 : Ty94; ι94 = λ _ ι94 _ → ι94 arr94 : Ty94 → Ty94 → Ty94; arr94 = λ A B Ty94 ι94 arr94 → arr94 (A Ty94 ι94 arr94) (B Ty94 ι94 arr94) Con94 : Set;Con94 = (Con94 : Set) (nil : Con94) (snoc : Con94 → Ty94 → Con94) → Con94 nil94 : Con94;nil94 = λ Con94 nil94 snoc → nil94 snoc94 : Con94 → Ty94 → Con94;snoc94 = λ Γ A Con94 nil94 snoc94 → snoc94 (Γ Con94 nil94 snoc94) A Var94 : Con94 → Ty94 → Set;Var94 = λ Γ A → (Var94 : Con94 → Ty94 → Set) (vz : (Γ : _)(A : _) → Var94 (snoc94 Γ A) A) (vs : (Γ : _)(B A : _) → Var94 Γ A → Var94 (snoc94 Γ B) A) → Var94 Γ A vz94 : ∀{Γ A} → Var94 (snoc94 Γ A) A;vz94 = λ Var94 vz94 vs → vz94 _ _ vs94 : ∀{Γ B A} → Var94 Γ A → Var94 (snoc94 Γ B) A;vs94 = λ x Var94 vz94 vs94 → vs94 _ _ _ (x Var94 vz94 vs94) Tm94 : Con94 → Ty94 → Set;Tm94 = λ Γ A → (Tm94 : Con94 → Ty94 → Set) (var : (Γ : _) (A : _) → Var94 Γ A → Tm94 Γ A) (lam : (Γ : _) (A B : _) → Tm94 (snoc94 Γ A) B → Tm94 Γ (arr94 A B)) (app : (Γ : _) (A B : _) → Tm94 Γ (arr94 A B) → Tm94 Γ A → Tm94 Γ B) → Tm94 Γ A var94 : ∀{Γ A} → Var94 Γ A → Tm94 Γ A;var94 = λ x Tm94 var94 lam app → var94 _ _ x lam94 : ∀{Γ A B} → Tm94 (snoc94 Γ A) B → Tm94 Γ (arr94 A B);lam94 = λ t Tm94 var94 lam94 app → lam94 _ _ _ (t Tm94 var94 lam94 app) app94 : ∀{Γ A B} → Tm94 Γ (arr94 A B) → Tm94 Γ A → Tm94 Γ B;app94 = λ t u Tm94 var94 lam94 app94 → app94 _ _ _ (t Tm94 var94 lam94 app94) (u Tm94 var94 lam94 app94) v094 : ∀{Γ A} → Tm94 (snoc94 Γ A) A;v094 = var94 vz94 v194 : ∀{Γ A B} → Tm94 (snoc94 (snoc94 Γ A) B) A;v194 = var94 (vs94 vz94) v294 : ∀{Γ A B C} → Tm94 (snoc94 (snoc94 (snoc94 Γ A) B) C) A;v294 = var94 (vs94 (vs94 vz94)) v394 : ∀{Γ A B C D} → Tm94 (snoc94 (snoc94 (snoc94 (snoc94 Γ A) B) C) D) A;v394 = var94 (vs94 (vs94 (vs94 vz94))) v494 : ∀{Γ A B C D E} → Tm94 (snoc94 (snoc94 (snoc94 (snoc94 (snoc94 Γ A) B) C) D) E) A;v494 = var94 (vs94 (vs94 (vs94 (vs94 vz94)))) test94 : ∀{Γ A} → Tm94 Γ (arr94 (arr94 A A) (arr94 A A));test94 = lam94 (lam94 (app94 v194 (app94 v194 (app94 v194 (app94 v194 (app94 v194 (app94 v194 v094))))))) {-# OPTIONS --type-in-type #-} Ty95 : Set; Ty95 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι95 : Ty95; ι95 = λ _ ι95 _ → ι95 arr95 : Ty95 → Ty95 → Ty95; arr95 = λ A B Ty95 ι95 arr95 → arr95 (A Ty95 ι95 arr95) (B Ty95 ι95 arr95) Con95 : Set;Con95 = (Con95 : Set) (nil : Con95) (snoc : Con95 → Ty95 → Con95) → Con95 nil95 : Con95;nil95 = λ Con95 nil95 snoc → nil95 snoc95 : Con95 → Ty95 → Con95;snoc95 = λ Γ A Con95 nil95 snoc95 → snoc95 (Γ Con95 nil95 snoc95) A Var95 : Con95 → Ty95 → Set;Var95 = λ Γ A → (Var95 : Con95 → Ty95 → Set) (vz : (Γ : _)(A : _) → Var95 (snoc95 Γ A) A) (vs : (Γ : _)(B A : _) → Var95 Γ A → Var95 (snoc95 Γ B) A) → Var95 Γ A vz95 : ∀{Γ A} → Var95 (snoc95 Γ A) A;vz95 = λ Var95 vz95 vs → vz95 _ _ vs95 : ∀{Γ B A} → Var95 Γ A → Var95 (snoc95 Γ B) A;vs95 = λ x Var95 vz95 vs95 → vs95 _ _ _ (x Var95 vz95 vs95) Tm95 : Con95 → Ty95 → Set;Tm95 = λ Γ A → (Tm95 : Con95 → Ty95 → Set) (var : (Γ : _) (A : _) → Var95 Γ A → Tm95 Γ A) (lam : (Γ : _) (A B : _) → Tm95 (snoc95 Γ A) B → Tm95 Γ (arr95 A B)) (app : (Γ : _) (A B : _) → Tm95 Γ (arr95 A B) → Tm95 Γ A → Tm95 Γ B) → Tm95 Γ A var95 : ∀{Γ A} → Var95 Γ A → Tm95 Γ A;var95 = λ x Tm95 var95 lam app → var95 _ _ x lam95 : ∀{Γ A B} → Tm95 (snoc95 Γ A) B → Tm95 Γ (arr95 A B);lam95 = λ t Tm95 var95 lam95 app → lam95 _ _ _ (t Tm95 var95 lam95 app) app95 : ∀{Γ A B} → Tm95 Γ (arr95 A B) → Tm95 Γ A → Tm95 Γ B;app95 = λ t u Tm95 var95 lam95 app95 → app95 _ _ _ (t Tm95 var95 lam95 app95) (u Tm95 var95 lam95 app95) v095 : ∀{Γ A} → Tm95 (snoc95 Γ A) A;v095 = var95 vz95 v195 : ∀{Γ A B} → Tm95 (snoc95 (snoc95 Γ A) B) A;v195 = var95 (vs95 vz95) v295 : ∀{Γ A B C} → Tm95 (snoc95 (snoc95 (snoc95 Γ A) B) C) A;v295 = var95 (vs95 (vs95 vz95)) v395 : ∀{Γ A B C D} → Tm95 (snoc95 (snoc95 (snoc95 (snoc95 Γ A) B) C) D) A;v395 = var95 (vs95 (vs95 (vs95 vz95))) v495 : ∀{Γ A B C D E} → Tm95 (snoc95 (snoc95 (snoc95 (snoc95 (snoc95 Γ A) B) C) D) E) A;v495 = var95 (vs95 (vs95 (vs95 (vs95 vz95)))) test95 : ∀{Γ A} → Tm95 Γ (arr95 (arr95 A A) (arr95 A A));test95 = lam95 (lam95 (app95 v195 (app95 v195 (app95 v195 (app95 v195 (app95 v195 (app95 v195 v095))))))) {-# OPTIONS --type-in-type #-} Ty96 : Set; Ty96 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι96 : Ty96; ι96 = λ _ ι96 _ → ι96 arr96 : Ty96 → Ty96 → Ty96; arr96 = λ A B Ty96 ι96 arr96 → arr96 (A Ty96 ι96 arr96) (B Ty96 ι96 arr96) Con96 : Set;Con96 = (Con96 : Set) (nil : Con96) (snoc : Con96 → Ty96 → Con96) → Con96 nil96 : Con96;nil96 = λ Con96 nil96 snoc → nil96 snoc96 : Con96 → Ty96 → Con96;snoc96 = λ Γ A Con96 nil96 snoc96 → snoc96 (Γ Con96 nil96 snoc96) A Var96 : Con96 → Ty96 → Set;Var96 = λ Γ A → (Var96 : Con96 → Ty96 → Set) (vz : (Γ : _)(A : _) → Var96 (snoc96 Γ A) A) (vs : (Γ : _)(B A : _) → Var96 Γ A → Var96 (snoc96 Γ B) A) → Var96 Γ A vz96 : ∀{Γ A} → Var96 (snoc96 Γ A) A;vz96 = λ Var96 vz96 vs → vz96 _ _ vs96 : ∀{Γ B A} → Var96 Γ A → Var96 (snoc96 Γ B) A;vs96 = λ x Var96 vz96 vs96 → vs96 _ _ _ (x Var96 vz96 vs96) Tm96 : Con96 → Ty96 → Set;Tm96 = λ Γ A → (Tm96 : Con96 → Ty96 → Set) (var : (Γ : _) (A : _) → Var96 Γ A → Tm96 Γ A) (lam : (Γ : _) (A B : _) → Tm96 (snoc96 Γ A) B → Tm96 Γ (arr96 A B)) (app : (Γ : _) (A B : _) → Tm96 Γ (arr96 A B) → Tm96 Γ A → Tm96 Γ B) → Tm96 Γ A var96 : ∀{Γ A} → Var96 Γ A → Tm96 Γ A;var96 = λ x Tm96 var96 lam app → var96 _ _ x lam96 : ∀{Γ A B} → Tm96 (snoc96 Γ A) B → Tm96 Γ (arr96 A B);lam96 = λ t Tm96 var96 lam96 app → lam96 _ _ _ (t Tm96 var96 lam96 app) app96 : ∀{Γ A B} → Tm96 Γ (arr96 A B) → Tm96 Γ A → Tm96 Γ B;app96 = λ t u Tm96 var96 lam96 app96 → app96 _ _ _ (t Tm96 var96 lam96 app96) (u Tm96 var96 lam96 app96) v096 : ∀{Γ A} → Tm96 (snoc96 Γ A) A;v096 = var96 vz96 v196 : ∀{Γ A B} → Tm96 (snoc96 (snoc96 Γ A) B) A;v196 = var96 (vs96 vz96) v296 : ∀{Γ A B C} → Tm96 (snoc96 (snoc96 (snoc96 Γ A) B) C) A;v296 = var96 (vs96 (vs96 vz96)) v396 : ∀{Γ A B C D} → Tm96 (snoc96 (snoc96 (snoc96 (snoc96 Γ A) B) C) D) A;v396 = var96 (vs96 (vs96 (vs96 vz96))) v496 : ∀{Γ A B C D E} → Tm96 (snoc96 (snoc96 (snoc96 (snoc96 (snoc96 Γ A) B) C) D) E) A;v496 = var96 (vs96 (vs96 (vs96 (vs96 vz96)))) test96 : ∀{Γ A} → Tm96 Γ (arr96 (arr96 A A) (arr96 A A));test96 = lam96 (lam96 (app96 v196 (app96 v196 (app96 v196 (app96 v196 (app96 v196 (app96 v196 v096))))))) {-# OPTIONS --type-in-type #-} Ty97 : Set; Ty97 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι97 : Ty97; ι97 = λ _ ι97 _ → ι97 arr97 : Ty97 → Ty97 → Ty97; arr97 = λ A B Ty97 ι97 arr97 → arr97 (A Ty97 ι97 arr97) (B Ty97 ι97 arr97) Con97 : Set;Con97 = (Con97 : Set) (nil : Con97) (snoc : Con97 → Ty97 → Con97) → Con97 nil97 : Con97;nil97 = λ Con97 nil97 snoc → nil97 snoc97 : Con97 → Ty97 → Con97;snoc97 = λ Γ A Con97 nil97 snoc97 → snoc97 (Γ Con97 nil97 snoc97) A Var97 : Con97 → Ty97 → Set;Var97 = λ Γ A → (Var97 : Con97 → Ty97 → Set) (vz : (Γ : _)(A : _) → Var97 (snoc97 Γ A) A) (vs : (Γ : _)(B A : _) → Var97 Γ A → Var97 (snoc97 Γ B) A) → Var97 Γ A vz97 : ∀{Γ A} → Var97 (snoc97 Γ A) A;vz97 = λ Var97 vz97 vs → vz97 _ _ vs97 : ∀{Γ B A} → Var97 Γ A → Var97 (snoc97 Γ B) A;vs97 = λ x Var97 vz97 vs97 → vs97 _ _ _ (x Var97 vz97 vs97) Tm97 : Con97 → Ty97 → Set;Tm97 = λ Γ A → (Tm97 : Con97 → Ty97 → Set) (var : (Γ : _) (A : _) → Var97 Γ A → Tm97 Γ A) (lam : (Γ : _) (A B : _) → Tm97 (snoc97 Γ A) B → Tm97 Γ (arr97 A B)) (app : (Γ : _) (A B : _) → Tm97 Γ (arr97 A B) → Tm97 Γ A → Tm97 Γ B) → Tm97 Γ A var97 : ∀{Γ A} → Var97 Γ A → Tm97 Γ A;var97 = λ x Tm97 var97 lam app → var97 _ _ x lam97 : ∀{Γ A B} → Tm97 (snoc97 Γ A) B → Tm97 Γ (arr97 A B);lam97 = λ t Tm97 var97 lam97 app → lam97 _ _ _ (t Tm97 var97 lam97 app) app97 : ∀{Γ A B} → Tm97 Γ (arr97 A B) → Tm97 Γ A → Tm97 Γ B;app97 = λ t u Tm97 var97 lam97 app97 → app97 _ _ _ (t Tm97 var97 lam97 app97) (u Tm97 var97 lam97 app97) v097 : ∀{Γ A} → Tm97 (snoc97 Γ A) A;v097 = var97 vz97 v197 : ∀{Γ A B} → Tm97 (snoc97 (snoc97 Γ A) B) A;v197 = var97 (vs97 vz97) v297 : ∀{Γ A B C} → Tm97 (snoc97 (snoc97 (snoc97 Γ A) B) C) A;v297 = var97 (vs97 (vs97 vz97)) v397 : ∀{Γ A B C D} → Tm97 (snoc97 (snoc97 (snoc97 (snoc97 Γ A) B) C) D) A;v397 = var97 (vs97 (vs97 (vs97 vz97))) v497 : ∀{Γ A B C D E} → Tm97 (snoc97 (snoc97 (snoc97 (snoc97 (snoc97 Γ A) B) C) D) E) A;v497 = var97 (vs97 (vs97 (vs97 (vs97 vz97)))) test97 : ∀{Γ A} → Tm97 Γ (arr97 (arr97 A A) (arr97 A A));test97 = lam97 (lam97 (app97 v197 (app97 v197 (app97 v197 (app97 v197 (app97 v197 (app97 v197 v097))))))) {-# OPTIONS --type-in-type #-} Ty98 : Set; Ty98 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι98 : Ty98; ι98 = λ _ ι98 _ → ι98 arr98 : Ty98 → Ty98 → Ty98; arr98 = λ A B Ty98 ι98 arr98 → arr98 (A Ty98 ι98 arr98) (B Ty98 ι98 arr98) Con98 : Set;Con98 = (Con98 : Set) (nil : Con98) (snoc : Con98 → Ty98 → Con98) → Con98 nil98 : Con98;nil98 = λ Con98 nil98 snoc → nil98 snoc98 : Con98 → Ty98 → Con98;snoc98 = λ Γ A Con98 nil98 snoc98 → snoc98 (Γ Con98 nil98 snoc98) A Var98 : Con98 → Ty98 → Set;Var98 = λ Γ A → (Var98 : Con98 → Ty98 → Set) (vz : (Γ : _)(A : _) → Var98 (snoc98 Γ A) A) (vs : (Γ : _)(B A : _) → Var98 Γ A → Var98 (snoc98 Γ B) A) → Var98 Γ A vz98 : ∀{Γ A} → Var98 (snoc98 Γ A) A;vz98 = λ Var98 vz98 vs → vz98 _ _ vs98 : ∀{Γ B A} → Var98 Γ A → Var98 (snoc98 Γ B) A;vs98 = λ x Var98 vz98 vs98 → vs98 _ _ _ (x Var98 vz98 vs98) Tm98 : Con98 → Ty98 → Set;Tm98 = λ Γ A → (Tm98 : Con98 → Ty98 → Set) (var : (Γ : _) (A : _) → Var98 Γ A → Tm98 Γ A) (lam : (Γ : _) (A B : _) → Tm98 (snoc98 Γ A) B → Tm98 Γ (arr98 A B)) (app : (Γ : _) (A B : _) → Tm98 Γ (arr98 A B) → Tm98 Γ A → Tm98 Γ B) → Tm98 Γ A var98 : ∀{Γ A} → Var98 Γ A → Tm98 Γ A;var98 = λ x Tm98 var98 lam app → var98 _ _ x lam98 : ∀{Γ A B} → Tm98 (snoc98 Γ A) B → Tm98 Γ (arr98 A B);lam98 = λ t Tm98 var98 lam98 app → lam98 _ _ _ (t Tm98 var98 lam98 app) app98 : ∀{Γ A B} → Tm98 Γ (arr98 A B) → Tm98 Γ A → Tm98 Γ B;app98 = λ t u Tm98 var98 lam98 app98 → app98 _ _ _ (t Tm98 var98 lam98 app98) (u Tm98 var98 lam98 app98) v098 : ∀{Γ A} → Tm98 (snoc98 Γ A) A;v098 = var98 vz98 v198 : ∀{Γ A B} → Tm98 (snoc98 (snoc98 Γ A) B) A;v198 = var98 (vs98 vz98) v298 : ∀{Γ A B C} → Tm98 (snoc98 (snoc98 (snoc98 Γ A) B) C) A;v298 = var98 (vs98 (vs98 vz98)) v398 : ∀{Γ A B C D} → Tm98 (snoc98 (snoc98 (snoc98 (snoc98 Γ A) B) C) D) A;v398 = var98 (vs98 (vs98 (vs98 vz98))) v498 : ∀{Γ A B C D E} → Tm98 (snoc98 (snoc98 (snoc98 (snoc98 (snoc98 Γ A) B) C) D) E) A;v498 = var98 (vs98 (vs98 (vs98 (vs98 vz98)))) test98 : ∀{Γ A} → Tm98 Γ (arr98 (arr98 A A) (arr98 A A));test98 = lam98 (lam98 (app98 v198 (app98 v198 (app98 v198 (app98 v198 (app98 v198 (app98 v198 v098))))))) {-# OPTIONS --type-in-type #-} Ty99 : Set; Ty99 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι99 : Ty99; ι99 = λ _ ι99 _ → ι99 arr99 : Ty99 → Ty99 → Ty99; arr99 = λ A B Ty99 ι99 arr99 → arr99 (A Ty99 ι99 arr99) (B Ty99 ι99 arr99) Con99 : Set;Con99 = (Con99 : Set) (nil : Con99) (snoc : Con99 → Ty99 → Con99) → Con99 nil99 : Con99;nil99 = λ Con99 nil99 snoc → nil99 snoc99 : Con99 → Ty99 → Con99;snoc99 = λ Γ A Con99 nil99 snoc99 → snoc99 (Γ Con99 nil99 snoc99) A Var99 : Con99 → Ty99 → Set;Var99 = λ Γ A → (Var99 : Con99 → Ty99 → Set) (vz : (Γ : _)(A : _) → Var99 (snoc99 Γ A) A) (vs : (Γ : _)(B A : _) → Var99 Γ A → Var99 (snoc99 Γ B) A) → Var99 Γ A vz99 : ∀{Γ A} → Var99 (snoc99 Γ A) A;vz99 = λ Var99 vz99 vs → vz99 _ _ vs99 : ∀{Γ B A} → Var99 Γ A → Var99 (snoc99 Γ B) A;vs99 = λ x Var99 vz99 vs99 → vs99 _ _ _ (x Var99 vz99 vs99) Tm99 : Con99 → Ty99 → Set;Tm99 = λ Γ A → (Tm99 : Con99 → Ty99 → Set) (var : (Γ : _) (A : _) → Var99 Γ A → Tm99 Γ A) (lam : (Γ : _) (A B : _) → Tm99 (snoc99 Γ A) B → Tm99 Γ (arr99 A B)) (app : (Γ : _) (A B : _) → Tm99 Γ (arr99 A B) → Tm99 Γ A → Tm99 Γ B) → Tm99 Γ A var99 : ∀{Γ A} → Var99 Γ A → Tm99 Γ A;var99 = λ x Tm99 var99 lam app → var99 _ _ x lam99 : ∀{Γ A B} → Tm99 (snoc99 Γ A) B → Tm99 Γ (arr99 A B);lam99 = λ t Tm99 var99 lam99 app → lam99 _ _ _ (t Tm99 var99 lam99 app) app99 : ∀{Γ A B} → Tm99 Γ (arr99 A B) → Tm99 Γ A → Tm99 Γ B;app99 = λ t u Tm99 var99 lam99 app99 → app99 _ _ _ (t Tm99 var99 lam99 app99) (u Tm99 var99 lam99 app99) v099 : ∀{Γ A} → Tm99 (snoc99 Γ A) A;v099 = var99 vz99 v199 : ∀{Γ A B} → Tm99 (snoc99 (snoc99 Γ A) B) A;v199 = var99 (vs99 vz99) v299 : ∀{Γ A B C} → Tm99 (snoc99 (snoc99 (snoc99 Γ A) B) C) A;v299 = var99 (vs99 (vs99 vz99)) v399 : ∀{Γ A B C D} → Tm99 (snoc99 (snoc99 (snoc99 (snoc99 Γ A) B) C) D) A;v399 = var99 (vs99 (vs99 (vs99 vz99))) v499 : ∀{Γ A B C D E} → Tm99 (snoc99 (snoc99 (snoc99 (snoc99 (snoc99 Γ A) B) C) D) E) A;v499 = var99 (vs99 (vs99 (vs99 (vs99 vz99)))) test99 : ∀{Γ A} → Tm99 Γ (arr99 (arr99 A A) (arr99 A A));test99 = lam99 (lam99 (app99 v199 (app99 v199 (app99 v199 (app99 v199 (app99 v199 (app99 v199 v099))))))) {-# OPTIONS --type-in-type #-} Ty100 : Set; Ty100 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι100 : Ty100; ι100 = λ _ ι100 _ → ι100 arr100 : Ty100 → Ty100 → Ty100; arr100 = λ A B Ty100 ι100 arr100 → arr100 (A Ty100 ι100 arr100) (B Ty100 ι100 arr100) Con100 : Set;Con100 = (Con100 : Set) (nil : Con100) (snoc : Con100 → Ty100 → Con100) → Con100 nil100 : Con100;nil100 = λ Con100 nil100 snoc → nil100 snoc100 : Con100 → Ty100 → Con100;snoc100 = λ Γ A Con100 nil100 snoc100 → snoc100 (Γ Con100 nil100 snoc100) A Var100 : Con100 → Ty100 → Set;Var100 = λ Γ A → (Var100 : Con100 → Ty100 → Set) (vz : (Γ : _)(A : _) → Var100 (snoc100 Γ A) A) (vs : (Γ : _)(B A : _) → Var100 Γ A → Var100 (snoc100 Γ B) A) → Var100 Γ A vz100 : ∀{Γ A} → Var100 (snoc100 Γ A) A;vz100 = λ Var100 vz100 vs → vz100 _ _ vs100 : ∀{Γ B A} → Var100 Γ A → Var100 (snoc100 Γ B) A;vs100 = λ x Var100 vz100 vs100 → vs100 _ _ _ (x Var100 vz100 vs100) Tm100 : Con100 → Ty100 → Set;Tm100 = λ Γ A → (Tm100 : Con100 → Ty100 → Set) (var : (Γ : _) (A : _) → Var100 Γ A → Tm100 Γ A) (lam : (Γ : _) (A B : _) → Tm100 (snoc100 Γ A) B → Tm100 Γ (arr100 A B)) (app : (Γ : _) (A B : _) → Tm100 Γ (arr100 A B) → Tm100 Γ A → Tm100 Γ B) → Tm100 Γ A var100 : ∀{Γ A} → Var100 Γ A → Tm100 Γ A;var100 = λ x Tm100 var100 lam app → var100 _ _ x lam100 : ∀{Γ A B} → Tm100 (snoc100 Γ A) B → Tm100 Γ (arr100 A B);lam100 = λ t Tm100 var100 lam100 app → lam100 _ _ _ (t Tm100 var100 lam100 app) app100 : ∀{Γ A B} → Tm100 Γ (arr100 A B) → Tm100 Γ A → Tm100 Γ B;app100 = λ t u Tm100 var100 lam100 app100 → app100 _ _ _ (t Tm100 var100 lam100 app100) (u Tm100 var100 lam100 app100) v0100 : ∀{Γ A} → Tm100 (snoc100 Γ A) A;v0100 = var100 vz100 v1100 : ∀{Γ A B} → Tm100 (snoc100 (snoc100 Γ A) B) A;v1100 = var100 (vs100 vz100) v2100 : ∀{Γ A B C} → Tm100 (snoc100 (snoc100 (snoc100 Γ A) B) C) A;v2100 = var100 (vs100 (vs100 vz100)) v3100 : ∀{Γ A B C D} → Tm100 (snoc100 (snoc100 (snoc100 (snoc100 Γ A) B) C) D) A;v3100 = var100 (vs100 (vs100 (vs100 vz100))) v4100 : ∀{Γ A B C D E} → Tm100 (snoc100 (snoc100 (snoc100 (snoc100 (snoc100 Γ A) B) C) D) E) A;v4100 = var100 (vs100 (vs100 (vs100 (vs100 vz100)))) test100 : ∀{Γ A} → Tm100 Γ (arr100 (arr100 A A) (arr100 A A));test100 = lam100 (lam100 (app100 v1100 (app100 v1100 (app100 v1100 (app100 v1100 (app100 v1100 (app100 v1100 v0100))))))) {-# OPTIONS --type-in-type #-} Ty101 : Set; Ty101 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι101 : Ty101; ι101 = λ _ ι101 _ → ι101 arr101 : Ty101 → Ty101 → Ty101; arr101 = λ A B Ty101 ι101 arr101 → arr101 (A Ty101 ι101 arr101) (B Ty101 ι101 arr101) Con101 : Set;Con101 = (Con101 : Set) (nil : Con101) (snoc : Con101 → Ty101 → Con101) → Con101 nil101 : Con101;nil101 = λ Con101 nil101 snoc → nil101 snoc101 : Con101 → Ty101 → Con101;snoc101 = λ Γ A Con101 nil101 snoc101 → snoc101 (Γ Con101 nil101 snoc101) A Var101 : Con101 → Ty101 → Set;Var101 = λ Γ A → (Var101 : Con101 → Ty101 → Set) (vz : (Γ : _)(A : _) → Var101 (snoc101 Γ A) A) (vs : (Γ : _)(B A : _) → Var101 Γ A → Var101 (snoc101 Γ B) A) → Var101 Γ A vz101 : ∀{Γ A} → Var101 (snoc101 Γ A) A;vz101 = λ Var101 vz101 vs → vz101 _ _ vs101 : ∀{Γ B A} → Var101 Γ A → Var101 (snoc101 Γ B) A;vs101 = λ x Var101 vz101 vs101 → vs101 _ _ _ (x Var101 vz101 vs101) Tm101 : Con101 → Ty101 → Set;Tm101 = λ Γ A → (Tm101 : Con101 → Ty101 → Set) (var : (Γ : _) (A : _) → Var101 Γ A → Tm101 Γ A) (lam : (Γ : _) (A B : _) → Tm101 (snoc101 Γ A) B → Tm101 Γ (arr101 A B)) (app : (Γ : _) (A B : _) → Tm101 Γ (arr101 A B) → Tm101 Γ A → Tm101 Γ B) → Tm101 Γ A var101 : ∀{Γ A} → Var101 Γ A → Tm101 Γ A;var101 = λ x Tm101 var101 lam app → var101 _ _ x lam101 : ∀{Γ A B} → Tm101 (snoc101 Γ A) B → Tm101 Γ (arr101 A B);lam101 = λ t Tm101 var101 lam101 app → lam101 _ _ _ (t Tm101 var101 lam101 app) app101 : ∀{Γ A B} → Tm101 Γ (arr101 A B) → Tm101 Γ A → Tm101 Γ B;app101 = λ t u Tm101 var101 lam101 app101 → app101 _ _ _ (t Tm101 var101 lam101 app101) (u Tm101 var101 lam101 app101) v0101 : ∀{Γ A} → Tm101 (snoc101 Γ A) A;v0101 = var101 vz101 v1101 : ∀{Γ A B} → Tm101 (snoc101 (snoc101 Γ A) B) A;v1101 = var101 (vs101 vz101) v2101 : ∀{Γ A B C} → Tm101 (snoc101 (snoc101 (snoc101 Γ A) B) C) A;v2101 = var101 (vs101 (vs101 vz101)) v3101 : ∀{Γ A B C D} → Tm101 (snoc101 (snoc101 (snoc101 (snoc101 Γ A) B) C) D) A;v3101 = var101 (vs101 (vs101 (vs101 vz101))) v4101 : ∀{Γ A B C D E} → Tm101 (snoc101 (snoc101 (snoc101 (snoc101 (snoc101 Γ A) B) C) D) E) A;v4101 = var101 (vs101 (vs101 (vs101 (vs101 vz101)))) test101 : ∀{Γ A} → Tm101 Γ (arr101 (arr101 A A) (arr101 A A));test101 = lam101 (lam101 (app101 v1101 (app101 v1101 (app101 v1101 (app101 v1101 (app101 v1101 (app101 v1101 v0101))))))) {-# OPTIONS --type-in-type #-} Ty102 : Set; Ty102 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι102 : Ty102; ι102 = λ _ ι102 _ → ι102 arr102 : Ty102 → Ty102 → Ty102; arr102 = λ A B Ty102 ι102 arr102 → arr102 (A Ty102 ι102 arr102) (B Ty102 ι102 arr102) Con102 : Set;Con102 = (Con102 : Set) (nil : Con102) (snoc : Con102 → Ty102 → Con102) → Con102 nil102 : Con102;nil102 = λ Con102 nil102 snoc → nil102 snoc102 : Con102 → Ty102 → Con102;snoc102 = λ Γ A Con102 nil102 snoc102 → snoc102 (Γ Con102 nil102 snoc102) A Var102 : Con102 → Ty102 → Set;Var102 = λ Γ A → (Var102 : Con102 → Ty102 → Set) (vz : (Γ : _)(A : _) → Var102 (snoc102 Γ A) A) (vs : (Γ : _)(B A : _) → Var102 Γ A → Var102 (snoc102 Γ B) A) → Var102 Γ A vz102 : ∀{Γ A} → Var102 (snoc102 Γ A) A;vz102 = λ Var102 vz102 vs → vz102 _ _ vs102 : ∀{Γ B A} → Var102 Γ A → Var102 (snoc102 Γ B) A;vs102 = λ x Var102 vz102 vs102 → vs102 _ _ _ (x Var102 vz102 vs102) Tm102 : Con102 → Ty102 → Set;Tm102 = λ Γ A → (Tm102 : Con102 → Ty102 → Set) (var : (Γ : _) (A : _) → Var102 Γ A → Tm102 Γ A) (lam : (Γ : _) (A B : _) → Tm102 (snoc102 Γ A) B → Tm102 Γ (arr102 A B)) (app : (Γ : _) (A B : _) → Tm102 Γ (arr102 A B) → Tm102 Γ A → Tm102 Γ B) → Tm102 Γ A var102 : ∀{Γ A} → Var102 Γ A → Tm102 Γ A;var102 = λ x Tm102 var102 lam app → var102 _ _ x lam102 : ∀{Γ A B} → Tm102 (snoc102 Γ A) B → Tm102 Γ (arr102 A B);lam102 = λ t Tm102 var102 lam102 app → lam102 _ _ _ (t Tm102 var102 lam102 app) app102 : ∀{Γ A B} → Tm102 Γ (arr102 A B) → Tm102 Γ A → Tm102 Γ B;app102 = λ t u Tm102 var102 lam102 app102 → app102 _ _ _ (t Tm102 var102 lam102 app102) (u Tm102 var102 lam102 app102) v0102 : ∀{Γ A} → Tm102 (snoc102 Γ A) A;v0102 = var102 vz102 v1102 : ∀{Γ A B} → Tm102 (snoc102 (snoc102 Γ A) B) A;v1102 = var102 (vs102 vz102) v2102 : ∀{Γ A B C} → Tm102 (snoc102 (snoc102 (snoc102 Γ A) B) C) A;v2102 = var102 (vs102 (vs102 vz102)) v3102 : ∀{Γ A B C D} → Tm102 (snoc102 (snoc102 (snoc102 (snoc102 Γ A) B) C) D) A;v3102 = var102 (vs102 (vs102 (vs102 vz102))) v4102 : ∀{Γ A B C D E} → Tm102 (snoc102 (snoc102 (snoc102 (snoc102 (snoc102 Γ A) B) C) D) E) A;v4102 = var102 (vs102 (vs102 (vs102 (vs102 vz102)))) test102 : ∀{Γ A} → Tm102 Γ (arr102 (arr102 A A) (arr102 A A));test102 = lam102 (lam102 (app102 v1102 (app102 v1102 (app102 v1102 (app102 v1102 (app102 v1102 (app102 v1102 v0102))))))) {-# OPTIONS --type-in-type #-} Ty103 : Set; Ty103 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι103 : Ty103; ι103 = λ _ ι103 _ → ι103 arr103 : Ty103 → Ty103 → Ty103; arr103 = λ A B Ty103 ι103 arr103 → arr103 (A Ty103 ι103 arr103) (B Ty103 ι103 arr103) Con103 : Set;Con103 = (Con103 : Set) (nil : Con103) (snoc : Con103 → Ty103 → Con103) → Con103 nil103 : Con103;nil103 = λ Con103 nil103 snoc → nil103 snoc103 : Con103 → Ty103 → Con103;snoc103 = λ Γ A Con103 nil103 snoc103 → snoc103 (Γ Con103 nil103 snoc103) A Var103 : Con103 → Ty103 → Set;Var103 = λ Γ A → (Var103 : Con103 → Ty103 → Set) (vz : (Γ : _)(A : _) → Var103 (snoc103 Γ A) A) (vs : (Γ : _)(B A : _) → Var103 Γ A → Var103 (snoc103 Γ B) A) → Var103 Γ A vz103 : ∀{Γ A} → Var103 (snoc103 Γ A) A;vz103 = λ Var103 vz103 vs → vz103 _ _ vs103 : ∀{Γ B A} → Var103 Γ A → Var103 (snoc103 Γ B) A;vs103 = λ x Var103 vz103 vs103 → vs103 _ _ _ (x Var103 vz103 vs103) Tm103 : Con103 → Ty103 → Set;Tm103 = λ Γ A → (Tm103 : Con103 → Ty103 → Set) (var : (Γ : _) (A : _) → Var103 Γ A → Tm103 Γ A) (lam : (Γ : _) (A B : _) → Tm103 (snoc103 Γ A) B → Tm103 Γ (arr103 A B)) (app : (Γ : _) (A B : _) → Tm103 Γ (arr103 A B) → Tm103 Γ A → Tm103 Γ B) → Tm103 Γ A var103 : ∀{Γ A} → Var103 Γ A → Tm103 Γ A;var103 = λ x Tm103 var103 lam app → var103 _ _ x lam103 : ∀{Γ A B} → Tm103 (snoc103 Γ A) B → Tm103 Γ (arr103 A B);lam103 = λ t Tm103 var103 lam103 app → lam103 _ _ _ (t Tm103 var103 lam103 app) app103 : ∀{Γ A B} → Tm103 Γ (arr103 A B) → Tm103 Γ A → Tm103 Γ B;app103 = λ t u Tm103 var103 lam103 app103 → app103 _ _ _ (t Tm103 var103 lam103 app103) (u Tm103 var103 lam103 app103) v0103 : ∀{Γ A} → Tm103 (snoc103 Γ A) A;v0103 = var103 vz103 v1103 : ∀{Γ A B} → Tm103 (snoc103 (snoc103 Γ A) B) A;v1103 = var103 (vs103 vz103) v2103 : ∀{Γ A B C} → Tm103 (snoc103 (snoc103 (snoc103 Γ A) B) C) A;v2103 = var103 (vs103 (vs103 vz103)) v3103 : ∀{Γ A B C D} → Tm103 (snoc103 (snoc103 (snoc103 (snoc103 Γ A) B) C) D) A;v3103 = var103 (vs103 (vs103 (vs103 vz103))) v4103 : ∀{Γ A B C D E} → Tm103 (snoc103 (snoc103 (snoc103 (snoc103 (snoc103 Γ A) B) C) D) E) A;v4103 = var103 (vs103 (vs103 (vs103 (vs103 vz103)))) test103 : ∀{Γ A} → Tm103 Γ (arr103 (arr103 A A) (arr103 A A));test103 = lam103 (lam103 (app103 v1103 (app103 v1103 (app103 v1103 (app103 v1103 (app103 v1103 (app103 v1103 v0103))))))) {-# OPTIONS --type-in-type #-} Ty104 : Set; Ty104 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι104 : Ty104; ι104 = λ _ ι104 _ → ι104 arr104 : Ty104 → Ty104 → Ty104; arr104 = λ A B Ty104 ι104 arr104 → arr104 (A Ty104 ι104 arr104) (B Ty104 ι104 arr104) Con104 : Set;Con104 = (Con104 : Set) (nil : Con104) (snoc : Con104 → Ty104 → Con104) → Con104 nil104 : Con104;nil104 = λ Con104 nil104 snoc → nil104 snoc104 : Con104 → Ty104 → Con104;snoc104 = λ Γ A Con104 nil104 snoc104 → snoc104 (Γ Con104 nil104 snoc104) A Var104 : Con104 → Ty104 → Set;Var104 = λ Γ A → (Var104 : Con104 → Ty104 → Set) (vz : (Γ : _)(A : _) → Var104 (snoc104 Γ A) A) (vs : (Γ : _)(B A : _) → Var104 Γ A → Var104 (snoc104 Γ B) A) → Var104 Γ A vz104 : ∀{Γ A} → Var104 (snoc104 Γ A) A;vz104 = λ Var104 vz104 vs → vz104 _ _ vs104 : ∀{Γ B A} → Var104 Γ A → Var104 (snoc104 Γ B) A;vs104 = λ x Var104 vz104 vs104 → vs104 _ _ _ (x Var104 vz104 vs104) Tm104 : Con104 → Ty104 → Set;Tm104 = λ Γ A → (Tm104 : Con104 → Ty104 → Set) (var : (Γ : _) (A : _) → Var104 Γ A → Tm104 Γ A) (lam : (Γ : _) (A B : _) → Tm104 (snoc104 Γ A) B → Tm104 Γ (arr104 A B)) (app : (Γ : _) (A B : _) → Tm104 Γ (arr104 A B) → Tm104 Γ A → Tm104 Γ B) → Tm104 Γ A var104 : ∀{Γ A} → Var104 Γ A → Tm104 Γ A;var104 = λ x Tm104 var104 lam app → var104 _ _ x lam104 : ∀{Γ A B} → Tm104 (snoc104 Γ A) B → Tm104 Γ (arr104 A B);lam104 = λ t Tm104 var104 lam104 app → lam104 _ _ _ (t Tm104 var104 lam104 app) app104 : ∀{Γ A B} → Tm104 Γ (arr104 A B) → Tm104 Γ A → Tm104 Γ B;app104 = λ t u Tm104 var104 lam104 app104 → app104 _ _ _ (t Tm104 var104 lam104 app104) (u Tm104 var104 lam104 app104) v0104 : ∀{Γ A} → Tm104 (snoc104 Γ A) A;v0104 = var104 vz104 v1104 : ∀{Γ A B} → Tm104 (snoc104 (snoc104 Γ A) B) A;v1104 = var104 (vs104 vz104) v2104 : ∀{Γ A B C} → Tm104 (snoc104 (snoc104 (snoc104 Γ A) B) C) A;v2104 = var104 (vs104 (vs104 vz104)) v3104 : ∀{Γ A B C D} → Tm104 (snoc104 (snoc104 (snoc104 (snoc104 Γ A) B) C) D) A;v3104 = var104 (vs104 (vs104 (vs104 vz104))) v4104 : ∀{Γ A B C D E} → Tm104 (snoc104 (snoc104 (snoc104 (snoc104 (snoc104 Γ A) B) C) D) E) A;v4104 = var104 (vs104 (vs104 (vs104 (vs104 vz104)))) test104 : ∀{Γ A} → Tm104 Γ (arr104 (arr104 A A) (arr104 A A));test104 = lam104 (lam104 (app104 v1104 (app104 v1104 (app104 v1104 (app104 v1104 (app104 v1104 (app104 v1104 v0104))))))) {-# OPTIONS --type-in-type #-} Ty105 : Set; Ty105 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι105 : Ty105; ι105 = λ _ ι105 _ → ι105 arr105 : Ty105 → Ty105 → Ty105; arr105 = λ A B Ty105 ι105 arr105 → arr105 (A Ty105 ι105 arr105) (B Ty105 ι105 arr105) Con105 : Set;Con105 = (Con105 : Set) (nil : Con105) (snoc : Con105 → Ty105 → Con105) → Con105 nil105 : Con105;nil105 = λ Con105 nil105 snoc → nil105 snoc105 : Con105 → Ty105 → Con105;snoc105 = λ Γ A Con105 nil105 snoc105 → snoc105 (Γ Con105 nil105 snoc105) A Var105 : Con105 → Ty105 → Set;Var105 = λ Γ A → (Var105 : Con105 → Ty105 → Set) (vz : (Γ : _)(A : _) → Var105 (snoc105 Γ A) A) (vs : (Γ : _)(B A : _) → Var105 Γ A → Var105 (snoc105 Γ B) A) → Var105 Γ A vz105 : ∀{Γ A} → Var105 (snoc105 Γ A) A;vz105 = λ Var105 vz105 vs → vz105 _ _ vs105 : ∀{Γ B A} → Var105 Γ A → Var105 (snoc105 Γ B) A;vs105 = λ x Var105 vz105 vs105 → vs105 _ _ _ (x Var105 vz105 vs105) Tm105 : Con105 → Ty105 → Set;Tm105 = λ Γ A → (Tm105 : Con105 → Ty105 → Set) (var : (Γ : _) (A : _) → Var105 Γ A → Tm105 Γ A) (lam : (Γ : _) (A B : _) → Tm105 (snoc105 Γ A) B → Tm105 Γ (arr105 A B)) (app : (Γ : _) (A B : _) → Tm105 Γ (arr105 A B) → Tm105 Γ A → Tm105 Γ B) → Tm105 Γ A var105 : ∀{Γ A} → Var105 Γ A → Tm105 Γ A;var105 = λ x Tm105 var105 lam app → var105 _ _ x lam105 : ∀{Γ A B} → Tm105 (snoc105 Γ A) B → Tm105 Γ (arr105 A B);lam105 = λ t Tm105 var105 lam105 app → lam105 _ _ _ (t Tm105 var105 lam105 app) app105 : ∀{Γ A B} → Tm105 Γ (arr105 A B) → Tm105 Γ A → Tm105 Γ B;app105 = λ t u Tm105 var105 lam105 app105 → app105 _ _ _ (t Tm105 var105 lam105 app105) (u Tm105 var105 lam105 app105) v0105 : ∀{Γ A} → Tm105 (snoc105 Γ A) A;v0105 = var105 vz105 v1105 : ∀{Γ A B} → Tm105 (snoc105 (snoc105 Γ A) B) A;v1105 = var105 (vs105 vz105) v2105 : ∀{Γ A B C} → Tm105 (snoc105 (snoc105 (snoc105 Γ A) B) C) A;v2105 = var105 (vs105 (vs105 vz105)) v3105 : ∀{Γ A B C D} → Tm105 (snoc105 (snoc105 (snoc105 (snoc105 Γ A) B) C) D) A;v3105 = var105 (vs105 (vs105 (vs105 vz105))) v4105 : ∀{Γ A B C D E} → Tm105 (snoc105 (snoc105 (snoc105 (snoc105 (snoc105 Γ A) B) C) D) E) A;v4105 = var105 (vs105 (vs105 (vs105 (vs105 vz105)))) test105 : ∀{Γ A} → Tm105 Γ (arr105 (arr105 A A) (arr105 A A));test105 = lam105 (lam105 (app105 v1105 (app105 v1105 (app105 v1105 (app105 v1105 (app105 v1105 (app105 v1105 v0105))))))) {-# OPTIONS --type-in-type #-} Ty106 : Set; Ty106 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι106 : Ty106; ι106 = λ _ ι106 _ → ι106 arr106 : Ty106 → Ty106 → Ty106; arr106 = λ A B Ty106 ι106 arr106 → arr106 (A Ty106 ι106 arr106) (B Ty106 ι106 arr106) Con106 : Set;Con106 = (Con106 : Set) (nil : Con106) (snoc : Con106 → Ty106 → Con106) → Con106 nil106 : Con106;nil106 = λ Con106 nil106 snoc → nil106 snoc106 : Con106 → Ty106 → Con106;snoc106 = λ Γ A Con106 nil106 snoc106 → snoc106 (Γ Con106 nil106 snoc106) A Var106 : Con106 → Ty106 → Set;Var106 = λ Γ A → (Var106 : Con106 → Ty106 → Set) (vz : (Γ : _)(A : _) → Var106 (snoc106 Γ A) A) (vs : (Γ : _)(B A : _) → Var106 Γ A → Var106 (snoc106 Γ B) A) → Var106 Γ A vz106 : ∀{Γ A} → Var106 (snoc106 Γ A) A;vz106 = λ Var106 vz106 vs → vz106 _ _ vs106 : ∀{Γ B A} → Var106 Γ A → Var106 (snoc106 Γ B) A;vs106 = λ x Var106 vz106 vs106 → vs106 _ _ _ (x Var106 vz106 vs106) Tm106 : Con106 → Ty106 → Set;Tm106 = λ Γ A → (Tm106 : Con106 → Ty106 → Set) (var : (Γ : _) (A : _) → Var106 Γ A → Tm106 Γ A) (lam : (Γ : _) (A B : _) → Tm106 (snoc106 Γ A) B → Tm106 Γ (arr106 A B)) (app : (Γ : _) (A B : _) → Tm106 Γ (arr106 A B) → Tm106 Γ A → Tm106 Γ B) → Tm106 Γ A var106 : ∀{Γ A} → Var106 Γ A → Tm106 Γ A;var106 = λ x Tm106 var106 lam app → var106 _ _ x lam106 : ∀{Γ A B} → Tm106 (snoc106 Γ A) B → Tm106 Γ (arr106 A B);lam106 = λ t Tm106 var106 lam106 app → lam106 _ _ _ (t Tm106 var106 lam106 app) app106 : ∀{Γ A B} → Tm106 Γ (arr106 A B) → Tm106 Γ A → Tm106 Γ B;app106 = λ t u Tm106 var106 lam106 app106 → app106 _ _ _ (t Tm106 var106 lam106 app106) (u Tm106 var106 lam106 app106) v0106 : ∀{Γ A} → Tm106 (snoc106 Γ A) A;v0106 = var106 vz106 v1106 : ∀{Γ A B} → Tm106 (snoc106 (snoc106 Γ A) B) A;v1106 = var106 (vs106 vz106) v2106 : ∀{Γ A B C} → Tm106 (snoc106 (snoc106 (snoc106 Γ A) B) C) A;v2106 = var106 (vs106 (vs106 vz106)) v3106 : ∀{Γ A B C D} → Tm106 (snoc106 (snoc106 (snoc106 (snoc106 Γ A) B) C) D) A;v3106 = var106 (vs106 (vs106 (vs106 vz106))) v4106 : ∀{Γ A B C D E} → Tm106 (snoc106 (snoc106 (snoc106 (snoc106 (snoc106 Γ A) B) C) D) E) A;v4106 = var106 (vs106 (vs106 (vs106 (vs106 vz106)))) test106 : ∀{Γ A} → Tm106 Γ (arr106 (arr106 A A) (arr106 A A));test106 = lam106 (lam106 (app106 v1106 (app106 v1106 (app106 v1106 (app106 v1106 (app106 v1106 (app106 v1106 v0106))))))) {-# OPTIONS --type-in-type #-} Ty107 : Set; Ty107 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι107 : Ty107; ι107 = λ _ ι107 _ → ι107 arr107 : Ty107 → Ty107 → Ty107; arr107 = λ A B Ty107 ι107 arr107 → arr107 (A Ty107 ι107 arr107) (B Ty107 ι107 arr107) Con107 : Set;Con107 = (Con107 : Set) (nil : Con107) (snoc : Con107 → Ty107 → Con107) → Con107 nil107 : Con107;nil107 = λ Con107 nil107 snoc → nil107 snoc107 : Con107 → Ty107 → Con107;snoc107 = λ Γ A Con107 nil107 snoc107 → snoc107 (Γ Con107 nil107 snoc107) A Var107 : Con107 → Ty107 → Set;Var107 = λ Γ A → (Var107 : Con107 → Ty107 → Set) (vz : (Γ : _)(A : _) → Var107 (snoc107 Γ A) A) (vs : (Γ : _)(B A : _) → Var107 Γ A → Var107 (snoc107 Γ B) A) → Var107 Γ A vz107 : ∀{Γ A} → Var107 (snoc107 Γ A) A;vz107 = λ Var107 vz107 vs → vz107 _ _ vs107 : ∀{Γ B A} → Var107 Γ A → Var107 (snoc107 Γ B) A;vs107 = λ x Var107 vz107 vs107 → vs107 _ _ _ (x Var107 vz107 vs107) Tm107 : Con107 → Ty107 → Set;Tm107 = λ Γ A → (Tm107 : Con107 → Ty107 → Set) (var : (Γ : _) (A : _) → Var107 Γ A → Tm107 Γ A) (lam : (Γ : _) (A B : _) → Tm107 (snoc107 Γ A) B → Tm107 Γ (arr107 A B)) (app : (Γ : _) (A B : _) → Tm107 Γ (arr107 A B) → Tm107 Γ A → Tm107 Γ B) → Tm107 Γ A var107 : ∀{Γ A} → Var107 Γ A → Tm107 Γ A;var107 = λ x Tm107 var107 lam app → var107 _ _ x lam107 : ∀{Γ A B} → Tm107 (snoc107 Γ A) B → Tm107 Γ (arr107 A B);lam107 = λ t Tm107 var107 lam107 app → lam107 _ _ _ (t Tm107 var107 lam107 app) app107 : ∀{Γ A B} → Tm107 Γ (arr107 A B) → Tm107 Γ A → Tm107 Γ B;app107 = λ t u Tm107 var107 lam107 app107 → app107 _ _ _ (t Tm107 var107 lam107 app107) (u Tm107 var107 lam107 app107) v0107 : ∀{Γ A} → Tm107 (snoc107 Γ A) A;v0107 = var107 vz107 v1107 : ∀{Γ A B} → Tm107 (snoc107 (snoc107 Γ A) B) A;v1107 = var107 (vs107 vz107) v2107 : ∀{Γ A B C} → Tm107 (snoc107 (snoc107 (snoc107 Γ A) B) C) A;v2107 = var107 (vs107 (vs107 vz107)) v3107 : ∀{Γ A B C D} → Tm107 (snoc107 (snoc107 (snoc107 (snoc107 Γ A) B) C) D) A;v3107 = var107 (vs107 (vs107 (vs107 vz107))) v4107 : ∀{Γ A B C D E} → Tm107 (snoc107 (snoc107 (snoc107 (snoc107 (snoc107 Γ A) B) C) D) E) A;v4107 = var107 (vs107 (vs107 (vs107 (vs107 vz107)))) test107 : ∀{Γ A} → Tm107 Γ (arr107 (arr107 A A) (arr107 A A));test107 = lam107 (lam107 (app107 v1107 (app107 v1107 (app107 v1107 (app107 v1107 (app107 v1107 (app107 v1107 v0107))))))) {-# OPTIONS --type-in-type #-} Ty108 : Set; Ty108 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι108 : Ty108; ι108 = λ _ ι108 _ → ι108 arr108 : Ty108 → Ty108 → Ty108; arr108 = λ A B Ty108 ι108 arr108 → arr108 (A Ty108 ι108 arr108) (B Ty108 ι108 arr108) Con108 : Set;Con108 = (Con108 : Set) (nil : Con108) (snoc : Con108 → Ty108 → Con108) → Con108 nil108 : Con108;nil108 = λ Con108 nil108 snoc → nil108 snoc108 : Con108 → Ty108 → Con108;snoc108 = λ Γ A Con108 nil108 snoc108 → snoc108 (Γ Con108 nil108 snoc108) A Var108 : Con108 → Ty108 → Set;Var108 = λ Γ A → (Var108 : Con108 → Ty108 → Set) (vz : (Γ : _)(A : _) → Var108 (snoc108 Γ A) A) (vs : (Γ : _)(B A : _) → Var108 Γ A → Var108 (snoc108 Γ B) A) → Var108 Γ A vz108 : ∀{Γ A} → Var108 (snoc108 Γ A) A;vz108 = λ Var108 vz108 vs → vz108 _ _ vs108 : ∀{Γ B A} → Var108 Γ A → Var108 (snoc108 Γ B) A;vs108 = λ x Var108 vz108 vs108 → vs108 _ _ _ (x Var108 vz108 vs108) Tm108 : Con108 → Ty108 → Set;Tm108 = λ Γ A → (Tm108 : Con108 → Ty108 → Set) (var : (Γ : _) (A : _) → Var108 Γ A → Tm108 Γ A) (lam : (Γ : _) (A B : _) → Tm108 (snoc108 Γ A) B → Tm108 Γ (arr108 A B)) (app : (Γ : _) (A B : _) → Tm108 Γ (arr108 A B) → Tm108 Γ A → Tm108 Γ B) → Tm108 Γ A var108 : ∀{Γ A} → Var108 Γ A → Tm108 Γ A;var108 = λ x Tm108 var108 lam app → var108 _ _ x lam108 : ∀{Γ A B} → Tm108 (snoc108 Γ A) B → Tm108 Γ (arr108 A B);lam108 = λ t Tm108 var108 lam108 app → lam108 _ _ _ (t Tm108 var108 lam108 app) app108 : ∀{Γ A B} → Tm108 Γ (arr108 A B) → Tm108 Γ A → Tm108 Γ B;app108 = λ t u Tm108 var108 lam108 app108 → app108 _ _ _ (t Tm108 var108 lam108 app108) (u Tm108 var108 lam108 app108) v0108 : ∀{Γ A} → Tm108 (snoc108 Γ A) A;v0108 = var108 vz108 v1108 : ∀{Γ A B} → Tm108 (snoc108 (snoc108 Γ A) B) A;v1108 = var108 (vs108 vz108) v2108 : ∀{Γ A B C} → Tm108 (snoc108 (snoc108 (snoc108 Γ A) B) C) A;v2108 = var108 (vs108 (vs108 vz108)) v3108 : ∀{Γ A B C D} → Tm108 (snoc108 (snoc108 (snoc108 (snoc108 Γ A) B) C) D) A;v3108 = var108 (vs108 (vs108 (vs108 vz108))) v4108 : ∀{Γ A B C D E} → Tm108 (snoc108 (snoc108 (snoc108 (snoc108 (snoc108 Γ A) B) C) D) E) A;v4108 = var108 (vs108 (vs108 (vs108 (vs108 vz108)))) test108 : ∀{Γ A} → Tm108 Γ (arr108 (arr108 A A) (arr108 A A));test108 = lam108 (lam108 (app108 v1108 (app108 v1108 (app108 v1108 (app108 v1108 (app108 v1108 (app108 v1108 v0108))))))) {-# OPTIONS --type-in-type #-} Ty109 : Set; Ty109 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι109 : Ty109; ι109 = λ _ ι109 _ → ι109 arr109 : Ty109 → Ty109 → Ty109; arr109 = λ A B Ty109 ι109 arr109 → arr109 (A Ty109 ι109 arr109) (B Ty109 ι109 arr109) Con109 : Set;Con109 = (Con109 : Set) (nil : Con109) (snoc : Con109 → Ty109 → Con109) → Con109 nil109 : Con109;nil109 = λ Con109 nil109 snoc → nil109 snoc109 : Con109 → Ty109 → Con109;snoc109 = λ Γ A Con109 nil109 snoc109 → snoc109 (Γ Con109 nil109 snoc109) A Var109 : Con109 → Ty109 → Set;Var109 = λ Γ A → (Var109 : Con109 → Ty109 → Set) (vz : (Γ : _)(A : _) → Var109 (snoc109 Γ A) A) (vs : (Γ : _)(B A : _) → Var109 Γ A → Var109 (snoc109 Γ B) A) → Var109 Γ A vz109 : ∀{Γ A} → Var109 (snoc109 Γ A) A;vz109 = λ Var109 vz109 vs → vz109 _ _ vs109 : ∀{Γ B A} → Var109 Γ A → Var109 (snoc109 Γ B) A;vs109 = λ x Var109 vz109 vs109 → vs109 _ _ _ (x Var109 vz109 vs109) Tm109 : Con109 → Ty109 → Set;Tm109 = λ Γ A → (Tm109 : Con109 → Ty109 → Set) (var : (Γ : _) (A : _) → Var109 Γ A → Tm109 Γ A) (lam : (Γ : _) (A B : _) → Tm109 (snoc109 Γ A) B → Tm109 Γ (arr109 A B)) (app : (Γ : _) (A B : _) → Tm109 Γ (arr109 A B) → Tm109 Γ A → Tm109 Γ B) → Tm109 Γ A var109 : ∀{Γ A} → Var109 Γ A → Tm109 Γ A;var109 = λ x Tm109 var109 lam app → var109 _ _ x lam109 : ∀{Γ A B} → Tm109 (snoc109 Γ A) B → Tm109 Γ (arr109 A B);lam109 = λ t Tm109 var109 lam109 app → lam109 _ _ _ (t Tm109 var109 lam109 app) app109 : ∀{Γ A B} → Tm109 Γ (arr109 A B) → Tm109 Γ A → Tm109 Γ B;app109 = λ t u Tm109 var109 lam109 app109 → app109 _ _ _ (t Tm109 var109 lam109 app109) (u Tm109 var109 lam109 app109) v0109 : ∀{Γ A} → Tm109 (snoc109 Γ A) A;v0109 = var109 vz109 v1109 : ∀{Γ A B} → Tm109 (snoc109 (snoc109 Γ A) B) A;v1109 = var109 (vs109 vz109) v2109 : ∀{Γ A B C} → Tm109 (snoc109 (snoc109 (snoc109 Γ A) B) C) A;v2109 = var109 (vs109 (vs109 vz109)) v3109 : ∀{Γ A B C D} → Tm109 (snoc109 (snoc109 (snoc109 (snoc109 Γ A) B) C) D) A;v3109 = var109 (vs109 (vs109 (vs109 vz109))) v4109 : ∀{Γ A B C D E} → Tm109 (snoc109 (snoc109 (snoc109 (snoc109 (snoc109 Γ A) B) C) D) E) A;v4109 = var109 (vs109 (vs109 (vs109 (vs109 vz109)))) test109 : ∀{Γ A} → Tm109 Γ (arr109 (arr109 A A) (arr109 A A));test109 = lam109 (lam109 (app109 v1109 (app109 v1109 (app109 v1109 (app109 v1109 (app109 v1109 (app109 v1109 v0109))))))) {-# OPTIONS --type-in-type #-} Ty110 : Set; Ty110 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι110 : Ty110; ι110 = λ _ ι110 _ → ι110 arr110 : Ty110 → Ty110 → Ty110; arr110 = λ A B Ty110 ι110 arr110 → arr110 (A Ty110 ι110 arr110) (B Ty110 ι110 arr110) Con110 : Set;Con110 = (Con110 : Set) (nil : Con110) (snoc : Con110 → Ty110 → Con110) → Con110 nil110 : Con110;nil110 = λ Con110 nil110 snoc → nil110 snoc110 : Con110 → Ty110 → Con110;snoc110 = λ Γ A Con110 nil110 snoc110 → snoc110 (Γ Con110 nil110 snoc110) A Var110 : Con110 → Ty110 → Set;Var110 = λ Γ A → (Var110 : Con110 → Ty110 → Set) (vz : (Γ : _)(A : _) → Var110 (snoc110 Γ A) A) (vs : (Γ : _)(B A : _) → Var110 Γ A → Var110 (snoc110 Γ B) A) → Var110 Γ A vz110 : ∀{Γ A} → Var110 (snoc110 Γ A) A;vz110 = λ Var110 vz110 vs → vz110 _ _ vs110 : ∀{Γ B A} → Var110 Γ A → Var110 (snoc110 Γ B) A;vs110 = λ x Var110 vz110 vs110 → vs110 _ _ _ (x Var110 vz110 vs110) Tm110 : Con110 → Ty110 → Set;Tm110 = λ Γ A → (Tm110 : Con110 → Ty110 → Set) (var : (Γ : _) (A : _) → Var110 Γ A → Tm110 Γ A) (lam : (Γ : _) (A B : _) → Tm110 (snoc110 Γ A) B → Tm110 Γ (arr110 A B)) (app : (Γ : _) (A B : _) → Tm110 Γ (arr110 A B) → Tm110 Γ A → Tm110 Γ B) → Tm110 Γ A var110 : ∀{Γ A} → Var110 Γ A → Tm110 Γ A;var110 = λ x Tm110 var110 lam app → var110 _ _ x lam110 : ∀{Γ A B} → Tm110 (snoc110 Γ A) B → Tm110 Γ (arr110 A B);lam110 = λ t Tm110 var110 lam110 app → lam110 _ _ _ (t Tm110 var110 lam110 app) app110 : ∀{Γ A B} → Tm110 Γ (arr110 A B) → Tm110 Γ A → Tm110 Γ B;app110 = λ t u Tm110 var110 lam110 app110 → app110 _ _ _ (t Tm110 var110 lam110 app110) (u Tm110 var110 lam110 app110) v0110 : ∀{Γ A} → Tm110 (snoc110 Γ A) A;v0110 = var110 vz110 v1110 : ∀{Γ A B} → Tm110 (snoc110 (snoc110 Γ A) B) A;v1110 = var110 (vs110 vz110) v2110 : ∀{Γ A B C} → Tm110 (snoc110 (snoc110 (snoc110 Γ A) B) C) A;v2110 = var110 (vs110 (vs110 vz110)) v3110 : ∀{Γ A B C D} → Tm110 (snoc110 (snoc110 (snoc110 (snoc110 Γ A) B) C) D) A;v3110 = var110 (vs110 (vs110 (vs110 vz110))) v4110 : ∀{Γ A B C D E} → Tm110 (snoc110 (snoc110 (snoc110 (snoc110 (snoc110 Γ A) B) C) D) E) A;v4110 = var110 (vs110 (vs110 (vs110 (vs110 vz110)))) test110 : ∀{Γ A} → Tm110 Γ (arr110 (arr110 A A) (arr110 A A));test110 = lam110 (lam110 (app110 v1110 (app110 v1110 (app110 v1110 (app110 v1110 (app110 v1110 (app110 v1110 v0110))))))) {-# OPTIONS --type-in-type #-} Ty111 : Set; Ty111 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι111 : Ty111; ι111 = λ _ ι111 _ → ι111 arr111 : Ty111 → Ty111 → Ty111; arr111 = λ A B Ty111 ι111 arr111 → arr111 (A Ty111 ι111 arr111) (B Ty111 ι111 arr111) Con111 : Set;Con111 = (Con111 : Set) (nil : Con111) (snoc : Con111 → Ty111 → Con111) → Con111 nil111 : Con111;nil111 = λ Con111 nil111 snoc → nil111 snoc111 : Con111 → Ty111 → Con111;snoc111 = λ Γ A Con111 nil111 snoc111 → snoc111 (Γ Con111 nil111 snoc111) A Var111 : Con111 → Ty111 → Set;Var111 = λ Γ A → (Var111 : Con111 → Ty111 → Set) (vz : (Γ : _)(A : _) → Var111 (snoc111 Γ A) A) (vs : (Γ : _)(B A : _) → Var111 Γ A → Var111 (snoc111 Γ B) A) → Var111 Γ A vz111 : ∀{Γ A} → Var111 (snoc111 Γ A) A;vz111 = λ Var111 vz111 vs → vz111 _ _ vs111 : ∀{Γ B A} → Var111 Γ A → Var111 (snoc111 Γ B) A;vs111 = λ x Var111 vz111 vs111 → vs111 _ _ _ (x Var111 vz111 vs111) Tm111 : Con111 → Ty111 → Set;Tm111 = λ Γ A → (Tm111 : Con111 → Ty111 → Set) (var : (Γ : _) (A : _) → Var111 Γ A → Tm111 Γ A) (lam : (Γ : _) (A B : _) → Tm111 (snoc111 Γ A) B → Tm111 Γ (arr111 A B)) (app : (Γ : _) (A B : _) → Tm111 Γ (arr111 A B) → Tm111 Γ A → Tm111 Γ B) → Tm111 Γ A var111 : ∀{Γ A} → Var111 Γ A → Tm111 Γ A;var111 = λ x Tm111 var111 lam app → var111 _ _ x lam111 : ∀{Γ A B} → Tm111 (snoc111 Γ A) B → Tm111 Γ (arr111 A B);lam111 = λ t Tm111 var111 lam111 app → lam111 _ _ _ (t Tm111 var111 lam111 app) app111 : ∀{Γ A B} → Tm111 Γ (arr111 A B) → Tm111 Γ A → Tm111 Γ B;app111 = λ t u Tm111 var111 lam111 app111 → app111 _ _ _ (t Tm111 var111 lam111 app111) (u Tm111 var111 lam111 app111) v0111 : ∀{Γ A} → Tm111 (snoc111 Γ A) A;v0111 = var111 vz111 v1111 : ∀{Γ A B} → Tm111 (snoc111 (snoc111 Γ A) B) A;v1111 = var111 (vs111 vz111) v2111 : ∀{Γ A B C} → Tm111 (snoc111 (snoc111 (snoc111 Γ A) B) C) A;v2111 = var111 (vs111 (vs111 vz111)) v3111 : ∀{Γ A B C D} → Tm111 (snoc111 (snoc111 (snoc111 (snoc111 Γ A) B) C) D) A;v3111 = var111 (vs111 (vs111 (vs111 vz111))) v4111 : ∀{Γ A B C D E} → Tm111 (snoc111 (snoc111 (snoc111 (snoc111 (snoc111 Γ A) B) C) D) E) A;v4111 = var111 (vs111 (vs111 (vs111 (vs111 vz111)))) test111 : ∀{Γ A} → Tm111 Γ (arr111 (arr111 A A) (arr111 A A));test111 = lam111 (lam111 (app111 v1111 (app111 v1111 (app111 v1111 (app111 v1111 (app111 v1111 (app111 v1111 v0111))))))) {-# OPTIONS --type-in-type #-} Ty112 : Set; Ty112 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι112 : Ty112; ι112 = λ _ ι112 _ → ι112 arr112 : Ty112 → Ty112 → Ty112; arr112 = λ A B Ty112 ι112 arr112 → arr112 (A Ty112 ι112 arr112) (B Ty112 ι112 arr112) Con112 : Set;Con112 = (Con112 : Set) (nil : Con112) (snoc : Con112 → Ty112 → Con112) → Con112 nil112 : Con112;nil112 = λ Con112 nil112 snoc → nil112 snoc112 : Con112 → Ty112 → Con112;snoc112 = λ Γ A Con112 nil112 snoc112 → snoc112 (Γ Con112 nil112 snoc112) A Var112 : Con112 → Ty112 → Set;Var112 = λ Γ A → (Var112 : Con112 → Ty112 → Set) (vz : (Γ : _)(A : _) → Var112 (snoc112 Γ A) A) (vs : (Γ : _)(B A : _) → Var112 Γ A → Var112 (snoc112 Γ B) A) → Var112 Γ A vz112 : ∀{Γ A} → Var112 (snoc112 Γ A) A;vz112 = λ Var112 vz112 vs → vz112 _ _ vs112 : ∀{Γ B A} → Var112 Γ A → Var112 (snoc112 Γ B) A;vs112 = λ x Var112 vz112 vs112 → vs112 _ _ _ (x Var112 vz112 vs112) Tm112 : Con112 → Ty112 → Set;Tm112 = λ Γ A → (Tm112 : Con112 → Ty112 → Set) (var : (Γ : _) (A : _) → Var112 Γ A → Tm112 Γ A) (lam : (Γ : _) (A B : _) → Tm112 (snoc112 Γ A) B → Tm112 Γ (arr112 A B)) (app : (Γ : _) (A B : _) → Tm112 Γ (arr112 A B) → Tm112 Γ A → Tm112 Γ B) → Tm112 Γ A var112 : ∀{Γ A} → Var112 Γ A → Tm112 Γ A;var112 = λ x Tm112 var112 lam app → var112 _ _ x lam112 : ∀{Γ A B} → Tm112 (snoc112 Γ A) B → Tm112 Γ (arr112 A B);lam112 = λ t Tm112 var112 lam112 app → lam112 _ _ _ (t Tm112 var112 lam112 app) app112 : ∀{Γ A B} → Tm112 Γ (arr112 A B) → Tm112 Γ A → Tm112 Γ B;app112 = λ t u Tm112 var112 lam112 app112 → app112 _ _ _ (t Tm112 var112 lam112 app112) (u Tm112 var112 lam112 app112) v0112 : ∀{Γ A} → Tm112 (snoc112 Γ A) A;v0112 = var112 vz112 v1112 : ∀{Γ A B} → Tm112 (snoc112 (snoc112 Γ A) B) A;v1112 = var112 (vs112 vz112) v2112 : ∀{Γ A B C} → Tm112 (snoc112 (snoc112 (snoc112 Γ A) B) C) A;v2112 = var112 (vs112 (vs112 vz112)) v3112 : ∀{Γ A B C D} → Tm112 (snoc112 (snoc112 (snoc112 (snoc112 Γ A) B) C) D) A;v3112 = var112 (vs112 (vs112 (vs112 vz112))) v4112 : ∀{Γ A B C D E} → Tm112 (snoc112 (snoc112 (snoc112 (snoc112 (snoc112 Γ A) B) C) D) E) A;v4112 = var112 (vs112 (vs112 (vs112 (vs112 vz112)))) test112 : ∀{Γ A} → Tm112 Γ (arr112 (arr112 A A) (arr112 A A));test112 = lam112 (lam112 (app112 v1112 (app112 v1112 (app112 v1112 (app112 v1112 (app112 v1112 (app112 v1112 v0112))))))) {-# OPTIONS --type-in-type #-} Ty113 : Set; Ty113 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι113 : Ty113; ι113 = λ _ ι113 _ → ι113 arr113 : Ty113 → Ty113 → Ty113; arr113 = λ A B Ty113 ι113 arr113 → arr113 (A Ty113 ι113 arr113) (B Ty113 ι113 arr113) Con113 : Set;Con113 = (Con113 : Set) (nil : Con113) (snoc : Con113 → Ty113 → Con113) → Con113 nil113 : Con113;nil113 = λ Con113 nil113 snoc → nil113 snoc113 : Con113 → Ty113 → Con113;snoc113 = λ Γ A Con113 nil113 snoc113 → snoc113 (Γ Con113 nil113 snoc113) A Var113 : Con113 → Ty113 → Set;Var113 = λ Γ A → (Var113 : Con113 → Ty113 → Set) (vz : (Γ : _)(A : _) → Var113 (snoc113 Γ A) A) (vs : (Γ : _)(B A : _) → Var113 Γ A → Var113 (snoc113 Γ B) A) → Var113 Γ A vz113 : ∀{Γ A} → Var113 (snoc113 Γ A) A;vz113 = λ Var113 vz113 vs → vz113 _ _ vs113 : ∀{Γ B A} → Var113 Γ A → Var113 (snoc113 Γ B) A;vs113 = λ x Var113 vz113 vs113 → vs113 _ _ _ (x Var113 vz113 vs113) Tm113 : Con113 → Ty113 → Set;Tm113 = λ Γ A → (Tm113 : Con113 → Ty113 → Set) (var : (Γ : _) (A : _) → Var113 Γ A → Tm113 Γ A) (lam : (Γ : _) (A B : _) → Tm113 (snoc113 Γ A) B → Tm113 Γ (arr113 A B)) (app : (Γ : _) (A B : _) → Tm113 Γ (arr113 A B) → Tm113 Γ A → Tm113 Γ B) → Tm113 Γ A var113 : ∀{Γ A} → Var113 Γ A → Tm113 Γ A;var113 = λ x Tm113 var113 lam app → var113 _ _ x lam113 : ∀{Γ A B} → Tm113 (snoc113 Γ A) B → Tm113 Γ (arr113 A B);lam113 = λ t Tm113 var113 lam113 app → lam113 _ _ _ (t Tm113 var113 lam113 app) app113 : ∀{Γ A B} → Tm113 Γ (arr113 A B) → Tm113 Γ A → Tm113 Γ B;app113 = λ t u Tm113 var113 lam113 app113 → app113 _ _ _ (t Tm113 var113 lam113 app113) (u Tm113 var113 lam113 app113) v0113 : ∀{Γ A} → Tm113 (snoc113 Γ A) A;v0113 = var113 vz113 v1113 : ∀{Γ A B} → Tm113 (snoc113 (snoc113 Γ A) B) A;v1113 = var113 (vs113 vz113) v2113 : ∀{Γ A B C} → Tm113 (snoc113 (snoc113 (snoc113 Γ A) B) C) A;v2113 = var113 (vs113 (vs113 vz113)) v3113 : ∀{Γ A B C D} → Tm113 (snoc113 (snoc113 (snoc113 (snoc113 Γ A) B) C) D) A;v3113 = var113 (vs113 (vs113 (vs113 vz113))) v4113 : ∀{Γ A B C D E} → Tm113 (snoc113 (snoc113 (snoc113 (snoc113 (snoc113 Γ A) B) C) D) E) A;v4113 = var113 (vs113 (vs113 (vs113 (vs113 vz113)))) test113 : ∀{Γ A} → Tm113 Γ (arr113 (arr113 A A) (arr113 A A));test113 = lam113 (lam113 (app113 v1113 (app113 v1113 (app113 v1113 (app113 v1113 (app113 v1113 (app113 v1113 v0113))))))) {-# OPTIONS --type-in-type #-} Ty114 : Set; Ty114 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι114 : Ty114; ι114 = λ _ ι114 _ → ι114 arr114 : Ty114 → Ty114 → Ty114; arr114 = λ A B Ty114 ι114 arr114 → arr114 (A Ty114 ι114 arr114) (B Ty114 ι114 arr114) Con114 : Set;Con114 = (Con114 : Set) (nil : Con114) (snoc : Con114 → Ty114 → Con114) → Con114 nil114 : Con114;nil114 = λ Con114 nil114 snoc → nil114 snoc114 : Con114 → Ty114 → Con114;snoc114 = λ Γ A Con114 nil114 snoc114 → snoc114 (Γ Con114 nil114 snoc114) A Var114 : Con114 → Ty114 → Set;Var114 = λ Γ A → (Var114 : Con114 → Ty114 → Set) (vz : (Γ : _)(A : _) → Var114 (snoc114 Γ A) A) (vs : (Γ : _)(B A : _) → Var114 Γ A → Var114 (snoc114 Γ B) A) → Var114 Γ A vz114 : ∀{Γ A} → Var114 (snoc114 Γ A) A;vz114 = λ Var114 vz114 vs → vz114 _ _ vs114 : ∀{Γ B A} → Var114 Γ A → Var114 (snoc114 Γ B) A;vs114 = λ x Var114 vz114 vs114 → vs114 _ _ _ (x Var114 vz114 vs114) Tm114 : Con114 → Ty114 → Set;Tm114 = λ Γ A → (Tm114 : Con114 → Ty114 → Set) (var : (Γ : _) (A : _) → Var114 Γ A → Tm114 Γ A) (lam : (Γ : _) (A B : _) → Tm114 (snoc114 Γ A) B → Tm114 Γ (arr114 A B)) (app : (Γ : _) (A B : _) → Tm114 Γ (arr114 A B) → Tm114 Γ A → Tm114 Γ B) → Tm114 Γ A var114 : ∀{Γ A} → Var114 Γ A → Tm114 Γ A;var114 = λ x Tm114 var114 lam app → var114 _ _ x lam114 : ∀{Γ A B} → Tm114 (snoc114 Γ A) B → Tm114 Γ (arr114 A B);lam114 = λ t Tm114 var114 lam114 app → lam114 _ _ _ (t Tm114 var114 lam114 app) app114 : ∀{Γ A B} → Tm114 Γ (arr114 A B) → Tm114 Γ A → Tm114 Γ B;app114 = λ t u Tm114 var114 lam114 app114 → app114 _ _ _ (t Tm114 var114 lam114 app114) (u Tm114 var114 lam114 app114) v0114 : ∀{Γ A} → Tm114 (snoc114 Γ A) A;v0114 = var114 vz114 v1114 : ∀{Γ A B} → Tm114 (snoc114 (snoc114 Γ A) B) A;v1114 = var114 (vs114 vz114) v2114 : ∀{Γ A B C} → Tm114 (snoc114 (snoc114 (snoc114 Γ A) B) C) A;v2114 = var114 (vs114 (vs114 vz114)) v3114 : ∀{Γ A B C D} → Tm114 (snoc114 (snoc114 (snoc114 (snoc114 Γ A) B) C) D) A;v3114 = var114 (vs114 (vs114 (vs114 vz114))) v4114 : ∀{Γ A B C D E} → Tm114 (snoc114 (snoc114 (snoc114 (snoc114 (snoc114 Γ A) B) C) D) E) A;v4114 = var114 (vs114 (vs114 (vs114 (vs114 vz114)))) test114 : ∀{Γ A} → Tm114 Γ (arr114 (arr114 A A) (arr114 A A));test114 = lam114 (lam114 (app114 v1114 (app114 v1114 (app114 v1114 (app114 v1114 (app114 v1114 (app114 v1114 v0114))))))) {-# OPTIONS --type-in-type #-} Ty115 : Set; Ty115 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι115 : Ty115; ι115 = λ _ ι115 _ → ι115 arr115 : Ty115 → Ty115 → Ty115; arr115 = λ A B Ty115 ι115 arr115 → arr115 (A Ty115 ι115 arr115) (B Ty115 ι115 arr115) Con115 : Set;Con115 = (Con115 : Set) (nil : Con115) (snoc : Con115 → Ty115 → Con115) → Con115 nil115 : Con115;nil115 = λ Con115 nil115 snoc → nil115 snoc115 : Con115 → Ty115 → Con115;snoc115 = λ Γ A Con115 nil115 snoc115 → snoc115 (Γ Con115 nil115 snoc115) A Var115 : Con115 → Ty115 → Set;Var115 = λ Γ A → (Var115 : Con115 → Ty115 → Set) (vz : (Γ : _)(A : _) → Var115 (snoc115 Γ A) A) (vs : (Γ : _)(B A : _) → Var115 Γ A → Var115 (snoc115 Γ B) A) → Var115 Γ A vz115 : ∀{Γ A} → Var115 (snoc115 Γ A) A;vz115 = λ Var115 vz115 vs → vz115 _ _ vs115 : ∀{Γ B A} → Var115 Γ A → Var115 (snoc115 Γ B) A;vs115 = λ x Var115 vz115 vs115 → vs115 _ _ _ (x Var115 vz115 vs115) Tm115 : Con115 → Ty115 → Set;Tm115 = λ Γ A → (Tm115 : Con115 → Ty115 → Set) (var : (Γ : _) (A : _) → Var115 Γ A → Tm115 Γ A) (lam : (Γ : _) (A B : _) → Tm115 (snoc115 Γ A) B → Tm115 Γ (arr115 A B)) (app : (Γ : _) (A B : _) → Tm115 Γ (arr115 A B) → Tm115 Γ A → Tm115 Γ B) → Tm115 Γ A var115 : ∀{Γ A} → Var115 Γ A → Tm115 Γ A;var115 = λ x Tm115 var115 lam app → var115 _ _ x lam115 : ∀{Γ A B} → Tm115 (snoc115 Γ A) B → Tm115 Γ (arr115 A B);lam115 = λ t Tm115 var115 lam115 app → lam115 _ _ _ (t Tm115 var115 lam115 app) app115 : ∀{Γ A B} → Tm115 Γ (arr115 A B) → Tm115 Γ A → Tm115 Γ B;app115 = λ t u Tm115 var115 lam115 app115 → app115 _ _ _ (t Tm115 var115 lam115 app115) (u Tm115 var115 lam115 app115) v0115 : ∀{Γ A} → Tm115 (snoc115 Γ A) A;v0115 = var115 vz115 v1115 : ∀{Γ A B} → Tm115 (snoc115 (snoc115 Γ A) B) A;v1115 = var115 (vs115 vz115) v2115 : ∀{Γ A B C} → Tm115 (snoc115 (snoc115 (snoc115 Γ A) B) C) A;v2115 = var115 (vs115 (vs115 vz115)) v3115 : ∀{Γ A B C D} → Tm115 (snoc115 (snoc115 (snoc115 (snoc115 Γ A) B) C) D) A;v3115 = var115 (vs115 (vs115 (vs115 vz115))) v4115 : ∀{Γ A B C D E} → Tm115 (snoc115 (snoc115 (snoc115 (snoc115 (snoc115 Γ A) B) C) D) E) A;v4115 = var115 (vs115 (vs115 (vs115 (vs115 vz115)))) test115 : ∀{Γ A} → Tm115 Γ (arr115 (arr115 A A) (arr115 A A));test115 = lam115 (lam115 (app115 v1115 (app115 v1115 (app115 v1115 (app115 v1115 (app115 v1115 (app115 v1115 v0115))))))) {-# OPTIONS --type-in-type #-} Ty116 : Set; Ty116 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι116 : Ty116; ι116 = λ _ ι116 _ → ι116 arr116 : Ty116 → Ty116 → Ty116; arr116 = λ A B Ty116 ι116 arr116 → arr116 (A Ty116 ι116 arr116) (B Ty116 ι116 arr116) Con116 : Set;Con116 = (Con116 : Set) (nil : Con116) (snoc : Con116 → Ty116 → Con116) → Con116 nil116 : Con116;nil116 = λ Con116 nil116 snoc → nil116 snoc116 : Con116 → Ty116 → Con116;snoc116 = λ Γ A Con116 nil116 snoc116 → snoc116 (Γ Con116 nil116 snoc116) A Var116 : Con116 → Ty116 → Set;Var116 = λ Γ A → (Var116 : Con116 → Ty116 → Set) (vz : (Γ : _)(A : _) → Var116 (snoc116 Γ A) A) (vs : (Γ : _)(B A : _) → Var116 Γ A → Var116 (snoc116 Γ B) A) → Var116 Γ A vz116 : ∀{Γ A} → Var116 (snoc116 Γ A) A;vz116 = λ Var116 vz116 vs → vz116 _ _ vs116 : ∀{Γ B A} → Var116 Γ A → Var116 (snoc116 Γ B) A;vs116 = λ x Var116 vz116 vs116 → vs116 _ _ _ (x Var116 vz116 vs116) Tm116 : Con116 → Ty116 → Set;Tm116 = λ Γ A → (Tm116 : Con116 → Ty116 → Set) (var : (Γ : _) (A : _) → Var116 Γ A → Tm116 Γ A) (lam : (Γ : _) (A B : _) → Tm116 (snoc116 Γ A) B → Tm116 Γ (arr116 A B)) (app : (Γ : _) (A B : _) → Tm116 Γ (arr116 A B) → Tm116 Γ A → Tm116 Γ B) → Tm116 Γ A var116 : ∀{Γ A} → Var116 Γ A → Tm116 Γ A;var116 = λ x Tm116 var116 lam app → var116 _ _ x lam116 : ∀{Γ A B} → Tm116 (snoc116 Γ A) B → Tm116 Γ (arr116 A B);lam116 = λ t Tm116 var116 lam116 app → lam116 _ _ _ (t Tm116 var116 lam116 app) app116 : ∀{Γ A B} → Tm116 Γ (arr116 A B) → Tm116 Γ A → Tm116 Γ B;app116 = λ t u Tm116 var116 lam116 app116 → app116 _ _ _ (t Tm116 var116 lam116 app116) (u Tm116 var116 lam116 app116) v0116 : ∀{Γ A} → Tm116 (snoc116 Γ A) A;v0116 = var116 vz116 v1116 : ∀{Γ A B} → Tm116 (snoc116 (snoc116 Γ A) B) A;v1116 = var116 (vs116 vz116) v2116 : ∀{Γ A B C} → Tm116 (snoc116 (snoc116 (snoc116 Γ A) B) C) A;v2116 = var116 (vs116 (vs116 vz116)) v3116 : ∀{Γ A B C D} → Tm116 (snoc116 (snoc116 (snoc116 (snoc116 Γ A) B) C) D) A;v3116 = var116 (vs116 (vs116 (vs116 vz116))) v4116 : ∀{Γ A B C D E} → Tm116 (snoc116 (snoc116 (snoc116 (snoc116 (snoc116 Γ A) B) C) D) E) A;v4116 = var116 (vs116 (vs116 (vs116 (vs116 vz116)))) test116 : ∀{Γ A} → Tm116 Γ (arr116 (arr116 A A) (arr116 A A));test116 = lam116 (lam116 (app116 v1116 (app116 v1116 (app116 v1116 (app116 v1116 (app116 v1116 (app116 v1116 v0116))))))) {-# OPTIONS --type-in-type #-} Ty117 : Set; Ty117 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι117 : Ty117; ι117 = λ _ ι117 _ → ι117 arr117 : Ty117 → Ty117 → Ty117; arr117 = λ A B Ty117 ι117 arr117 → arr117 (A Ty117 ι117 arr117) (B Ty117 ι117 arr117) Con117 : Set;Con117 = (Con117 : Set) (nil : Con117) (snoc : Con117 → Ty117 → Con117) → Con117 nil117 : Con117;nil117 = λ Con117 nil117 snoc → nil117 snoc117 : Con117 → Ty117 → Con117;snoc117 = λ Γ A Con117 nil117 snoc117 → snoc117 (Γ Con117 nil117 snoc117) A Var117 : Con117 → Ty117 → Set;Var117 = λ Γ A → (Var117 : Con117 → Ty117 → Set) (vz : (Γ : _)(A : _) → Var117 (snoc117 Γ A) A) (vs : (Γ : _)(B A : _) → Var117 Γ A → Var117 (snoc117 Γ B) A) → Var117 Γ A vz117 : ∀{Γ A} → Var117 (snoc117 Γ A) A;vz117 = λ Var117 vz117 vs → vz117 _ _ vs117 : ∀{Γ B A} → Var117 Γ A → Var117 (snoc117 Γ B) A;vs117 = λ x Var117 vz117 vs117 → vs117 _ _ _ (x Var117 vz117 vs117) Tm117 : Con117 → Ty117 → Set;Tm117 = λ Γ A → (Tm117 : Con117 → Ty117 → Set) (var : (Γ : _) (A : _) → Var117 Γ A → Tm117 Γ A) (lam : (Γ : _) (A B : _) → Tm117 (snoc117 Γ A) B → Tm117 Γ (arr117 A B)) (app : (Γ : _) (A B : _) → Tm117 Γ (arr117 A B) → Tm117 Γ A → Tm117 Γ B) → Tm117 Γ A var117 : ∀{Γ A} → Var117 Γ A → Tm117 Γ A;var117 = λ x Tm117 var117 lam app → var117 _ _ x lam117 : ∀{Γ A B} → Tm117 (snoc117 Γ A) B → Tm117 Γ (arr117 A B);lam117 = λ t Tm117 var117 lam117 app → lam117 _ _ _ (t Tm117 var117 lam117 app) app117 : ∀{Γ A B} → Tm117 Γ (arr117 A B) → Tm117 Γ A → Tm117 Γ B;app117 = λ t u Tm117 var117 lam117 app117 → app117 _ _ _ (t Tm117 var117 lam117 app117) (u Tm117 var117 lam117 app117) v0117 : ∀{Γ A} → Tm117 (snoc117 Γ A) A;v0117 = var117 vz117 v1117 : ∀{Γ A B} → Tm117 (snoc117 (snoc117 Γ A) B) A;v1117 = var117 (vs117 vz117) v2117 : ∀{Γ A B C} → Tm117 (snoc117 (snoc117 (snoc117 Γ A) B) C) A;v2117 = var117 (vs117 (vs117 vz117)) v3117 : ∀{Γ A B C D} → Tm117 (snoc117 (snoc117 (snoc117 (snoc117 Γ A) B) C) D) A;v3117 = var117 (vs117 (vs117 (vs117 vz117))) v4117 : ∀{Γ A B C D E} → Tm117 (snoc117 (snoc117 (snoc117 (snoc117 (snoc117 Γ A) B) C) D) E) A;v4117 = var117 (vs117 (vs117 (vs117 (vs117 vz117)))) test117 : ∀{Γ A} → Tm117 Γ (arr117 (arr117 A A) (arr117 A A));test117 = lam117 (lam117 (app117 v1117 (app117 v1117 (app117 v1117 (app117 v1117 (app117 v1117 (app117 v1117 v0117))))))) {-# OPTIONS --type-in-type #-} Ty118 : Set; Ty118 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι118 : Ty118; ι118 = λ _ ι118 _ → ι118 arr118 : Ty118 → Ty118 → Ty118; arr118 = λ A B Ty118 ι118 arr118 → arr118 (A Ty118 ι118 arr118) (B Ty118 ι118 arr118) Con118 : Set;Con118 = (Con118 : Set) (nil : Con118) (snoc : Con118 → Ty118 → Con118) → Con118 nil118 : Con118;nil118 = λ Con118 nil118 snoc → nil118 snoc118 : Con118 → Ty118 → Con118;snoc118 = λ Γ A Con118 nil118 snoc118 → snoc118 (Γ Con118 nil118 snoc118) A Var118 : Con118 → Ty118 → Set;Var118 = λ Γ A → (Var118 : Con118 → Ty118 → Set) (vz : (Γ : _)(A : _) → Var118 (snoc118 Γ A) A) (vs : (Γ : _)(B A : _) → Var118 Γ A → Var118 (snoc118 Γ B) A) → Var118 Γ A vz118 : ∀{Γ A} → Var118 (snoc118 Γ A) A;vz118 = λ Var118 vz118 vs → vz118 _ _ vs118 : ∀{Γ B A} → Var118 Γ A → Var118 (snoc118 Γ B) A;vs118 = λ x Var118 vz118 vs118 → vs118 _ _ _ (x Var118 vz118 vs118) Tm118 : Con118 → Ty118 → Set;Tm118 = λ Γ A → (Tm118 : Con118 → Ty118 → Set) (var : (Γ : _) (A : _) → Var118 Γ A → Tm118 Γ A) (lam : (Γ : _) (A B : _) → Tm118 (snoc118 Γ A) B → Tm118 Γ (arr118 A B)) (app : (Γ : _) (A B : _) → Tm118 Γ (arr118 A B) → Tm118 Γ A → Tm118 Γ B) → Tm118 Γ A var118 : ∀{Γ A} → Var118 Γ A → Tm118 Γ A;var118 = λ x Tm118 var118 lam app → var118 _ _ x lam118 : ∀{Γ A B} → Tm118 (snoc118 Γ A) B → Tm118 Γ (arr118 A B);lam118 = λ t Tm118 var118 lam118 app → lam118 _ _ _ (t Tm118 var118 lam118 app) app118 : ∀{Γ A B} → Tm118 Γ (arr118 A B) → Tm118 Γ A → Tm118 Γ B;app118 = λ t u Tm118 var118 lam118 app118 → app118 _ _ _ (t Tm118 var118 lam118 app118) (u Tm118 var118 lam118 app118) v0118 : ∀{Γ A} → Tm118 (snoc118 Γ A) A;v0118 = var118 vz118 v1118 : ∀{Γ A B} → Tm118 (snoc118 (snoc118 Γ A) B) A;v1118 = var118 (vs118 vz118) v2118 : ∀{Γ A B C} → Tm118 (snoc118 (snoc118 (snoc118 Γ A) B) C) A;v2118 = var118 (vs118 (vs118 vz118)) v3118 : ∀{Γ A B C D} → Tm118 (snoc118 (snoc118 (snoc118 (snoc118 Γ A) B) C) D) A;v3118 = var118 (vs118 (vs118 (vs118 vz118))) v4118 : ∀{Γ A B C D E} → Tm118 (snoc118 (snoc118 (snoc118 (snoc118 (snoc118 Γ A) B) C) D) E) A;v4118 = var118 (vs118 (vs118 (vs118 (vs118 vz118)))) test118 : ∀{Γ A} → Tm118 Γ (arr118 (arr118 A A) (arr118 A A));test118 = lam118 (lam118 (app118 v1118 (app118 v1118 (app118 v1118 (app118 v1118 (app118 v1118 (app118 v1118 v0118))))))) {-# OPTIONS --type-in-type #-} Ty119 : Set; Ty119 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι119 : Ty119; ι119 = λ _ ι119 _ → ι119 arr119 : Ty119 → Ty119 → Ty119; arr119 = λ A B Ty119 ι119 arr119 → arr119 (A Ty119 ι119 arr119) (B Ty119 ι119 arr119) Con119 : Set;Con119 = (Con119 : Set) (nil : Con119) (snoc : Con119 → Ty119 → Con119) → Con119 nil119 : Con119;nil119 = λ Con119 nil119 snoc → nil119 snoc119 : Con119 → Ty119 → Con119;snoc119 = λ Γ A Con119 nil119 snoc119 → snoc119 (Γ Con119 nil119 snoc119) A Var119 : Con119 → Ty119 → Set;Var119 = λ Γ A → (Var119 : Con119 → Ty119 → Set) (vz : (Γ : _)(A : _) → Var119 (snoc119 Γ A) A) (vs : (Γ : _)(B A : _) → Var119 Γ A → Var119 (snoc119 Γ B) A) → Var119 Γ A vz119 : ∀{Γ A} → Var119 (snoc119 Γ A) A;vz119 = λ Var119 vz119 vs → vz119 _ _ vs119 : ∀{Γ B A} → Var119 Γ A → Var119 (snoc119 Γ B) A;vs119 = λ x Var119 vz119 vs119 → vs119 _ _ _ (x Var119 vz119 vs119) Tm119 : Con119 → Ty119 → Set;Tm119 = λ Γ A → (Tm119 : Con119 → Ty119 → Set) (var : (Γ : _) (A : _) → Var119 Γ A → Tm119 Γ A) (lam : (Γ : _) (A B : _) → Tm119 (snoc119 Γ A) B → Tm119 Γ (arr119 A B)) (app : (Γ : _) (A B : _) → Tm119 Γ (arr119 A B) → Tm119 Γ A → Tm119 Γ B) → Tm119 Γ A var119 : ∀{Γ A} → Var119 Γ A → Tm119 Γ A;var119 = λ x Tm119 var119 lam app → var119 _ _ x lam119 : ∀{Γ A B} → Tm119 (snoc119 Γ A) B → Tm119 Γ (arr119 A B);lam119 = λ t Tm119 var119 lam119 app → lam119 _ _ _ (t Tm119 var119 lam119 app) app119 : ∀{Γ A B} → Tm119 Γ (arr119 A B) → Tm119 Γ A → Tm119 Γ B;app119 = λ t u Tm119 var119 lam119 app119 → app119 _ _ _ (t Tm119 var119 lam119 app119) (u Tm119 var119 lam119 app119) v0119 : ∀{Γ A} → Tm119 (snoc119 Γ A) A;v0119 = var119 vz119 v1119 : ∀{Γ A B} → Tm119 (snoc119 (snoc119 Γ A) B) A;v1119 = var119 (vs119 vz119) v2119 : ∀{Γ A B C} → Tm119 (snoc119 (snoc119 (snoc119 Γ A) B) C) A;v2119 = var119 (vs119 (vs119 vz119)) v3119 : ∀{Γ A B C D} → Tm119 (snoc119 (snoc119 (snoc119 (snoc119 Γ A) B) C) D) A;v3119 = var119 (vs119 (vs119 (vs119 vz119))) v4119 : ∀{Γ A B C D E} → Tm119 (snoc119 (snoc119 (snoc119 (snoc119 (snoc119 Γ A) B) C) D) E) A;v4119 = var119 (vs119 (vs119 (vs119 (vs119 vz119)))) test119 : ∀{Γ A} → Tm119 Γ (arr119 (arr119 A A) (arr119 A A));test119 = lam119 (lam119 (app119 v1119 (app119 v1119 (app119 v1119 (app119 v1119 (app119 v1119 (app119 v1119 v0119))))))) {-# OPTIONS --type-in-type #-} Ty120 : Set; Ty120 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι120 : Ty120; ι120 = λ _ ι120 _ → ι120 arr120 : Ty120 → Ty120 → Ty120; arr120 = λ A B Ty120 ι120 arr120 → arr120 (A Ty120 ι120 arr120) (B Ty120 ι120 arr120) Con120 : Set;Con120 = (Con120 : Set) (nil : Con120) (snoc : Con120 → Ty120 → Con120) → Con120 nil120 : Con120;nil120 = λ Con120 nil120 snoc → nil120 snoc120 : Con120 → Ty120 → Con120;snoc120 = λ Γ A Con120 nil120 snoc120 → snoc120 (Γ Con120 nil120 snoc120) A Var120 : Con120 → Ty120 → Set;Var120 = λ Γ A → (Var120 : Con120 → Ty120 → Set) (vz : (Γ : _)(A : _) → Var120 (snoc120 Γ A) A) (vs : (Γ : _)(B A : _) → Var120 Γ A → Var120 (snoc120 Γ B) A) → Var120 Γ A vz120 : ∀{Γ A} → Var120 (snoc120 Γ A) A;vz120 = λ Var120 vz120 vs → vz120 _ _ vs120 : ∀{Γ B A} → Var120 Γ A → Var120 (snoc120 Γ B) A;vs120 = λ x Var120 vz120 vs120 → vs120 _ _ _ (x Var120 vz120 vs120) Tm120 : Con120 → Ty120 → Set;Tm120 = λ Γ A → (Tm120 : Con120 → Ty120 → Set) (var : (Γ : _) (A : _) → Var120 Γ A → Tm120 Γ A) (lam : (Γ : _) (A B : _) → Tm120 (snoc120 Γ A) B → Tm120 Γ (arr120 A B)) (app : (Γ : _) (A B : _) → Tm120 Γ (arr120 A B) → Tm120 Γ A → Tm120 Γ B) → Tm120 Γ A var120 : ∀{Γ A} → Var120 Γ A → Tm120 Γ A;var120 = λ x Tm120 var120 lam app → var120 _ _ x lam120 : ∀{Γ A B} → Tm120 (snoc120 Γ A) B → Tm120 Γ (arr120 A B);lam120 = λ t Tm120 var120 lam120 app → lam120 _ _ _ (t Tm120 var120 lam120 app) app120 : ∀{Γ A B} → Tm120 Γ (arr120 A B) → Tm120 Γ A → Tm120 Γ B;app120 = λ t u Tm120 var120 lam120 app120 → app120 _ _ _ (t Tm120 var120 lam120 app120) (u Tm120 var120 lam120 app120) v0120 : ∀{Γ A} → Tm120 (snoc120 Γ A) A;v0120 = var120 vz120 v1120 : ∀{Γ A B} → Tm120 (snoc120 (snoc120 Γ A) B) A;v1120 = var120 (vs120 vz120) v2120 : ∀{Γ A B C} → Tm120 (snoc120 (snoc120 (snoc120 Γ A) B) C) A;v2120 = var120 (vs120 (vs120 vz120)) v3120 : ∀{Γ A B C D} → Tm120 (snoc120 (snoc120 (snoc120 (snoc120 Γ A) B) C) D) A;v3120 = var120 (vs120 (vs120 (vs120 vz120))) v4120 : ∀{Γ A B C D E} → Tm120 (snoc120 (snoc120 (snoc120 (snoc120 (snoc120 Γ A) B) C) D) E) A;v4120 = var120 (vs120 (vs120 (vs120 (vs120 vz120)))) test120 : ∀{Γ A} → Tm120 Γ (arr120 (arr120 A A) (arr120 A A));test120 = lam120 (lam120 (app120 v1120 (app120 v1120 (app120 v1120 (app120 v1120 (app120 v1120 (app120 v1120 v0120))))))) {-# OPTIONS --type-in-type #-} Ty121 : Set; Ty121 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι121 : Ty121; ι121 = λ _ ι121 _ → ι121 arr121 : Ty121 → Ty121 → Ty121; arr121 = λ A B Ty121 ι121 arr121 → arr121 (A Ty121 ι121 arr121) (B Ty121 ι121 arr121) Con121 : Set;Con121 = (Con121 : Set) (nil : Con121) (snoc : Con121 → Ty121 → Con121) → Con121 nil121 : Con121;nil121 = λ Con121 nil121 snoc → nil121 snoc121 : Con121 → Ty121 → Con121;snoc121 = λ Γ A Con121 nil121 snoc121 → snoc121 (Γ Con121 nil121 snoc121) A Var121 : Con121 → Ty121 → Set;Var121 = λ Γ A → (Var121 : Con121 → Ty121 → Set) (vz : (Γ : _)(A : _) → Var121 (snoc121 Γ A) A) (vs : (Γ : _)(B A : _) → Var121 Γ A → Var121 (snoc121 Γ B) A) → Var121 Γ A vz121 : ∀{Γ A} → Var121 (snoc121 Γ A) A;vz121 = λ Var121 vz121 vs → vz121 _ _ vs121 : ∀{Γ B A} → Var121 Γ A → Var121 (snoc121 Γ B) A;vs121 = λ x Var121 vz121 vs121 → vs121 _ _ _ (x Var121 vz121 vs121) Tm121 : Con121 → Ty121 → Set;Tm121 = λ Γ A → (Tm121 : Con121 → Ty121 → Set) (var : (Γ : _) (A : _) → Var121 Γ A → Tm121 Γ A) (lam : (Γ : _) (A B : _) → Tm121 (snoc121 Γ A) B → Tm121 Γ (arr121 A B)) (app : (Γ : _) (A B : _) → Tm121 Γ (arr121 A B) → Tm121 Γ A → Tm121 Γ B) → Tm121 Γ A var121 : ∀{Γ A} → Var121 Γ A → Tm121 Γ A;var121 = λ x Tm121 var121 lam app → var121 _ _ x lam121 : ∀{Γ A B} → Tm121 (snoc121 Γ A) B → Tm121 Γ (arr121 A B);lam121 = λ t Tm121 var121 lam121 app → lam121 _ _ _ (t Tm121 var121 lam121 app) app121 : ∀{Γ A B} → Tm121 Γ (arr121 A B) → Tm121 Γ A → Tm121 Γ B;app121 = λ t u Tm121 var121 lam121 app121 → app121 _ _ _ (t Tm121 var121 lam121 app121) (u Tm121 var121 lam121 app121) v0121 : ∀{Γ A} → Tm121 (snoc121 Γ A) A;v0121 = var121 vz121 v1121 : ∀{Γ A B} → Tm121 (snoc121 (snoc121 Γ A) B) A;v1121 = var121 (vs121 vz121) v2121 : ∀{Γ A B C} → Tm121 (snoc121 (snoc121 (snoc121 Γ A) B) C) A;v2121 = var121 (vs121 (vs121 vz121)) v3121 : ∀{Γ A B C D} → Tm121 (snoc121 (snoc121 (snoc121 (snoc121 Γ A) B) C) D) A;v3121 = var121 (vs121 (vs121 (vs121 vz121))) v4121 : ∀{Γ A B C D E} → Tm121 (snoc121 (snoc121 (snoc121 (snoc121 (snoc121 Γ A) B) C) D) E) A;v4121 = var121 (vs121 (vs121 (vs121 (vs121 vz121)))) test121 : ∀{Γ A} → Tm121 Γ (arr121 (arr121 A A) (arr121 A A));test121 = lam121 (lam121 (app121 v1121 (app121 v1121 (app121 v1121 (app121 v1121 (app121 v1121 (app121 v1121 v0121))))))) {-# OPTIONS --type-in-type #-} Ty122 : Set; Ty122 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι122 : Ty122; ι122 = λ _ ι122 _ → ι122 arr122 : Ty122 → Ty122 → Ty122; arr122 = λ A B Ty122 ι122 arr122 → arr122 (A Ty122 ι122 arr122) (B Ty122 ι122 arr122) Con122 : Set;Con122 = (Con122 : Set) (nil : Con122) (snoc : Con122 → Ty122 → Con122) → Con122 nil122 : Con122;nil122 = λ Con122 nil122 snoc → nil122 snoc122 : Con122 → Ty122 → Con122;snoc122 = λ Γ A Con122 nil122 snoc122 → snoc122 (Γ Con122 nil122 snoc122) A Var122 : Con122 → Ty122 → Set;Var122 = λ Γ A → (Var122 : Con122 → Ty122 → Set) (vz : (Γ : _)(A : _) → Var122 (snoc122 Γ A) A) (vs : (Γ : _)(B A : _) → Var122 Γ A → Var122 (snoc122 Γ B) A) → Var122 Γ A vz122 : ∀{Γ A} → Var122 (snoc122 Γ A) A;vz122 = λ Var122 vz122 vs → vz122 _ _ vs122 : ∀{Γ B A} → Var122 Γ A → Var122 (snoc122 Γ B) A;vs122 = λ x Var122 vz122 vs122 → vs122 _ _ _ (x Var122 vz122 vs122) Tm122 : Con122 → Ty122 → Set;Tm122 = λ Γ A → (Tm122 : Con122 → Ty122 → Set) (var : (Γ : _) (A : _) → Var122 Γ A → Tm122 Γ A) (lam : (Γ : _) (A B : _) → Tm122 (snoc122 Γ A) B → Tm122 Γ (arr122 A B)) (app : (Γ : _) (A B : _) → Tm122 Γ (arr122 A B) → Tm122 Γ A → Tm122 Γ B) → Tm122 Γ A var122 : ∀{Γ A} → Var122 Γ A → Tm122 Γ A;var122 = λ x Tm122 var122 lam app → var122 _ _ x lam122 : ∀{Γ A B} → Tm122 (snoc122 Γ A) B → Tm122 Γ (arr122 A B);lam122 = λ t Tm122 var122 lam122 app → lam122 _ _ _ (t Tm122 var122 lam122 app) app122 : ∀{Γ A B} → Tm122 Γ (arr122 A B) → Tm122 Γ A → Tm122 Γ B;app122 = λ t u Tm122 var122 lam122 app122 → app122 _ _ _ (t Tm122 var122 lam122 app122) (u Tm122 var122 lam122 app122) v0122 : ∀{Γ A} → Tm122 (snoc122 Γ A) A;v0122 = var122 vz122 v1122 : ∀{Γ A B} → Tm122 (snoc122 (snoc122 Γ A) B) A;v1122 = var122 (vs122 vz122) v2122 : ∀{Γ A B C} → Tm122 (snoc122 (snoc122 (snoc122 Γ A) B) C) A;v2122 = var122 (vs122 (vs122 vz122)) v3122 : ∀{Γ A B C D} → Tm122 (snoc122 (snoc122 (snoc122 (snoc122 Γ A) B) C) D) A;v3122 = var122 (vs122 (vs122 (vs122 vz122))) v4122 : ∀{Γ A B C D E} → Tm122 (snoc122 (snoc122 (snoc122 (snoc122 (snoc122 Γ A) B) C) D) E) A;v4122 = var122 (vs122 (vs122 (vs122 (vs122 vz122)))) test122 : ∀{Γ A} → Tm122 Γ (arr122 (arr122 A A) (arr122 A A));test122 = lam122 (lam122 (app122 v1122 (app122 v1122 (app122 v1122 (app122 v1122 (app122 v1122 (app122 v1122 v0122))))))) {-# OPTIONS --type-in-type #-} Ty123 : Set; Ty123 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι123 : Ty123; ι123 = λ _ ι123 _ → ι123 arr123 : Ty123 → Ty123 → Ty123; arr123 = λ A B Ty123 ι123 arr123 → arr123 (A Ty123 ι123 arr123) (B Ty123 ι123 arr123) Con123 : Set;Con123 = (Con123 : Set) (nil : Con123) (snoc : Con123 → Ty123 → Con123) → Con123 nil123 : Con123;nil123 = λ Con123 nil123 snoc → nil123 snoc123 : Con123 → Ty123 → Con123;snoc123 = λ Γ A Con123 nil123 snoc123 → snoc123 (Γ Con123 nil123 snoc123) A Var123 : Con123 → Ty123 → Set;Var123 = λ Γ A → (Var123 : Con123 → Ty123 → Set) (vz : (Γ : _)(A : _) → Var123 (snoc123 Γ A) A) (vs : (Γ : _)(B A : _) → Var123 Γ A → Var123 (snoc123 Γ B) A) → Var123 Γ A vz123 : ∀{Γ A} → Var123 (snoc123 Γ A) A;vz123 = λ Var123 vz123 vs → vz123 _ _ vs123 : ∀{Γ B A} → Var123 Γ A → Var123 (snoc123 Γ B) A;vs123 = λ x Var123 vz123 vs123 → vs123 _ _ _ (x Var123 vz123 vs123) Tm123 : Con123 → Ty123 → Set;Tm123 = λ Γ A → (Tm123 : Con123 → Ty123 → Set) (var : (Γ : _) (A : _) → Var123 Γ A → Tm123 Γ A) (lam : (Γ : _) (A B : _) → Tm123 (snoc123 Γ A) B → Tm123 Γ (arr123 A B)) (app : (Γ : _) (A B : _) → Tm123 Γ (arr123 A B) → Tm123 Γ A → Tm123 Γ B) → Tm123 Γ A var123 : ∀{Γ A} → Var123 Γ A → Tm123 Γ A;var123 = λ x Tm123 var123 lam app → var123 _ _ x lam123 : ∀{Γ A B} → Tm123 (snoc123 Γ A) B → Tm123 Γ (arr123 A B);lam123 = λ t Tm123 var123 lam123 app → lam123 _ _ _ (t Tm123 var123 lam123 app) app123 : ∀{Γ A B} → Tm123 Γ (arr123 A B) → Tm123 Γ A → Tm123 Γ B;app123 = λ t u Tm123 var123 lam123 app123 → app123 _ _ _ (t Tm123 var123 lam123 app123) (u Tm123 var123 lam123 app123) v0123 : ∀{Γ A} → Tm123 (snoc123 Γ A) A;v0123 = var123 vz123 v1123 : ∀{Γ A B} → Tm123 (snoc123 (snoc123 Γ A) B) A;v1123 = var123 (vs123 vz123) v2123 : ∀{Γ A B C} → Tm123 (snoc123 (snoc123 (snoc123 Γ A) B) C) A;v2123 = var123 (vs123 (vs123 vz123)) v3123 : ∀{Γ A B C D} → Tm123 (snoc123 (snoc123 (snoc123 (snoc123 Γ A) B) C) D) A;v3123 = var123 (vs123 (vs123 (vs123 vz123))) v4123 : ∀{Γ A B C D E} → Tm123 (snoc123 (snoc123 (snoc123 (snoc123 (snoc123 Γ A) B) C) D) E) A;v4123 = var123 (vs123 (vs123 (vs123 (vs123 vz123)))) test123 : ∀{Γ A} → Tm123 Γ (arr123 (arr123 A A) (arr123 A A));test123 = lam123 (lam123 (app123 v1123 (app123 v1123 (app123 v1123 (app123 v1123 (app123 v1123 (app123 v1123 v0123))))))) {-# OPTIONS --type-in-type #-} Ty124 : Set; Ty124 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι124 : Ty124; ι124 = λ _ ι124 _ → ι124 arr124 : Ty124 → Ty124 → Ty124; arr124 = λ A B Ty124 ι124 arr124 → arr124 (A Ty124 ι124 arr124) (B Ty124 ι124 arr124) Con124 : Set;Con124 = (Con124 : Set) (nil : Con124) (snoc : Con124 → Ty124 → Con124) → Con124 nil124 : Con124;nil124 = λ Con124 nil124 snoc → nil124 snoc124 : Con124 → Ty124 → Con124;snoc124 = λ Γ A Con124 nil124 snoc124 → snoc124 (Γ Con124 nil124 snoc124) A Var124 : Con124 → Ty124 → Set;Var124 = λ Γ A → (Var124 : Con124 → Ty124 → Set) (vz : (Γ : _)(A : _) → Var124 (snoc124 Γ A) A) (vs : (Γ : _)(B A : _) → Var124 Γ A → Var124 (snoc124 Γ B) A) → Var124 Γ A vz124 : ∀{Γ A} → Var124 (snoc124 Γ A) A;vz124 = λ Var124 vz124 vs → vz124 _ _ vs124 : ∀{Γ B A} → Var124 Γ A → Var124 (snoc124 Γ B) A;vs124 = λ x Var124 vz124 vs124 → vs124 _ _ _ (x Var124 vz124 vs124) Tm124 : Con124 → Ty124 → Set;Tm124 = λ Γ A → (Tm124 : Con124 → Ty124 → Set) (var : (Γ : _) (A : _) → Var124 Γ A → Tm124 Γ A) (lam : (Γ : _) (A B : _) → Tm124 (snoc124 Γ A) B → Tm124 Γ (arr124 A B)) (app : (Γ : _) (A B : _) → Tm124 Γ (arr124 A B) → Tm124 Γ A → Tm124 Γ B) → Tm124 Γ A var124 : ∀{Γ A} → Var124 Γ A → Tm124 Γ A;var124 = λ x Tm124 var124 lam app → var124 _ _ x lam124 : ∀{Γ A B} → Tm124 (snoc124 Γ A) B → Tm124 Γ (arr124 A B);lam124 = λ t Tm124 var124 lam124 app → lam124 _ _ _ (t Tm124 var124 lam124 app) app124 : ∀{Γ A B} → Tm124 Γ (arr124 A B) → Tm124 Γ A → Tm124 Γ B;app124 = λ t u Tm124 var124 lam124 app124 → app124 _ _ _ (t Tm124 var124 lam124 app124) (u Tm124 var124 lam124 app124) v0124 : ∀{Γ A} → Tm124 (snoc124 Γ A) A;v0124 = var124 vz124 v1124 : ∀{Γ A B} → Tm124 (snoc124 (snoc124 Γ A) B) A;v1124 = var124 (vs124 vz124) v2124 : ∀{Γ A B C} → Tm124 (snoc124 (snoc124 (snoc124 Γ A) B) C) A;v2124 = var124 (vs124 (vs124 vz124)) v3124 : ∀{Γ A B C D} → Tm124 (snoc124 (snoc124 (snoc124 (snoc124 Γ A) B) C) D) A;v3124 = var124 (vs124 (vs124 (vs124 vz124))) v4124 : ∀{Γ A B C D E} → Tm124 (snoc124 (snoc124 (snoc124 (snoc124 (snoc124 Γ A) B) C) D) E) A;v4124 = var124 (vs124 (vs124 (vs124 (vs124 vz124)))) test124 : ∀{Γ A} → Tm124 Γ (arr124 (arr124 A A) (arr124 A A));test124 = lam124 (lam124 (app124 v1124 (app124 v1124 (app124 v1124 (app124 v1124 (app124 v1124 (app124 v1124 v0124))))))) {-# OPTIONS --type-in-type #-} Ty125 : Set; Ty125 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι125 : Ty125; ι125 = λ _ ι125 _ → ι125 arr125 : Ty125 → Ty125 → Ty125; arr125 = λ A B Ty125 ι125 arr125 → arr125 (A Ty125 ι125 arr125) (B Ty125 ι125 arr125) Con125 : Set;Con125 = (Con125 : Set) (nil : Con125) (snoc : Con125 → Ty125 → Con125) → Con125 nil125 : Con125;nil125 = λ Con125 nil125 snoc → nil125 snoc125 : Con125 → Ty125 → Con125;snoc125 = λ Γ A Con125 nil125 snoc125 → snoc125 (Γ Con125 nil125 snoc125) A Var125 : Con125 → Ty125 → Set;Var125 = λ Γ A → (Var125 : Con125 → Ty125 → Set) (vz : (Γ : _)(A : _) → Var125 (snoc125 Γ A) A) (vs : (Γ : _)(B A : _) → Var125 Γ A → Var125 (snoc125 Γ B) A) → Var125 Γ A vz125 : ∀{Γ A} → Var125 (snoc125 Γ A) A;vz125 = λ Var125 vz125 vs → vz125 _ _ vs125 : ∀{Γ B A} → Var125 Γ A → Var125 (snoc125 Γ B) A;vs125 = λ x Var125 vz125 vs125 → vs125 _ _ _ (x Var125 vz125 vs125) Tm125 : Con125 → Ty125 → Set;Tm125 = λ Γ A → (Tm125 : Con125 → Ty125 → Set) (var : (Γ : _) (A : _) → Var125 Γ A → Tm125 Γ A) (lam : (Γ : _) (A B : _) → Tm125 (snoc125 Γ A) B → Tm125 Γ (arr125 A B)) (app : (Γ : _) (A B : _) → Tm125 Γ (arr125 A B) → Tm125 Γ A → Tm125 Γ B) → Tm125 Γ A var125 : ∀{Γ A} → Var125 Γ A → Tm125 Γ A;var125 = λ x Tm125 var125 lam app → var125 _ _ x lam125 : ∀{Γ A B} → Tm125 (snoc125 Γ A) B → Tm125 Γ (arr125 A B);lam125 = λ t Tm125 var125 lam125 app → lam125 _ _ _ (t Tm125 var125 lam125 app) app125 : ∀{Γ A B} → Tm125 Γ (arr125 A B) → Tm125 Γ A → Tm125 Γ B;app125 = λ t u Tm125 var125 lam125 app125 → app125 _ _ _ (t Tm125 var125 lam125 app125) (u Tm125 var125 lam125 app125) v0125 : ∀{Γ A} → Tm125 (snoc125 Γ A) A;v0125 = var125 vz125 v1125 : ∀{Γ A B} → Tm125 (snoc125 (snoc125 Γ A) B) A;v1125 = var125 (vs125 vz125) v2125 : ∀{Γ A B C} → Tm125 (snoc125 (snoc125 (snoc125 Γ A) B) C) A;v2125 = var125 (vs125 (vs125 vz125)) v3125 : ∀{Γ A B C D} → Tm125 (snoc125 (snoc125 (snoc125 (snoc125 Γ A) B) C) D) A;v3125 = var125 (vs125 (vs125 (vs125 vz125))) v4125 : ∀{Γ A B C D E} → Tm125 (snoc125 (snoc125 (snoc125 (snoc125 (snoc125 Γ A) B) C) D) E) A;v4125 = var125 (vs125 (vs125 (vs125 (vs125 vz125)))) test125 : ∀{Γ A} → Tm125 Γ (arr125 (arr125 A A) (arr125 A A));test125 = lam125 (lam125 (app125 v1125 (app125 v1125 (app125 v1125 (app125 v1125 (app125 v1125 (app125 v1125 v0125))))))) {-# OPTIONS --type-in-type #-} Ty126 : Set; Ty126 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι126 : Ty126; ι126 = λ _ ι126 _ → ι126 arr126 : Ty126 → Ty126 → Ty126; arr126 = λ A B Ty126 ι126 arr126 → arr126 (A Ty126 ι126 arr126) (B Ty126 ι126 arr126) Con126 : Set;Con126 = (Con126 : Set) (nil : Con126) (snoc : Con126 → Ty126 → Con126) → Con126 nil126 : Con126;nil126 = λ Con126 nil126 snoc → nil126 snoc126 : Con126 → Ty126 → Con126;snoc126 = λ Γ A Con126 nil126 snoc126 → snoc126 (Γ Con126 nil126 snoc126) A Var126 : Con126 → Ty126 → Set;Var126 = λ Γ A → (Var126 : Con126 → Ty126 → Set) (vz : (Γ : _)(A : _) → Var126 (snoc126 Γ A) A) (vs : (Γ : _)(B A : _) → Var126 Γ A → Var126 (snoc126 Γ B) A) → Var126 Γ A vz126 : ∀{Γ A} → Var126 (snoc126 Γ A) A;vz126 = λ Var126 vz126 vs → vz126 _ _ vs126 : ∀{Γ B A} → Var126 Γ A → Var126 (snoc126 Γ B) A;vs126 = λ x Var126 vz126 vs126 → vs126 _ _ _ (x Var126 vz126 vs126) Tm126 : Con126 → Ty126 → Set;Tm126 = λ Γ A → (Tm126 : Con126 → Ty126 → Set) (var : (Γ : _) (A : _) → Var126 Γ A → Tm126 Γ A) (lam : (Γ : _) (A B : _) → Tm126 (snoc126 Γ A) B → Tm126 Γ (arr126 A B)) (app : (Γ : _) (A B : _) → Tm126 Γ (arr126 A B) → Tm126 Γ A → Tm126 Γ B) → Tm126 Γ A var126 : ∀{Γ A} → Var126 Γ A → Tm126 Γ A;var126 = λ x Tm126 var126 lam app → var126 _ _ x lam126 : ∀{Γ A B} → Tm126 (snoc126 Γ A) B → Tm126 Γ (arr126 A B);lam126 = λ t Tm126 var126 lam126 app → lam126 _ _ _ (t Tm126 var126 lam126 app) app126 : ∀{Γ A B} → Tm126 Γ (arr126 A B) → Tm126 Γ A → Tm126 Γ B;app126 = λ t u Tm126 var126 lam126 app126 → app126 _ _ _ (t Tm126 var126 lam126 app126) (u Tm126 var126 lam126 app126) v0126 : ∀{Γ A} → Tm126 (snoc126 Γ A) A;v0126 = var126 vz126 v1126 : ∀{Γ A B} → Tm126 (snoc126 (snoc126 Γ A) B) A;v1126 = var126 (vs126 vz126) v2126 : ∀{Γ A B C} → Tm126 (snoc126 (snoc126 (snoc126 Γ A) B) C) A;v2126 = var126 (vs126 (vs126 vz126)) v3126 : ∀{Γ A B C D} → Tm126 (snoc126 (snoc126 (snoc126 (snoc126 Γ A) B) C) D) A;v3126 = var126 (vs126 (vs126 (vs126 vz126))) v4126 : ∀{Γ A B C D E} → Tm126 (snoc126 (snoc126 (snoc126 (snoc126 (snoc126 Γ A) B) C) D) E) A;v4126 = var126 (vs126 (vs126 (vs126 (vs126 vz126)))) test126 : ∀{Γ A} → Tm126 Γ (arr126 (arr126 A A) (arr126 A A));test126 = lam126 (lam126 (app126 v1126 (app126 v1126 (app126 v1126 (app126 v1126 (app126 v1126 (app126 v1126 v0126))))))) {-# OPTIONS --type-in-type #-} Ty127 : Set; Ty127 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι127 : Ty127; ι127 = λ _ ι127 _ → ι127 arr127 : Ty127 → Ty127 → Ty127; arr127 = λ A B Ty127 ι127 arr127 → arr127 (A Ty127 ι127 arr127) (B Ty127 ι127 arr127) Con127 : Set;Con127 = (Con127 : Set) (nil : Con127) (snoc : Con127 → Ty127 → Con127) → Con127 nil127 : Con127;nil127 = λ Con127 nil127 snoc → nil127 snoc127 : Con127 → Ty127 → Con127;snoc127 = λ Γ A Con127 nil127 snoc127 → snoc127 (Γ Con127 nil127 snoc127) A Var127 : Con127 → Ty127 → Set;Var127 = λ Γ A → (Var127 : Con127 → Ty127 → Set) (vz : (Γ : _)(A : _) → Var127 (snoc127 Γ A) A) (vs : (Γ : _)(B A : _) → Var127 Γ A → Var127 (snoc127 Γ B) A) → Var127 Γ A vz127 : ∀{Γ A} → Var127 (snoc127 Γ A) A;vz127 = λ Var127 vz127 vs → vz127 _ _ vs127 : ∀{Γ B A} → Var127 Γ A → Var127 (snoc127 Γ B) A;vs127 = λ x Var127 vz127 vs127 → vs127 _ _ _ (x Var127 vz127 vs127) Tm127 : Con127 → Ty127 → Set;Tm127 = λ Γ A → (Tm127 : Con127 → Ty127 → Set) (var : (Γ : _) (A : _) → Var127 Γ A → Tm127 Γ A) (lam : (Γ : _) (A B : _) → Tm127 (snoc127 Γ A) B → Tm127 Γ (arr127 A B)) (app : (Γ : _) (A B : _) → Tm127 Γ (arr127 A B) → Tm127 Γ A → Tm127 Γ B) → Tm127 Γ A var127 : ∀{Γ A} → Var127 Γ A → Tm127 Γ A;var127 = λ x Tm127 var127 lam app → var127 _ _ x lam127 : ∀{Γ A B} → Tm127 (snoc127 Γ A) B → Tm127 Γ (arr127 A B);lam127 = λ t Tm127 var127 lam127 app → lam127 _ _ _ (t Tm127 var127 lam127 app) app127 : ∀{Γ A B} → Tm127 Γ (arr127 A B) → Tm127 Γ A → Tm127 Γ B;app127 = λ t u Tm127 var127 lam127 app127 → app127 _ _ _ (t Tm127 var127 lam127 app127) (u Tm127 var127 lam127 app127) v0127 : ∀{Γ A} → Tm127 (snoc127 Γ A) A;v0127 = var127 vz127 v1127 : ∀{Γ A B} → Tm127 (snoc127 (snoc127 Γ A) B) A;v1127 = var127 (vs127 vz127) v2127 : ∀{Γ A B C} → Tm127 (snoc127 (snoc127 (snoc127 Γ A) B) C) A;v2127 = var127 (vs127 (vs127 vz127)) v3127 : ∀{Γ A B C D} → Tm127 (snoc127 (snoc127 (snoc127 (snoc127 Γ A) B) C) D) A;v3127 = var127 (vs127 (vs127 (vs127 vz127))) v4127 : ∀{Γ A B C D E} → Tm127 (snoc127 (snoc127 (snoc127 (snoc127 (snoc127 Γ A) B) C) D) E) A;v4127 = var127 (vs127 (vs127 (vs127 (vs127 vz127)))) test127 : ∀{Γ A} → Tm127 Γ (arr127 (arr127 A A) (arr127 A A));test127 = lam127 (lam127 (app127 v1127 (app127 v1127 (app127 v1127 (app127 v1127 (app127 v1127 (app127 v1127 v0127))))))) {-# OPTIONS --type-in-type #-} Ty128 : Set; Ty128 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι128 : Ty128; ι128 = λ _ ι128 _ → ι128 arr128 : Ty128 → Ty128 → Ty128; arr128 = λ A B Ty128 ι128 arr128 → arr128 (A Ty128 ι128 arr128) (B Ty128 ι128 arr128) Con128 : Set;Con128 = (Con128 : Set) (nil : Con128) (snoc : Con128 → Ty128 → Con128) → Con128 nil128 : Con128;nil128 = λ Con128 nil128 snoc → nil128 snoc128 : Con128 → Ty128 → Con128;snoc128 = λ Γ A Con128 nil128 snoc128 → snoc128 (Γ Con128 nil128 snoc128) A Var128 : Con128 → Ty128 → Set;Var128 = λ Γ A → (Var128 : Con128 → Ty128 → Set) (vz : (Γ : _)(A : _) → Var128 (snoc128 Γ A) A) (vs : (Γ : _)(B A : _) → Var128 Γ A → Var128 (snoc128 Γ B) A) → Var128 Γ A vz128 : ∀{Γ A} → Var128 (snoc128 Γ A) A;vz128 = λ Var128 vz128 vs → vz128 _ _ vs128 : ∀{Γ B A} → Var128 Γ A → Var128 (snoc128 Γ B) A;vs128 = λ x Var128 vz128 vs128 → vs128 _ _ _ (x Var128 vz128 vs128) Tm128 : Con128 → Ty128 → Set;Tm128 = λ Γ A → (Tm128 : Con128 → Ty128 → Set) (var : (Γ : _) (A : _) → Var128 Γ A → Tm128 Γ A) (lam : (Γ : _) (A B : _) → Tm128 (snoc128 Γ A) B → Tm128 Γ (arr128 A B)) (app : (Γ : _) (A B : _) → Tm128 Γ (arr128 A B) → Tm128 Γ A → Tm128 Γ B) → Tm128 Γ A var128 : ∀{Γ A} → Var128 Γ A → Tm128 Γ A;var128 = λ x Tm128 var128 lam app → var128 _ _ x lam128 : ∀{Γ A B} → Tm128 (snoc128 Γ A) B → Tm128 Γ (arr128 A B);lam128 = λ t Tm128 var128 lam128 app → lam128 _ _ _ (t Tm128 var128 lam128 app) app128 : ∀{Γ A B} → Tm128 Γ (arr128 A B) → Tm128 Γ A → Tm128 Γ B;app128 = λ t u Tm128 var128 lam128 app128 → app128 _ _ _ (t Tm128 var128 lam128 app128) (u Tm128 var128 lam128 app128) v0128 : ∀{Γ A} → Tm128 (snoc128 Γ A) A;v0128 = var128 vz128 v1128 : ∀{Γ A B} → Tm128 (snoc128 (snoc128 Γ A) B) A;v1128 = var128 (vs128 vz128) v2128 : ∀{Γ A B C} → Tm128 (snoc128 (snoc128 (snoc128 Γ A) B) C) A;v2128 = var128 (vs128 (vs128 vz128)) v3128 : ∀{Γ A B C D} → Tm128 (snoc128 (snoc128 (snoc128 (snoc128 Γ A) B) C) D) A;v3128 = var128 (vs128 (vs128 (vs128 vz128))) v4128 : ∀{Γ A B C D E} → Tm128 (snoc128 (snoc128 (snoc128 (snoc128 (snoc128 Γ A) B) C) D) E) A;v4128 = var128 (vs128 (vs128 (vs128 (vs128 vz128)))) test128 : ∀{Γ A} → Tm128 Γ (arr128 (arr128 A A) (arr128 A A));test128 = lam128 (lam128 (app128 v1128 (app128 v1128 (app128 v1128 (app128 v1128 (app128 v1128 (app128 v1128 v0128))))))) {-# OPTIONS --type-in-type #-} Ty129 : Set; Ty129 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι129 : Ty129; ι129 = λ _ ι129 _ → ι129 arr129 : Ty129 → Ty129 → Ty129; arr129 = λ A B Ty129 ι129 arr129 → arr129 (A Ty129 ι129 arr129) (B Ty129 ι129 arr129) Con129 : Set;Con129 = (Con129 : Set) (nil : Con129) (snoc : Con129 → Ty129 → Con129) → Con129 nil129 : Con129;nil129 = λ Con129 nil129 snoc → nil129 snoc129 : Con129 → Ty129 → Con129;snoc129 = λ Γ A Con129 nil129 snoc129 → snoc129 (Γ Con129 nil129 snoc129) A Var129 : Con129 → Ty129 → Set;Var129 = λ Γ A → (Var129 : Con129 → Ty129 → Set) (vz : (Γ : _)(A : _) → Var129 (snoc129 Γ A) A) (vs : (Γ : _)(B A : _) → Var129 Γ A → Var129 (snoc129 Γ B) A) → Var129 Γ A vz129 : ∀{Γ A} → Var129 (snoc129 Γ A) A;vz129 = λ Var129 vz129 vs → vz129 _ _ vs129 : ∀{Γ B A} → Var129 Γ A → Var129 (snoc129 Γ B) A;vs129 = λ x Var129 vz129 vs129 → vs129 _ _ _ (x Var129 vz129 vs129) Tm129 : Con129 → Ty129 → Set;Tm129 = λ Γ A → (Tm129 : Con129 → Ty129 → Set) (var : (Γ : _) (A : _) → Var129 Γ A → Tm129 Γ A) (lam : (Γ : _) (A B : _) → Tm129 (snoc129 Γ A) B → Tm129 Γ (arr129 A B)) (app : (Γ : _) (A B : _) → Tm129 Γ (arr129 A B) → Tm129 Γ A → Tm129 Γ B) → Tm129 Γ A var129 : ∀{Γ A} → Var129 Γ A → Tm129 Γ A;var129 = λ x Tm129 var129 lam app → var129 _ _ x lam129 : ∀{Γ A B} → Tm129 (snoc129 Γ A) B → Tm129 Γ (arr129 A B);lam129 = λ t Tm129 var129 lam129 app → lam129 _ _ _ (t Tm129 var129 lam129 app) app129 : ∀{Γ A B} → Tm129 Γ (arr129 A B) → Tm129 Γ A → Tm129 Γ B;app129 = λ t u Tm129 var129 lam129 app129 → app129 _ _ _ (t Tm129 var129 lam129 app129) (u Tm129 var129 lam129 app129) v0129 : ∀{Γ A} → Tm129 (snoc129 Γ A) A;v0129 = var129 vz129 v1129 : ∀{Γ A B} → Tm129 (snoc129 (snoc129 Γ A) B) A;v1129 = var129 (vs129 vz129) v2129 : ∀{Γ A B C} → Tm129 (snoc129 (snoc129 (snoc129 Γ A) B) C) A;v2129 = var129 (vs129 (vs129 vz129)) v3129 : ∀{Γ A B C D} → Tm129 (snoc129 (snoc129 (snoc129 (snoc129 Γ A) B) C) D) A;v3129 = var129 (vs129 (vs129 (vs129 vz129))) v4129 : ∀{Γ A B C D E} → Tm129 (snoc129 (snoc129 (snoc129 (snoc129 (snoc129 Γ A) B) C) D) E) A;v4129 = var129 (vs129 (vs129 (vs129 (vs129 vz129)))) test129 : ∀{Γ A} → Tm129 Γ (arr129 (arr129 A A) (arr129 A A));test129 = lam129 (lam129 (app129 v1129 (app129 v1129 (app129 v1129 (app129 v1129 (app129 v1129 (app129 v1129 v0129))))))) {-# OPTIONS --type-in-type #-} Ty130 : Set; Ty130 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι130 : Ty130; ι130 = λ _ ι130 _ → ι130 arr130 : Ty130 → Ty130 → Ty130; arr130 = λ A B Ty130 ι130 arr130 → arr130 (A Ty130 ι130 arr130) (B Ty130 ι130 arr130) Con130 : Set;Con130 = (Con130 : Set) (nil : Con130) (snoc : Con130 → Ty130 → Con130) → Con130 nil130 : Con130;nil130 = λ Con130 nil130 snoc → nil130 snoc130 : Con130 → Ty130 → Con130;snoc130 = λ Γ A Con130 nil130 snoc130 → snoc130 (Γ Con130 nil130 snoc130) A Var130 : Con130 → Ty130 → Set;Var130 = λ Γ A → (Var130 : Con130 → Ty130 → Set) (vz : (Γ : _)(A : _) → Var130 (snoc130 Γ A) A) (vs : (Γ : _)(B A : _) → Var130 Γ A → Var130 (snoc130 Γ B) A) → Var130 Γ A vz130 : ∀{Γ A} → Var130 (snoc130 Γ A) A;vz130 = λ Var130 vz130 vs → vz130 _ _ vs130 : ∀{Γ B A} → Var130 Γ A → Var130 (snoc130 Γ B) A;vs130 = λ x Var130 vz130 vs130 → vs130 _ _ _ (x Var130 vz130 vs130) Tm130 : Con130 → Ty130 → Set;Tm130 = λ Γ A → (Tm130 : Con130 → Ty130 → Set) (var : (Γ : _) (A : _) → Var130 Γ A → Tm130 Γ A) (lam : (Γ : _) (A B : _) → Tm130 (snoc130 Γ A) B → Tm130 Γ (arr130 A B)) (app : (Γ : _) (A B : _) → Tm130 Γ (arr130 A B) → Tm130 Γ A → Tm130 Γ B) → Tm130 Γ A var130 : ∀{Γ A} → Var130 Γ A → Tm130 Γ A;var130 = λ x Tm130 var130 lam app → var130 _ _ x lam130 : ∀{Γ A B} → Tm130 (snoc130 Γ A) B → Tm130 Γ (arr130 A B);lam130 = λ t Tm130 var130 lam130 app → lam130 _ _ _ (t Tm130 var130 lam130 app) app130 : ∀{Γ A B} → Tm130 Γ (arr130 A B) → Tm130 Γ A → Tm130 Γ B;app130 = λ t u Tm130 var130 lam130 app130 → app130 _ _ _ (t Tm130 var130 lam130 app130) (u Tm130 var130 lam130 app130) v0130 : ∀{Γ A} → Tm130 (snoc130 Γ A) A;v0130 = var130 vz130 v1130 : ∀{Γ A B} → Tm130 (snoc130 (snoc130 Γ A) B) A;v1130 = var130 (vs130 vz130) v2130 : ∀{Γ A B C} → Tm130 (snoc130 (snoc130 (snoc130 Γ A) B) C) A;v2130 = var130 (vs130 (vs130 vz130)) v3130 : ∀{Γ A B C D} → Tm130 (snoc130 (snoc130 (snoc130 (snoc130 Γ A) B) C) D) A;v3130 = var130 (vs130 (vs130 (vs130 vz130))) v4130 : ∀{Γ A B C D E} → Tm130 (snoc130 (snoc130 (snoc130 (snoc130 (snoc130 Γ A) B) C) D) E) A;v4130 = var130 (vs130 (vs130 (vs130 (vs130 vz130)))) test130 : ∀{Γ A} → Tm130 Γ (arr130 (arr130 A A) (arr130 A A));test130 = lam130 (lam130 (app130 v1130 (app130 v1130 (app130 v1130 (app130 v1130 (app130 v1130 (app130 v1130 v0130))))))) {-# OPTIONS --type-in-type #-} Ty131 : Set; Ty131 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι131 : Ty131; ι131 = λ _ ι131 _ → ι131 arr131 : Ty131 → Ty131 → Ty131; arr131 = λ A B Ty131 ι131 arr131 → arr131 (A Ty131 ι131 arr131) (B Ty131 ι131 arr131) Con131 : Set;Con131 = (Con131 : Set) (nil : Con131) (snoc : Con131 → Ty131 → Con131) → Con131 nil131 : Con131;nil131 = λ Con131 nil131 snoc → nil131 snoc131 : Con131 → Ty131 → Con131;snoc131 = λ Γ A Con131 nil131 snoc131 → snoc131 (Γ Con131 nil131 snoc131) A Var131 : Con131 → Ty131 → Set;Var131 = λ Γ A → (Var131 : Con131 → Ty131 → Set) (vz : (Γ : _)(A : _) → Var131 (snoc131 Γ A) A) (vs : (Γ : _)(B A : _) → Var131 Γ A → Var131 (snoc131 Γ B) A) → Var131 Γ A vz131 : ∀{Γ A} → Var131 (snoc131 Γ A) A;vz131 = λ Var131 vz131 vs → vz131 _ _ vs131 : ∀{Γ B A} → Var131 Γ A → Var131 (snoc131 Γ B) A;vs131 = λ x Var131 vz131 vs131 → vs131 _ _ _ (x Var131 vz131 vs131) Tm131 : Con131 → Ty131 → Set;Tm131 = λ Γ A → (Tm131 : Con131 → Ty131 → Set) (var : (Γ : _) (A : _) → Var131 Γ A → Tm131 Γ A) (lam : (Γ : _) (A B : _) → Tm131 (snoc131 Γ A) B → Tm131 Γ (arr131 A B)) (app : (Γ : _) (A B : _) → Tm131 Γ (arr131 A B) → Tm131 Γ A → Tm131 Γ B) → Tm131 Γ A var131 : ∀{Γ A} → Var131 Γ A → Tm131 Γ A;var131 = λ x Tm131 var131 lam app → var131 _ _ x lam131 : ∀{Γ A B} → Tm131 (snoc131 Γ A) B → Tm131 Γ (arr131 A B);lam131 = λ t Tm131 var131 lam131 app → lam131 _ _ _ (t Tm131 var131 lam131 app) app131 : ∀{Γ A B} → Tm131 Γ (arr131 A B) → Tm131 Γ A → Tm131 Γ B;app131 = λ t u Tm131 var131 lam131 app131 → app131 _ _ _ (t Tm131 var131 lam131 app131) (u Tm131 var131 lam131 app131) v0131 : ∀{Γ A} → Tm131 (snoc131 Γ A) A;v0131 = var131 vz131 v1131 : ∀{Γ A B} → Tm131 (snoc131 (snoc131 Γ A) B) A;v1131 = var131 (vs131 vz131) v2131 : ∀{Γ A B C} → Tm131 (snoc131 (snoc131 (snoc131 Γ A) B) C) A;v2131 = var131 (vs131 (vs131 vz131)) v3131 : ∀{Γ A B C D} → Tm131 (snoc131 (snoc131 (snoc131 (snoc131 Γ A) B) C) D) A;v3131 = var131 (vs131 (vs131 (vs131 vz131))) v4131 : ∀{Γ A B C D E} → Tm131 (snoc131 (snoc131 (snoc131 (snoc131 (snoc131 Γ A) B) C) D) E) A;v4131 = var131 (vs131 (vs131 (vs131 (vs131 vz131)))) test131 : ∀{Γ A} → Tm131 Γ (arr131 (arr131 A A) (arr131 A A));test131 = lam131 (lam131 (app131 v1131 (app131 v1131 (app131 v1131 (app131 v1131 (app131 v1131 (app131 v1131 v0131))))))) {-# OPTIONS --type-in-type #-} Ty132 : Set; Ty132 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι132 : Ty132; ι132 = λ _ ι132 _ → ι132 arr132 : Ty132 → Ty132 → Ty132; arr132 = λ A B Ty132 ι132 arr132 → arr132 (A Ty132 ι132 arr132) (B Ty132 ι132 arr132) Con132 : Set;Con132 = (Con132 : Set) (nil : Con132) (snoc : Con132 → Ty132 → Con132) → Con132 nil132 : Con132;nil132 = λ Con132 nil132 snoc → nil132 snoc132 : Con132 → Ty132 → Con132;snoc132 = λ Γ A Con132 nil132 snoc132 → snoc132 (Γ Con132 nil132 snoc132) A Var132 : Con132 → Ty132 → Set;Var132 = λ Γ A → (Var132 : Con132 → Ty132 → Set) (vz : (Γ : _)(A : _) → Var132 (snoc132 Γ A) A) (vs : (Γ : _)(B A : _) → Var132 Γ A → Var132 (snoc132 Γ B) A) → Var132 Γ A vz132 : ∀{Γ A} → Var132 (snoc132 Γ A) A;vz132 = λ Var132 vz132 vs → vz132 _ _ vs132 : ∀{Γ B A} → Var132 Γ A → Var132 (snoc132 Γ B) A;vs132 = λ x Var132 vz132 vs132 → vs132 _ _ _ (x Var132 vz132 vs132) Tm132 : Con132 → Ty132 → Set;Tm132 = λ Γ A → (Tm132 : Con132 → Ty132 → Set) (var : (Γ : _) (A : _) → Var132 Γ A → Tm132 Γ A) (lam : (Γ : _) (A B : _) → Tm132 (snoc132 Γ A) B → Tm132 Γ (arr132 A B)) (app : (Γ : _) (A B : _) → Tm132 Γ (arr132 A B) → Tm132 Γ A → Tm132 Γ B) → Tm132 Γ A var132 : ∀{Γ A} → Var132 Γ A → Tm132 Γ A;var132 = λ x Tm132 var132 lam app → var132 _ _ x lam132 : ∀{Γ A B} → Tm132 (snoc132 Γ A) B → Tm132 Γ (arr132 A B);lam132 = λ t Tm132 var132 lam132 app → lam132 _ _ _ (t Tm132 var132 lam132 app) app132 : ∀{Γ A B} → Tm132 Γ (arr132 A B) → Tm132 Γ A → Tm132 Γ B;app132 = λ t u Tm132 var132 lam132 app132 → app132 _ _ _ (t Tm132 var132 lam132 app132) (u Tm132 var132 lam132 app132) v0132 : ∀{Γ A} → Tm132 (snoc132 Γ A) A;v0132 = var132 vz132 v1132 : ∀{Γ A B} → Tm132 (snoc132 (snoc132 Γ A) B) A;v1132 = var132 (vs132 vz132) v2132 : ∀{Γ A B C} → Tm132 (snoc132 (snoc132 (snoc132 Γ A) B) C) A;v2132 = var132 (vs132 (vs132 vz132)) v3132 : ∀{Γ A B C D} → Tm132 (snoc132 (snoc132 (snoc132 (snoc132 Γ A) B) C) D) A;v3132 = var132 (vs132 (vs132 (vs132 vz132))) v4132 : ∀{Γ A B C D E} → Tm132 (snoc132 (snoc132 (snoc132 (snoc132 (snoc132 Γ A) B) C) D) E) A;v4132 = var132 (vs132 (vs132 (vs132 (vs132 vz132)))) test132 : ∀{Γ A} → Tm132 Γ (arr132 (arr132 A A) (arr132 A A));test132 = lam132 (lam132 (app132 v1132 (app132 v1132 (app132 v1132 (app132 v1132 (app132 v1132 (app132 v1132 v0132))))))) {-# OPTIONS --type-in-type #-} Ty133 : Set; Ty133 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι133 : Ty133; ι133 = λ _ ι133 _ → ι133 arr133 : Ty133 → Ty133 → Ty133; arr133 = λ A B Ty133 ι133 arr133 → arr133 (A Ty133 ι133 arr133) (B Ty133 ι133 arr133) Con133 : Set;Con133 = (Con133 : Set) (nil : Con133) (snoc : Con133 → Ty133 → Con133) → Con133 nil133 : Con133;nil133 = λ Con133 nil133 snoc → nil133 snoc133 : Con133 → Ty133 → Con133;snoc133 = λ Γ A Con133 nil133 snoc133 → snoc133 (Γ Con133 nil133 snoc133) A Var133 : Con133 → Ty133 → Set;Var133 = λ Γ A → (Var133 : Con133 → Ty133 → Set) (vz : (Γ : _)(A : _) → Var133 (snoc133 Γ A) A) (vs : (Γ : _)(B A : _) → Var133 Γ A → Var133 (snoc133 Γ B) A) → Var133 Γ A vz133 : ∀{Γ A} → Var133 (snoc133 Γ A) A;vz133 = λ Var133 vz133 vs → vz133 _ _ vs133 : ∀{Γ B A} → Var133 Γ A → Var133 (snoc133 Γ B) A;vs133 = λ x Var133 vz133 vs133 → vs133 _ _ _ (x Var133 vz133 vs133) Tm133 : Con133 → Ty133 → Set;Tm133 = λ Γ A → (Tm133 : Con133 → Ty133 → Set) (var : (Γ : _) (A : _) → Var133 Γ A → Tm133 Γ A) (lam : (Γ : _) (A B : _) → Tm133 (snoc133 Γ A) B → Tm133 Γ (arr133 A B)) (app : (Γ : _) (A B : _) → Tm133 Γ (arr133 A B) → Tm133 Γ A → Tm133 Γ B) → Tm133 Γ A var133 : ∀{Γ A} → Var133 Γ A → Tm133 Γ A;var133 = λ x Tm133 var133 lam app → var133 _ _ x lam133 : ∀{Γ A B} → Tm133 (snoc133 Γ A) B → Tm133 Γ (arr133 A B);lam133 = λ t Tm133 var133 lam133 app → lam133 _ _ _ (t Tm133 var133 lam133 app) app133 : ∀{Γ A B} → Tm133 Γ (arr133 A B) → Tm133 Γ A → Tm133 Γ B;app133 = λ t u Tm133 var133 lam133 app133 → app133 _ _ _ (t Tm133 var133 lam133 app133) (u Tm133 var133 lam133 app133) v0133 : ∀{Γ A} → Tm133 (snoc133 Γ A) A;v0133 = var133 vz133 v1133 : ∀{Γ A B} → Tm133 (snoc133 (snoc133 Γ A) B) A;v1133 = var133 (vs133 vz133) v2133 : ∀{Γ A B C} → Tm133 (snoc133 (snoc133 (snoc133 Γ A) B) C) A;v2133 = var133 (vs133 (vs133 vz133)) v3133 : ∀{Γ A B C D} → Tm133 (snoc133 (snoc133 (snoc133 (snoc133 Γ A) B) C) D) A;v3133 = var133 (vs133 (vs133 (vs133 vz133))) v4133 : ∀{Γ A B C D E} → Tm133 (snoc133 (snoc133 (snoc133 (snoc133 (snoc133 Γ A) B) C) D) E) A;v4133 = var133 (vs133 (vs133 (vs133 (vs133 vz133)))) test133 : ∀{Γ A} → Tm133 Γ (arr133 (arr133 A A) (arr133 A A));test133 = lam133 (lam133 (app133 v1133 (app133 v1133 (app133 v1133 (app133 v1133 (app133 v1133 (app133 v1133 v0133))))))) {-# OPTIONS --type-in-type #-} Ty134 : Set; Ty134 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι134 : Ty134; ι134 = λ _ ι134 _ → ι134 arr134 : Ty134 → Ty134 → Ty134; arr134 = λ A B Ty134 ι134 arr134 → arr134 (A Ty134 ι134 arr134) (B Ty134 ι134 arr134) Con134 : Set;Con134 = (Con134 : Set) (nil : Con134) (snoc : Con134 → Ty134 → Con134) → Con134 nil134 : Con134;nil134 = λ Con134 nil134 snoc → nil134 snoc134 : Con134 → Ty134 → Con134;snoc134 = λ Γ A Con134 nil134 snoc134 → snoc134 (Γ Con134 nil134 snoc134) A Var134 : Con134 → Ty134 → Set;Var134 = λ Γ A → (Var134 : Con134 → Ty134 → Set) (vz : (Γ : _)(A : _) → Var134 (snoc134 Γ A) A) (vs : (Γ : _)(B A : _) → Var134 Γ A → Var134 (snoc134 Γ B) A) → Var134 Γ A vz134 : ∀{Γ A} → Var134 (snoc134 Γ A) A;vz134 = λ Var134 vz134 vs → vz134 _ _ vs134 : ∀{Γ B A} → Var134 Γ A → Var134 (snoc134 Γ B) A;vs134 = λ x Var134 vz134 vs134 → vs134 _ _ _ (x Var134 vz134 vs134) Tm134 : Con134 → Ty134 → Set;Tm134 = λ Γ A → (Tm134 : Con134 → Ty134 → Set) (var : (Γ : _) (A : _) → Var134 Γ A → Tm134 Γ A) (lam : (Γ : _) (A B : _) → Tm134 (snoc134 Γ A) B → Tm134 Γ (arr134 A B)) (app : (Γ : _) (A B : _) → Tm134 Γ (arr134 A B) → Tm134 Γ A → Tm134 Γ B) → Tm134 Γ A var134 : ∀{Γ A} → Var134 Γ A → Tm134 Γ A;var134 = λ x Tm134 var134 lam app → var134 _ _ x lam134 : ∀{Γ A B} → Tm134 (snoc134 Γ A) B → Tm134 Γ (arr134 A B);lam134 = λ t Tm134 var134 lam134 app → lam134 _ _ _ (t Tm134 var134 lam134 app) app134 : ∀{Γ A B} → Tm134 Γ (arr134 A B) → Tm134 Γ A → Tm134 Γ B;app134 = λ t u Tm134 var134 lam134 app134 → app134 _ _ _ (t Tm134 var134 lam134 app134) (u Tm134 var134 lam134 app134) v0134 : ∀{Γ A} → Tm134 (snoc134 Γ A) A;v0134 = var134 vz134 v1134 : ∀{Γ A B} → Tm134 (snoc134 (snoc134 Γ A) B) A;v1134 = var134 (vs134 vz134) v2134 : ∀{Γ A B C} → Tm134 (snoc134 (snoc134 (snoc134 Γ A) B) C) A;v2134 = var134 (vs134 (vs134 vz134)) v3134 : ∀{Γ A B C D} → Tm134 (snoc134 (snoc134 (snoc134 (snoc134 Γ A) B) C) D) A;v3134 = var134 (vs134 (vs134 (vs134 vz134))) v4134 : ∀{Γ A B C D E} → Tm134 (snoc134 (snoc134 (snoc134 (snoc134 (snoc134 Γ A) B) C) D) E) A;v4134 = var134 (vs134 (vs134 (vs134 (vs134 vz134)))) test134 : ∀{Γ A} → Tm134 Γ (arr134 (arr134 A A) (arr134 A A));test134 = lam134 (lam134 (app134 v1134 (app134 v1134 (app134 v1134 (app134 v1134 (app134 v1134 (app134 v1134 v0134))))))) {-# OPTIONS --type-in-type #-} Ty135 : Set; Ty135 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι135 : Ty135; ι135 = λ _ ι135 _ → ι135 arr135 : Ty135 → Ty135 → Ty135; arr135 = λ A B Ty135 ι135 arr135 → arr135 (A Ty135 ι135 arr135) (B Ty135 ι135 arr135) Con135 : Set;Con135 = (Con135 : Set) (nil : Con135) (snoc : Con135 → Ty135 → Con135) → Con135 nil135 : Con135;nil135 = λ Con135 nil135 snoc → nil135 snoc135 : Con135 → Ty135 → Con135;snoc135 = λ Γ A Con135 nil135 snoc135 → snoc135 (Γ Con135 nil135 snoc135) A Var135 : Con135 → Ty135 → Set;Var135 = λ Γ A → (Var135 : Con135 → Ty135 → Set) (vz : (Γ : _)(A : _) → Var135 (snoc135 Γ A) A) (vs : (Γ : _)(B A : _) → Var135 Γ A → Var135 (snoc135 Γ B) A) → Var135 Γ A vz135 : ∀{Γ A} → Var135 (snoc135 Γ A) A;vz135 = λ Var135 vz135 vs → vz135 _ _ vs135 : ∀{Γ B A} → Var135 Γ A → Var135 (snoc135 Γ B) A;vs135 = λ x Var135 vz135 vs135 → vs135 _ _ _ (x Var135 vz135 vs135) Tm135 : Con135 → Ty135 → Set;Tm135 = λ Γ A → (Tm135 : Con135 → Ty135 → Set) (var : (Γ : _) (A : _) → Var135 Γ A → Tm135 Γ A) (lam : (Γ : _) (A B : _) → Tm135 (snoc135 Γ A) B → Tm135 Γ (arr135 A B)) (app : (Γ : _) (A B : _) → Tm135 Γ (arr135 A B) → Tm135 Γ A → Tm135 Γ B) → Tm135 Γ A var135 : ∀{Γ A} → Var135 Γ A → Tm135 Γ A;var135 = λ x Tm135 var135 lam app → var135 _ _ x lam135 : ∀{Γ A B} → Tm135 (snoc135 Γ A) B → Tm135 Γ (arr135 A B);lam135 = λ t Tm135 var135 lam135 app → lam135 _ _ _ (t Tm135 var135 lam135 app) app135 : ∀{Γ A B} → Tm135 Γ (arr135 A B) → Tm135 Γ A → Tm135 Γ B;app135 = λ t u Tm135 var135 lam135 app135 → app135 _ _ _ (t Tm135 var135 lam135 app135) (u Tm135 var135 lam135 app135) v0135 : ∀{Γ A} → Tm135 (snoc135 Γ A) A;v0135 = var135 vz135 v1135 : ∀{Γ A B} → Tm135 (snoc135 (snoc135 Γ A) B) A;v1135 = var135 (vs135 vz135) v2135 : ∀{Γ A B C} → Tm135 (snoc135 (snoc135 (snoc135 Γ A) B) C) A;v2135 = var135 (vs135 (vs135 vz135)) v3135 : ∀{Γ A B C D} → Tm135 (snoc135 (snoc135 (snoc135 (snoc135 Γ A) B) C) D) A;v3135 = var135 (vs135 (vs135 (vs135 vz135))) v4135 : ∀{Γ A B C D E} → Tm135 (snoc135 (snoc135 (snoc135 (snoc135 (snoc135 Γ A) B) C) D) E) A;v4135 = var135 (vs135 (vs135 (vs135 (vs135 vz135)))) test135 : ∀{Γ A} → Tm135 Γ (arr135 (arr135 A A) (arr135 A A));test135 = lam135 (lam135 (app135 v1135 (app135 v1135 (app135 v1135 (app135 v1135 (app135 v1135 (app135 v1135 v0135))))))) {-# OPTIONS --type-in-type #-} Ty136 : Set; Ty136 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι136 : Ty136; ι136 = λ _ ι136 _ → ι136 arr136 : Ty136 → Ty136 → Ty136; arr136 = λ A B Ty136 ι136 arr136 → arr136 (A Ty136 ι136 arr136) (B Ty136 ι136 arr136) Con136 : Set;Con136 = (Con136 : Set) (nil : Con136) (snoc : Con136 → Ty136 → Con136) → Con136 nil136 : Con136;nil136 = λ Con136 nil136 snoc → nil136 snoc136 : Con136 → Ty136 → Con136;snoc136 = λ Γ A Con136 nil136 snoc136 → snoc136 (Γ Con136 nil136 snoc136) A Var136 : Con136 → Ty136 → Set;Var136 = λ Γ A → (Var136 : Con136 → Ty136 → Set) (vz : (Γ : _)(A : _) → Var136 (snoc136 Γ A) A) (vs : (Γ : _)(B A : _) → Var136 Γ A → Var136 (snoc136 Γ B) A) → Var136 Γ A vz136 : ∀{Γ A} → Var136 (snoc136 Γ A) A;vz136 = λ Var136 vz136 vs → vz136 _ _ vs136 : ∀{Γ B A} → Var136 Γ A → Var136 (snoc136 Γ B) A;vs136 = λ x Var136 vz136 vs136 → vs136 _ _ _ (x Var136 vz136 vs136) Tm136 : Con136 → Ty136 → Set;Tm136 = λ Γ A → (Tm136 : Con136 → Ty136 → Set) (var : (Γ : _) (A : _) → Var136 Γ A → Tm136 Γ A) (lam : (Γ : _) (A B : _) → Tm136 (snoc136 Γ A) B → Tm136 Γ (arr136 A B)) (app : (Γ : _) (A B : _) → Tm136 Γ (arr136 A B) → Tm136 Γ A → Tm136 Γ B) → Tm136 Γ A var136 : ∀{Γ A} → Var136 Γ A → Tm136 Γ A;var136 = λ x Tm136 var136 lam app → var136 _ _ x lam136 : ∀{Γ A B} → Tm136 (snoc136 Γ A) B → Tm136 Γ (arr136 A B);lam136 = λ t Tm136 var136 lam136 app → lam136 _ _ _ (t Tm136 var136 lam136 app) app136 : ∀{Γ A B} → Tm136 Γ (arr136 A B) → Tm136 Γ A → Tm136 Γ B;app136 = λ t u Tm136 var136 lam136 app136 → app136 _ _ _ (t Tm136 var136 lam136 app136) (u Tm136 var136 lam136 app136) v0136 : ∀{Γ A} → Tm136 (snoc136 Γ A) A;v0136 = var136 vz136 v1136 : ∀{Γ A B} → Tm136 (snoc136 (snoc136 Γ A) B) A;v1136 = var136 (vs136 vz136) v2136 : ∀{Γ A B C} → Tm136 (snoc136 (snoc136 (snoc136 Γ A) B) C) A;v2136 = var136 (vs136 (vs136 vz136)) v3136 : ∀{Γ A B C D} → Tm136 (snoc136 (snoc136 (snoc136 (snoc136 Γ A) B) C) D) A;v3136 = var136 (vs136 (vs136 (vs136 vz136))) v4136 : ∀{Γ A B C D E} → Tm136 (snoc136 (snoc136 (snoc136 (snoc136 (snoc136 Γ A) B) C) D) E) A;v4136 = var136 (vs136 (vs136 (vs136 (vs136 vz136)))) test136 : ∀{Γ A} → Tm136 Γ (arr136 (arr136 A A) (arr136 A A));test136 = lam136 (lam136 (app136 v1136 (app136 v1136 (app136 v1136 (app136 v1136 (app136 v1136 (app136 v1136 v0136))))))) {-# OPTIONS --type-in-type #-} Ty137 : Set; Ty137 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι137 : Ty137; ι137 = λ _ ι137 _ → ι137 arr137 : Ty137 → Ty137 → Ty137; arr137 = λ A B Ty137 ι137 arr137 → arr137 (A Ty137 ι137 arr137) (B Ty137 ι137 arr137) Con137 : Set;Con137 = (Con137 : Set) (nil : Con137) (snoc : Con137 → Ty137 → Con137) → Con137 nil137 : Con137;nil137 = λ Con137 nil137 snoc → nil137 snoc137 : Con137 → Ty137 → Con137;snoc137 = λ Γ A Con137 nil137 snoc137 → snoc137 (Γ Con137 nil137 snoc137) A Var137 : Con137 → Ty137 → Set;Var137 = λ Γ A → (Var137 : Con137 → Ty137 → Set) (vz : (Γ : _)(A : _) → Var137 (snoc137 Γ A) A) (vs : (Γ : _)(B A : _) → Var137 Γ A → Var137 (snoc137 Γ B) A) → Var137 Γ A vz137 : ∀{Γ A} → Var137 (snoc137 Γ A) A;vz137 = λ Var137 vz137 vs → vz137 _ _ vs137 : ∀{Γ B A} → Var137 Γ A → Var137 (snoc137 Γ B) A;vs137 = λ x Var137 vz137 vs137 → vs137 _ _ _ (x Var137 vz137 vs137) Tm137 : Con137 → Ty137 → Set;Tm137 = λ Γ A → (Tm137 : Con137 → Ty137 → Set) (var : (Γ : _) (A : _) → Var137 Γ A → Tm137 Γ A) (lam : (Γ : _) (A B : _) → Tm137 (snoc137 Γ A) B → Tm137 Γ (arr137 A B)) (app : (Γ : _) (A B : _) → Tm137 Γ (arr137 A B) → Tm137 Γ A → Tm137 Γ B) → Tm137 Γ A var137 : ∀{Γ A} → Var137 Γ A → Tm137 Γ A;var137 = λ x Tm137 var137 lam app → var137 _ _ x lam137 : ∀{Γ A B} → Tm137 (snoc137 Γ A) B → Tm137 Γ (arr137 A B);lam137 = λ t Tm137 var137 lam137 app → lam137 _ _ _ (t Tm137 var137 lam137 app) app137 : ∀{Γ A B} → Tm137 Γ (arr137 A B) → Tm137 Γ A → Tm137 Γ B;app137 = λ t u Tm137 var137 lam137 app137 → app137 _ _ _ (t Tm137 var137 lam137 app137) (u Tm137 var137 lam137 app137) v0137 : ∀{Γ A} → Tm137 (snoc137 Γ A) A;v0137 = var137 vz137 v1137 : ∀{Γ A B} → Tm137 (snoc137 (snoc137 Γ A) B) A;v1137 = var137 (vs137 vz137) v2137 : ∀{Γ A B C} → Tm137 (snoc137 (snoc137 (snoc137 Γ A) B) C) A;v2137 = var137 (vs137 (vs137 vz137)) v3137 : ∀{Γ A B C D} → Tm137 (snoc137 (snoc137 (snoc137 (snoc137 Γ A) B) C) D) A;v3137 = var137 (vs137 (vs137 (vs137 vz137))) v4137 : ∀{Γ A B C D E} → Tm137 (snoc137 (snoc137 (snoc137 (snoc137 (snoc137 Γ A) B) C) D) E) A;v4137 = var137 (vs137 (vs137 (vs137 (vs137 vz137)))) test137 : ∀{Γ A} → Tm137 Γ (arr137 (arr137 A A) (arr137 A A));test137 = lam137 (lam137 (app137 v1137 (app137 v1137 (app137 v1137 (app137 v1137 (app137 v1137 (app137 v1137 v0137))))))) {-# OPTIONS --type-in-type #-} Ty138 : Set; Ty138 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι138 : Ty138; ι138 = λ _ ι138 _ → ι138 arr138 : Ty138 → Ty138 → Ty138; arr138 = λ A B Ty138 ι138 arr138 → arr138 (A Ty138 ι138 arr138) (B Ty138 ι138 arr138) Con138 : Set;Con138 = (Con138 : Set) (nil : Con138) (snoc : Con138 → Ty138 → Con138) → Con138 nil138 : Con138;nil138 = λ Con138 nil138 snoc → nil138 snoc138 : Con138 → Ty138 → Con138;snoc138 = λ Γ A Con138 nil138 snoc138 → snoc138 (Γ Con138 nil138 snoc138) A Var138 : Con138 → Ty138 → Set;Var138 = λ Γ A → (Var138 : Con138 → Ty138 → Set) (vz : (Γ : _)(A : _) → Var138 (snoc138 Γ A) A) (vs : (Γ : _)(B A : _) → Var138 Γ A → Var138 (snoc138 Γ B) A) → Var138 Γ A vz138 : ∀{Γ A} → Var138 (snoc138 Γ A) A;vz138 = λ Var138 vz138 vs → vz138 _ _ vs138 : ∀{Γ B A} → Var138 Γ A → Var138 (snoc138 Γ B) A;vs138 = λ x Var138 vz138 vs138 → vs138 _ _ _ (x Var138 vz138 vs138) Tm138 : Con138 → Ty138 → Set;Tm138 = λ Γ A → (Tm138 : Con138 → Ty138 → Set) (var : (Γ : _) (A : _) → Var138 Γ A → Tm138 Γ A) (lam : (Γ : _) (A B : _) → Tm138 (snoc138 Γ A) B → Tm138 Γ (arr138 A B)) (app : (Γ : _) (A B : _) → Tm138 Γ (arr138 A B) → Tm138 Γ A → Tm138 Γ B) → Tm138 Γ A var138 : ∀{Γ A} → Var138 Γ A → Tm138 Γ A;var138 = λ x Tm138 var138 lam app → var138 _ _ x lam138 : ∀{Γ A B} → Tm138 (snoc138 Γ A) B → Tm138 Γ (arr138 A B);lam138 = λ t Tm138 var138 lam138 app → lam138 _ _ _ (t Tm138 var138 lam138 app) app138 : ∀{Γ A B} → Tm138 Γ (arr138 A B) → Tm138 Γ A → Tm138 Γ B;app138 = λ t u Tm138 var138 lam138 app138 → app138 _ _ _ (t Tm138 var138 lam138 app138) (u Tm138 var138 lam138 app138) v0138 : ∀{Γ A} → Tm138 (snoc138 Γ A) A;v0138 = var138 vz138 v1138 : ∀{Γ A B} → Tm138 (snoc138 (snoc138 Γ A) B) A;v1138 = var138 (vs138 vz138) v2138 : ∀{Γ A B C} → Tm138 (snoc138 (snoc138 (snoc138 Γ A) B) C) A;v2138 = var138 (vs138 (vs138 vz138)) v3138 : ∀{Γ A B C D} → Tm138 (snoc138 (snoc138 (snoc138 (snoc138 Γ A) B) C) D) A;v3138 = var138 (vs138 (vs138 (vs138 vz138))) v4138 : ∀{Γ A B C D E} → Tm138 (snoc138 (snoc138 (snoc138 (snoc138 (snoc138 Γ A) B) C) D) E) A;v4138 = var138 (vs138 (vs138 (vs138 (vs138 vz138)))) test138 : ∀{Γ A} → Tm138 Γ (arr138 (arr138 A A) (arr138 A A));test138 = lam138 (lam138 (app138 v1138 (app138 v1138 (app138 v1138 (app138 v1138 (app138 v1138 (app138 v1138 v0138))))))) {-# OPTIONS --type-in-type #-} Ty139 : Set; Ty139 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι139 : Ty139; ι139 = λ _ ι139 _ → ι139 arr139 : Ty139 → Ty139 → Ty139; arr139 = λ A B Ty139 ι139 arr139 → arr139 (A Ty139 ι139 arr139) (B Ty139 ι139 arr139) Con139 : Set;Con139 = (Con139 : Set) (nil : Con139) (snoc : Con139 → Ty139 → Con139) → Con139 nil139 : Con139;nil139 = λ Con139 nil139 snoc → nil139 snoc139 : Con139 → Ty139 → Con139;snoc139 = λ Γ A Con139 nil139 snoc139 → snoc139 (Γ Con139 nil139 snoc139) A Var139 : Con139 → Ty139 → Set;Var139 = λ Γ A → (Var139 : Con139 → Ty139 → Set) (vz : (Γ : _)(A : _) → Var139 (snoc139 Γ A) A) (vs : (Γ : _)(B A : _) → Var139 Γ A → Var139 (snoc139 Γ B) A) → Var139 Γ A vz139 : ∀{Γ A} → Var139 (snoc139 Γ A) A;vz139 = λ Var139 vz139 vs → vz139 _ _ vs139 : ∀{Γ B A} → Var139 Γ A → Var139 (snoc139 Γ B) A;vs139 = λ x Var139 vz139 vs139 → vs139 _ _ _ (x Var139 vz139 vs139) Tm139 : Con139 → Ty139 → Set;Tm139 = λ Γ A → (Tm139 : Con139 → Ty139 → Set) (var : (Γ : _) (A : _) → Var139 Γ A → Tm139 Γ A) (lam : (Γ : _) (A B : _) → Tm139 (snoc139 Γ A) B → Tm139 Γ (arr139 A B)) (app : (Γ : _) (A B : _) → Tm139 Γ (arr139 A B) → Tm139 Γ A → Tm139 Γ B) → Tm139 Γ A var139 : ∀{Γ A} → Var139 Γ A → Tm139 Γ A;var139 = λ x Tm139 var139 lam app → var139 _ _ x lam139 : ∀{Γ A B} → Tm139 (snoc139 Γ A) B → Tm139 Γ (arr139 A B);lam139 = λ t Tm139 var139 lam139 app → lam139 _ _ _ (t Tm139 var139 lam139 app) app139 : ∀{Γ A B} → Tm139 Γ (arr139 A B) → Tm139 Γ A → Tm139 Γ B;app139 = λ t u Tm139 var139 lam139 app139 → app139 _ _ _ (t Tm139 var139 lam139 app139) (u Tm139 var139 lam139 app139) v0139 : ∀{Γ A} → Tm139 (snoc139 Γ A) A;v0139 = var139 vz139 v1139 : ∀{Γ A B} → Tm139 (snoc139 (snoc139 Γ A) B) A;v1139 = var139 (vs139 vz139) v2139 : ∀{Γ A B C} → Tm139 (snoc139 (snoc139 (snoc139 Γ A) B) C) A;v2139 = var139 (vs139 (vs139 vz139)) v3139 : ∀{Γ A B C D} → Tm139 (snoc139 (snoc139 (snoc139 (snoc139 Γ A) B) C) D) A;v3139 = var139 (vs139 (vs139 (vs139 vz139))) v4139 : ∀{Γ A B C D E} → Tm139 (snoc139 (snoc139 (snoc139 (snoc139 (snoc139 Γ A) B) C) D) E) A;v4139 = var139 (vs139 (vs139 (vs139 (vs139 vz139)))) test139 : ∀{Γ A} → Tm139 Γ (arr139 (arr139 A A) (arr139 A A));test139 = lam139 (lam139 (app139 v1139 (app139 v1139 (app139 v1139 (app139 v1139 (app139 v1139 (app139 v1139 v0139))))))) {-# OPTIONS --type-in-type #-} Ty140 : Set; Ty140 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι140 : Ty140; ι140 = λ _ ι140 _ → ι140 arr140 : Ty140 → Ty140 → Ty140; arr140 = λ A B Ty140 ι140 arr140 → arr140 (A Ty140 ι140 arr140) (B Ty140 ι140 arr140) Con140 : Set;Con140 = (Con140 : Set) (nil : Con140) (snoc : Con140 → Ty140 → Con140) → Con140 nil140 : Con140;nil140 = λ Con140 nil140 snoc → nil140 snoc140 : Con140 → Ty140 → Con140;snoc140 = λ Γ A Con140 nil140 snoc140 → snoc140 (Γ Con140 nil140 snoc140) A Var140 : Con140 → Ty140 → Set;Var140 = λ Γ A → (Var140 : Con140 → Ty140 → Set) (vz : (Γ : _)(A : _) → Var140 (snoc140 Γ A) A) (vs : (Γ : _)(B A : _) → Var140 Γ A → Var140 (snoc140 Γ B) A) → Var140 Γ A vz140 : ∀{Γ A} → Var140 (snoc140 Γ A) A;vz140 = λ Var140 vz140 vs → vz140 _ _ vs140 : ∀{Γ B A} → Var140 Γ A → Var140 (snoc140 Γ B) A;vs140 = λ x Var140 vz140 vs140 → vs140 _ _ _ (x Var140 vz140 vs140) Tm140 : Con140 → Ty140 → Set;Tm140 = λ Γ A → (Tm140 : Con140 → Ty140 → Set) (var : (Γ : _) (A : _) → Var140 Γ A → Tm140 Γ A) (lam : (Γ : _) (A B : _) → Tm140 (snoc140 Γ A) B → Tm140 Γ (arr140 A B)) (app : (Γ : _) (A B : _) → Tm140 Γ (arr140 A B) → Tm140 Γ A → Tm140 Γ B) → Tm140 Γ A var140 : ∀{Γ A} → Var140 Γ A → Tm140 Γ A;var140 = λ x Tm140 var140 lam app → var140 _ _ x lam140 : ∀{Γ A B} → Tm140 (snoc140 Γ A) B → Tm140 Γ (arr140 A B);lam140 = λ t Tm140 var140 lam140 app → lam140 _ _ _ (t Tm140 var140 lam140 app) app140 : ∀{Γ A B} → Tm140 Γ (arr140 A B) → Tm140 Γ A → Tm140 Γ B;app140 = λ t u Tm140 var140 lam140 app140 → app140 _ _ _ (t Tm140 var140 lam140 app140) (u Tm140 var140 lam140 app140) v0140 : ∀{Γ A} → Tm140 (snoc140 Γ A) A;v0140 = var140 vz140 v1140 : ∀{Γ A B} → Tm140 (snoc140 (snoc140 Γ A) B) A;v1140 = var140 (vs140 vz140) v2140 : ∀{Γ A B C} → Tm140 (snoc140 (snoc140 (snoc140 Γ A) B) C) A;v2140 = var140 (vs140 (vs140 vz140)) v3140 : ∀{Γ A B C D} → Tm140 (snoc140 (snoc140 (snoc140 (snoc140 Γ A) B) C) D) A;v3140 = var140 (vs140 (vs140 (vs140 vz140))) v4140 : ∀{Γ A B C D E} → Tm140 (snoc140 (snoc140 (snoc140 (snoc140 (snoc140 Γ A) B) C) D) E) A;v4140 = var140 (vs140 (vs140 (vs140 (vs140 vz140)))) test140 : ∀{Γ A} → Tm140 Γ (arr140 (arr140 A A) (arr140 A A));test140 = lam140 (lam140 (app140 v1140 (app140 v1140 (app140 v1140 (app140 v1140 (app140 v1140 (app140 v1140 v0140))))))) {-# OPTIONS --type-in-type #-} Ty141 : Set; Ty141 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι141 : Ty141; ι141 = λ _ ι141 _ → ι141 arr141 : Ty141 → Ty141 → Ty141; arr141 = λ A B Ty141 ι141 arr141 → arr141 (A Ty141 ι141 arr141) (B Ty141 ι141 arr141) Con141 : Set;Con141 = (Con141 : Set) (nil : Con141) (snoc : Con141 → Ty141 → Con141) → Con141 nil141 : Con141;nil141 = λ Con141 nil141 snoc → nil141 snoc141 : Con141 → Ty141 → Con141;snoc141 = λ Γ A Con141 nil141 snoc141 → snoc141 (Γ Con141 nil141 snoc141) A Var141 : Con141 → Ty141 → Set;Var141 = λ Γ A → (Var141 : Con141 → Ty141 → Set) (vz : (Γ : _)(A : _) → Var141 (snoc141 Γ A) A) (vs : (Γ : _)(B A : _) → Var141 Γ A → Var141 (snoc141 Γ B) A) → Var141 Γ A vz141 : ∀{Γ A} → Var141 (snoc141 Γ A) A;vz141 = λ Var141 vz141 vs → vz141 _ _ vs141 : ∀{Γ B A} → Var141 Γ A → Var141 (snoc141 Γ B) A;vs141 = λ x Var141 vz141 vs141 → vs141 _ _ _ (x Var141 vz141 vs141) Tm141 : Con141 → Ty141 → Set;Tm141 = λ Γ A → (Tm141 : Con141 → Ty141 → Set) (var : (Γ : _) (A : _) → Var141 Γ A → Tm141 Γ A) (lam : (Γ : _) (A B : _) → Tm141 (snoc141 Γ A) B → Tm141 Γ (arr141 A B)) (app : (Γ : _) (A B : _) → Tm141 Γ (arr141 A B) → Tm141 Γ A → Tm141 Γ B) → Tm141 Γ A var141 : ∀{Γ A} → Var141 Γ A → Tm141 Γ A;var141 = λ x Tm141 var141 lam app → var141 _ _ x lam141 : ∀{Γ A B} → Tm141 (snoc141 Γ A) B → Tm141 Γ (arr141 A B);lam141 = λ t Tm141 var141 lam141 app → lam141 _ _ _ (t Tm141 var141 lam141 app) app141 : ∀{Γ A B} → Tm141 Γ (arr141 A B) → Tm141 Γ A → Tm141 Γ B;app141 = λ t u Tm141 var141 lam141 app141 → app141 _ _ _ (t Tm141 var141 lam141 app141) (u Tm141 var141 lam141 app141) v0141 : ∀{Γ A} → Tm141 (snoc141 Γ A) A;v0141 = var141 vz141 v1141 : ∀{Γ A B} → Tm141 (snoc141 (snoc141 Γ A) B) A;v1141 = var141 (vs141 vz141) v2141 : ∀{Γ A B C} → Tm141 (snoc141 (snoc141 (snoc141 Γ A) B) C) A;v2141 = var141 (vs141 (vs141 vz141)) v3141 : ∀{Γ A B C D} → Tm141 (snoc141 (snoc141 (snoc141 (snoc141 Γ A) B) C) D) A;v3141 = var141 (vs141 (vs141 (vs141 vz141))) v4141 : ∀{Γ A B C D E} → Tm141 (snoc141 (snoc141 (snoc141 (snoc141 (snoc141 Γ A) B) C) D) E) A;v4141 = var141 (vs141 (vs141 (vs141 (vs141 vz141)))) test141 : ∀{Γ A} → Tm141 Γ (arr141 (arr141 A A) (arr141 A A));test141 = lam141 (lam141 (app141 v1141 (app141 v1141 (app141 v1141 (app141 v1141 (app141 v1141 (app141 v1141 v0141))))))) {-# OPTIONS --type-in-type #-} Ty142 : Set; Ty142 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι142 : Ty142; ι142 = λ _ ι142 _ → ι142 arr142 : Ty142 → Ty142 → Ty142; arr142 = λ A B Ty142 ι142 arr142 → arr142 (A Ty142 ι142 arr142) (B Ty142 ι142 arr142) Con142 : Set;Con142 = (Con142 : Set) (nil : Con142) (snoc : Con142 → Ty142 → Con142) → Con142 nil142 : Con142;nil142 = λ Con142 nil142 snoc → nil142 snoc142 : Con142 → Ty142 → Con142;snoc142 = λ Γ A Con142 nil142 snoc142 → snoc142 (Γ Con142 nil142 snoc142) A Var142 : Con142 → Ty142 → Set;Var142 = λ Γ A → (Var142 : Con142 → Ty142 → Set) (vz : (Γ : _)(A : _) → Var142 (snoc142 Γ A) A) (vs : (Γ : _)(B A : _) → Var142 Γ A → Var142 (snoc142 Γ B) A) → Var142 Γ A vz142 : ∀{Γ A} → Var142 (snoc142 Γ A) A;vz142 = λ Var142 vz142 vs → vz142 _ _ vs142 : ∀{Γ B A} → Var142 Γ A → Var142 (snoc142 Γ B) A;vs142 = λ x Var142 vz142 vs142 → vs142 _ _ _ (x Var142 vz142 vs142) Tm142 : Con142 → Ty142 → Set;Tm142 = λ Γ A → (Tm142 : Con142 → Ty142 → Set) (var : (Γ : _) (A : _) → Var142 Γ A → Tm142 Γ A) (lam : (Γ : _) (A B : _) → Tm142 (snoc142 Γ A) B → Tm142 Γ (arr142 A B)) (app : (Γ : _) (A B : _) → Tm142 Γ (arr142 A B) → Tm142 Γ A → Tm142 Γ B) → Tm142 Γ A var142 : ∀{Γ A} → Var142 Γ A → Tm142 Γ A;var142 = λ x Tm142 var142 lam app → var142 _ _ x lam142 : ∀{Γ A B} → Tm142 (snoc142 Γ A) B → Tm142 Γ (arr142 A B);lam142 = λ t Tm142 var142 lam142 app → lam142 _ _ _ (t Tm142 var142 lam142 app) app142 : ∀{Γ A B} → Tm142 Γ (arr142 A B) → Tm142 Γ A → Tm142 Γ B;app142 = λ t u Tm142 var142 lam142 app142 → app142 _ _ _ (t Tm142 var142 lam142 app142) (u Tm142 var142 lam142 app142) v0142 : ∀{Γ A} → Tm142 (snoc142 Γ A) A;v0142 = var142 vz142 v1142 : ∀{Γ A B} → Tm142 (snoc142 (snoc142 Γ A) B) A;v1142 = var142 (vs142 vz142) v2142 : ∀{Γ A B C} → Tm142 (snoc142 (snoc142 (snoc142 Γ A) B) C) A;v2142 = var142 (vs142 (vs142 vz142)) v3142 : ∀{Γ A B C D} → Tm142 (snoc142 (snoc142 (snoc142 (snoc142 Γ A) B) C) D) A;v3142 = var142 (vs142 (vs142 (vs142 vz142))) v4142 : ∀{Γ A B C D E} → Tm142 (snoc142 (snoc142 (snoc142 (snoc142 (snoc142 Γ A) B) C) D) E) A;v4142 = var142 (vs142 (vs142 (vs142 (vs142 vz142)))) test142 : ∀{Γ A} → Tm142 Γ (arr142 (arr142 A A) (arr142 A A));test142 = lam142 (lam142 (app142 v1142 (app142 v1142 (app142 v1142 (app142 v1142 (app142 v1142 (app142 v1142 v0142))))))) {-# OPTIONS --type-in-type #-} Ty143 : Set; Ty143 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι143 : Ty143; ι143 = λ _ ι143 _ → ι143 arr143 : Ty143 → Ty143 → Ty143; arr143 = λ A B Ty143 ι143 arr143 → arr143 (A Ty143 ι143 arr143) (B Ty143 ι143 arr143) Con143 : Set;Con143 = (Con143 : Set) (nil : Con143) (snoc : Con143 → Ty143 → Con143) → Con143 nil143 : Con143;nil143 = λ Con143 nil143 snoc → nil143 snoc143 : Con143 → Ty143 → Con143;snoc143 = λ Γ A Con143 nil143 snoc143 → snoc143 (Γ Con143 nil143 snoc143) A Var143 : Con143 → Ty143 → Set;Var143 = λ Γ A → (Var143 : Con143 → Ty143 → Set) (vz : (Γ : _)(A : _) → Var143 (snoc143 Γ A) A) (vs : (Γ : _)(B A : _) → Var143 Γ A → Var143 (snoc143 Γ B) A) → Var143 Γ A vz143 : ∀{Γ A} → Var143 (snoc143 Γ A) A;vz143 = λ Var143 vz143 vs → vz143 _ _ vs143 : ∀{Γ B A} → Var143 Γ A → Var143 (snoc143 Γ B) A;vs143 = λ x Var143 vz143 vs143 → vs143 _ _ _ (x Var143 vz143 vs143) Tm143 : Con143 → Ty143 → Set;Tm143 = λ Γ A → (Tm143 : Con143 → Ty143 → Set) (var : (Γ : _) (A : _) → Var143 Γ A → Tm143 Γ A) (lam : (Γ : _) (A B : _) → Tm143 (snoc143 Γ A) B → Tm143 Γ (arr143 A B)) (app : (Γ : _) (A B : _) → Tm143 Γ (arr143 A B) → Tm143 Γ A → Tm143 Γ B) → Tm143 Γ A var143 : ∀{Γ A} → Var143 Γ A → Tm143 Γ A;var143 = λ x Tm143 var143 lam app → var143 _ _ x lam143 : ∀{Γ A B} → Tm143 (snoc143 Γ A) B → Tm143 Γ (arr143 A B);lam143 = λ t Tm143 var143 lam143 app → lam143 _ _ _ (t Tm143 var143 lam143 app) app143 : ∀{Γ A B} → Tm143 Γ (arr143 A B) → Tm143 Γ A → Tm143 Γ B;app143 = λ t u Tm143 var143 lam143 app143 → app143 _ _ _ (t Tm143 var143 lam143 app143) (u Tm143 var143 lam143 app143) v0143 : ∀{Γ A} → Tm143 (snoc143 Γ A) A;v0143 = var143 vz143 v1143 : ∀{Γ A B} → Tm143 (snoc143 (snoc143 Γ A) B) A;v1143 = var143 (vs143 vz143) v2143 : ∀{Γ A B C} → Tm143 (snoc143 (snoc143 (snoc143 Γ A) B) C) A;v2143 = var143 (vs143 (vs143 vz143)) v3143 : ∀{Γ A B C D} → Tm143 (snoc143 (snoc143 (snoc143 (snoc143 Γ A) B) C) D) A;v3143 = var143 (vs143 (vs143 (vs143 vz143))) v4143 : ∀{Γ A B C D E} → Tm143 (snoc143 (snoc143 (snoc143 (snoc143 (snoc143 Γ A) B) C) D) E) A;v4143 = var143 (vs143 (vs143 (vs143 (vs143 vz143)))) test143 : ∀{Γ A} → Tm143 Γ (arr143 (arr143 A A) (arr143 A A));test143 = lam143 (lam143 (app143 v1143 (app143 v1143 (app143 v1143 (app143 v1143 (app143 v1143 (app143 v1143 v0143))))))) {-# OPTIONS --type-in-type #-} Ty144 : Set; Ty144 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι144 : Ty144; ι144 = λ _ ι144 _ → ι144 arr144 : Ty144 → Ty144 → Ty144; arr144 = λ A B Ty144 ι144 arr144 → arr144 (A Ty144 ι144 arr144) (B Ty144 ι144 arr144) Con144 : Set;Con144 = (Con144 : Set) (nil : Con144) (snoc : Con144 → Ty144 → Con144) → Con144 nil144 : Con144;nil144 = λ Con144 nil144 snoc → nil144 snoc144 : Con144 → Ty144 → Con144;snoc144 = λ Γ A Con144 nil144 snoc144 → snoc144 (Γ Con144 nil144 snoc144) A Var144 : Con144 → Ty144 → Set;Var144 = λ Γ A → (Var144 : Con144 → Ty144 → Set) (vz : (Γ : _)(A : _) → Var144 (snoc144 Γ A) A) (vs : (Γ : _)(B A : _) → Var144 Γ A → Var144 (snoc144 Γ B) A) → Var144 Γ A vz144 : ∀{Γ A} → Var144 (snoc144 Γ A) A;vz144 = λ Var144 vz144 vs → vz144 _ _ vs144 : ∀{Γ B A} → Var144 Γ A → Var144 (snoc144 Γ B) A;vs144 = λ x Var144 vz144 vs144 → vs144 _ _ _ (x Var144 vz144 vs144) Tm144 : Con144 → Ty144 → Set;Tm144 = λ Γ A → (Tm144 : Con144 → Ty144 → Set) (var : (Γ : _) (A : _) → Var144 Γ A → Tm144 Γ A) (lam : (Γ : _) (A B : _) → Tm144 (snoc144 Γ A) B → Tm144 Γ (arr144 A B)) (app : (Γ : _) (A B : _) → Tm144 Γ (arr144 A B) → Tm144 Γ A → Tm144 Γ B) → Tm144 Γ A var144 : ∀{Γ A} → Var144 Γ A → Tm144 Γ A;var144 = λ x Tm144 var144 lam app → var144 _ _ x lam144 : ∀{Γ A B} → Tm144 (snoc144 Γ A) B → Tm144 Γ (arr144 A B);lam144 = λ t Tm144 var144 lam144 app → lam144 _ _ _ (t Tm144 var144 lam144 app) app144 : ∀{Γ A B} → Tm144 Γ (arr144 A B) → Tm144 Γ A → Tm144 Γ B;app144 = λ t u Tm144 var144 lam144 app144 → app144 _ _ _ (t Tm144 var144 lam144 app144) (u Tm144 var144 lam144 app144) v0144 : ∀{Γ A} → Tm144 (snoc144 Γ A) A;v0144 = var144 vz144 v1144 : ∀{Γ A B} → Tm144 (snoc144 (snoc144 Γ A) B) A;v1144 = var144 (vs144 vz144) v2144 : ∀{Γ A B C} → Tm144 (snoc144 (snoc144 (snoc144 Γ A) B) C) A;v2144 = var144 (vs144 (vs144 vz144)) v3144 : ∀{Γ A B C D} → Tm144 (snoc144 (snoc144 (snoc144 (snoc144 Γ A) B) C) D) A;v3144 = var144 (vs144 (vs144 (vs144 vz144))) v4144 : ∀{Γ A B C D E} → Tm144 (snoc144 (snoc144 (snoc144 (snoc144 (snoc144 Γ A) B) C) D) E) A;v4144 = var144 (vs144 (vs144 (vs144 (vs144 vz144)))) test144 : ∀{Γ A} → Tm144 Γ (arr144 (arr144 A A) (arr144 A A));test144 = lam144 (lam144 (app144 v1144 (app144 v1144 (app144 v1144 (app144 v1144 (app144 v1144 (app144 v1144 v0144))))))) {-# OPTIONS --type-in-type #-} Ty145 : Set; Ty145 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι145 : Ty145; ι145 = λ _ ι145 _ → ι145 arr145 : Ty145 → Ty145 → Ty145; arr145 = λ A B Ty145 ι145 arr145 → arr145 (A Ty145 ι145 arr145) (B Ty145 ι145 arr145) Con145 : Set;Con145 = (Con145 : Set) (nil : Con145) (snoc : Con145 → Ty145 → Con145) → Con145 nil145 : Con145;nil145 = λ Con145 nil145 snoc → nil145 snoc145 : Con145 → Ty145 → Con145;snoc145 = λ Γ A Con145 nil145 snoc145 → snoc145 (Γ Con145 nil145 snoc145) A Var145 : Con145 → Ty145 → Set;Var145 = λ Γ A → (Var145 : Con145 → Ty145 → Set) (vz : (Γ : _)(A : _) → Var145 (snoc145 Γ A) A) (vs : (Γ : _)(B A : _) → Var145 Γ A → Var145 (snoc145 Γ B) A) → Var145 Γ A vz145 : ∀{Γ A} → Var145 (snoc145 Γ A) A;vz145 = λ Var145 vz145 vs → vz145 _ _ vs145 : ∀{Γ B A} → Var145 Γ A → Var145 (snoc145 Γ B) A;vs145 = λ x Var145 vz145 vs145 → vs145 _ _ _ (x Var145 vz145 vs145) Tm145 : Con145 → Ty145 → Set;Tm145 = λ Γ A → (Tm145 : Con145 → Ty145 → Set) (var : (Γ : _) (A : _) → Var145 Γ A → Tm145 Γ A) (lam : (Γ : _) (A B : _) → Tm145 (snoc145 Γ A) B → Tm145 Γ (arr145 A B)) (app : (Γ : _) (A B : _) → Tm145 Γ (arr145 A B) → Tm145 Γ A → Tm145 Γ B) → Tm145 Γ A var145 : ∀{Γ A} → Var145 Γ A → Tm145 Γ A;var145 = λ x Tm145 var145 lam app → var145 _ _ x lam145 : ∀{Γ A B} → Tm145 (snoc145 Γ A) B → Tm145 Γ (arr145 A B);lam145 = λ t Tm145 var145 lam145 app → lam145 _ _ _ (t Tm145 var145 lam145 app) app145 : ∀{Γ A B} → Tm145 Γ (arr145 A B) → Tm145 Γ A → Tm145 Γ B;app145 = λ t u Tm145 var145 lam145 app145 → app145 _ _ _ (t Tm145 var145 lam145 app145) (u Tm145 var145 lam145 app145) v0145 : ∀{Γ A} → Tm145 (snoc145 Γ A) A;v0145 = var145 vz145 v1145 : ∀{Γ A B} → Tm145 (snoc145 (snoc145 Γ A) B) A;v1145 = var145 (vs145 vz145) v2145 : ∀{Γ A B C} → Tm145 (snoc145 (snoc145 (snoc145 Γ A) B) C) A;v2145 = var145 (vs145 (vs145 vz145)) v3145 : ∀{Γ A B C D} → Tm145 (snoc145 (snoc145 (snoc145 (snoc145 Γ A) B) C) D) A;v3145 = var145 (vs145 (vs145 (vs145 vz145))) v4145 : ∀{Γ A B C D E} → Tm145 (snoc145 (snoc145 (snoc145 (snoc145 (snoc145 Γ A) B) C) D) E) A;v4145 = var145 (vs145 (vs145 (vs145 (vs145 vz145)))) test145 : ∀{Γ A} → Tm145 Γ (arr145 (arr145 A A) (arr145 A A));test145 = lam145 (lam145 (app145 v1145 (app145 v1145 (app145 v1145 (app145 v1145 (app145 v1145 (app145 v1145 v0145))))))) {-# OPTIONS --type-in-type #-} Ty146 : Set; Ty146 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι146 : Ty146; ι146 = λ _ ι146 _ → ι146 arr146 : Ty146 → Ty146 → Ty146; arr146 = λ A B Ty146 ι146 arr146 → arr146 (A Ty146 ι146 arr146) (B Ty146 ι146 arr146) Con146 : Set;Con146 = (Con146 : Set) (nil : Con146) (snoc : Con146 → Ty146 → Con146) → Con146 nil146 : Con146;nil146 = λ Con146 nil146 snoc → nil146 snoc146 : Con146 → Ty146 → Con146;snoc146 = λ Γ A Con146 nil146 snoc146 → snoc146 (Γ Con146 nil146 snoc146) A Var146 : Con146 → Ty146 → Set;Var146 = λ Γ A → (Var146 : Con146 → Ty146 → Set) (vz : (Γ : _)(A : _) → Var146 (snoc146 Γ A) A) (vs : (Γ : _)(B A : _) → Var146 Γ A → Var146 (snoc146 Γ B) A) → Var146 Γ A vz146 : ∀{Γ A} → Var146 (snoc146 Γ A) A;vz146 = λ Var146 vz146 vs → vz146 _ _ vs146 : ∀{Γ B A} → Var146 Γ A → Var146 (snoc146 Γ B) A;vs146 = λ x Var146 vz146 vs146 → vs146 _ _ _ (x Var146 vz146 vs146) Tm146 : Con146 → Ty146 → Set;Tm146 = λ Γ A → (Tm146 : Con146 → Ty146 → Set) (var : (Γ : _) (A : _) → Var146 Γ A → Tm146 Γ A) (lam : (Γ : _) (A B : _) → Tm146 (snoc146 Γ A) B → Tm146 Γ (arr146 A B)) (app : (Γ : _) (A B : _) → Tm146 Γ (arr146 A B) → Tm146 Γ A → Tm146 Γ B) → Tm146 Γ A var146 : ∀{Γ A} → Var146 Γ A → Tm146 Γ A;var146 = λ x Tm146 var146 lam app → var146 _ _ x lam146 : ∀{Γ A B} → Tm146 (snoc146 Γ A) B → Tm146 Γ (arr146 A B);lam146 = λ t Tm146 var146 lam146 app → lam146 _ _ _ (t Tm146 var146 lam146 app) app146 : ∀{Γ A B} → Tm146 Γ (arr146 A B) → Tm146 Γ A → Tm146 Γ B;app146 = λ t u Tm146 var146 lam146 app146 → app146 _ _ _ (t Tm146 var146 lam146 app146) (u Tm146 var146 lam146 app146) v0146 : ∀{Γ A} → Tm146 (snoc146 Γ A) A;v0146 = var146 vz146 v1146 : ∀{Γ A B} → Tm146 (snoc146 (snoc146 Γ A) B) A;v1146 = var146 (vs146 vz146) v2146 : ∀{Γ A B C} → Tm146 (snoc146 (snoc146 (snoc146 Γ A) B) C) A;v2146 = var146 (vs146 (vs146 vz146)) v3146 : ∀{Γ A B C D} → Tm146 (snoc146 (snoc146 (snoc146 (snoc146 Γ A) B) C) D) A;v3146 = var146 (vs146 (vs146 (vs146 vz146))) v4146 : ∀{Γ A B C D E} → Tm146 (snoc146 (snoc146 (snoc146 (snoc146 (snoc146 Γ A) B) C) D) E) A;v4146 = var146 (vs146 (vs146 (vs146 (vs146 vz146)))) test146 : ∀{Γ A} → Tm146 Γ (arr146 (arr146 A A) (arr146 A A));test146 = lam146 (lam146 (app146 v1146 (app146 v1146 (app146 v1146 (app146 v1146 (app146 v1146 (app146 v1146 v0146))))))) {-# OPTIONS --type-in-type #-} Ty147 : Set; Ty147 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι147 : Ty147; ι147 = λ _ ι147 _ → ι147 arr147 : Ty147 → Ty147 → Ty147; arr147 = λ A B Ty147 ι147 arr147 → arr147 (A Ty147 ι147 arr147) (B Ty147 ι147 arr147) Con147 : Set;Con147 = (Con147 : Set) (nil : Con147) (snoc : Con147 → Ty147 → Con147) → Con147 nil147 : Con147;nil147 = λ Con147 nil147 snoc → nil147 snoc147 : Con147 → Ty147 → Con147;snoc147 = λ Γ A Con147 nil147 snoc147 → snoc147 (Γ Con147 nil147 snoc147) A Var147 : Con147 → Ty147 → Set;Var147 = λ Γ A → (Var147 : Con147 → Ty147 → Set) (vz : (Γ : _)(A : _) → Var147 (snoc147 Γ A) A) (vs : (Γ : _)(B A : _) → Var147 Γ A → Var147 (snoc147 Γ B) A) → Var147 Γ A vz147 : ∀{Γ A} → Var147 (snoc147 Γ A) A;vz147 = λ Var147 vz147 vs → vz147 _ _ vs147 : ∀{Γ B A} → Var147 Γ A → Var147 (snoc147 Γ B) A;vs147 = λ x Var147 vz147 vs147 → vs147 _ _ _ (x Var147 vz147 vs147) Tm147 : Con147 → Ty147 → Set;Tm147 = λ Γ A → (Tm147 : Con147 → Ty147 → Set) (var : (Γ : _) (A : _) → Var147 Γ A → Tm147 Γ A) (lam : (Γ : _) (A B : _) → Tm147 (snoc147 Γ A) B → Tm147 Γ (arr147 A B)) (app : (Γ : _) (A B : _) → Tm147 Γ (arr147 A B) → Tm147 Γ A → Tm147 Γ B) → Tm147 Γ A var147 : ∀{Γ A} → Var147 Γ A → Tm147 Γ A;var147 = λ x Tm147 var147 lam app → var147 _ _ x lam147 : ∀{Γ A B} → Tm147 (snoc147 Γ A) B → Tm147 Γ (arr147 A B);lam147 = λ t Tm147 var147 lam147 app → lam147 _ _ _ (t Tm147 var147 lam147 app) app147 : ∀{Γ A B} → Tm147 Γ (arr147 A B) → Tm147 Γ A → Tm147 Γ B;app147 = λ t u Tm147 var147 lam147 app147 → app147 _ _ _ (t Tm147 var147 lam147 app147) (u Tm147 var147 lam147 app147) v0147 : ∀{Γ A} → Tm147 (snoc147 Γ A) A;v0147 = var147 vz147 v1147 : ∀{Γ A B} → Tm147 (snoc147 (snoc147 Γ A) B) A;v1147 = var147 (vs147 vz147) v2147 : ∀{Γ A B C} → Tm147 (snoc147 (snoc147 (snoc147 Γ A) B) C) A;v2147 = var147 (vs147 (vs147 vz147)) v3147 : ∀{Γ A B C D} → Tm147 (snoc147 (snoc147 (snoc147 (snoc147 Γ A) B) C) D) A;v3147 = var147 (vs147 (vs147 (vs147 vz147))) v4147 : ∀{Γ A B C D E} → Tm147 (snoc147 (snoc147 (snoc147 (snoc147 (snoc147 Γ A) B) C) D) E) A;v4147 = var147 (vs147 (vs147 (vs147 (vs147 vz147)))) test147 : ∀{Γ A} → Tm147 Γ (arr147 (arr147 A A) (arr147 A A));test147 = lam147 (lam147 (app147 v1147 (app147 v1147 (app147 v1147 (app147 v1147 (app147 v1147 (app147 v1147 v0147))))))) {-# OPTIONS --type-in-type #-} Ty148 : Set; Ty148 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι148 : Ty148; ι148 = λ _ ι148 _ → ι148 arr148 : Ty148 → Ty148 → Ty148; arr148 = λ A B Ty148 ι148 arr148 → arr148 (A Ty148 ι148 arr148) (B Ty148 ι148 arr148) Con148 : Set;Con148 = (Con148 : Set) (nil : Con148) (snoc : Con148 → Ty148 → Con148) → Con148 nil148 : Con148;nil148 = λ Con148 nil148 snoc → nil148 snoc148 : Con148 → Ty148 → Con148;snoc148 = λ Γ A Con148 nil148 snoc148 → snoc148 (Γ Con148 nil148 snoc148) A Var148 : Con148 → Ty148 → Set;Var148 = λ Γ A → (Var148 : Con148 → Ty148 → Set) (vz : (Γ : _)(A : _) → Var148 (snoc148 Γ A) A) (vs : (Γ : _)(B A : _) → Var148 Γ A → Var148 (snoc148 Γ B) A) → Var148 Γ A vz148 : ∀{Γ A} → Var148 (snoc148 Γ A) A;vz148 = λ Var148 vz148 vs → vz148 _ _ vs148 : ∀{Γ B A} → Var148 Γ A → Var148 (snoc148 Γ B) A;vs148 = λ x Var148 vz148 vs148 → vs148 _ _ _ (x Var148 vz148 vs148) Tm148 : Con148 → Ty148 → Set;Tm148 = λ Γ A → (Tm148 : Con148 → Ty148 → Set) (var : (Γ : _) (A : _) → Var148 Γ A → Tm148 Γ A) (lam : (Γ : _) (A B : _) → Tm148 (snoc148 Γ A) B → Tm148 Γ (arr148 A B)) (app : (Γ : _) (A B : _) → Tm148 Γ (arr148 A B) → Tm148 Γ A → Tm148 Γ B) → Tm148 Γ A var148 : ∀{Γ A} → Var148 Γ A → Tm148 Γ A;var148 = λ x Tm148 var148 lam app → var148 _ _ x lam148 : ∀{Γ A B} → Tm148 (snoc148 Γ A) B → Tm148 Γ (arr148 A B);lam148 = λ t Tm148 var148 lam148 app → lam148 _ _ _ (t Tm148 var148 lam148 app) app148 : ∀{Γ A B} → Tm148 Γ (arr148 A B) → Tm148 Γ A → Tm148 Γ B;app148 = λ t u Tm148 var148 lam148 app148 → app148 _ _ _ (t Tm148 var148 lam148 app148) (u Tm148 var148 lam148 app148) v0148 : ∀{Γ A} → Tm148 (snoc148 Γ A) A;v0148 = var148 vz148 v1148 : ∀{Γ A B} → Tm148 (snoc148 (snoc148 Γ A) B) A;v1148 = var148 (vs148 vz148) v2148 : ∀{Γ A B C} → Tm148 (snoc148 (snoc148 (snoc148 Γ A) B) C) A;v2148 = var148 (vs148 (vs148 vz148)) v3148 : ∀{Γ A B C D} → Tm148 (snoc148 (snoc148 (snoc148 (snoc148 Γ A) B) C) D) A;v3148 = var148 (vs148 (vs148 (vs148 vz148))) v4148 : ∀{Γ A B C D E} → Tm148 (snoc148 (snoc148 (snoc148 (snoc148 (snoc148 Γ A) B) C) D) E) A;v4148 = var148 (vs148 (vs148 (vs148 (vs148 vz148)))) test148 : ∀{Γ A} → Tm148 Γ (arr148 (arr148 A A) (arr148 A A));test148 = lam148 (lam148 (app148 v1148 (app148 v1148 (app148 v1148 (app148 v1148 (app148 v1148 (app148 v1148 v0148))))))) {-# OPTIONS --type-in-type #-} Ty149 : Set; Ty149 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι149 : Ty149; ι149 = λ _ ι149 _ → ι149 arr149 : Ty149 → Ty149 → Ty149; arr149 = λ A B Ty149 ι149 arr149 → arr149 (A Ty149 ι149 arr149) (B Ty149 ι149 arr149) Con149 : Set;Con149 = (Con149 : Set) (nil : Con149) (snoc : Con149 → Ty149 → Con149) → Con149 nil149 : Con149;nil149 = λ Con149 nil149 snoc → nil149 snoc149 : Con149 → Ty149 → Con149;snoc149 = λ Γ A Con149 nil149 snoc149 → snoc149 (Γ Con149 nil149 snoc149) A Var149 : Con149 → Ty149 → Set;Var149 = λ Γ A → (Var149 : Con149 → Ty149 → Set) (vz : (Γ : _)(A : _) → Var149 (snoc149 Γ A) A) (vs : (Γ : _)(B A : _) → Var149 Γ A → Var149 (snoc149 Γ B) A) → Var149 Γ A vz149 : ∀{Γ A} → Var149 (snoc149 Γ A) A;vz149 = λ Var149 vz149 vs → vz149 _ _ vs149 : ∀{Γ B A} → Var149 Γ A → Var149 (snoc149 Γ B) A;vs149 = λ x Var149 vz149 vs149 → vs149 _ _ _ (x Var149 vz149 vs149) Tm149 : Con149 → Ty149 → Set;Tm149 = λ Γ A → (Tm149 : Con149 → Ty149 → Set) (var : (Γ : _) (A : _) → Var149 Γ A → Tm149 Γ A) (lam : (Γ : _) (A B : _) → Tm149 (snoc149 Γ A) B → Tm149 Γ (arr149 A B)) (app : (Γ : _) (A B : _) → Tm149 Γ (arr149 A B) → Tm149 Γ A → Tm149 Γ B) → Tm149 Γ A var149 : ∀{Γ A} → Var149 Γ A → Tm149 Γ A;var149 = λ x Tm149 var149 lam app → var149 _ _ x lam149 : ∀{Γ A B} → Tm149 (snoc149 Γ A) B → Tm149 Γ (arr149 A B);lam149 = λ t Tm149 var149 lam149 app → lam149 _ _ _ (t Tm149 var149 lam149 app) app149 : ∀{Γ A B} → Tm149 Γ (arr149 A B) → Tm149 Γ A → Tm149 Γ B;app149 = λ t u Tm149 var149 lam149 app149 → app149 _ _ _ (t Tm149 var149 lam149 app149) (u Tm149 var149 lam149 app149) v0149 : ∀{Γ A} → Tm149 (snoc149 Γ A) A;v0149 = var149 vz149 v1149 : ∀{Γ A B} → Tm149 (snoc149 (snoc149 Γ A) B) A;v1149 = var149 (vs149 vz149) v2149 : ∀{Γ A B C} → Tm149 (snoc149 (snoc149 (snoc149 Γ A) B) C) A;v2149 = var149 (vs149 (vs149 vz149)) v3149 : ∀{Γ A B C D} → Tm149 (snoc149 (snoc149 (snoc149 (snoc149 Γ A) B) C) D) A;v3149 = var149 (vs149 (vs149 (vs149 vz149))) v4149 : ∀{Γ A B C D E} → Tm149 (snoc149 (snoc149 (snoc149 (snoc149 (snoc149 Γ A) B) C) D) E) A;v4149 = var149 (vs149 (vs149 (vs149 (vs149 vz149)))) test149 : ∀{Γ A} → Tm149 Γ (arr149 (arr149 A A) (arr149 A A));test149 = lam149 (lam149 (app149 v1149 (app149 v1149 (app149 v1149 (app149 v1149 (app149 v1149 (app149 v1149 v0149))))))) {-# OPTIONS --type-in-type #-} Ty150 : Set; Ty150 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι150 : Ty150; ι150 = λ _ ι150 _ → ι150 arr150 : Ty150 → Ty150 → Ty150; arr150 = λ A B Ty150 ι150 arr150 → arr150 (A Ty150 ι150 arr150) (B Ty150 ι150 arr150) Con150 : Set;Con150 = (Con150 : Set) (nil : Con150) (snoc : Con150 → Ty150 → Con150) → Con150 nil150 : Con150;nil150 = λ Con150 nil150 snoc → nil150 snoc150 : Con150 → Ty150 → Con150;snoc150 = λ Γ A Con150 nil150 snoc150 → snoc150 (Γ Con150 nil150 snoc150) A Var150 : Con150 → Ty150 → Set;Var150 = λ Γ A → (Var150 : Con150 → Ty150 → Set) (vz : (Γ : _)(A : _) → Var150 (snoc150 Γ A) A) (vs : (Γ : _)(B A : _) → Var150 Γ A → Var150 (snoc150 Γ B) A) → Var150 Γ A vz150 : ∀{Γ A} → Var150 (snoc150 Γ A) A;vz150 = λ Var150 vz150 vs → vz150 _ _ vs150 : ∀{Γ B A} → Var150 Γ A → Var150 (snoc150 Γ B) A;vs150 = λ x Var150 vz150 vs150 → vs150 _ _ _ (x Var150 vz150 vs150) Tm150 : Con150 → Ty150 → Set;Tm150 = λ Γ A → (Tm150 : Con150 → Ty150 → Set) (var : (Γ : _) (A : _) → Var150 Γ A → Tm150 Γ A) (lam : (Γ : _) (A B : _) → Tm150 (snoc150 Γ A) B → Tm150 Γ (arr150 A B)) (app : (Γ : _) (A B : _) → Tm150 Γ (arr150 A B) → Tm150 Γ A → Tm150 Γ B) → Tm150 Γ A var150 : ∀{Γ A} → Var150 Γ A → Tm150 Γ A;var150 = λ x Tm150 var150 lam app → var150 _ _ x lam150 : ∀{Γ A B} → Tm150 (snoc150 Γ A) B → Tm150 Γ (arr150 A B);lam150 = λ t Tm150 var150 lam150 app → lam150 _ _ _ (t Tm150 var150 lam150 app) app150 : ∀{Γ A B} → Tm150 Γ (arr150 A B) → Tm150 Γ A → Tm150 Γ B;app150 = λ t u Tm150 var150 lam150 app150 → app150 _ _ _ (t Tm150 var150 lam150 app150) (u Tm150 var150 lam150 app150) v0150 : ∀{Γ A} → Tm150 (snoc150 Γ A) A;v0150 = var150 vz150 v1150 : ∀{Γ A B} → Tm150 (snoc150 (snoc150 Γ A) B) A;v1150 = var150 (vs150 vz150) v2150 : ∀{Γ A B C} → Tm150 (snoc150 (snoc150 (snoc150 Γ A) B) C) A;v2150 = var150 (vs150 (vs150 vz150)) v3150 : ∀{Γ A B C D} → Tm150 (snoc150 (snoc150 (snoc150 (snoc150 Γ A) B) C) D) A;v3150 = var150 (vs150 (vs150 (vs150 vz150))) v4150 : ∀{Γ A B C D E} → Tm150 (snoc150 (snoc150 (snoc150 (snoc150 (snoc150 Γ A) B) C) D) E) A;v4150 = var150 (vs150 (vs150 (vs150 (vs150 vz150)))) test150 : ∀{Γ A} → Tm150 Γ (arr150 (arr150 A A) (arr150 A A));test150 = lam150 (lam150 (app150 v1150 (app150 v1150 (app150 v1150 (app150 v1150 (app150 v1150 (app150 v1150 v0150))))))) {-# OPTIONS --type-in-type #-} Ty151 : Set; Ty151 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι151 : Ty151; ι151 = λ _ ι151 _ → ι151 arr151 : Ty151 → Ty151 → Ty151; arr151 = λ A B Ty151 ι151 arr151 → arr151 (A Ty151 ι151 arr151) (B Ty151 ι151 arr151) Con151 : Set;Con151 = (Con151 : Set) (nil : Con151) (snoc : Con151 → Ty151 → Con151) → Con151 nil151 : Con151;nil151 = λ Con151 nil151 snoc → nil151 snoc151 : Con151 → Ty151 → Con151;snoc151 = λ Γ A Con151 nil151 snoc151 → snoc151 (Γ Con151 nil151 snoc151) A Var151 : Con151 → Ty151 → Set;Var151 = λ Γ A → (Var151 : Con151 → Ty151 → Set) (vz : (Γ : _)(A : _) → Var151 (snoc151 Γ A) A) (vs : (Γ : _)(B A : _) → Var151 Γ A → Var151 (snoc151 Γ B) A) → Var151 Γ A vz151 : ∀{Γ A} → Var151 (snoc151 Γ A) A;vz151 = λ Var151 vz151 vs → vz151 _ _ vs151 : ∀{Γ B A} → Var151 Γ A → Var151 (snoc151 Γ B) A;vs151 = λ x Var151 vz151 vs151 → vs151 _ _ _ (x Var151 vz151 vs151) Tm151 : Con151 → Ty151 → Set;Tm151 = λ Γ A → (Tm151 : Con151 → Ty151 → Set) (var : (Γ : _) (A : _) → Var151 Γ A → Tm151 Γ A) (lam : (Γ : _) (A B : _) → Tm151 (snoc151 Γ A) B → Tm151 Γ (arr151 A B)) (app : (Γ : _) (A B : _) → Tm151 Γ (arr151 A B) → Tm151 Γ A → Tm151 Γ B) → Tm151 Γ A var151 : ∀{Γ A} → Var151 Γ A → Tm151 Γ A;var151 = λ x Tm151 var151 lam app → var151 _ _ x lam151 : ∀{Γ A B} → Tm151 (snoc151 Γ A) B → Tm151 Γ (arr151 A B);lam151 = λ t Tm151 var151 lam151 app → lam151 _ _ _ (t Tm151 var151 lam151 app) app151 : ∀{Γ A B} → Tm151 Γ (arr151 A B) → Tm151 Γ A → Tm151 Γ B;app151 = λ t u Tm151 var151 lam151 app151 → app151 _ _ _ (t Tm151 var151 lam151 app151) (u Tm151 var151 lam151 app151) v0151 : ∀{Γ A} → Tm151 (snoc151 Γ A) A;v0151 = var151 vz151 v1151 : ∀{Γ A B} → Tm151 (snoc151 (snoc151 Γ A) B) A;v1151 = var151 (vs151 vz151) v2151 : ∀{Γ A B C} → Tm151 (snoc151 (snoc151 (snoc151 Γ A) B) C) A;v2151 = var151 (vs151 (vs151 vz151)) v3151 : ∀{Γ A B C D} → Tm151 (snoc151 (snoc151 (snoc151 (snoc151 Γ A) B) C) D) A;v3151 = var151 (vs151 (vs151 (vs151 vz151))) v4151 : ∀{Γ A B C D E} → Tm151 (snoc151 (snoc151 (snoc151 (snoc151 (snoc151 Γ A) B) C) D) E) A;v4151 = var151 (vs151 (vs151 (vs151 (vs151 vz151)))) test151 : ∀{Γ A} → Tm151 Γ (arr151 (arr151 A A) (arr151 A A));test151 = lam151 (lam151 (app151 v1151 (app151 v1151 (app151 v1151 (app151 v1151 (app151 v1151 (app151 v1151 v0151))))))) {-# OPTIONS --type-in-type #-} Ty152 : Set; Ty152 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι152 : Ty152; ι152 = λ _ ι152 _ → ι152 arr152 : Ty152 → Ty152 → Ty152; arr152 = λ A B Ty152 ι152 arr152 → arr152 (A Ty152 ι152 arr152) (B Ty152 ι152 arr152) Con152 : Set;Con152 = (Con152 : Set) (nil : Con152) (snoc : Con152 → Ty152 → Con152) → Con152 nil152 : Con152;nil152 = λ Con152 nil152 snoc → nil152 snoc152 : Con152 → Ty152 → Con152;snoc152 = λ Γ A Con152 nil152 snoc152 → snoc152 (Γ Con152 nil152 snoc152) A Var152 : Con152 → Ty152 → Set;Var152 = λ Γ A → (Var152 : Con152 → Ty152 → Set) (vz : (Γ : _)(A : _) → Var152 (snoc152 Γ A) A) (vs : (Γ : _)(B A : _) → Var152 Γ A → Var152 (snoc152 Γ B) A) → Var152 Γ A vz152 : ∀{Γ A} → Var152 (snoc152 Γ A) A;vz152 = λ Var152 vz152 vs → vz152 _ _ vs152 : ∀{Γ B A} → Var152 Γ A → Var152 (snoc152 Γ B) A;vs152 = λ x Var152 vz152 vs152 → vs152 _ _ _ (x Var152 vz152 vs152) Tm152 : Con152 → Ty152 → Set;Tm152 = λ Γ A → (Tm152 : Con152 → Ty152 → Set) (var : (Γ : _) (A : _) → Var152 Γ A → Tm152 Γ A) (lam : (Γ : _) (A B : _) → Tm152 (snoc152 Γ A) B → Tm152 Γ (arr152 A B)) (app : (Γ : _) (A B : _) → Tm152 Γ (arr152 A B) → Tm152 Γ A → Tm152 Γ B) → Tm152 Γ A var152 : ∀{Γ A} → Var152 Γ A → Tm152 Γ A;var152 = λ x Tm152 var152 lam app → var152 _ _ x lam152 : ∀{Γ A B} → Tm152 (snoc152 Γ A) B → Tm152 Γ (arr152 A B);lam152 = λ t Tm152 var152 lam152 app → lam152 _ _ _ (t Tm152 var152 lam152 app) app152 : ∀{Γ A B} → Tm152 Γ (arr152 A B) → Tm152 Γ A → Tm152 Γ B;app152 = λ t u Tm152 var152 lam152 app152 → app152 _ _ _ (t Tm152 var152 lam152 app152) (u Tm152 var152 lam152 app152) v0152 : ∀{Γ A} → Tm152 (snoc152 Γ A) A;v0152 = var152 vz152 v1152 : ∀{Γ A B} → Tm152 (snoc152 (snoc152 Γ A) B) A;v1152 = var152 (vs152 vz152) v2152 : ∀{Γ A B C} → Tm152 (snoc152 (snoc152 (snoc152 Γ A) B) C) A;v2152 = var152 (vs152 (vs152 vz152)) v3152 : ∀{Γ A B C D} → Tm152 (snoc152 (snoc152 (snoc152 (snoc152 Γ A) B) C) D) A;v3152 = var152 (vs152 (vs152 (vs152 vz152))) v4152 : ∀{Γ A B C D E} → Tm152 (snoc152 (snoc152 (snoc152 (snoc152 (snoc152 Γ A) B) C) D) E) A;v4152 = var152 (vs152 (vs152 (vs152 (vs152 vz152)))) test152 : ∀{Γ A} → Tm152 Γ (arr152 (arr152 A A) (arr152 A A));test152 = lam152 (lam152 (app152 v1152 (app152 v1152 (app152 v1152 (app152 v1152 (app152 v1152 (app152 v1152 v0152))))))) {-# OPTIONS --type-in-type #-} Ty153 : Set; Ty153 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι153 : Ty153; ι153 = λ _ ι153 _ → ι153 arr153 : Ty153 → Ty153 → Ty153; arr153 = λ A B Ty153 ι153 arr153 → arr153 (A Ty153 ι153 arr153) (B Ty153 ι153 arr153) Con153 : Set;Con153 = (Con153 : Set) (nil : Con153) (snoc : Con153 → Ty153 → Con153) → Con153 nil153 : Con153;nil153 = λ Con153 nil153 snoc → nil153 snoc153 : Con153 → Ty153 → Con153;snoc153 = λ Γ A Con153 nil153 snoc153 → snoc153 (Γ Con153 nil153 snoc153) A Var153 : Con153 → Ty153 → Set;Var153 = λ Γ A → (Var153 : Con153 → Ty153 → Set) (vz : (Γ : _)(A : _) → Var153 (snoc153 Γ A) A) (vs : (Γ : _)(B A : _) → Var153 Γ A → Var153 (snoc153 Γ B) A) → Var153 Γ A vz153 : ∀{Γ A} → Var153 (snoc153 Γ A) A;vz153 = λ Var153 vz153 vs → vz153 _ _ vs153 : ∀{Γ B A} → Var153 Γ A → Var153 (snoc153 Γ B) A;vs153 = λ x Var153 vz153 vs153 → vs153 _ _ _ (x Var153 vz153 vs153) Tm153 : Con153 → Ty153 → Set;Tm153 = λ Γ A → (Tm153 : Con153 → Ty153 → Set) (var : (Γ : _) (A : _) → Var153 Γ A → Tm153 Γ A) (lam : (Γ : _) (A B : _) → Tm153 (snoc153 Γ A) B → Tm153 Γ (arr153 A B)) (app : (Γ : _) (A B : _) → Tm153 Γ (arr153 A B) → Tm153 Γ A → Tm153 Γ B) → Tm153 Γ A var153 : ∀{Γ A} → Var153 Γ A → Tm153 Γ A;var153 = λ x Tm153 var153 lam app → var153 _ _ x lam153 : ∀{Γ A B} → Tm153 (snoc153 Γ A) B → Tm153 Γ (arr153 A B);lam153 = λ t Tm153 var153 lam153 app → lam153 _ _ _ (t Tm153 var153 lam153 app) app153 : ∀{Γ A B} → Tm153 Γ (arr153 A B) → Tm153 Γ A → Tm153 Γ B;app153 = λ t u Tm153 var153 lam153 app153 → app153 _ _ _ (t Tm153 var153 lam153 app153) (u Tm153 var153 lam153 app153) v0153 : ∀{Γ A} → Tm153 (snoc153 Γ A) A;v0153 = var153 vz153 v1153 : ∀{Γ A B} → Tm153 (snoc153 (snoc153 Γ A) B) A;v1153 = var153 (vs153 vz153) v2153 : ∀{Γ A B C} → Tm153 (snoc153 (snoc153 (snoc153 Γ A) B) C) A;v2153 = var153 (vs153 (vs153 vz153)) v3153 : ∀{Γ A B C D} → Tm153 (snoc153 (snoc153 (snoc153 (snoc153 Γ A) B) C) D) A;v3153 = var153 (vs153 (vs153 (vs153 vz153))) v4153 : ∀{Γ A B C D E} → Tm153 (snoc153 (snoc153 (snoc153 (snoc153 (snoc153 Γ A) B) C) D) E) A;v4153 = var153 (vs153 (vs153 (vs153 (vs153 vz153)))) test153 : ∀{Γ A} → Tm153 Γ (arr153 (arr153 A A) (arr153 A A));test153 = lam153 (lam153 (app153 v1153 (app153 v1153 (app153 v1153 (app153 v1153 (app153 v1153 (app153 v1153 v0153))))))) {-# OPTIONS --type-in-type #-} Ty154 : Set; Ty154 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι154 : Ty154; ι154 = λ _ ι154 _ → ι154 arr154 : Ty154 → Ty154 → Ty154; arr154 = λ A B Ty154 ι154 arr154 → arr154 (A Ty154 ι154 arr154) (B Ty154 ι154 arr154) Con154 : Set;Con154 = (Con154 : Set) (nil : Con154) (snoc : Con154 → Ty154 → Con154) → Con154 nil154 : Con154;nil154 = λ Con154 nil154 snoc → nil154 snoc154 : Con154 → Ty154 → Con154;snoc154 = λ Γ A Con154 nil154 snoc154 → snoc154 (Γ Con154 nil154 snoc154) A Var154 : Con154 → Ty154 → Set;Var154 = λ Γ A → (Var154 : Con154 → Ty154 → Set) (vz : (Γ : _)(A : _) → Var154 (snoc154 Γ A) A) (vs : (Γ : _)(B A : _) → Var154 Γ A → Var154 (snoc154 Γ B) A) → Var154 Γ A vz154 : ∀{Γ A} → Var154 (snoc154 Γ A) A;vz154 = λ Var154 vz154 vs → vz154 _ _ vs154 : ∀{Γ B A} → Var154 Γ A → Var154 (snoc154 Γ B) A;vs154 = λ x Var154 vz154 vs154 → vs154 _ _ _ (x Var154 vz154 vs154) Tm154 : Con154 → Ty154 → Set;Tm154 = λ Γ A → (Tm154 : Con154 → Ty154 → Set) (var : (Γ : _) (A : _) → Var154 Γ A → Tm154 Γ A) (lam : (Γ : _) (A B : _) → Tm154 (snoc154 Γ A) B → Tm154 Γ (arr154 A B)) (app : (Γ : _) (A B : _) → Tm154 Γ (arr154 A B) → Tm154 Γ A → Tm154 Γ B) → Tm154 Γ A var154 : ∀{Γ A} → Var154 Γ A → Tm154 Γ A;var154 = λ x Tm154 var154 lam app → var154 _ _ x lam154 : ∀{Γ A B} → Tm154 (snoc154 Γ A) B → Tm154 Γ (arr154 A B);lam154 = λ t Tm154 var154 lam154 app → lam154 _ _ _ (t Tm154 var154 lam154 app) app154 : ∀{Γ A B} → Tm154 Γ (arr154 A B) → Tm154 Γ A → Tm154 Γ B;app154 = λ t u Tm154 var154 lam154 app154 → app154 _ _ _ (t Tm154 var154 lam154 app154) (u Tm154 var154 lam154 app154) v0154 : ∀{Γ A} → Tm154 (snoc154 Γ A) A;v0154 = var154 vz154 v1154 : ∀{Γ A B} → Tm154 (snoc154 (snoc154 Γ A) B) A;v1154 = var154 (vs154 vz154) v2154 : ∀{Γ A B C} → Tm154 (snoc154 (snoc154 (snoc154 Γ A) B) C) A;v2154 = var154 (vs154 (vs154 vz154)) v3154 : ∀{Γ A B C D} → Tm154 (snoc154 (snoc154 (snoc154 (snoc154 Γ A) B) C) D) A;v3154 = var154 (vs154 (vs154 (vs154 vz154))) v4154 : ∀{Γ A B C D E} → Tm154 (snoc154 (snoc154 (snoc154 (snoc154 (snoc154 Γ A) B) C) D) E) A;v4154 = var154 (vs154 (vs154 (vs154 (vs154 vz154)))) test154 : ∀{Γ A} → Tm154 Γ (arr154 (arr154 A A) (arr154 A A));test154 = lam154 (lam154 (app154 v1154 (app154 v1154 (app154 v1154 (app154 v1154 (app154 v1154 (app154 v1154 v0154))))))) {-# OPTIONS --type-in-type #-} Ty155 : Set; Ty155 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι155 : Ty155; ι155 = λ _ ι155 _ → ι155 arr155 : Ty155 → Ty155 → Ty155; arr155 = λ A B Ty155 ι155 arr155 → arr155 (A Ty155 ι155 arr155) (B Ty155 ι155 arr155) Con155 : Set;Con155 = (Con155 : Set) (nil : Con155) (snoc : Con155 → Ty155 → Con155) → Con155 nil155 : Con155;nil155 = λ Con155 nil155 snoc → nil155 snoc155 : Con155 → Ty155 → Con155;snoc155 = λ Γ A Con155 nil155 snoc155 → snoc155 (Γ Con155 nil155 snoc155) A Var155 : Con155 → Ty155 → Set;Var155 = λ Γ A → (Var155 : Con155 → Ty155 → Set) (vz : (Γ : _)(A : _) → Var155 (snoc155 Γ A) A) (vs : (Γ : _)(B A : _) → Var155 Γ A → Var155 (snoc155 Γ B) A) → Var155 Γ A vz155 : ∀{Γ A} → Var155 (snoc155 Γ A) A;vz155 = λ Var155 vz155 vs → vz155 _ _ vs155 : ∀{Γ B A} → Var155 Γ A → Var155 (snoc155 Γ B) A;vs155 = λ x Var155 vz155 vs155 → vs155 _ _ _ (x Var155 vz155 vs155) Tm155 : Con155 → Ty155 → Set;Tm155 = λ Γ A → (Tm155 : Con155 → Ty155 → Set) (var : (Γ : _) (A : _) → Var155 Γ A → Tm155 Γ A) (lam : (Γ : _) (A B : _) → Tm155 (snoc155 Γ A) B → Tm155 Γ (arr155 A B)) (app : (Γ : _) (A B : _) → Tm155 Γ (arr155 A B) → Tm155 Γ A → Tm155 Γ B) → Tm155 Γ A var155 : ∀{Γ A} → Var155 Γ A → Tm155 Γ A;var155 = λ x Tm155 var155 lam app → var155 _ _ x lam155 : ∀{Γ A B} → Tm155 (snoc155 Γ A) B → Tm155 Γ (arr155 A B);lam155 = λ t Tm155 var155 lam155 app → lam155 _ _ _ (t Tm155 var155 lam155 app) app155 : ∀{Γ A B} → Tm155 Γ (arr155 A B) → Tm155 Γ A → Tm155 Γ B;app155 = λ t u Tm155 var155 lam155 app155 → app155 _ _ _ (t Tm155 var155 lam155 app155) (u Tm155 var155 lam155 app155) v0155 : ∀{Γ A} → Tm155 (snoc155 Γ A) A;v0155 = var155 vz155 v1155 : ∀{Γ A B} → Tm155 (snoc155 (snoc155 Γ A) B) A;v1155 = var155 (vs155 vz155) v2155 : ∀{Γ A B C} → Tm155 (snoc155 (snoc155 (snoc155 Γ A) B) C) A;v2155 = var155 (vs155 (vs155 vz155)) v3155 : ∀{Γ A B C D} → Tm155 (snoc155 (snoc155 (snoc155 (snoc155 Γ A) B) C) D) A;v3155 = var155 (vs155 (vs155 (vs155 vz155))) v4155 : ∀{Γ A B C D E} → Tm155 (snoc155 (snoc155 (snoc155 (snoc155 (snoc155 Γ A) B) C) D) E) A;v4155 = var155 (vs155 (vs155 (vs155 (vs155 vz155)))) test155 : ∀{Γ A} → Tm155 Γ (arr155 (arr155 A A) (arr155 A A));test155 = lam155 (lam155 (app155 v1155 (app155 v1155 (app155 v1155 (app155 v1155 (app155 v1155 (app155 v1155 v0155))))))) {-# OPTIONS --type-in-type #-} Ty156 : Set; Ty156 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι156 : Ty156; ι156 = λ _ ι156 _ → ι156 arr156 : Ty156 → Ty156 → Ty156; arr156 = λ A B Ty156 ι156 arr156 → arr156 (A Ty156 ι156 arr156) (B Ty156 ι156 arr156) Con156 : Set;Con156 = (Con156 : Set) (nil : Con156) (snoc : Con156 → Ty156 → Con156) → Con156 nil156 : Con156;nil156 = λ Con156 nil156 snoc → nil156 snoc156 : Con156 → Ty156 → Con156;snoc156 = λ Γ A Con156 nil156 snoc156 → snoc156 (Γ Con156 nil156 snoc156) A Var156 : Con156 → Ty156 → Set;Var156 = λ Γ A → (Var156 : Con156 → Ty156 → Set) (vz : (Γ : _)(A : _) → Var156 (snoc156 Γ A) A) (vs : (Γ : _)(B A : _) → Var156 Γ A → Var156 (snoc156 Γ B) A) → Var156 Γ A vz156 : ∀{Γ A} → Var156 (snoc156 Γ A) A;vz156 = λ Var156 vz156 vs → vz156 _ _ vs156 : ∀{Γ B A} → Var156 Γ A → Var156 (snoc156 Γ B) A;vs156 = λ x Var156 vz156 vs156 → vs156 _ _ _ (x Var156 vz156 vs156) Tm156 : Con156 → Ty156 → Set;Tm156 = λ Γ A → (Tm156 : Con156 → Ty156 → Set) (var : (Γ : _) (A : _) → Var156 Γ A → Tm156 Γ A) (lam : (Γ : _) (A B : _) → Tm156 (snoc156 Γ A) B → Tm156 Γ (arr156 A B)) (app : (Γ : _) (A B : _) → Tm156 Γ (arr156 A B) → Tm156 Γ A → Tm156 Γ B) → Tm156 Γ A var156 : ∀{Γ A} → Var156 Γ A → Tm156 Γ A;var156 = λ x Tm156 var156 lam app → var156 _ _ x lam156 : ∀{Γ A B} → Tm156 (snoc156 Γ A) B → Tm156 Γ (arr156 A B);lam156 = λ t Tm156 var156 lam156 app → lam156 _ _ _ (t Tm156 var156 lam156 app) app156 : ∀{Γ A B} → Tm156 Γ (arr156 A B) → Tm156 Γ A → Tm156 Γ B;app156 = λ t u Tm156 var156 lam156 app156 → app156 _ _ _ (t Tm156 var156 lam156 app156) (u Tm156 var156 lam156 app156) v0156 : ∀{Γ A} → Tm156 (snoc156 Γ A) A;v0156 = var156 vz156 v1156 : ∀{Γ A B} → Tm156 (snoc156 (snoc156 Γ A) B) A;v1156 = var156 (vs156 vz156) v2156 : ∀{Γ A B C} → Tm156 (snoc156 (snoc156 (snoc156 Γ A) B) C) A;v2156 = var156 (vs156 (vs156 vz156)) v3156 : ∀{Γ A B C D} → Tm156 (snoc156 (snoc156 (snoc156 (snoc156 Γ A) B) C) D) A;v3156 = var156 (vs156 (vs156 (vs156 vz156))) v4156 : ∀{Γ A B C D E} → Tm156 (snoc156 (snoc156 (snoc156 (snoc156 (snoc156 Γ A) B) C) D) E) A;v4156 = var156 (vs156 (vs156 (vs156 (vs156 vz156)))) test156 : ∀{Γ A} → Tm156 Γ (arr156 (arr156 A A) (arr156 A A));test156 = lam156 (lam156 (app156 v1156 (app156 v1156 (app156 v1156 (app156 v1156 (app156 v1156 (app156 v1156 v0156))))))) {-# OPTIONS --type-in-type #-} Ty157 : Set; Ty157 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι157 : Ty157; ι157 = λ _ ι157 _ → ι157 arr157 : Ty157 → Ty157 → Ty157; arr157 = λ A B Ty157 ι157 arr157 → arr157 (A Ty157 ι157 arr157) (B Ty157 ι157 arr157) Con157 : Set;Con157 = (Con157 : Set) (nil : Con157) (snoc : Con157 → Ty157 → Con157) → Con157 nil157 : Con157;nil157 = λ Con157 nil157 snoc → nil157 snoc157 : Con157 → Ty157 → Con157;snoc157 = λ Γ A Con157 nil157 snoc157 → snoc157 (Γ Con157 nil157 snoc157) A Var157 : Con157 → Ty157 → Set;Var157 = λ Γ A → (Var157 : Con157 → Ty157 → Set) (vz : (Γ : _)(A : _) → Var157 (snoc157 Γ A) A) (vs : (Γ : _)(B A : _) → Var157 Γ A → Var157 (snoc157 Γ B) A) → Var157 Γ A vz157 : ∀{Γ A} → Var157 (snoc157 Γ A) A;vz157 = λ Var157 vz157 vs → vz157 _ _ vs157 : ∀{Γ B A} → Var157 Γ A → Var157 (snoc157 Γ B) A;vs157 = λ x Var157 vz157 vs157 → vs157 _ _ _ (x Var157 vz157 vs157) Tm157 : Con157 → Ty157 → Set;Tm157 = λ Γ A → (Tm157 : Con157 → Ty157 → Set) (var : (Γ : _) (A : _) → Var157 Γ A → Tm157 Γ A) (lam : (Γ : _) (A B : _) → Tm157 (snoc157 Γ A) B → Tm157 Γ (arr157 A B)) (app : (Γ : _) (A B : _) → Tm157 Γ (arr157 A B) → Tm157 Γ A → Tm157 Γ B) → Tm157 Γ A var157 : ∀{Γ A} → Var157 Γ A → Tm157 Γ A;var157 = λ x Tm157 var157 lam app → var157 _ _ x lam157 : ∀{Γ A B} → Tm157 (snoc157 Γ A) B → Tm157 Γ (arr157 A B);lam157 = λ t Tm157 var157 lam157 app → lam157 _ _ _ (t Tm157 var157 lam157 app) app157 : ∀{Γ A B} → Tm157 Γ (arr157 A B) → Tm157 Γ A → Tm157 Γ B;app157 = λ t u Tm157 var157 lam157 app157 → app157 _ _ _ (t Tm157 var157 lam157 app157) (u Tm157 var157 lam157 app157) v0157 : ∀{Γ A} → Tm157 (snoc157 Γ A) A;v0157 = var157 vz157 v1157 : ∀{Γ A B} → Tm157 (snoc157 (snoc157 Γ A) B) A;v1157 = var157 (vs157 vz157) v2157 : ∀{Γ A B C} → Tm157 (snoc157 (snoc157 (snoc157 Γ A) B) C) A;v2157 = var157 (vs157 (vs157 vz157)) v3157 : ∀{Γ A B C D} → Tm157 (snoc157 (snoc157 (snoc157 (snoc157 Γ A) B) C) D) A;v3157 = var157 (vs157 (vs157 (vs157 vz157))) v4157 : ∀{Γ A B C D E} → Tm157 (snoc157 (snoc157 (snoc157 (snoc157 (snoc157 Γ A) B) C) D) E) A;v4157 = var157 (vs157 (vs157 (vs157 (vs157 vz157)))) test157 : ∀{Γ A} → Tm157 Γ (arr157 (arr157 A A) (arr157 A A));test157 = lam157 (lam157 (app157 v1157 (app157 v1157 (app157 v1157 (app157 v1157 (app157 v1157 (app157 v1157 v0157))))))) {-# OPTIONS --type-in-type #-} Ty158 : Set; Ty158 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι158 : Ty158; ι158 = λ _ ι158 _ → ι158 arr158 : Ty158 → Ty158 → Ty158; arr158 = λ A B Ty158 ι158 arr158 → arr158 (A Ty158 ι158 arr158) (B Ty158 ι158 arr158) Con158 : Set;Con158 = (Con158 : Set) (nil : Con158) (snoc : Con158 → Ty158 → Con158) → Con158 nil158 : Con158;nil158 = λ Con158 nil158 snoc → nil158 snoc158 : Con158 → Ty158 → Con158;snoc158 = λ Γ A Con158 nil158 snoc158 → snoc158 (Γ Con158 nil158 snoc158) A Var158 : Con158 → Ty158 → Set;Var158 = λ Γ A → (Var158 : Con158 → Ty158 → Set) (vz : (Γ : _)(A : _) → Var158 (snoc158 Γ A) A) (vs : (Γ : _)(B A : _) → Var158 Γ A → Var158 (snoc158 Γ B) A) → Var158 Γ A vz158 : ∀{Γ A} → Var158 (snoc158 Γ A) A;vz158 = λ Var158 vz158 vs → vz158 _ _ vs158 : ∀{Γ B A} → Var158 Γ A → Var158 (snoc158 Γ B) A;vs158 = λ x Var158 vz158 vs158 → vs158 _ _ _ (x Var158 vz158 vs158) Tm158 : Con158 → Ty158 → Set;Tm158 = λ Γ A → (Tm158 : Con158 → Ty158 → Set) (var : (Γ : _) (A : _) → Var158 Γ A → Tm158 Γ A) (lam : (Γ : _) (A B : _) → Tm158 (snoc158 Γ A) B → Tm158 Γ (arr158 A B)) (app : (Γ : _) (A B : _) → Tm158 Γ (arr158 A B) → Tm158 Γ A → Tm158 Γ B) → Tm158 Γ A var158 : ∀{Γ A} → Var158 Γ A → Tm158 Γ A;var158 = λ x Tm158 var158 lam app → var158 _ _ x lam158 : ∀{Γ A B} → Tm158 (snoc158 Γ A) B → Tm158 Γ (arr158 A B);lam158 = λ t Tm158 var158 lam158 app → lam158 _ _ _ (t Tm158 var158 lam158 app) app158 : ∀{Γ A B} → Tm158 Γ (arr158 A B) → Tm158 Γ A → Tm158 Γ B;app158 = λ t u Tm158 var158 lam158 app158 → app158 _ _ _ (t Tm158 var158 lam158 app158) (u Tm158 var158 lam158 app158) v0158 : ∀{Γ A} → Tm158 (snoc158 Γ A) A;v0158 = var158 vz158 v1158 : ∀{Γ A B} → Tm158 (snoc158 (snoc158 Γ A) B) A;v1158 = var158 (vs158 vz158) v2158 : ∀{Γ A B C} → Tm158 (snoc158 (snoc158 (snoc158 Γ A) B) C) A;v2158 = var158 (vs158 (vs158 vz158)) v3158 : ∀{Γ A B C D} → Tm158 (snoc158 (snoc158 (snoc158 (snoc158 Γ A) B) C) D) A;v3158 = var158 (vs158 (vs158 (vs158 vz158))) v4158 : ∀{Γ A B C D E} → Tm158 (snoc158 (snoc158 (snoc158 (snoc158 (snoc158 Γ A) B) C) D) E) A;v4158 = var158 (vs158 (vs158 (vs158 (vs158 vz158)))) test158 : ∀{Γ A} → Tm158 Γ (arr158 (arr158 A A) (arr158 A A));test158 = lam158 (lam158 (app158 v1158 (app158 v1158 (app158 v1158 (app158 v1158 (app158 v1158 (app158 v1158 v0158))))))) {-# OPTIONS --type-in-type #-} Ty159 : Set; Ty159 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι159 : Ty159; ι159 = λ _ ι159 _ → ι159 arr159 : Ty159 → Ty159 → Ty159; arr159 = λ A B Ty159 ι159 arr159 → arr159 (A Ty159 ι159 arr159) (B Ty159 ι159 arr159) Con159 : Set;Con159 = (Con159 : Set) (nil : Con159) (snoc : Con159 → Ty159 → Con159) → Con159 nil159 : Con159;nil159 = λ Con159 nil159 snoc → nil159 snoc159 : Con159 → Ty159 → Con159;snoc159 = λ Γ A Con159 nil159 snoc159 → snoc159 (Γ Con159 nil159 snoc159) A Var159 : Con159 → Ty159 → Set;Var159 = λ Γ A → (Var159 : Con159 → Ty159 → Set) (vz : (Γ : _)(A : _) → Var159 (snoc159 Γ A) A) (vs : (Γ : _)(B A : _) → Var159 Γ A → Var159 (snoc159 Γ B) A) → Var159 Γ A vz159 : ∀{Γ A} → Var159 (snoc159 Γ A) A;vz159 = λ Var159 vz159 vs → vz159 _ _ vs159 : ∀{Γ B A} → Var159 Γ A → Var159 (snoc159 Γ B) A;vs159 = λ x Var159 vz159 vs159 → vs159 _ _ _ (x Var159 vz159 vs159) Tm159 : Con159 → Ty159 → Set;Tm159 = λ Γ A → (Tm159 : Con159 → Ty159 → Set) (var : (Γ : _) (A : _) → Var159 Γ A → Tm159 Γ A) (lam : (Γ : _) (A B : _) → Tm159 (snoc159 Γ A) B → Tm159 Γ (arr159 A B)) (app : (Γ : _) (A B : _) → Tm159 Γ (arr159 A B) → Tm159 Γ A → Tm159 Γ B) → Tm159 Γ A var159 : ∀{Γ A} → Var159 Γ A → Tm159 Γ A;var159 = λ x Tm159 var159 lam app → var159 _ _ x lam159 : ∀{Γ A B} → Tm159 (snoc159 Γ A) B → Tm159 Γ (arr159 A B);lam159 = λ t Tm159 var159 lam159 app → lam159 _ _ _ (t Tm159 var159 lam159 app) app159 : ∀{Γ A B} → Tm159 Γ (arr159 A B) → Tm159 Γ A → Tm159 Γ B;app159 = λ t u Tm159 var159 lam159 app159 → app159 _ _ _ (t Tm159 var159 lam159 app159) (u Tm159 var159 lam159 app159) v0159 : ∀{Γ A} → Tm159 (snoc159 Γ A) A;v0159 = var159 vz159 v1159 : ∀{Γ A B} → Tm159 (snoc159 (snoc159 Γ A) B) A;v1159 = var159 (vs159 vz159) v2159 : ∀{Γ A B C} → Tm159 (snoc159 (snoc159 (snoc159 Γ A) B) C) A;v2159 = var159 (vs159 (vs159 vz159)) v3159 : ∀{Γ A B C D} → Tm159 (snoc159 (snoc159 (snoc159 (snoc159 Γ A) B) C) D) A;v3159 = var159 (vs159 (vs159 (vs159 vz159))) v4159 : ∀{Γ A B C D E} → Tm159 (snoc159 (snoc159 (snoc159 (snoc159 (snoc159 Γ A) B) C) D) E) A;v4159 = var159 (vs159 (vs159 (vs159 (vs159 vz159)))) test159 : ∀{Γ A} → Tm159 Γ (arr159 (arr159 A A) (arr159 A A));test159 = lam159 (lam159 (app159 v1159 (app159 v1159 (app159 v1159 (app159 v1159 (app159 v1159 (app159 v1159 v0159))))))) {-# OPTIONS --type-in-type #-} Ty160 : Set; Ty160 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι160 : Ty160; ι160 = λ _ ι160 _ → ι160 arr160 : Ty160 → Ty160 → Ty160; arr160 = λ A B Ty160 ι160 arr160 → arr160 (A Ty160 ι160 arr160) (B Ty160 ι160 arr160) Con160 : Set;Con160 = (Con160 : Set) (nil : Con160) (snoc : Con160 → Ty160 → Con160) → Con160 nil160 : Con160;nil160 = λ Con160 nil160 snoc → nil160 snoc160 : Con160 → Ty160 → Con160;snoc160 = λ Γ A Con160 nil160 snoc160 → snoc160 (Γ Con160 nil160 snoc160) A Var160 : Con160 → Ty160 → Set;Var160 = λ Γ A → (Var160 : Con160 → Ty160 → Set) (vz : (Γ : _)(A : _) → Var160 (snoc160 Γ A) A) (vs : (Γ : _)(B A : _) → Var160 Γ A → Var160 (snoc160 Γ B) A) → Var160 Γ A vz160 : ∀{Γ A} → Var160 (snoc160 Γ A) A;vz160 = λ Var160 vz160 vs → vz160 _ _ vs160 : ∀{Γ B A} → Var160 Γ A → Var160 (snoc160 Γ B) A;vs160 = λ x Var160 vz160 vs160 → vs160 _ _ _ (x Var160 vz160 vs160) Tm160 : Con160 → Ty160 → Set;Tm160 = λ Γ A → (Tm160 : Con160 → Ty160 → Set) (var : (Γ : _) (A : _) → Var160 Γ A → Tm160 Γ A) (lam : (Γ : _) (A B : _) → Tm160 (snoc160 Γ A) B → Tm160 Γ (arr160 A B)) (app : (Γ : _) (A B : _) → Tm160 Γ (arr160 A B) → Tm160 Γ A → Tm160 Γ B) → Tm160 Γ A var160 : ∀{Γ A} → Var160 Γ A → Tm160 Γ A;var160 = λ x Tm160 var160 lam app → var160 _ _ x lam160 : ∀{Γ A B} → Tm160 (snoc160 Γ A) B → Tm160 Γ (arr160 A B);lam160 = λ t Tm160 var160 lam160 app → lam160 _ _ _ (t Tm160 var160 lam160 app) app160 : ∀{Γ A B} → Tm160 Γ (arr160 A B) → Tm160 Γ A → Tm160 Γ B;app160 = λ t u Tm160 var160 lam160 app160 → app160 _ _ _ (t Tm160 var160 lam160 app160) (u Tm160 var160 lam160 app160) v0160 : ∀{Γ A} → Tm160 (snoc160 Γ A) A;v0160 = var160 vz160 v1160 : ∀{Γ A B} → Tm160 (snoc160 (snoc160 Γ A) B) A;v1160 = var160 (vs160 vz160) v2160 : ∀{Γ A B C} → Tm160 (snoc160 (snoc160 (snoc160 Γ A) B) C) A;v2160 = var160 (vs160 (vs160 vz160)) v3160 : ∀{Γ A B C D} → Tm160 (snoc160 (snoc160 (snoc160 (snoc160 Γ A) B) C) D) A;v3160 = var160 (vs160 (vs160 (vs160 vz160))) v4160 : ∀{Γ A B C D E} → Tm160 (snoc160 (snoc160 (snoc160 (snoc160 (snoc160 Γ A) B) C) D) E) A;v4160 = var160 (vs160 (vs160 (vs160 (vs160 vz160)))) test160 : ∀{Γ A} → Tm160 Γ (arr160 (arr160 A A) (arr160 A A));test160 = lam160 (lam160 (app160 v1160 (app160 v1160 (app160 v1160 (app160 v1160 (app160 v1160 (app160 v1160 v0160))))))) {-# OPTIONS --type-in-type #-} Ty161 : Set; Ty161 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι161 : Ty161; ι161 = λ _ ι161 _ → ι161 arr161 : Ty161 → Ty161 → Ty161; arr161 = λ A B Ty161 ι161 arr161 → arr161 (A Ty161 ι161 arr161) (B Ty161 ι161 arr161) Con161 : Set;Con161 = (Con161 : Set) (nil : Con161) (snoc : Con161 → Ty161 → Con161) → Con161 nil161 : Con161;nil161 = λ Con161 nil161 snoc → nil161 snoc161 : Con161 → Ty161 → Con161;snoc161 = λ Γ A Con161 nil161 snoc161 → snoc161 (Γ Con161 nil161 snoc161) A Var161 : Con161 → Ty161 → Set;Var161 = λ Γ A → (Var161 : Con161 → Ty161 → Set) (vz : (Γ : _)(A : _) → Var161 (snoc161 Γ A) A) (vs : (Γ : _)(B A : _) → Var161 Γ A → Var161 (snoc161 Γ B) A) → Var161 Γ A vz161 : ∀{Γ A} → Var161 (snoc161 Γ A) A;vz161 = λ Var161 vz161 vs → vz161 _ _ vs161 : ∀{Γ B A} → Var161 Γ A → Var161 (snoc161 Γ B) A;vs161 = λ x Var161 vz161 vs161 → vs161 _ _ _ (x Var161 vz161 vs161) Tm161 : Con161 → Ty161 → Set;Tm161 = λ Γ A → (Tm161 : Con161 → Ty161 → Set) (var : (Γ : _) (A : _) → Var161 Γ A → Tm161 Γ A) (lam : (Γ : _) (A B : _) → Tm161 (snoc161 Γ A) B → Tm161 Γ (arr161 A B)) (app : (Γ : _) (A B : _) → Tm161 Γ (arr161 A B) → Tm161 Γ A → Tm161 Γ B) → Tm161 Γ A var161 : ∀{Γ A} → Var161 Γ A → Tm161 Γ A;var161 = λ x Tm161 var161 lam app → var161 _ _ x lam161 : ∀{Γ A B} → Tm161 (snoc161 Γ A) B → Tm161 Γ (arr161 A B);lam161 = λ t Tm161 var161 lam161 app → lam161 _ _ _ (t Tm161 var161 lam161 app) app161 : ∀{Γ A B} → Tm161 Γ (arr161 A B) → Tm161 Γ A → Tm161 Γ B;app161 = λ t u Tm161 var161 lam161 app161 → app161 _ _ _ (t Tm161 var161 lam161 app161) (u Tm161 var161 lam161 app161) v0161 : ∀{Γ A} → Tm161 (snoc161 Γ A) A;v0161 = var161 vz161 v1161 : ∀{Γ A B} → Tm161 (snoc161 (snoc161 Γ A) B) A;v1161 = var161 (vs161 vz161) v2161 : ∀{Γ A B C} → Tm161 (snoc161 (snoc161 (snoc161 Γ A) B) C) A;v2161 = var161 (vs161 (vs161 vz161)) v3161 : ∀{Γ A B C D} → Tm161 (snoc161 (snoc161 (snoc161 (snoc161 Γ A) B) C) D) A;v3161 = var161 (vs161 (vs161 (vs161 vz161))) v4161 : ∀{Γ A B C D E} → Tm161 (snoc161 (snoc161 (snoc161 (snoc161 (snoc161 Γ A) B) C) D) E) A;v4161 = var161 (vs161 (vs161 (vs161 (vs161 vz161)))) test161 : ∀{Γ A} → Tm161 Γ (arr161 (arr161 A A) (arr161 A A));test161 = lam161 (lam161 (app161 v1161 (app161 v1161 (app161 v1161 (app161 v1161 (app161 v1161 (app161 v1161 v0161))))))) {-# OPTIONS --type-in-type #-} Ty162 : Set; Ty162 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι162 : Ty162; ι162 = λ _ ι162 _ → ι162 arr162 : Ty162 → Ty162 → Ty162; arr162 = λ A B Ty162 ι162 arr162 → arr162 (A Ty162 ι162 arr162) (B Ty162 ι162 arr162) Con162 : Set;Con162 = (Con162 : Set) (nil : Con162) (snoc : Con162 → Ty162 → Con162) → Con162 nil162 : Con162;nil162 = λ Con162 nil162 snoc → nil162 snoc162 : Con162 → Ty162 → Con162;snoc162 = λ Γ A Con162 nil162 snoc162 → snoc162 (Γ Con162 nil162 snoc162) A Var162 : Con162 → Ty162 → Set;Var162 = λ Γ A → (Var162 : Con162 → Ty162 → Set) (vz : (Γ : _)(A : _) → Var162 (snoc162 Γ A) A) (vs : (Γ : _)(B A : _) → Var162 Γ A → Var162 (snoc162 Γ B) A) → Var162 Γ A vz162 : ∀{Γ A} → Var162 (snoc162 Γ A) A;vz162 = λ Var162 vz162 vs → vz162 _ _ vs162 : ∀{Γ B A} → Var162 Γ A → Var162 (snoc162 Γ B) A;vs162 = λ x Var162 vz162 vs162 → vs162 _ _ _ (x Var162 vz162 vs162) Tm162 : Con162 → Ty162 → Set;Tm162 = λ Γ A → (Tm162 : Con162 → Ty162 → Set) (var : (Γ : _) (A : _) → Var162 Γ A → Tm162 Γ A) (lam : (Γ : _) (A B : _) → Tm162 (snoc162 Γ A) B → Tm162 Γ (arr162 A B)) (app : (Γ : _) (A B : _) → Tm162 Γ (arr162 A B) → Tm162 Γ A → Tm162 Γ B) → Tm162 Γ A var162 : ∀{Γ A} → Var162 Γ A → Tm162 Γ A;var162 = λ x Tm162 var162 lam app → var162 _ _ x lam162 : ∀{Γ A B} → Tm162 (snoc162 Γ A) B → Tm162 Γ (arr162 A B);lam162 = λ t Tm162 var162 lam162 app → lam162 _ _ _ (t Tm162 var162 lam162 app) app162 : ∀{Γ A B} → Tm162 Γ (arr162 A B) → Tm162 Γ A → Tm162 Γ B;app162 = λ t u Tm162 var162 lam162 app162 → app162 _ _ _ (t Tm162 var162 lam162 app162) (u Tm162 var162 lam162 app162) v0162 : ∀{Γ A} → Tm162 (snoc162 Γ A) A;v0162 = var162 vz162 v1162 : ∀{Γ A B} → Tm162 (snoc162 (snoc162 Γ A) B) A;v1162 = var162 (vs162 vz162) v2162 : ∀{Γ A B C} → Tm162 (snoc162 (snoc162 (snoc162 Γ A) B) C) A;v2162 = var162 (vs162 (vs162 vz162)) v3162 : ∀{Γ A B C D} → Tm162 (snoc162 (snoc162 (snoc162 (snoc162 Γ A) B) C) D) A;v3162 = var162 (vs162 (vs162 (vs162 vz162))) v4162 : ∀{Γ A B C D E} → Tm162 (snoc162 (snoc162 (snoc162 (snoc162 (snoc162 Γ A) B) C) D) E) A;v4162 = var162 (vs162 (vs162 (vs162 (vs162 vz162)))) test162 : ∀{Γ A} → Tm162 Γ (arr162 (arr162 A A) (arr162 A A));test162 = lam162 (lam162 (app162 v1162 (app162 v1162 (app162 v1162 (app162 v1162 (app162 v1162 (app162 v1162 v0162))))))) {-# OPTIONS --type-in-type #-} Ty163 : Set; Ty163 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι163 : Ty163; ι163 = λ _ ι163 _ → ι163 arr163 : Ty163 → Ty163 → Ty163; arr163 = λ A B Ty163 ι163 arr163 → arr163 (A Ty163 ι163 arr163) (B Ty163 ι163 arr163) Con163 : Set;Con163 = (Con163 : Set) (nil : Con163) (snoc : Con163 → Ty163 → Con163) → Con163 nil163 : Con163;nil163 = λ Con163 nil163 snoc → nil163 snoc163 : Con163 → Ty163 → Con163;snoc163 = λ Γ A Con163 nil163 snoc163 → snoc163 (Γ Con163 nil163 snoc163) A Var163 : Con163 → Ty163 → Set;Var163 = λ Γ A → (Var163 : Con163 → Ty163 → Set) (vz : (Γ : _)(A : _) → Var163 (snoc163 Γ A) A) (vs : (Γ : _)(B A : _) → Var163 Γ A → Var163 (snoc163 Γ B) A) → Var163 Γ A vz163 : ∀{Γ A} → Var163 (snoc163 Γ A) A;vz163 = λ Var163 vz163 vs → vz163 _ _ vs163 : ∀{Γ B A} → Var163 Γ A → Var163 (snoc163 Γ B) A;vs163 = λ x Var163 vz163 vs163 → vs163 _ _ _ (x Var163 vz163 vs163) Tm163 : Con163 → Ty163 → Set;Tm163 = λ Γ A → (Tm163 : Con163 → Ty163 → Set) (var : (Γ : _) (A : _) → Var163 Γ A → Tm163 Γ A) (lam : (Γ : _) (A B : _) → Tm163 (snoc163 Γ A) B → Tm163 Γ (arr163 A B)) (app : (Γ : _) (A B : _) → Tm163 Γ (arr163 A B) → Tm163 Γ A → Tm163 Γ B) → Tm163 Γ A var163 : ∀{Γ A} → Var163 Γ A → Tm163 Γ A;var163 = λ x Tm163 var163 lam app → var163 _ _ x lam163 : ∀{Γ A B} → Tm163 (snoc163 Γ A) B → Tm163 Γ (arr163 A B);lam163 = λ t Tm163 var163 lam163 app → lam163 _ _ _ (t Tm163 var163 lam163 app) app163 : ∀{Γ A B} → Tm163 Γ (arr163 A B) → Tm163 Γ A → Tm163 Γ B;app163 = λ t u Tm163 var163 lam163 app163 → app163 _ _ _ (t Tm163 var163 lam163 app163) (u Tm163 var163 lam163 app163) v0163 : ∀{Γ A} → Tm163 (snoc163 Γ A) A;v0163 = var163 vz163 v1163 : ∀{Γ A B} → Tm163 (snoc163 (snoc163 Γ A) B) A;v1163 = var163 (vs163 vz163) v2163 : ∀{Γ A B C} → Tm163 (snoc163 (snoc163 (snoc163 Γ A) B) C) A;v2163 = var163 (vs163 (vs163 vz163)) v3163 : ∀{Γ A B C D} → Tm163 (snoc163 (snoc163 (snoc163 (snoc163 Γ A) B) C) D) A;v3163 = var163 (vs163 (vs163 (vs163 vz163))) v4163 : ∀{Γ A B C D E} → Tm163 (snoc163 (snoc163 (snoc163 (snoc163 (snoc163 Γ A) B) C) D) E) A;v4163 = var163 (vs163 (vs163 (vs163 (vs163 vz163)))) test163 : ∀{Γ A} → Tm163 Γ (arr163 (arr163 A A) (arr163 A A));test163 = lam163 (lam163 (app163 v1163 (app163 v1163 (app163 v1163 (app163 v1163 (app163 v1163 (app163 v1163 v0163))))))) {-# OPTIONS --type-in-type #-} Ty164 : Set; Ty164 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι164 : Ty164; ι164 = λ _ ι164 _ → ι164 arr164 : Ty164 → Ty164 → Ty164; arr164 = λ A B Ty164 ι164 arr164 → arr164 (A Ty164 ι164 arr164) (B Ty164 ι164 arr164) Con164 : Set;Con164 = (Con164 : Set) (nil : Con164) (snoc : Con164 → Ty164 → Con164) → Con164 nil164 : Con164;nil164 = λ Con164 nil164 snoc → nil164 snoc164 : Con164 → Ty164 → Con164;snoc164 = λ Γ A Con164 nil164 snoc164 → snoc164 (Γ Con164 nil164 snoc164) A Var164 : Con164 → Ty164 → Set;Var164 = λ Γ A → (Var164 : Con164 → Ty164 → Set) (vz : (Γ : _)(A : _) → Var164 (snoc164 Γ A) A) (vs : (Γ : _)(B A : _) → Var164 Γ A → Var164 (snoc164 Γ B) A) → Var164 Γ A vz164 : ∀{Γ A} → Var164 (snoc164 Γ A) A;vz164 = λ Var164 vz164 vs → vz164 _ _ vs164 : ∀{Γ B A} → Var164 Γ A → Var164 (snoc164 Γ B) A;vs164 = λ x Var164 vz164 vs164 → vs164 _ _ _ (x Var164 vz164 vs164) Tm164 : Con164 → Ty164 → Set;Tm164 = λ Γ A → (Tm164 : Con164 → Ty164 → Set) (var : (Γ : _) (A : _) → Var164 Γ A → Tm164 Γ A) (lam : (Γ : _) (A B : _) → Tm164 (snoc164 Γ A) B → Tm164 Γ (arr164 A B)) (app : (Γ : _) (A B : _) → Tm164 Γ (arr164 A B) → Tm164 Γ A → Tm164 Γ B) → Tm164 Γ A var164 : ∀{Γ A} → Var164 Γ A → Tm164 Γ A;var164 = λ x Tm164 var164 lam app → var164 _ _ x lam164 : ∀{Γ A B} → Tm164 (snoc164 Γ A) B → Tm164 Γ (arr164 A B);lam164 = λ t Tm164 var164 lam164 app → lam164 _ _ _ (t Tm164 var164 lam164 app) app164 : ∀{Γ A B} → Tm164 Γ (arr164 A B) → Tm164 Γ A → Tm164 Γ B;app164 = λ t u Tm164 var164 lam164 app164 → app164 _ _ _ (t Tm164 var164 lam164 app164) (u Tm164 var164 lam164 app164) v0164 : ∀{Γ A} → Tm164 (snoc164 Γ A) A;v0164 = var164 vz164 v1164 : ∀{Γ A B} → Tm164 (snoc164 (snoc164 Γ A) B) A;v1164 = var164 (vs164 vz164) v2164 : ∀{Γ A B C} → Tm164 (snoc164 (snoc164 (snoc164 Γ A) B) C) A;v2164 = var164 (vs164 (vs164 vz164)) v3164 : ∀{Γ A B C D} → Tm164 (snoc164 (snoc164 (snoc164 (snoc164 Γ A) B) C) D) A;v3164 = var164 (vs164 (vs164 (vs164 vz164))) v4164 : ∀{Γ A B C D E} → Tm164 (snoc164 (snoc164 (snoc164 (snoc164 (snoc164 Γ A) B) C) D) E) A;v4164 = var164 (vs164 (vs164 (vs164 (vs164 vz164)))) test164 : ∀{Γ A} → Tm164 Γ (arr164 (arr164 A A) (arr164 A A));test164 = lam164 (lam164 (app164 v1164 (app164 v1164 (app164 v1164 (app164 v1164 (app164 v1164 (app164 v1164 v0164))))))) {-# OPTIONS --type-in-type #-} Ty165 : Set; Ty165 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι165 : Ty165; ι165 = λ _ ι165 _ → ι165 arr165 : Ty165 → Ty165 → Ty165; arr165 = λ A B Ty165 ι165 arr165 → arr165 (A Ty165 ι165 arr165) (B Ty165 ι165 arr165) Con165 : Set;Con165 = (Con165 : Set) (nil : Con165) (snoc : Con165 → Ty165 → Con165) → Con165 nil165 : Con165;nil165 = λ Con165 nil165 snoc → nil165 snoc165 : Con165 → Ty165 → Con165;snoc165 = λ Γ A Con165 nil165 snoc165 → snoc165 (Γ Con165 nil165 snoc165) A Var165 : Con165 → Ty165 → Set;Var165 = λ Γ A → (Var165 : Con165 → Ty165 → Set) (vz : (Γ : _)(A : _) → Var165 (snoc165 Γ A) A) (vs : (Γ : _)(B A : _) → Var165 Γ A → Var165 (snoc165 Γ B) A) → Var165 Γ A vz165 : ∀{Γ A} → Var165 (snoc165 Γ A) A;vz165 = λ Var165 vz165 vs → vz165 _ _ vs165 : ∀{Γ B A} → Var165 Γ A → Var165 (snoc165 Γ B) A;vs165 = λ x Var165 vz165 vs165 → vs165 _ _ _ (x Var165 vz165 vs165) Tm165 : Con165 → Ty165 → Set;Tm165 = λ Γ A → (Tm165 : Con165 → Ty165 → Set) (var : (Γ : _) (A : _) → Var165 Γ A → Tm165 Γ A) (lam : (Γ : _) (A B : _) → Tm165 (snoc165 Γ A) B → Tm165 Γ (arr165 A B)) (app : (Γ : _) (A B : _) → Tm165 Γ (arr165 A B) → Tm165 Γ A → Tm165 Γ B) → Tm165 Γ A var165 : ∀{Γ A} → Var165 Γ A → Tm165 Γ A;var165 = λ x Tm165 var165 lam app → var165 _ _ x lam165 : ∀{Γ A B} → Tm165 (snoc165 Γ A) B → Tm165 Γ (arr165 A B);lam165 = λ t Tm165 var165 lam165 app → lam165 _ _ _ (t Tm165 var165 lam165 app) app165 : ∀{Γ A B} → Tm165 Γ (arr165 A B) → Tm165 Γ A → Tm165 Γ B;app165 = λ t u Tm165 var165 lam165 app165 → app165 _ _ _ (t Tm165 var165 lam165 app165) (u Tm165 var165 lam165 app165) v0165 : ∀{Γ A} → Tm165 (snoc165 Γ A) A;v0165 = var165 vz165 v1165 : ∀{Γ A B} → Tm165 (snoc165 (snoc165 Γ A) B) A;v1165 = var165 (vs165 vz165) v2165 : ∀{Γ A B C} → Tm165 (snoc165 (snoc165 (snoc165 Γ A) B) C) A;v2165 = var165 (vs165 (vs165 vz165)) v3165 : ∀{Γ A B C D} → Tm165 (snoc165 (snoc165 (snoc165 (snoc165 Γ A) B) C) D) A;v3165 = var165 (vs165 (vs165 (vs165 vz165))) v4165 : ∀{Γ A B C D E} → Tm165 (snoc165 (snoc165 (snoc165 (snoc165 (snoc165 Γ A) B) C) D) E) A;v4165 = var165 (vs165 (vs165 (vs165 (vs165 vz165)))) test165 : ∀{Γ A} → Tm165 Γ (arr165 (arr165 A A) (arr165 A A));test165 = lam165 (lam165 (app165 v1165 (app165 v1165 (app165 v1165 (app165 v1165 (app165 v1165 (app165 v1165 v0165))))))) {-# OPTIONS --type-in-type #-} Ty166 : Set; Ty166 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι166 : Ty166; ι166 = λ _ ι166 _ → ι166 arr166 : Ty166 → Ty166 → Ty166; arr166 = λ A B Ty166 ι166 arr166 → arr166 (A Ty166 ι166 arr166) (B Ty166 ι166 arr166) Con166 : Set;Con166 = (Con166 : Set) (nil : Con166) (snoc : Con166 → Ty166 → Con166) → Con166 nil166 : Con166;nil166 = λ Con166 nil166 snoc → nil166 snoc166 : Con166 → Ty166 → Con166;snoc166 = λ Γ A Con166 nil166 snoc166 → snoc166 (Γ Con166 nil166 snoc166) A Var166 : Con166 → Ty166 → Set;Var166 = λ Γ A → (Var166 : Con166 → Ty166 → Set) (vz : (Γ : _)(A : _) → Var166 (snoc166 Γ A) A) (vs : (Γ : _)(B A : _) → Var166 Γ A → Var166 (snoc166 Γ B) A) → Var166 Γ A vz166 : ∀{Γ A} → Var166 (snoc166 Γ A) A;vz166 = λ Var166 vz166 vs → vz166 _ _ vs166 : ∀{Γ B A} → Var166 Γ A → Var166 (snoc166 Γ B) A;vs166 = λ x Var166 vz166 vs166 → vs166 _ _ _ (x Var166 vz166 vs166) Tm166 : Con166 → Ty166 → Set;Tm166 = λ Γ A → (Tm166 : Con166 → Ty166 → Set) (var : (Γ : _) (A : _) → Var166 Γ A → Tm166 Γ A) (lam : (Γ : _) (A B : _) → Tm166 (snoc166 Γ A) B → Tm166 Γ (arr166 A B)) (app : (Γ : _) (A B : _) → Tm166 Γ (arr166 A B) → Tm166 Γ A → Tm166 Γ B) → Tm166 Γ A var166 : ∀{Γ A} → Var166 Γ A → Tm166 Γ A;var166 = λ x Tm166 var166 lam app → var166 _ _ x lam166 : ∀{Γ A B} → Tm166 (snoc166 Γ A) B → Tm166 Γ (arr166 A B);lam166 = λ t Tm166 var166 lam166 app → lam166 _ _ _ (t Tm166 var166 lam166 app) app166 : ∀{Γ A B} → Tm166 Γ (arr166 A B) → Tm166 Γ A → Tm166 Γ B;app166 = λ t u Tm166 var166 lam166 app166 → app166 _ _ _ (t Tm166 var166 lam166 app166) (u Tm166 var166 lam166 app166) v0166 : ∀{Γ A} → Tm166 (snoc166 Γ A) A;v0166 = var166 vz166 v1166 : ∀{Γ A B} → Tm166 (snoc166 (snoc166 Γ A) B) A;v1166 = var166 (vs166 vz166) v2166 : ∀{Γ A B C} → Tm166 (snoc166 (snoc166 (snoc166 Γ A) B) C) A;v2166 = var166 (vs166 (vs166 vz166)) v3166 : ∀{Γ A B C D} → Tm166 (snoc166 (snoc166 (snoc166 (snoc166 Γ A) B) C) D) A;v3166 = var166 (vs166 (vs166 (vs166 vz166))) v4166 : ∀{Γ A B C D E} → Tm166 (snoc166 (snoc166 (snoc166 (snoc166 (snoc166 Γ A) B) C) D) E) A;v4166 = var166 (vs166 (vs166 (vs166 (vs166 vz166)))) test166 : ∀{Γ A} → Tm166 Γ (arr166 (arr166 A A) (arr166 A A));test166 = lam166 (lam166 (app166 v1166 (app166 v1166 (app166 v1166 (app166 v1166 (app166 v1166 (app166 v1166 v0166))))))) {-# OPTIONS --type-in-type #-} Ty167 : Set; Ty167 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι167 : Ty167; ι167 = λ _ ι167 _ → ι167 arr167 : Ty167 → Ty167 → Ty167; arr167 = λ A B Ty167 ι167 arr167 → arr167 (A Ty167 ι167 arr167) (B Ty167 ι167 arr167) Con167 : Set;Con167 = (Con167 : Set) (nil : Con167) (snoc : Con167 → Ty167 → Con167) → Con167 nil167 : Con167;nil167 = λ Con167 nil167 snoc → nil167 snoc167 : Con167 → Ty167 → Con167;snoc167 = λ Γ A Con167 nil167 snoc167 → snoc167 (Γ Con167 nil167 snoc167) A Var167 : Con167 → Ty167 → Set;Var167 = λ Γ A → (Var167 : Con167 → Ty167 → Set) (vz : (Γ : _)(A : _) → Var167 (snoc167 Γ A) A) (vs : (Γ : _)(B A : _) → Var167 Γ A → Var167 (snoc167 Γ B) A) → Var167 Γ A vz167 : ∀{Γ A} → Var167 (snoc167 Γ A) A;vz167 = λ Var167 vz167 vs → vz167 _ _ vs167 : ∀{Γ B A} → Var167 Γ A → Var167 (snoc167 Γ B) A;vs167 = λ x Var167 vz167 vs167 → vs167 _ _ _ (x Var167 vz167 vs167) Tm167 : Con167 → Ty167 → Set;Tm167 = λ Γ A → (Tm167 : Con167 → Ty167 → Set) (var : (Γ : _) (A : _) → Var167 Γ A → Tm167 Γ A) (lam : (Γ : _) (A B : _) → Tm167 (snoc167 Γ A) B → Tm167 Γ (arr167 A B)) (app : (Γ : _) (A B : _) → Tm167 Γ (arr167 A B) → Tm167 Γ A → Tm167 Γ B) → Tm167 Γ A var167 : ∀{Γ A} → Var167 Γ A → Tm167 Γ A;var167 = λ x Tm167 var167 lam app → var167 _ _ x lam167 : ∀{Γ A B} → Tm167 (snoc167 Γ A) B → Tm167 Γ (arr167 A B);lam167 = λ t Tm167 var167 lam167 app → lam167 _ _ _ (t Tm167 var167 lam167 app) app167 : ∀{Γ A B} → Tm167 Γ (arr167 A B) → Tm167 Γ A → Tm167 Γ B;app167 = λ t u Tm167 var167 lam167 app167 → app167 _ _ _ (t Tm167 var167 lam167 app167) (u Tm167 var167 lam167 app167) v0167 : ∀{Γ A} → Tm167 (snoc167 Γ A) A;v0167 = var167 vz167 v1167 : ∀{Γ A B} → Tm167 (snoc167 (snoc167 Γ A) B) A;v1167 = var167 (vs167 vz167) v2167 : ∀{Γ A B C} → Tm167 (snoc167 (snoc167 (snoc167 Γ A) B) C) A;v2167 = var167 (vs167 (vs167 vz167)) v3167 : ∀{Γ A B C D} → Tm167 (snoc167 (snoc167 (snoc167 (snoc167 Γ A) B) C) D) A;v3167 = var167 (vs167 (vs167 (vs167 vz167))) v4167 : ∀{Γ A B C D E} → Tm167 (snoc167 (snoc167 (snoc167 (snoc167 (snoc167 Γ A) B) C) D) E) A;v4167 = var167 (vs167 (vs167 (vs167 (vs167 vz167)))) test167 : ∀{Γ A} → Tm167 Γ (arr167 (arr167 A A) (arr167 A A));test167 = lam167 (lam167 (app167 v1167 (app167 v1167 (app167 v1167 (app167 v1167 (app167 v1167 (app167 v1167 v0167))))))) {-# OPTIONS --type-in-type #-} Ty168 : Set; Ty168 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι168 : Ty168; ι168 = λ _ ι168 _ → ι168 arr168 : Ty168 → Ty168 → Ty168; arr168 = λ A B Ty168 ι168 arr168 → arr168 (A Ty168 ι168 arr168) (B Ty168 ι168 arr168) Con168 : Set;Con168 = (Con168 : Set) (nil : Con168) (snoc : Con168 → Ty168 → Con168) → Con168 nil168 : Con168;nil168 = λ Con168 nil168 snoc → nil168 snoc168 : Con168 → Ty168 → Con168;snoc168 = λ Γ A Con168 nil168 snoc168 → snoc168 (Γ Con168 nil168 snoc168) A Var168 : Con168 → Ty168 → Set;Var168 = λ Γ A → (Var168 : Con168 → Ty168 → Set) (vz : (Γ : _)(A : _) → Var168 (snoc168 Γ A) A) (vs : (Γ : _)(B A : _) → Var168 Γ A → Var168 (snoc168 Γ B) A) → Var168 Γ A vz168 : ∀{Γ A} → Var168 (snoc168 Γ A) A;vz168 = λ Var168 vz168 vs → vz168 _ _ vs168 : ∀{Γ B A} → Var168 Γ A → Var168 (snoc168 Γ B) A;vs168 = λ x Var168 vz168 vs168 → vs168 _ _ _ (x Var168 vz168 vs168) Tm168 : Con168 → Ty168 → Set;Tm168 = λ Γ A → (Tm168 : Con168 → Ty168 → Set) (var : (Γ : _) (A : _) → Var168 Γ A → Tm168 Γ A) (lam : (Γ : _) (A B : _) → Tm168 (snoc168 Γ A) B → Tm168 Γ (arr168 A B)) (app : (Γ : _) (A B : _) → Tm168 Γ (arr168 A B) → Tm168 Γ A → Tm168 Γ B) → Tm168 Γ A var168 : ∀{Γ A} → Var168 Γ A → Tm168 Γ A;var168 = λ x Tm168 var168 lam app → var168 _ _ x lam168 : ∀{Γ A B} → Tm168 (snoc168 Γ A) B → Tm168 Γ (arr168 A B);lam168 = λ t Tm168 var168 lam168 app → lam168 _ _ _ (t Tm168 var168 lam168 app) app168 : ∀{Γ A B} → Tm168 Γ (arr168 A B) → Tm168 Γ A → Tm168 Γ B;app168 = λ t u Tm168 var168 lam168 app168 → app168 _ _ _ (t Tm168 var168 lam168 app168) (u Tm168 var168 lam168 app168) v0168 : ∀{Γ A} → Tm168 (snoc168 Γ A) A;v0168 = var168 vz168 v1168 : ∀{Γ A B} → Tm168 (snoc168 (snoc168 Γ A) B) A;v1168 = var168 (vs168 vz168) v2168 : ∀{Γ A B C} → Tm168 (snoc168 (snoc168 (snoc168 Γ A) B) C) A;v2168 = var168 (vs168 (vs168 vz168)) v3168 : ∀{Γ A B C D} → Tm168 (snoc168 (snoc168 (snoc168 (snoc168 Γ A) B) C) D) A;v3168 = var168 (vs168 (vs168 (vs168 vz168))) v4168 : ∀{Γ A B C D E} → Tm168 (snoc168 (snoc168 (snoc168 (snoc168 (snoc168 Γ A) B) C) D) E) A;v4168 = var168 (vs168 (vs168 (vs168 (vs168 vz168)))) test168 : ∀{Γ A} → Tm168 Γ (arr168 (arr168 A A) (arr168 A A));test168 = lam168 (lam168 (app168 v1168 (app168 v1168 (app168 v1168 (app168 v1168 (app168 v1168 (app168 v1168 v0168))))))) {-# OPTIONS --type-in-type #-} Ty169 : Set; Ty169 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι169 : Ty169; ι169 = λ _ ι169 _ → ι169 arr169 : Ty169 → Ty169 → Ty169; arr169 = λ A B Ty169 ι169 arr169 → arr169 (A Ty169 ι169 arr169) (B Ty169 ι169 arr169) Con169 : Set;Con169 = (Con169 : Set) (nil : Con169) (snoc : Con169 → Ty169 → Con169) → Con169 nil169 : Con169;nil169 = λ Con169 nil169 snoc → nil169 snoc169 : Con169 → Ty169 → Con169;snoc169 = λ Γ A Con169 nil169 snoc169 → snoc169 (Γ Con169 nil169 snoc169) A Var169 : Con169 → Ty169 → Set;Var169 = λ Γ A → (Var169 : Con169 → Ty169 → Set) (vz : (Γ : _)(A : _) → Var169 (snoc169 Γ A) A) (vs : (Γ : _)(B A : _) → Var169 Γ A → Var169 (snoc169 Γ B) A) → Var169 Γ A vz169 : ∀{Γ A} → Var169 (snoc169 Γ A) A;vz169 = λ Var169 vz169 vs → vz169 _ _ vs169 : ∀{Γ B A} → Var169 Γ A → Var169 (snoc169 Γ B) A;vs169 = λ x Var169 vz169 vs169 → vs169 _ _ _ (x Var169 vz169 vs169) Tm169 : Con169 → Ty169 → Set;Tm169 = λ Γ A → (Tm169 : Con169 → Ty169 → Set) (var : (Γ : _) (A : _) → Var169 Γ A → Tm169 Γ A) (lam : (Γ : _) (A B : _) → Tm169 (snoc169 Γ A) B → Tm169 Γ (arr169 A B)) (app : (Γ : _) (A B : _) → Tm169 Γ (arr169 A B) → Tm169 Γ A → Tm169 Γ B) → Tm169 Γ A var169 : ∀{Γ A} → Var169 Γ A → Tm169 Γ A;var169 = λ x Tm169 var169 lam app → var169 _ _ x lam169 : ∀{Γ A B} → Tm169 (snoc169 Γ A) B → Tm169 Γ (arr169 A B);lam169 = λ t Tm169 var169 lam169 app → lam169 _ _ _ (t Tm169 var169 lam169 app) app169 : ∀{Γ A B} → Tm169 Γ (arr169 A B) → Tm169 Γ A → Tm169 Γ B;app169 = λ t u Tm169 var169 lam169 app169 → app169 _ _ _ (t Tm169 var169 lam169 app169) (u Tm169 var169 lam169 app169) v0169 : ∀{Γ A} → Tm169 (snoc169 Γ A) A;v0169 = var169 vz169 v1169 : ∀{Γ A B} → Tm169 (snoc169 (snoc169 Γ A) B) A;v1169 = var169 (vs169 vz169) v2169 : ∀{Γ A B C} → Tm169 (snoc169 (snoc169 (snoc169 Γ A) B) C) A;v2169 = var169 (vs169 (vs169 vz169)) v3169 : ∀{Γ A B C D} → Tm169 (snoc169 (snoc169 (snoc169 (snoc169 Γ A) B) C) D) A;v3169 = var169 (vs169 (vs169 (vs169 vz169))) v4169 : ∀{Γ A B C D E} → Tm169 (snoc169 (snoc169 (snoc169 (snoc169 (snoc169 Γ A) B) C) D) E) A;v4169 = var169 (vs169 (vs169 (vs169 (vs169 vz169)))) test169 : ∀{Γ A} → Tm169 Γ (arr169 (arr169 A A) (arr169 A A));test169 = lam169 (lam169 (app169 v1169 (app169 v1169 (app169 v1169 (app169 v1169 (app169 v1169 (app169 v1169 v0169))))))) {-# OPTIONS --type-in-type #-} Ty170 : Set; Ty170 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι170 : Ty170; ι170 = λ _ ι170 _ → ι170 arr170 : Ty170 → Ty170 → Ty170; arr170 = λ A B Ty170 ι170 arr170 → arr170 (A Ty170 ι170 arr170) (B Ty170 ι170 arr170) Con170 : Set;Con170 = (Con170 : Set) (nil : Con170) (snoc : Con170 → Ty170 → Con170) → Con170 nil170 : Con170;nil170 = λ Con170 nil170 snoc → nil170 snoc170 : Con170 → Ty170 → Con170;snoc170 = λ Γ A Con170 nil170 snoc170 → snoc170 (Γ Con170 nil170 snoc170) A Var170 : Con170 → Ty170 → Set;Var170 = λ Γ A → (Var170 : Con170 → Ty170 → Set) (vz : (Γ : _)(A : _) → Var170 (snoc170 Γ A) A) (vs : (Γ : _)(B A : _) → Var170 Γ A → Var170 (snoc170 Γ B) A) → Var170 Γ A vz170 : ∀{Γ A} → Var170 (snoc170 Γ A) A;vz170 = λ Var170 vz170 vs → vz170 _ _ vs170 : ∀{Γ B A} → Var170 Γ A → Var170 (snoc170 Γ B) A;vs170 = λ x Var170 vz170 vs170 → vs170 _ _ _ (x Var170 vz170 vs170) Tm170 : Con170 → Ty170 → Set;Tm170 = λ Γ A → (Tm170 : Con170 → Ty170 → Set) (var : (Γ : _) (A : _) → Var170 Γ A → Tm170 Γ A) (lam : (Γ : _) (A B : _) → Tm170 (snoc170 Γ A) B → Tm170 Γ (arr170 A B)) (app : (Γ : _) (A B : _) → Tm170 Γ (arr170 A B) → Tm170 Γ A → Tm170 Γ B) → Tm170 Γ A var170 : ∀{Γ A} → Var170 Γ A → Tm170 Γ A;var170 = λ x Tm170 var170 lam app → var170 _ _ x lam170 : ∀{Γ A B} → Tm170 (snoc170 Γ A) B → Tm170 Γ (arr170 A B);lam170 = λ t Tm170 var170 lam170 app → lam170 _ _ _ (t Tm170 var170 lam170 app) app170 : ∀{Γ A B} → Tm170 Γ (arr170 A B) → Tm170 Γ A → Tm170 Γ B;app170 = λ t u Tm170 var170 lam170 app170 → app170 _ _ _ (t Tm170 var170 lam170 app170) (u Tm170 var170 lam170 app170) v0170 : ∀{Γ A} → Tm170 (snoc170 Γ A) A;v0170 = var170 vz170 v1170 : ∀{Γ A B} → Tm170 (snoc170 (snoc170 Γ A) B) A;v1170 = var170 (vs170 vz170) v2170 : ∀{Γ A B C} → Tm170 (snoc170 (snoc170 (snoc170 Γ A) B) C) A;v2170 = var170 (vs170 (vs170 vz170)) v3170 : ∀{Γ A B C D} → Tm170 (snoc170 (snoc170 (snoc170 (snoc170 Γ A) B) C) D) A;v3170 = var170 (vs170 (vs170 (vs170 vz170))) v4170 : ∀{Γ A B C D E} → Tm170 (snoc170 (snoc170 (snoc170 (snoc170 (snoc170 Γ A) B) C) D) E) A;v4170 = var170 (vs170 (vs170 (vs170 (vs170 vz170)))) test170 : ∀{Γ A} → Tm170 Γ (arr170 (arr170 A A) (arr170 A A));test170 = lam170 (lam170 (app170 v1170 (app170 v1170 (app170 v1170 (app170 v1170 (app170 v1170 (app170 v1170 v0170))))))) {-# OPTIONS --type-in-type #-} Ty171 : Set; Ty171 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι171 : Ty171; ι171 = λ _ ι171 _ → ι171 arr171 : Ty171 → Ty171 → Ty171; arr171 = λ A B Ty171 ι171 arr171 → arr171 (A Ty171 ι171 arr171) (B Ty171 ι171 arr171) Con171 : Set;Con171 = (Con171 : Set) (nil : Con171) (snoc : Con171 → Ty171 → Con171) → Con171 nil171 : Con171;nil171 = λ Con171 nil171 snoc → nil171 snoc171 : Con171 → Ty171 → Con171;snoc171 = λ Γ A Con171 nil171 snoc171 → snoc171 (Γ Con171 nil171 snoc171) A Var171 : Con171 → Ty171 → Set;Var171 = λ Γ A → (Var171 : Con171 → Ty171 → Set) (vz : (Γ : _)(A : _) → Var171 (snoc171 Γ A) A) (vs : (Γ : _)(B A : _) → Var171 Γ A → Var171 (snoc171 Γ B) A) → Var171 Γ A vz171 : ∀{Γ A} → Var171 (snoc171 Γ A) A;vz171 = λ Var171 vz171 vs → vz171 _ _ vs171 : ∀{Γ B A} → Var171 Γ A → Var171 (snoc171 Γ B) A;vs171 = λ x Var171 vz171 vs171 → vs171 _ _ _ (x Var171 vz171 vs171) Tm171 : Con171 → Ty171 → Set;Tm171 = λ Γ A → (Tm171 : Con171 → Ty171 → Set) (var : (Γ : _) (A : _) → Var171 Γ A → Tm171 Γ A) (lam : (Γ : _) (A B : _) → Tm171 (snoc171 Γ A) B → Tm171 Γ (arr171 A B)) (app : (Γ : _) (A B : _) → Tm171 Γ (arr171 A B) → Tm171 Γ A → Tm171 Γ B) → Tm171 Γ A var171 : ∀{Γ A} → Var171 Γ A → Tm171 Γ A;var171 = λ x Tm171 var171 lam app → var171 _ _ x lam171 : ∀{Γ A B} → Tm171 (snoc171 Γ A) B → Tm171 Γ (arr171 A B);lam171 = λ t Tm171 var171 lam171 app → lam171 _ _ _ (t Tm171 var171 lam171 app) app171 : ∀{Γ A B} → Tm171 Γ (arr171 A B) → Tm171 Γ A → Tm171 Γ B;app171 = λ t u Tm171 var171 lam171 app171 → app171 _ _ _ (t Tm171 var171 lam171 app171) (u Tm171 var171 lam171 app171) v0171 : ∀{Γ A} → Tm171 (snoc171 Γ A) A;v0171 = var171 vz171 v1171 : ∀{Γ A B} → Tm171 (snoc171 (snoc171 Γ A) B) A;v1171 = var171 (vs171 vz171) v2171 : ∀{Γ A B C} → Tm171 (snoc171 (snoc171 (snoc171 Γ A) B) C) A;v2171 = var171 (vs171 (vs171 vz171)) v3171 : ∀{Γ A B C D} → Tm171 (snoc171 (snoc171 (snoc171 (snoc171 Γ A) B) C) D) A;v3171 = var171 (vs171 (vs171 (vs171 vz171))) v4171 : ∀{Γ A B C D E} → Tm171 (snoc171 (snoc171 (snoc171 (snoc171 (snoc171 Γ A) B) C) D) E) A;v4171 = var171 (vs171 (vs171 (vs171 (vs171 vz171)))) test171 : ∀{Γ A} → Tm171 Γ (arr171 (arr171 A A) (arr171 A A));test171 = lam171 (lam171 (app171 v1171 (app171 v1171 (app171 v1171 (app171 v1171 (app171 v1171 (app171 v1171 v0171))))))) {-# OPTIONS --type-in-type #-} Ty172 : Set; Ty172 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι172 : Ty172; ι172 = λ _ ι172 _ → ι172 arr172 : Ty172 → Ty172 → Ty172; arr172 = λ A B Ty172 ι172 arr172 → arr172 (A Ty172 ι172 arr172) (B Ty172 ι172 arr172) Con172 : Set;Con172 = (Con172 : Set) (nil : Con172) (snoc : Con172 → Ty172 → Con172) → Con172 nil172 : Con172;nil172 = λ Con172 nil172 snoc → nil172 snoc172 : Con172 → Ty172 → Con172;snoc172 = λ Γ A Con172 nil172 snoc172 → snoc172 (Γ Con172 nil172 snoc172) A Var172 : Con172 → Ty172 → Set;Var172 = λ Γ A → (Var172 : Con172 → Ty172 → Set) (vz : (Γ : _)(A : _) → Var172 (snoc172 Γ A) A) (vs : (Γ : _)(B A : _) → Var172 Γ A → Var172 (snoc172 Γ B) A) → Var172 Γ A vz172 : ∀{Γ A} → Var172 (snoc172 Γ A) A;vz172 = λ Var172 vz172 vs → vz172 _ _ vs172 : ∀{Γ B A} → Var172 Γ A → Var172 (snoc172 Γ B) A;vs172 = λ x Var172 vz172 vs172 → vs172 _ _ _ (x Var172 vz172 vs172) Tm172 : Con172 → Ty172 → Set;Tm172 = λ Γ A → (Tm172 : Con172 → Ty172 → Set) (var : (Γ : _) (A : _) → Var172 Γ A → Tm172 Γ A) (lam : (Γ : _) (A B : _) → Tm172 (snoc172 Γ A) B → Tm172 Γ (arr172 A B)) (app : (Γ : _) (A B : _) → Tm172 Γ (arr172 A B) → Tm172 Γ A → Tm172 Γ B) → Tm172 Γ A var172 : ∀{Γ A} → Var172 Γ A → Tm172 Γ A;var172 = λ x Tm172 var172 lam app → var172 _ _ x lam172 : ∀{Γ A B} → Tm172 (snoc172 Γ A) B → Tm172 Γ (arr172 A B);lam172 = λ t Tm172 var172 lam172 app → lam172 _ _ _ (t Tm172 var172 lam172 app) app172 : ∀{Γ A B} → Tm172 Γ (arr172 A B) → Tm172 Γ A → Tm172 Γ B;app172 = λ t u Tm172 var172 lam172 app172 → app172 _ _ _ (t Tm172 var172 lam172 app172) (u Tm172 var172 lam172 app172) v0172 : ∀{Γ A} → Tm172 (snoc172 Γ A) A;v0172 = var172 vz172 v1172 : ∀{Γ A B} → Tm172 (snoc172 (snoc172 Γ A) B) A;v1172 = var172 (vs172 vz172) v2172 : ∀{Γ A B C} → Tm172 (snoc172 (snoc172 (snoc172 Γ A) B) C) A;v2172 = var172 (vs172 (vs172 vz172)) v3172 : ∀{Γ A B C D} → Tm172 (snoc172 (snoc172 (snoc172 (snoc172 Γ A) B) C) D) A;v3172 = var172 (vs172 (vs172 (vs172 vz172))) v4172 : ∀{Γ A B C D E} → Tm172 (snoc172 (snoc172 (snoc172 (snoc172 (snoc172 Γ A) B) C) D) E) A;v4172 = var172 (vs172 (vs172 (vs172 (vs172 vz172)))) test172 : ∀{Γ A} → Tm172 Γ (arr172 (arr172 A A) (arr172 A A));test172 = lam172 (lam172 (app172 v1172 (app172 v1172 (app172 v1172 (app172 v1172 (app172 v1172 (app172 v1172 v0172))))))) {-# OPTIONS --type-in-type #-} Ty173 : Set; Ty173 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι173 : Ty173; ι173 = λ _ ι173 _ → ι173 arr173 : Ty173 → Ty173 → Ty173; arr173 = λ A B Ty173 ι173 arr173 → arr173 (A Ty173 ι173 arr173) (B Ty173 ι173 arr173) Con173 : Set;Con173 = (Con173 : Set) (nil : Con173) (snoc : Con173 → Ty173 → Con173) → Con173 nil173 : Con173;nil173 = λ Con173 nil173 snoc → nil173 snoc173 : Con173 → Ty173 → Con173;snoc173 = λ Γ A Con173 nil173 snoc173 → snoc173 (Γ Con173 nil173 snoc173) A Var173 : Con173 → Ty173 → Set;Var173 = λ Γ A → (Var173 : Con173 → Ty173 → Set) (vz : (Γ : _)(A : _) → Var173 (snoc173 Γ A) A) (vs : (Γ : _)(B A : _) → Var173 Γ A → Var173 (snoc173 Γ B) A) → Var173 Γ A vz173 : ∀{Γ A} → Var173 (snoc173 Γ A) A;vz173 = λ Var173 vz173 vs → vz173 _ _ vs173 : ∀{Γ B A} → Var173 Γ A → Var173 (snoc173 Γ B) A;vs173 = λ x Var173 vz173 vs173 → vs173 _ _ _ (x Var173 vz173 vs173) Tm173 : Con173 → Ty173 → Set;Tm173 = λ Γ A → (Tm173 : Con173 → Ty173 → Set) (var : (Γ : _) (A : _) → Var173 Γ A → Tm173 Γ A) (lam : (Γ : _) (A B : _) → Tm173 (snoc173 Γ A) B → Tm173 Γ (arr173 A B)) (app : (Γ : _) (A B : _) → Tm173 Γ (arr173 A B) → Tm173 Γ A → Tm173 Γ B) → Tm173 Γ A var173 : ∀{Γ A} → Var173 Γ A → Tm173 Γ A;var173 = λ x Tm173 var173 lam app → var173 _ _ x lam173 : ∀{Γ A B} → Tm173 (snoc173 Γ A) B → Tm173 Γ (arr173 A B);lam173 = λ t Tm173 var173 lam173 app → lam173 _ _ _ (t Tm173 var173 lam173 app) app173 : ∀{Γ A B} → Tm173 Γ (arr173 A B) → Tm173 Γ A → Tm173 Γ B;app173 = λ t u Tm173 var173 lam173 app173 → app173 _ _ _ (t Tm173 var173 lam173 app173) (u Tm173 var173 lam173 app173) v0173 : ∀{Γ A} → Tm173 (snoc173 Γ A) A;v0173 = var173 vz173 v1173 : ∀{Γ A B} → Tm173 (snoc173 (snoc173 Γ A) B) A;v1173 = var173 (vs173 vz173) v2173 : ∀{Γ A B C} → Tm173 (snoc173 (snoc173 (snoc173 Γ A) B) C) A;v2173 = var173 (vs173 (vs173 vz173)) v3173 : ∀{Γ A B C D} → Tm173 (snoc173 (snoc173 (snoc173 (snoc173 Γ A) B) C) D) A;v3173 = var173 (vs173 (vs173 (vs173 vz173))) v4173 : ∀{Γ A B C D E} → Tm173 (snoc173 (snoc173 (snoc173 (snoc173 (snoc173 Γ A) B) C) D) E) A;v4173 = var173 (vs173 (vs173 (vs173 (vs173 vz173)))) test173 : ∀{Γ A} → Tm173 Γ (arr173 (arr173 A A) (arr173 A A));test173 = lam173 (lam173 (app173 v1173 (app173 v1173 (app173 v1173 (app173 v1173 (app173 v1173 (app173 v1173 v0173))))))) {-# OPTIONS --type-in-type #-} Ty174 : Set; Ty174 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι174 : Ty174; ι174 = λ _ ι174 _ → ι174 arr174 : Ty174 → Ty174 → Ty174; arr174 = λ A B Ty174 ι174 arr174 → arr174 (A Ty174 ι174 arr174) (B Ty174 ι174 arr174) Con174 : Set;Con174 = (Con174 : Set) (nil : Con174) (snoc : Con174 → Ty174 → Con174) → Con174 nil174 : Con174;nil174 = λ Con174 nil174 snoc → nil174 snoc174 : Con174 → Ty174 → Con174;snoc174 = λ Γ A Con174 nil174 snoc174 → snoc174 (Γ Con174 nil174 snoc174) A Var174 : Con174 → Ty174 → Set;Var174 = λ Γ A → (Var174 : Con174 → Ty174 → Set) (vz : (Γ : _)(A : _) → Var174 (snoc174 Γ A) A) (vs : (Γ : _)(B A : _) → Var174 Γ A → Var174 (snoc174 Γ B) A) → Var174 Γ A vz174 : ∀{Γ A} → Var174 (snoc174 Γ A) A;vz174 = λ Var174 vz174 vs → vz174 _ _ vs174 : ∀{Γ B A} → Var174 Γ A → Var174 (snoc174 Γ B) A;vs174 = λ x Var174 vz174 vs174 → vs174 _ _ _ (x Var174 vz174 vs174) Tm174 : Con174 → Ty174 → Set;Tm174 = λ Γ A → (Tm174 : Con174 → Ty174 → Set) (var : (Γ : _) (A : _) → Var174 Γ A → Tm174 Γ A) (lam : (Γ : _) (A B : _) → Tm174 (snoc174 Γ A) B → Tm174 Γ (arr174 A B)) (app : (Γ : _) (A B : _) → Tm174 Γ (arr174 A B) → Tm174 Γ A → Tm174 Γ B) → Tm174 Γ A var174 : ∀{Γ A} → Var174 Γ A → Tm174 Γ A;var174 = λ x Tm174 var174 lam app → var174 _ _ x lam174 : ∀{Γ A B} → Tm174 (snoc174 Γ A) B → Tm174 Γ (arr174 A B);lam174 = λ t Tm174 var174 lam174 app → lam174 _ _ _ (t Tm174 var174 lam174 app) app174 : ∀{Γ A B} → Tm174 Γ (arr174 A B) → Tm174 Γ A → Tm174 Γ B;app174 = λ t u Tm174 var174 lam174 app174 → app174 _ _ _ (t Tm174 var174 lam174 app174) (u Tm174 var174 lam174 app174) v0174 : ∀{Γ A} → Tm174 (snoc174 Γ A) A;v0174 = var174 vz174 v1174 : ∀{Γ A B} → Tm174 (snoc174 (snoc174 Γ A) B) A;v1174 = var174 (vs174 vz174) v2174 : ∀{Γ A B C} → Tm174 (snoc174 (snoc174 (snoc174 Γ A) B) C) A;v2174 = var174 (vs174 (vs174 vz174)) v3174 : ∀{Γ A B C D} → Tm174 (snoc174 (snoc174 (snoc174 (snoc174 Γ A) B) C) D) A;v3174 = var174 (vs174 (vs174 (vs174 vz174))) v4174 : ∀{Γ A B C D E} → Tm174 (snoc174 (snoc174 (snoc174 (snoc174 (snoc174 Γ A) B) C) D) E) A;v4174 = var174 (vs174 (vs174 (vs174 (vs174 vz174)))) test174 : ∀{Γ A} → Tm174 Γ (arr174 (arr174 A A) (arr174 A A));test174 = lam174 (lam174 (app174 v1174 (app174 v1174 (app174 v1174 (app174 v1174 (app174 v1174 (app174 v1174 v0174))))))) {-# OPTIONS --type-in-type #-} Ty175 : Set; Ty175 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι175 : Ty175; ι175 = λ _ ι175 _ → ι175 arr175 : Ty175 → Ty175 → Ty175; arr175 = λ A B Ty175 ι175 arr175 → arr175 (A Ty175 ι175 arr175) (B Ty175 ι175 arr175) Con175 : Set;Con175 = (Con175 : Set) (nil : Con175) (snoc : Con175 → Ty175 → Con175) → Con175 nil175 : Con175;nil175 = λ Con175 nil175 snoc → nil175 snoc175 : Con175 → Ty175 → Con175;snoc175 = λ Γ A Con175 nil175 snoc175 → snoc175 (Γ Con175 nil175 snoc175) A Var175 : Con175 → Ty175 → Set;Var175 = λ Γ A → (Var175 : Con175 → Ty175 → Set) (vz : (Γ : _)(A : _) → Var175 (snoc175 Γ A) A) (vs : (Γ : _)(B A : _) → Var175 Γ A → Var175 (snoc175 Γ B) A) → Var175 Γ A vz175 : ∀{Γ A} → Var175 (snoc175 Γ A) A;vz175 = λ Var175 vz175 vs → vz175 _ _ vs175 : ∀{Γ B A} → Var175 Γ A → Var175 (snoc175 Γ B) A;vs175 = λ x Var175 vz175 vs175 → vs175 _ _ _ (x Var175 vz175 vs175) Tm175 : Con175 → Ty175 → Set;Tm175 = λ Γ A → (Tm175 : Con175 → Ty175 → Set) (var : (Γ : _) (A : _) → Var175 Γ A → Tm175 Γ A) (lam : (Γ : _) (A B : _) → Tm175 (snoc175 Γ A) B → Tm175 Γ (arr175 A B)) (app : (Γ : _) (A B : _) → Tm175 Γ (arr175 A B) → Tm175 Γ A → Tm175 Γ B) → Tm175 Γ A var175 : ∀{Γ A} → Var175 Γ A → Tm175 Γ A;var175 = λ x Tm175 var175 lam app → var175 _ _ x lam175 : ∀{Γ A B} → Tm175 (snoc175 Γ A) B → Tm175 Γ (arr175 A B);lam175 = λ t Tm175 var175 lam175 app → lam175 _ _ _ (t Tm175 var175 lam175 app) app175 : ∀{Γ A B} → Tm175 Γ (arr175 A B) → Tm175 Γ A → Tm175 Γ B;app175 = λ t u Tm175 var175 lam175 app175 → app175 _ _ _ (t Tm175 var175 lam175 app175) (u Tm175 var175 lam175 app175) v0175 : ∀{Γ A} → Tm175 (snoc175 Γ A) A;v0175 = var175 vz175 v1175 : ∀{Γ A B} → Tm175 (snoc175 (snoc175 Γ A) B) A;v1175 = var175 (vs175 vz175) v2175 : ∀{Γ A B C} → Tm175 (snoc175 (snoc175 (snoc175 Γ A) B) C) A;v2175 = var175 (vs175 (vs175 vz175)) v3175 : ∀{Γ A B C D} → Tm175 (snoc175 (snoc175 (snoc175 (snoc175 Γ A) B) C) D) A;v3175 = var175 (vs175 (vs175 (vs175 vz175))) v4175 : ∀{Γ A B C D E} → Tm175 (snoc175 (snoc175 (snoc175 (snoc175 (snoc175 Γ A) B) C) D) E) A;v4175 = var175 (vs175 (vs175 (vs175 (vs175 vz175)))) test175 : ∀{Γ A} → Tm175 Γ (arr175 (arr175 A A) (arr175 A A));test175 = lam175 (lam175 (app175 v1175 (app175 v1175 (app175 v1175 (app175 v1175 (app175 v1175 (app175 v1175 v0175))))))) {-# OPTIONS --type-in-type #-} Ty176 : Set; Ty176 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι176 : Ty176; ι176 = λ _ ι176 _ → ι176 arr176 : Ty176 → Ty176 → Ty176; arr176 = λ A B Ty176 ι176 arr176 → arr176 (A Ty176 ι176 arr176) (B Ty176 ι176 arr176) Con176 : Set;Con176 = (Con176 : Set) (nil : Con176) (snoc : Con176 → Ty176 → Con176) → Con176 nil176 : Con176;nil176 = λ Con176 nil176 snoc → nil176 snoc176 : Con176 → Ty176 → Con176;snoc176 = λ Γ A Con176 nil176 snoc176 → snoc176 (Γ Con176 nil176 snoc176) A Var176 : Con176 → Ty176 → Set;Var176 = λ Γ A → (Var176 : Con176 → Ty176 → Set) (vz : (Γ : _)(A : _) → Var176 (snoc176 Γ A) A) (vs : (Γ : _)(B A : _) → Var176 Γ A → Var176 (snoc176 Γ B) A) → Var176 Γ A vz176 : ∀{Γ A} → Var176 (snoc176 Γ A) A;vz176 = λ Var176 vz176 vs → vz176 _ _ vs176 : ∀{Γ B A} → Var176 Γ A → Var176 (snoc176 Γ B) A;vs176 = λ x Var176 vz176 vs176 → vs176 _ _ _ (x Var176 vz176 vs176) Tm176 : Con176 → Ty176 → Set;Tm176 = λ Γ A → (Tm176 : Con176 → Ty176 → Set) (var : (Γ : _) (A : _) → Var176 Γ A → Tm176 Γ A) (lam : (Γ : _) (A B : _) → Tm176 (snoc176 Γ A) B → Tm176 Γ (arr176 A B)) (app : (Γ : _) (A B : _) → Tm176 Γ (arr176 A B) → Tm176 Γ A → Tm176 Γ B) → Tm176 Γ A var176 : ∀{Γ A} → Var176 Γ A → Tm176 Γ A;var176 = λ x Tm176 var176 lam app → var176 _ _ x lam176 : ∀{Γ A B} → Tm176 (snoc176 Γ A) B → Tm176 Γ (arr176 A B);lam176 = λ t Tm176 var176 lam176 app → lam176 _ _ _ (t Tm176 var176 lam176 app) app176 : ∀{Γ A B} → Tm176 Γ (arr176 A B) → Tm176 Γ A → Tm176 Γ B;app176 = λ t u Tm176 var176 lam176 app176 → app176 _ _ _ (t Tm176 var176 lam176 app176) (u Tm176 var176 lam176 app176) v0176 : ∀{Γ A} → Tm176 (snoc176 Γ A) A;v0176 = var176 vz176 v1176 : ∀{Γ A B} → Tm176 (snoc176 (snoc176 Γ A) B) A;v1176 = var176 (vs176 vz176) v2176 : ∀{Γ A B C} → Tm176 (snoc176 (snoc176 (snoc176 Γ A) B) C) A;v2176 = var176 (vs176 (vs176 vz176)) v3176 : ∀{Γ A B C D} → Tm176 (snoc176 (snoc176 (snoc176 (snoc176 Γ A) B) C) D) A;v3176 = var176 (vs176 (vs176 (vs176 vz176))) v4176 : ∀{Γ A B C D E} → Tm176 (snoc176 (snoc176 (snoc176 (snoc176 (snoc176 Γ A) B) C) D) E) A;v4176 = var176 (vs176 (vs176 (vs176 (vs176 vz176)))) test176 : ∀{Γ A} → Tm176 Γ (arr176 (arr176 A A) (arr176 A A));test176 = lam176 (lam176 (app176 v1176 (app176 v1176 (app176 v1176 (app176 v1176 (app176 v1176 (app176 v1176 v0176))))))) {-# OPTIONS --type-in-type #-} Ty177 : Set; Ty177 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι177 : Ty177; ι177 = λ _ ι177 _ → ι177 arr177 : Ty177 → Ty177 → Ty177; arr177 = λ A B Ty177 ι177 arr177 → arr177 (A Ty177 ι177 arr177) (B Ty177 ι177 arr177) Con177 : Set;Con177 = (Con177 : Set) (nil : Con177) (snoc : Con177 → Ty177 → Con177) → Con177 nil177 : Con177;nil177 = λ Con177 nil177 snoc → nil177 snoc177 : Con177 → Ty177 → Con177;snoc177 = λ Γ A Con177 nil177 snoc177 → snoc177 (Γ Con177 nil177 snoc177) A Var177 : Con177 → Ty177 → Set;Var177 = λ Γ A → (Var177 : Con177 → Ty177 → Set) (vz : (Γ : _)(A : _) → Var177 (snoc177 Γ A) A) (vs : (Γ : _)(B A : _) → Var177 Γ A → Var177 (snoc177 Γ B) A) → Var177 Γ A vz177 : ∀{Γ A} → Var177 (snoc177 Γ A) A;vz177 = λ Var177 vz177 vs → vz177 _ _ vs177 : ∀{Γ B A} → Var177 Γ A → Var177 (snoc177 Γ B) A;vs177 = λ x Var177 vz177 vs177 → vs177 _ _ _ (x Var177 vz177 vs177) Tm177 : Con177 → Ty177 → Set;Tm177 = λ Γ A → (Tm177 : Con177 → Ty177 → Set) (var : (Γ : _) (A : _) → Var177 Γ A → Tm177 Γ A) (lam : (Γ : _) (A B : _) → Tm177 (snoc177 Γ A) B → Tm177 Γ (arr177 A B)) (app : (Γ : _) (A B : _) → Tm177 Γ (arr177 A B) → Tm177 Γ A → Tm177 Γ B) → Tm177 Γ A var177 : ∀{Γ A} → Var177 Γ A → Tm177 Γ A;var177 = λ x Tm177 var177 lam app → var177 _ _ x lam177 : ∀{Γ A B} → Tm177 (snoc177 Γ A) B → Tm177 Γ (arr177 A B);lam177 = λ t Tm177 var177 lam177 app → lam177 _ _ _ (t Tm177 var177 lam177 app) app177 : ∀{Γ A B} → Tm177 Γ (arr177 A B) → Tm177 Γ A → Tm177 Γ B;app177 = λ t u Tm177 var177 lam177 app177 → app177 _ _ _ (t Tm177 var177 lam177 app177) (u Tm177 var177 lam177 app177) v0177 : ∀{Γ A} → Tm177 (snoc177 Γ A) A;v0177 = var177 vz177 v1177 : ∀{Γ A B} → Tm177 (snoc177 (snoc177 Γ A) B) A;v1177 = var177 (vs177 vz177) v2177 : ∀{Γ A B C} → Tm177 (snoc177 (snoc177 (snoc177 Γ A) B) C) A;v2177 = var177 (vs177 (vs177 vz177)) v3177 : ∀{Γ A B C D} → Tm177 (snoc177 (snoc177 (snoc177 (snoc177 Γ A) B) C) D) A;v3177 = var177 (vs177 (vs177 (vs177 vz177))) v4177 : ∀{Γ A B C D E} → Tm177 (snoc177 (snoc177 (snoc177 (snoc177 (snoc177 Γ A) B) C) D) E) A;v4177 = var177 (vs177 (vs177 (vs177 (vs177 vz177)))) test177 : ∀{Γ A} → Tm177 Γ (arr177 (arr177 A A) (arr177 A A));test177 = lam177 (lam177 (app177 v1177 (app177 v1177 (app177 v1177 (app177 v1177 (app177 v1177 (app177 v1177 v0177))))))) {-# OPTIONS --type-in-type #-} Ty178 : Set; Ty178 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι178 : Ty178; ι178 = λ _ ι178 _ → ι178 arr178 : Ty178 → Ty178 → Ty178; arr178 = λ A B Ty178 ι178 arr178 → arr178 (A Ty178 ι178 arr178) (B Ty178 ι178 arr178) Con178 : Set;Con178 = (Con178 : Set) (nil : Con178) (snoc : Con178 → Ty178 → Con178) → Con178 nil178 : Con178;nil178 = λ Con178 nil178 snoc → nil178 snoc178 : Con178 → Ty178 → Con178;snoc178 = λ Γ A Con178 nil178 snoc178 → snoc178 (Γ Con178 nil178 snoc178) A Var178 : Con178 → Ty178 → Set;Var178 = λ Γ A → (Var178 : Con178 → Ty178 → Set) (vz : (Γ : _)(A : _) → Var178 (snoc178 Γ A) A) (vs : (Γ : _)(B A : _) → Var178 Γ A → Var178 (snoc178 Γ B) A) → Var178 Γ A vz178 : ∀{Γ A} → Var178 (snoc178 Γ A) A;vz178 = λ Var178 vz178 vs → vz178 _ _ vs178 : ∀{Γ B A} → Var178 Γ A → Var178 (snoc178 Γ B) A;vs178 = λ x Var178 vz178 vs178 → vs178 _ _ _ (x Var178 vz178 vs178) Tm178 : Con178 → Ty178 → Set;Tm178 = λ Γ A → (Tm178 : Con178 → Ty178 → Set) (var : (Γ : _) (A : _) → Var178 Γ A → Tm178 Γ A) (lam : (Γ : _) (A B : _) → Tm178 (snoc178 Γ A) B → Tm178 Γ (arr178 A B)) (app : (Γ : _) (A B : _) → Tm178 Γ (arr178 A B) → Tm178 Γ A → Tm178 Γ B) → Tm178 Γ A var178 : ∀{Γ A} → Var178 Γ A → Tm178 Γ A;var178 = λ x Tm178 var178 lam app → var178 _ _ x lam178 : ∀{Γ A B} → Tm178 (snoc178 Γ A) B → Tm178 Γ (arr178 A B);lam178 = λ t Tm178 var178 lam178 app → lam178 _ _ _ (t Tm178 var178 lam178 app) app178 : ∀{Γ A B} → Tm178 Γ (arr178 A B) → Tm178 Γ A → Tm178 Γ B;app178 = λ t u Tm178 var178 lam178 app178 → app178 _ _ _ (t Tm178 var178 lam178 app178) (u Tm178 var178 lam178 app178) v0178 : ∀{Γ A} → Tm178 (snoc178 Γ A) A;v0178 = var178 vz178 v1178 : ∀{Γ A B} → Tm178 (snoc178 (snoc178 Γ A) B) A;v1178 = var178 (vs178 vz178) v2178 : ∀{Γ A B C} → Tm178 (snoc178 (snoc178 (snoc178 Γ A) B) C) A;v2178 = var178 (vs178 (vs178 vz178)) v3178 : ∀{Γ A B C D} → Tm178 (snoc178 (snoc178 (snoc178 (snoc178 Γ A) B) C) D) A;v3178 = var178 (vs178 (vs178 (vs178 vz178))) v4178 : ∀{Γ A B C D E} → Tm178 (snoc178 (snoc178 (snoc178 (snoc178 (snoc178 Γ A) B) C) D) E) A;v4178 = var178 (vs178 (vs178 (vs178 (vs178 vz178)))) test178 : ∀{Γ A} → Tm178 Γ (arr178 (arr178 A A) (arr178 A A));test178 = lam178 (lam178 (app178 v1178 (app178 v1178 (app178 v1178 (app178 v1178 (app178 v1178 (app178 v1178 v0178))))))) {-# OPTIONS --type-in-type #-} Ty179 : Set; Ty179 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι179 : Ty179; ι179 = λ _ ι179 _ → ι179 arr179 : Ty179 → Ty179 → Ty179; arr179 = λ A B Ty179 ι179 arr179 → arr179 (A Ty179 ι179 arr179) (B Ty179 ι179 arr179) Con179 : Set;Con179 = (Con179 : Set) (nil : Con179) (snoc : Con179 → Ty179 → Con179) → Con179 nil179 : Con179;nil179 = λ Con179 nil179 snoc → nil179 snoc179 : Con179 → Ty179 → Con179;snoc179 = λ Γ A Con179 nil179 snoc179 → snoc179 (Γ Con179 nil179 snoc179) A Var179 : Con179 → Ty179 → Set;Var179 = λ Γ A → (Var179 : Con179 → Ty179 → Set) (vz : (Γ : _)(A : _) → Var179 (snoc179 Γ A) A) (vs : (Γ : _)(B A : _) → Var179 Γ A → Var179 (snoc179 Γ B) A) → Var179 Γ A vz179 : ∀{Γ A} → Var179 (snoc179 Γ A) A;vz179 = λ Var179 vz179 vs → vz179 _ _ vs179 : ∀{Γ B A} → Var179 Γ A → Var179 (snoc179 Γ B) A;vs179 = λ x Var179 vz179 vs179 → vs179 _ _ _ (x Var179 vz179 vs179) Tm179 : Con179 → Ty179 → Set;Tm179 = λ Γ A → (Tm179 : Con179 → Ty179 → Set) (var : (Γ : _) (A : _) → Var179 Γ A → Tm179 Γ A) (lam : (Γ : _) (A B : _) → Tm179 (snoc179 Γ A) B → Tm179 Γ (arr179 A B)) (app : (Γ : _) (A B : _) → Tm179 Γ (arr179 A B) → Tm179 Γ A → Tm179 Γ B) → Tm179 Γ A var179 : ∀{Γ A} → Var179 Γ A → Tm179 Γ A;var179 = λ x Tm179 var179 lam app → var179 _ _ x lam179 : ∀{Γ A B} → Tm179 (snoc179 Γ A) B → Tm179 Γ (arr179 A B);lam179 = λ t Tm179 var179 lam179 app → lam179 _ _ _ (t Tm179 var179 lam179 app) app179 : ∀{Γ A B} → Tm179 Γ (arr179 A B) → Tm179 Γ A → Tm179 Γ B;app179 = λ t u Tm179 var179 lam179 app179 → app179 _ _ _ (t Tm179 var179 lam179 app179) (u Tm179 var179 lam179 app179) v0179 : ∀{Γ A} → Tm179 (snoc179 Γ A) A;v0179 = var179 vz179 v1179 : ∀{Γ A B} → Tm179 (snoc179 (snoc179 Γ A) B) A;v1179 = var179 (vs179 vz179) v2179 : ∀{Γ A B C} → Tm179 (snoc179 (snoc179 (snoc179 Γ A) B) C) A;v2179 = var179 (vs179 (vs179 vz179)) v3179 : ∀{Γ A B C D} → Tm179 (snoc179 (snoc179 (snoc179 (snoc179 Γ A) B) C) D) A;v3179 = var179 (vs179 (vs179 (vs179 vz179))) v4179 : ∀{Γ A B C D E} → Tm179 (snoc179 (snoc179 (snoc179 (snoc179 (snoc179 Γ A) B) C) D) E) A;v4179 = var179 (vs179 (vs179 (vs179 (vs179 vz179)))) test179 : ∀{Γ A} → Tm179 Γ (arr179 (arr179 A A) (arr179 A A));test179 = lam179 (lam179 (app179 v1179 (app179 v1179 (app179 v1179 (app179 v1179 (app179 v1179 (app179 v1179 v0179))))))) {-# OPTIONS --type-in-type #-} Ty180 : Set; Ty180 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι180 : Ty180; ι180 = λ _ ι180 _ → ι180 arr180 : Ty180 → Ty180 → Ty180; arr180 = λ A B Ty180 ι180 arr180 → arr180 (A Ty180 ι180 arr180) (B Ty180 ι180 arr180) Con180 : Set;Con180 = (Con180 : Set) (nil : Con180) (snoc : Con180 → Ty180 → Con180) → Con180 nil180 : Con180;nil180 = λ Con180 nil180 snoc → nil180 snoc180 : Con180 → Ty180 → Con180;snoc180 = λ Γ A Con180 nil180 snoc180 → snoc180 (Γ Con180 nil180 snoc180) A Var180 : Con180 → Ty180 → Set;Var180 = λ Γ A → (Var180 : Con180 → Ty180 → Set) (vz : (Γ : _)(A : _) → Var180 (snoc180 Γ A) A) (vs : (Γ : _)(B A : _) → Var180 Γ A → Var180 (snoc180 Γ B) A) → Var180 Γ A vz180 : ∀{Γ A} → Var180 (snoc180 Γ A) A;vz180 = λ Var180 vz180 vs → vz180 _ _ vs180 : ∀{Γ B A} → Var180 Γ A → Var180 (snoc180 Γ B) A;vs180 = λ x Var180 vz180 vs180 → vs180 _ _ _ (x Var180 vz180 vs180) Tm180 : Con180 → Ty180 → Set;Tm180 = λ Γ A → (Tm180 : Con180 → Ty180 → Set) (var : (Γ : _) (A : _) → Var180 Γ A → Tm180 Γ A) (lam : (Γ : _) (A B : _) → Tm180 (snoc180 Γ A) B → Tm180 Γ (arr180 A B)) (app : (Γ : _) (A B : _) → Tm180 Γ (arr180 A B) → Tm180 Γ A → Tm180 Γ B) → Tm180 Γ A var180 : ∀{Γ A} → Var180 Γ A → Tm180 Γ A;var180 = λ x Tm180 var180 lam app → var180 _ _ x lam180 : ∀{Γ A B} → Tm180 (snoc180 Γ A) B → Tm180 Γ (arr180 A B);lam180 = λ t Tm180 var180 lam180 app → lam180 _ _ _ (t Tm180 var180 lam180 app) app180 : ∀{Γ A B} → Tm180 Γ (arr180 A B) → Tm180 Γ A → Tm180 Γ B;app180 = λ t u Tm180 var180 lam180 app180 → app180 _ _ _ (t Tm180 var180 lam180 app180) (u Tm180 var180 lam180 app180) v0180 : ∀{Γ A} → Tm180 (snoc180 Γ A) A;v0180 = var180 vz180 v1180 : ∀{Γ A B} → Tm180 (snoc180 (snoc180 Γ A) B) A;v1180 = var180 (vs180 vz180) v2180 : ∀{Γ A B C} → Tm180 (snoc180 (snoc180 (snoc180 Γ A) B) C) A;v2180 = var180 (vs180 (vs180 vz180)) v3180 : ∀{Γ A B C D} → Tm180 (snoc180 (snoc180 (snoc180 (snoc180 Γ A) B) C) D) A;v3180 = var180 (vs180 (vs180 (vs180 vz180))) v4180 : ∀{Γ A B C D E} → Tm180 (snoc180 (snoc180 (snoc180 (snoc180 (snoc180 Γ A) B) C) D) E) A;v4180 = var180 (vs180 (vs180 (vs180 (vs180 vz180)))) test180 : ∀{Γ A} → Tm180 Γ (arr180 (arr180 A A) (arr180 A A));test180 = lam180 (lam180 (app180 v1180 (app180 v1180 (app180 v1180 (app180 v1180 (app180 v1180 (app180 v1180 v0180))))))) {-# OPTIONS --type-in-type #-} Ty181 : Set; Ty181 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι181 : Ty181; ι181 = λ _ ι181 _ → ι181 arr181 : Ty181 → Ty181 → Ty181; arr181 = λ A B Ty181 ι181 arr181 → arr181 (A Ty181 ι181 arr181) (B Ty181 ι181 arr181) Con181 : Set;Con181 = (Con181 : Set) (nil : Con181) (snoc : Con181 → Ty181 → Con181) → Con181 nil181 : Con181;nil181 = λ Con181 nil181 snoc → nil181 snoc181 : Con181 → Ty181 → Con181;snoc181 = λ Γ A Con181 nil181 snoc181 → snoc181 (Γ Con181 nil181 snoc181) A Var181 : Con181 → Ty181 → Set;Var181 = λ Γ A → (Var181 : Con181 → Ty181 → Set) (vz : (Γ : _)(A : _) → Var181 (snoc181 Γ A) A) (vs : (Γ : _)(B A : _) → Var181 Γ A → Var181 (snoc181 Γ B) A) → Var181 Γ A vz181 : ∀{Γ A} → Var181 (snoc181 Γ A) A;vz181 = λ Var181 vz181 vs → vz181 _ _ vs181 : ∀{Γ B A} → Var181 Γ A → Var181 (snoc181 Γ B) A;vs181 = λ x Var181 vz181 vs181 → vs181 _ _ _ (x Var181 vz181 vs181) Tm181 : Con181 → Ty181 → Set;Tm181 = λ Γ A → (Tm181 : Con181 → Ty181 → Set) (var : (Γ : _) (A : _) → Var181 Γ A → Tm181 Γ A) (lam : (Γ : _) (A B : _) → Tm181 (snoc181 Γ A) B → Tm181 Γ (arr181 A B)) (app : (Γ : _) (A B : _) → Tm181 Γ (arr181 A B) → Tm181 Γ A → Tm181 Γ B) → Tm181 Γ A var181 : ∀{Γ A} → Var181 Γ A → Tm181 Γ A;var181 = λ x Tm181 var181 lam app → var181 _ _ x lam181 : ∀{Γ A B} → Tm181 (snoc181 Γ A) B → Tm181 Γ (arr181 A B);lam181 = λ t Tm181 var181 lam181 app → lam181 _ _ _ (t Tm181 var181 lam181 app) app181 : ∀{Γ A B} → Tm181 Γ (arr181 A B) → Tm181 Γ A → Tm181 Γ B;app181 = λ t u Tm181 var181 lam181 app181 → app181 _ _ _ (t Tm181 var181 lam181 app181) (u Tm181 var181 lam181 app181) v0181 : ∀{Γ A} → Tm181 (snoc181 Γ A) A;v0181 = var181 vz181 v1181 : ∀{Γ A B} → Tm181 (snoc181 (snoc181 Γ A) B) A;v1181 = var181 (vs181 vz181) v2181 : ∀{Γ A B C} → Tm181 (snoc181 (snoc181 (snoc181 Γ A) B) C) A;v2181 = var181 (vs181 (vs181 vz181)) v3181 : ∀{Γ A B C D} → Tm181 (snoc181 (snoc181 (snoc181 (snoc181 Γ A) B) C) D) A;v3181 = var181 (vs181 (vs181 (vs181 vz181))) v4181 : ∀{Γ A B C D E} → Tm181 (snoc181 (snoc181 (snoc181 (snoc181 (snoc181 Γ A) B) C) D) E) A;v4181 = var181 (vs181 (vs181 (vs181 (vs181 vz181)))) test181 : ∀{Γ A} → Tm181 Γ (arr181 (arr181 A A) (arr181 A A));test181 = lam181 (lam181 (app181 v1181 (app181 v1181 (app181 v1181 (app181 v1181 (app181 v1181 (app181 v1181 v0181))))))) {-# OPTIONS --type-in-type #-} Ty182 : Set; Ty182 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι182 : Ty182; ι182 = λ _ ι182 _ → ι182 arr182 : Ty182 → Ty182 → Ty182; arr182 = λ A B Ty182 ι182 arr182 → arr182 (A Ty182 ι182 arr182) (B Ty182 ι182 arr182) Con182 : Set;Con182 = (Con182 : Set) (nil : Con182) (snoc : Con182 → Ty182 → Con182) → Con182 nil182 : Con182;nil182 = λ Con182 nil182 snoc → nil182 snoc182 : Con182 → Ty182 → Con182;snoc182 = λ Γ A Con182 nil182 snoc182 → snoc182 (Γ Con182 nil182 snoc182) A Var182 : Con182 → Ty182 → Set;Var182 = λ Γ A → (Var182 : Con182 → Ty182 → Set) (vz : (Γ : _)(A : _) → Var182 (snoc182 Γ A) A) (vs : (Γ : _)(B A : _) → Var182 Γ A → Var182 (snoc182 Γ B) A) → Var182 Γ A vz182 : ∀{Γ A} → Var182 (snoc182 Γ A) A;vz182 = λ Var182 vz182 vs → vz182 _ _ vs182 : ∀{Γ B A} → Var182 Γ A → Var182 (snoc182 Γ B) A;vs182 = λ x Var182 vz182 vs182 → vs182 _ _ _ (x Var182 vz182 vs182) Tm182 : Con182 → Ty182 → Set;Tm182 = λ Γ A → (Tm182 : Con182 → Ty182 → Set) (var : (Γ : _) (A : _) → Var182 Γ A → Tm182 Γ A) (lam : (Γ : _) (A B : _) → Tm182 (snoc182 Γ A) B → Tm182 Γ (arr182 A B)) (app : (Γ : _) (A B : _) → Tm182 Γ (arr182 A B) → Tm182 Γ A → Tm182 Γ B) → Tm182 Γ A var182 : ∀{Γ A} → Var182 Γ A → Tm182 Γ A;var182 = λ x Tm182 var182 lam app → var182 _ _ x lam182 : ∀{Γ A B} → Tm182 (snoc182 Γ A) B → Tm182 Γ (arr182 A B);lam182 = λ t Tm182 var182 lam182 app → lam182 _ _ _ (t Tm182 var182 lam182 app) app182 : ∀{Γ A B} → Tm182 Γ (arr182 A B) → Tm182 Γ A → Tm182 Γ B;app182 = λ t u Tm182 var182 lam182 app182 → app182 _ _ _ (t Tm182 var182 lam182 app182) (u Tm182 var182 lam182 app182) v0182 : ∀{Γ A} → Tm182 (snoc182 Γ A) A;v0182 = var182 vz182 v1182 : ∀{Γ A B} → Tm182 (snoc182 (snoc182 Γ A) B) A;v1182 = var182 (vs182 vz182) v2182 : ∀{Γ A B C} → Tm182 (snoc182 (snoc182 (snoc182 Γ A) B) C) A;v2182 = var182 (vs182 (vs182 vz182)) v3182 : ∀{Γ A B C D} → Tm182 (snoc182 (snoc182 (snoc182 (snoc182 Γ A) B) C) D) A;v3182 = var182 (vs182 (vs182 (vs182 vz182))) v4182 : ∀{Γ A B C D E} → Tm182 (snoc182 (snoc182 (snoc182 (snoc182 (snoc182 Γ A) B) C) D) E) A;v4182 = var182 (vs182 (vs182 (vs182 (vs182 vz182)))) test182 : ∀{Γ A} → Tm182 Γ (arr182 (arr182 A A) (arr182 A A));test182 = lam182 (lam182 (app182 v1182 (app182 v1182 (app182 v1182 (app182 v1182 (app182 v1182 (app182 v1182 v0182))))))) {-# OPTIONS --type-in-type #-} Ty183 : Set; Ty183 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι183 : Ty183; ι183 = λ _ ι183 _ → ι183 arr183 : Ty183 → Ty183 → Ty183; arr183 = λ A B Ty183 ι183 arr183 → arr183 (A Ty183 ι183 arr183) (B Ty183 ι183 arr183) Con183 : Set;Con183 = (Con183 : Set) (nil : Con183) (snoc : Con183 → Ty183 → Con183) → Con183 nil183 : Con183;nil183 = λ Con183 nil183 snoc → nil183 snoc183 : Con183 → Ty183 → Con183;snoc183 = λ Γ A Con183 nil183 snoc183 → snoc183 (Γ Con183 nil183 snoc183) A Var183 : Con183 → Ty183 → Set;Var183 = λ Γ A → (Var183 : Con183 → Ty183 → Set) (vz : (Γ : _)(A : _) → Var183 (snoc183 Γ A) A) (vs : (Γ : _)(B A : _) → Var183 Γ A → Var183 (snoc183 Γ B) A) → Var183 Γ A vz183 : ∀{Γ A} → Var183 (snoc183 Γ A) A;vz183 = λ Var183 vz183 vs → vz183 _ _ vs183 : ∀{Γ B A} → Var183 Γ A → Var183 (snoc183 Γ B) A;vs183 = λ x Var183 vz183 vs183 → vs183 _ _ _ (x Var183 vz183 vs183) Tm183 : Con183 → Ty183 → Set;Tm183 = λ Γ A → (Tm183 : Con183 → Ty183 → Set) (var : (Γ : _) (A : _) → Var183 Γ A → Tm183 Γ A) (lam : (Γ : _) (A B : _) → Tm183 (snoc183 Γ A) B → Tm183 Γ (arr183 A B)) (app : (Γ : _) (A B : _) → Tm183 Γ (arr183 A B) → Tm183 Γ A → Tm183 Γ B) → Tm183 Γ A var183 : ∀{Γ A} → Var183 Γ A → Tm183 Γ A;var183 = λ x Tm183 var183 lam app → var183 _ _ x lam183 : ∀{Γ A B} → Tm183 (snoc183 Γ A) B → Tm183 Γ (arr183 A B);lam183 = λ t Tm183 var183 lam183 app → lam183 _ _ _ (t Tm183 var183 lam183 app) app183 : ∀{Γ A B} → Tm183 Γ (arr183 A B) → Tm183 Γ A → Tm183 Γ B;app183 = λ t u Tm183 var183 lam183 app183 → app183 _ _ _ (t Tm183 var183 lam183 app183) (u Tm183 var183 lam183 app183) v0183 : ∀{Γ A} → Tm183 (snoc183 Γ A) A;v0183 = var183 vz183 v1183 : ∀{Γ A B} → Tm183 (snoc183 (snoc183 Γ A) B) A;v1183 = var183 (vs183 vz183) v2183 : ∀{Γ A B C} → Tm183 (snoc183 (snoc183 (snoc183 Γ A) B) C) A;v2183 = var183 (vs183 (vs183 vz183)) v3183 : ∀{Γ A B C D} → Tm183 (snoc183 (snoc183 (snoc183 (snoc183 Γ A) B) C) D) A;v3183 = var183 (vs183 (vs183 (vs183 vz183))) v4183 : ∀{Γ A B C D E} → Tm183 (snoc183 (snoc183 (snoc183 (snoc183 (snoc183 Γ A) B) C) D) E) A;v4183 = var183 (vs183 (vs183 (vs183 (vs183 vz183)))) test183 : ∀{Γ A} → Tm183 Γ (arr183 (arr183 A A) (arr183 A A));test183 = lam183 (lam183 (app183 v1183 (app183 v1183 (app183 v1183 (app183 v1183 (app183 v1183 (app183 v1183 v0183))))))) {-# OPTIONS --type-in-type #-} Ty184 : Set; Ty184 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι184 : Ty184; ι184 = λ _ ι184 _ → ι184 arr184 : Ty184 → Ty184 → Ty184; arr184 = λ A B Ty184 ι184 arr184 → arr184 (A Ty184 ι184 arr184) (B Ty184 ι184 arr184) Con184 : Set;Con184 = (Con184 : Set) (nil : Con184) (snoc : Con184 → Ty184 → Con184) → Con184 nil184 : Con184;nil184 = λ Con184 nil184 snoc → nil184 snoc184 : Con184 → Ty184 → Con184;snoc184 = λ Γ A Con184 nil184 snoc184 → snoc184 (Γ Con184 nil184 snoc184) A Var184 : Con184 → Ty184 → Set;Var184 = λ Γ A → (Var184 : Con184 → Ty184 → Set) (vz : (Γ : _)(A : _) → Var184 (snoc184 Γ A) A) (vs : (Γ : _)(B A : _) → Var184 Γ A → Var184 (snoc184 Γ B) A) → Var184 Γ A vz184 : ∀{Γ A} → Var184 (snoc184 Γ A) A;vz184 = λ Var184 vz184 vs → vz184 _ _ vs184 : ∀{Γ B A} → Var184 Γ A → Var184 (snoc184 Γ B) A;vs184 = λ x Var184 vz184 vs184 → vs184 _ _ _ (x Var184 vz184 vs184) Tm184 : Con184 → Ty184 → Set;Tm184 = λ Γ A → (Tm184 : Con184 → Ty184 → Set) (var : (Γ : _) (A : _) → Var184 Γ A → Tm184 Γ A) (lam : (Γ : _) (A B : _) → Tm184 (snoc184 Γ A) B → Tm184 Γ (arr184 A B)) (app : (Γ : _) (A B : _) → Tm184 Γ (arr184 A B) → Tm184 Γ A → Tm184 Γ B) → Tm184 Γ A var184 : ∀{Γ A} → Var184 Γ A → Tm184 Γ A;var184 = λ x Tm184 var184 lam app → var184 _ _ x lam184 : ∀{Γ A B} → Tm184 (snoc184 Γ A) B → Tm184 Γ (arr184 A B);lam184 = λ t Tm184 var184 lam184 app → lam184 _ _ _ (t Tm184 var184 lam184 app) app184 : ∀{Γ A B} → Tm184 Γ (arr184 A B) → Tm184 Γ A → Tm184 Γ B;app184 = λ t u Tm184 var184 lam184 app184 → app184 _ _ _ (t Tm184 var184 lam184 app184) (u Tm184 var184 lam184 app184) v0184 : ∀{Γ A} → Tm184 (snoc184 Γ A) A;v0184 = var184 vz184 v1184 : ∀{Γ A B} → Tm184 (snoc184 (snoc184 Γ A) B) A;v1184 = var184 (vs184 vz184) v2184 : ∀{Γ A B C} → Tm184 (snoc184 (snoc184 (snoc184 Γ A) B) C) A;v2184 = var184 (vs184 (vs184 vz184)) v3184 : ∀{Γ A B C D} → Tm184 (snoc184 (snoc184 (snoc184 (snoc184 Γ A) B) C) D) A;v3184 = var184 (vs184 (vs184 (vs184 vz184))) v4184 : ∀{Γ A B C D E} → Tm184 (snoc184 (snoc184 (snoc184 (snoc184 (snoc184 Γ A) B) C) D) E) A;v4184 = var184 (vs184 (vs184 (vs184 (vs184 vz184)))) test184 : ∀{Γ A} → Tm184 Γ (arr184 (arr184 A A) (arr184 A A));test184 = lam184 (lam184 (app184 v1184 (app184 v1184 (app184 v1184 (app184 v1184 (app184 v1184 (app184 v1184 v0184))))))) {-# OPTIONS --type-in-type #-} Ty185 : Set; Ty185 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι185 : Ty185; ι185 = λ _ ι185 _ → ι185 arr185 : Ty185 → Ty185 → Ty185; arr185 = λ A B Ty185 ι185 arr185 → arr185 (A Ty185 ι185 arr185) (B Ty185 ι185 arr185) Con185 : Set;Con185 = (Con185 : Set) (nil : Con185) (snoc : Con185 → Ty185 → Con185) → Con185 nil185 : Con185;nil185 = λ Con185 nil185 snoc → nil185 snoc185 : Con185 → Ty185 → Con185;snoc185 = λ Γ A Con185 nil185 snoc185 → snoc185 (Γ Con185 nil185 snoc185) A Var185 : Con185 → Ty185 → Set;Var185 = λ Γ A → (Var185 : Con185 → Ty185 → Set) (vz : (Γ : _)(A : _) → Var185 (snoc185 Γ A) A) (vs : (Γ : _)(B A : _) → Var185 Γ A → Var185 (snoc185 Γ B) A) → Var185 Γ A vz185 : ∀{Γ A} → Var185 (snoc185 Γ A) A;vz185 = λ Var185 vz185 vs → vz185 _ _ vs185 : ∀{Γ B A} → Var185 Γ A → Var185 (snoc185 Γ B) A;vs185 = λ x Var185 vz185 vs185 → vs185 _ _ _ (x Var185 vz185 vs185) Tm185 : Con185 → Ty185 → Set;Tm185 = λ Γ A → (Tm185 : Con185 → Ty185 → Set) (var : (Γ : _) (A : _) → Var185 Γ A → Tm185 Γ A) (lam : (Γ : _) (A B : _) → Tm185 (snoc185 Γ A) B → Tm185 Γ (arr185 A B)) (app : (Γ : _) (A B : _) → Tm185 Γ (arr185 A B) → Tm185 Γ A → Tm185 Γ B) → Tm185 Γ A var185 : ∀{Γ A} → Var185 Γ A → Tm185 Γ A;var185 = λ x Tm185 var185 lam app → var185 _ _ x lam185 : ∀{Γ A B} → Tm185 (snoc185 Γ A) B → Tm185 Γ (arr185 A B);lam185 = λ t Tm185 var185 lam185 app → lam185 _ _ _ (t Tm185 var185 lam185 app) app185 : ∀{Γ A B} → Tm185 Γ (arr185 A B) → Tm185 Γ A → Tm185 Γ B;app185 = λ t u Tm185 var185 lam185 app185 → app185 _ _ _ (t Tm185 var185 lam185 app185) (u Tm185 var185 lam185 app185) v0185 : ∀{Γ A} → Tm185 (snoc185 Γ A) A;v0185 = var185 vz185 v1185 : ∀{Γ A B} → Tm185 (snoc185 (snoc185 Γ A) B) A;v1185 = var185 (vs185 vz185) v2185 : ∀{Γ A B C} → Tm185 (snoc185 (snoc185 (snoc185 Γ A) B) C) A;v2185 = var185 (vs185 (vs185 vz185)) v3185 : ∀{Γ A B C D} → Tm185 (snoc185 (snoc185 (snoc185 (snoc185 Γ A) B) C) D) A;v3185 = var185 (vs185 (vs185 (vs185 vz185))) v4185 : ∀{Γ A B C D E} → Tm185 (snoc185 (snoc185 (snoc185 (snoc185 (snoc185 Γ A) B) C) D) E) A;v4185 = var185 (vs185 (vs185 (vs185 (vs185 vz185)))) test185 : ∀{Γ A} → Tm185 Γ (arr185 (arr185 A A) (arr185 A A));test185 = lam185 (lam185 (app185 v1185 (app185 v1185 (app185 v1185 (app185 v1185 (app185 v1185 (app185 v1185 v0185))))))) {-# OPTIONS --type-in-type #-} Ty186 : Set; Ty186 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι186 : Ty186; ι186 = λ _ ι186 _ → ι186 arr186 : Ty186 → Ty186 → Ty186; arr186 = λ A B Ty186 ι186 arr186 → arr186 (A Ty186 ι186 arr186) (B Ty186 ι186 arr186) Con186 : Set;Con186 = (Con186 : Set) (nil : Con186) (snoc : Con186 → Ty186 → Con186) → Con186 nil186 : Con186;nil186 = λ Con186 nil186 snoc → nil186 snoc186 : Con186 → Ty186 → Con186;snoc186 = λ Γ A Con186 nil186 snoc186 → snoc186 (Γ Con186 nil186 snoc186) A Var186 : Con186 → Ty186 → Set;Var186 = λ Γ A → (Var186 : Con186 → Ty186 → Set) (vz : (Γ : _)(A : _) → Var186 (snoc186 Γ A) A) (vs : (Γ : _)(B A : _) → Var186 Γ A → Var186 (snoc186 Γ B) A) → Var186 Γ A vz186 : ∀{Γ A} → Var186 (snoc186 Γ A) A;vz186 = λ Var186 vz186 vs → vz186 _ _ vs186 : ∀{Γ B A} → Var186 Γ A → Var186 (snoc186 Γ B) A;vs186 = λ x Var186 vz186 vs186 → vs186 _ _ _ (x Var186 vz186 vs186) Tm186 : Con186 → Ty186 → Set;Tm186 = λ Γ A → (Tm186 : Con186 → Ty186 → Set) (var : (Γ : _) (A : _) → Var186 Γ A → Tm186 Γ A) (lam : (Γ : _) (A B : _) → Tm186 (snoc186 Γ A) B → Tm186 Γ (arr186 A B)) (app : (Γ : _) (A B : _) → Tm186 Γ (arr186 A B) → Tm186 Γ A → Tm186 Γ B) → Tm186 Γ A var186 : ∀{Γ A} → Var186 Γ A → Tm186 Γ A;var186 = λ x Tm186 var186 lam app → var186 _ _ x lam186 : ∀{Γ A B} → Tm186 (snoc186 Γ A) B → Tm186 Γ (arr186 A B);lam186 = λ t Tm186 var186 lam186 app → lam186 _ _ _ (t Tm186 var186 lam186 app) app186 : ∀{Γ A B} → Tm186 Γ (arr186 A B) → Tm186 Γ A → Tm186 Γ B;app186 = λ t u Tm186 var186 lam186 app186 → app186 _ _ _ (t Tm186 var186 lam186 app186) (u Tm186 var186 lam186 app186) v0186 : ∀{Γ A} → Tm186 (snoc186 Γ A) A;v0186 = var186 vz186 v1186 : ∀{Γ A B} → Tm186 (snoc186 (snoc186 Γ A) B) A;v1186 = var186 (vs186 vz186) v2186 : ∀{Γ A B C} → Tm186 (snoc186 (snoc186 (snoc186 Γ A) B) C) A;v2186 = var186 (vs186 (vs186 vz186)) v3186 : ∀{Γ A B C D} → Tm186 (snoc186 (snoc186 (snoc186 (snoc186 Γ A) B) C) D) A;v3186 = var186 (vs186 (vs186 (vs186 vz186))) v4186 : ∀{Γ A B C D E} → Tm186 (snoc186 (snoc186 (snoc186 (snoc186 (snoc186 Γ A) B) C) D) E) A;v4186 = var186 (vs186 (vs186 (vs186 (vs186 vz186)))) test186 : ∀{Γ A} → Tm186 Γ (arr186 (arr186 A A) (arr186 A A));test186 = lam186 (lam186 (app186 v1186 (app186 v1186 (app186 v1186 (app186 v1186 (app186 v1186 (app186 v1186 v0186))))))) {-# OPTIONS --type-in-type #-} Ty187 : Set; Ty187 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι187 : Ty187; ι187 = λ _ ι187 _ → ι187 arr187 : Ty187 → Ty187 → Ty187; arr187 = λ A B Ty187 ι187 arr187 → arr187 (A Ty187 ι187 arr187) (B Ty187 ι187 arr187) Con187 : Set;Con187 = (Con187 : Set) (nil : Con187) (snoc : Con187 → Ty187 → Con187) → Con187 nil187 : Con187;nil187 = λ Con187 nil187 snoc → nil187 snoc187 : Con187 → Ty187 → Con187;snoc187 = λ Γ A Con187 nil187 snoc187 → snoc187 (Γ Con187 nil187 snoc187) A Var187 : Con187 → Ty187 → Set;Var187 = λ Γ A → (Var187 : Con187 → Ty187 → Set) (vz : (Γ : _)(A : _) → Var187 (snoc187 Γ A) A) (vs : (Γ : _)(B A : _) → Var187 Γ A → Var187 (snoc187 Γ B) A) → Var187 Γ A vz187 : ∀{Γ A} → Var187 (snoc187 Γ A) A;vz187 = λ Var187 vz187 vs → vz187 _ _ vs187 : ∀{Γ B A} → Var187 Γ A → Var187 (snoc187 Γ B) A;vs187 = λ x Var187 vz187 vs187 → vs187 _ _ _ (x Var187 vz187 vs187) Tm187 : Con187 → Ty187 → Set;Tm187 = λ Γ A → (Tm187 : Con187 → Ty187 → Set) (var : (Γ : _) (A : _) → Var187 Γ A → Tm187 Γ A) (lam : (Γ : _) (A B : _) → Tm187 (snoc187 Γ A) B → Tm187 Γ (arr187 A B)) (app : (Γ : _) (A B : _) → Tm187 Γ (arr187 A B) → Tm187 Γ A → Tm187 Γ B) → Tm187 Γ A var187 : ∀{Γ A} → Var187 Γ A → Tm187 Γ A;var187 = λ x Tm187 var187 lam app → var187 _ _ x lam187 : ∀{Γ A B} → Tm187 (snoc187 Γ A) B → Tm187 Γ (arr187 A B);lam187 = λ t Tm187 var187 lam187 app → lam187 _ _ _ (t Tm187 var187 lam187 app) app187 : ∀{Γ A B} → Tm187 Γ (arr187 A B) → Tm187 Γ A → Tm187 Γ B;app187 = λ t u Tm187 var187 lam187 app187 → app187 _ _ _ (t Tm187 var187 lam187 app187) (u Tm187 var187 lam187 app187) v0187 : ∀{Γ A} → Tm187 (snoc187 Γ A) A;v0187 = var187 vz187 v1187 : ∀{Γ A B} → Tm187 (snoc187 (snoc187 Γ A) B) A;v1187 = var187 (vs187 vz187) v2187 : ∀{Γ A B C} → Tm187 (snoc187 (snoc187 (snoc187 Γ A) B) C) A;v2187 = var187 (vs187 (vs187 vz187)) v3187 : ∀{Γ A B C D} → Tm187 (snoc187 (snoc187 (snoc187 (snoc187 Γ A) B) C) D) A;v3187 = var187 (vs187 (vs187 (vs187 vz187))) v4187 : ∀{Γ A B C D E} → Tm187 (snoc187 (snoc187 (snoc187 (snoc187 (snoc187 Γ A) B) C) D) E) A;v4187 = var187 (vs187 (vs187 (vs187 (vs187 vz187)))) test187 : ∀{Γ A} → Tm187 Γ (arr187 (arr187 A A) (arr187 A A));test187 = lam187 (lam187 (app187 v1187 (app187 v1187 (app187 v1187 (app187 v1187 (app187 v1187 (app187 v1187 v0187))))))) {-# OPTIONS --type-in-type #-} Ty188 : Set; Ty188 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι188 : Ty188; ι188 = λ _ ι188 _ → ι188 arr188 : Ty188 → Ty188 → Ty188; arr188 = λ A B Ty188 ι188 arr188 → arr188 (A Ty188 ι188 arr188) (B Ty188 ι188 arr188) Con188 : Set;Con188 = (Con188 : Set) (nil : Con188) (snoc : Con188 → Ty188 → Con188) → Con188 nil188 : Con188;nil188 = λ Con188 nil188 snoc → nil188 snoc188 : Con188 → Ty188 → Con188;snoc188 = λ Γ A Con188 nil188 snoc188 → snoc188 (Γ Con188 nil188 snoc188) A Var188 : Con188 → Ty188 → Set;Var188 = λ Γ A → (Var188 : Con188 → Ty188 → Set) (vz : (Γ : _)(A : _) → Var188 (snoc188 Γ A) A) (vs : (Γ : _)(B A : _) → Var188 Γ A → Var188 (snoc188 Γ B) A) → Var188 Γ A vz188 : ∀{Γ A} → Var188 (snoc188 Γ A) A;vz188 = λ Var188 vz188 vs → vz188 _ _ vs188 : ∀{Γ B A} → Var188 Γ A → Var188 (snoc188 Γ B) A;vs188 = λ x Var188 vz188 vs188 → vs188 _ _ _ (x Var188 vz188 vs188) Tm188 : Con188 → Ty188 → Set;Tm188 = λ Γ A → (Tm188 : Con188 → Ty188 → Set) (var : (Γ : _) (A : _) → Var188 Γ A → Tm188 Γ A) (lam : (Γ : _) (A B : _) → Tm188 (snoc188 Γ A) B → Tm188 Γ (arr188 A B)) (app : (Γ : _) (A B : _) → Tm188 Γ (arr188 A B) → Tm188 Γ A → Tm188 Γ B) → Tm188 Γ A var188 : ∀{Γ A} → Var188 Γ A → Tm188 Γ A;var188 = λ x Tm188 var188 lam app → var188 _ _ x lam188 : ∀{Γ A B} → Tm188 (snoc188 Γ A) B → Tm188 Γ (arr188 A B);lam188 = λ t Tm188 var188 lam188 app → lam188 _ _ _ (t Tm188 var188 lam188 app) app188 : ∀{Γ A B} → Tm188 Γ (arr188 A B) → Tm188 Γ A → Tm188 Γ B;app188 = λ t u Tm188 var188 lam188 app188 → app188 _ _ _ (t Tm188 var188 lam188 app188) (u Tm188 var188 lam188 app188) v0188 : ∀{Γ A} → Tm188 (snoc188 Γ A) A;v0188 = var188 vz188 v1188 : ∀{Γ A B} → Tm188 (snoc188 (snoc188 Γ A) B) A;v1188 = var188 (vs188 vz188) v2188 : ∀{Γ A B C} → Tm188 (snoc188 (snoc188 (snoc188 Γ A) B) C) A;v2188 = var188 (vs188 (vs188 vz188)) v3188 : ∀{Γ A B C D} → Tm188 (snoc188 (snoc188 (snoc188 (snoc188 Γ A) B) C) D) A;v3188 = var188 (vs188 (vs188 (vs188 vz188))) v4188 : ∀{Γ A B C D E} → Tm188 (snoc188 (snoc188 (snoc188 (snoc188 (snoc188 Γ A) B) C) D) E) A;v4188 = var188 (vs188 (vs188 (vs188 (vs188 vz188)))) test188 : ∀{Γ A} → Tm188 Γ (arr188 (arr188 A A) (arr188 A A));test188 = lam188 (lam188 (app188 v1188 (app188 v1188 (app188 v1188 (app188 v1188 (app188 v1188 (app188 v1188 v0188))))))) {-# OPTIONS --type-in-type #-} Ty189 : Set; Ty189 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι189 : Ty189; ι189 = λ _ ι189 _ → ι189 arr189 : Ty189 → Ty189 → Ty189; arr189 = λ A B Ty189 ι189 arr189 → arr189 (A Ty189 ι189 arr189) (B Ty189 ι189 arr189) Con189 : Set;Con189 = (Con189 : Set) (nil : Con189) (snoc : Con189 → Ty189 → Con189) → Con189 nil189 : Con189;nil189 = λ Con189 nil189 snoc → nil189 snoc189 : Con189 → Ty189 → Con189;snoc189 = λ Γ A Con189 nil189 snoc189 → snoc189 (Γ Con189 nil189 snoc189) A Var189 : Con189 → Ty189 → Set;Var189 = λ Γ A → (Var189 : Con189 → Ty189 → Set) (vz : (Γ : _)(A : _) → Var189 (snoc189 Γ A) A) (vs : (Γ : _)(B A : _) → Var189 Γ A → Var189 (snoc189 Γ B) A) → Var189 Γ A vz189 : ∀{Γ A} → Var189 (snoc189 Γ A) A;vz189 = λ Var189 vz189 vs → vz189 _ _ vs189 : ∀{Γ B A} → Var189 Γ A → Var189 (snoc189 Γ B) A;vs189 = λ x Var189 vz189 vs189 → vs189 _ _ _ (x Var189 vz189 vs189) Tm189 : Con189 → Ty189 → Set;Tm189 = λ Γ A → (Tm189 : Con189 → Ty189 → Set) (var : (Γ : _) (A : _) → Var189 Γ A → Tm189 Γ A) (lam : (Γ : _) (A B : _) → Tm189 (snoc189 Γ A) B → Tm189 Γ (arr189 A B)) (app : (Γ : _) (A B : _) → Tm189 Γ (arr189 A B) → Tm189 Γ A → Tm189 Γ B) → Tm189 Γ A var189 : ∀{Γ A} → Var189 Γ A → Tm189 Γ A;var189 = λ x Tm189 var189 lam app → var189 _ _ x lam189 : ∀{Γ A B} → Tm189 (snoc189 Γ A) B → Tm189 Γ (arr189 A B);lam189 = λ t Tm189 var189 lam189 app → lam189 _ _ _ (t Tm189 var189 lam189 app) app189 : ∀{Γ A B} → Tm189 Γ (arr189 A B) → Tm189 Γ A → Tm189 Γ B;app189 = λ t u Tm189 var189 lam189 app189 → app189 _ _ _ (t Tm189 var189 lam189 app189) (u Tm189 var189 lam189 app189) v0189 : ∀{Γ A} → Tm189 (snoc189 Γ A) A;v0189 = var189 vz189 v1189 : ∀{Γ A B} → Tm189 (snoc189 (snoc189 Γ A) B) A;v1189 = var189 (vs189 vz189) v2189 : ∀{Γ A B C} → Tm189 (snoc189 (snoc189 (snoc189 Γ A) B) C) A;v2189 = var189 (vs189 (vs189 vz189)) v3189 : ∀{Γ A B C D} → Tm189 (snoc189 (snoc189 (snoc189 (snoc189 Γ A) B) C) D) A;v3189 = var189 (vs189 (vs189 (vs189 vz189))) v4189 : ∀{Γ A B C D E} → Tm189 (snoc189 (snoc189 (snoc189 (snoc189 (snoc189 Γ A) B) C) D) E) A;v4189 = var189 (vs189 (vs189 (vs189 (vs189 vz189)))) test189 : ∀{Γ A} → Tm189 Γ (arr189 (arr189 A A) (arr189 A A));test189 = lam189 (lam189 (app189 v1189 (app189 v1189 (app189 v1189 (app189 v1189 (app189 v1189 (app189 v1189 v0189))))))) {-# OPTIONS --type-in-type #-} Ty190 : Set; Ty190 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι190 : Ty190; ι190 = λ _ ι190 _ → ι190 arr190 : Ty190 → Ty190 → Ty190; arr190 = λ A B Ty190 ι190 arr190 → arr190 (A Ty190 ι190 arr190) (B Ty190 ι190 arr190) Con190 : Set;Con190 = (Con190 : Set) (nil : Con190) (snoc : Con190 → Ty190 → Con190) → Con190 nil190 : Con190;nil190 = λ Con190 nil190 snoc → nil190 snoc190 : Con190 → Ty190 → Con190;snoc190 = λ Γ A Con190 nil190 snoc190 → snoc190 (Γ Con190 nil190 snoc190) A Var190 : Con190 → Ty190 → Set;Var190 = λ Γ A → (Var190 : Con190 → Ty190 → Set) (vz : (Γ : _)(A : _) → Var190 (snoc190 Γ A) A) (vs : (Γ : _)(B A : _) → Var190 Γ A → Var190 (snoc190 Γ B) A) → Var190 Γ A vz190 : ∀{Γ A} → Var190 (snoc190 Γ A) A;vz190 = λ Var190 vz190 vs → vz190 _ _ vs190 : ∀{Γ B A} → Var190 Γ A → Var190 (snoc190 Γ B) A;vs190 = λ x Var190 vz190 vs190 → vs190 _ _ _ (x Var190 vz190 vs190) Tm190 : Con190 → Ty190 → Set;Tm190 = λ Γ A → (Tm190 : Con190 → Ty190 → Set) (var : (Γ : _) (A : _) → Var190 Γ A → Tm190 Γ A) (lam : (Γ : _) (A B : _) → Tm190 (snoc190 Γ A) B → Tm190 Γ (arr190 A B)) (app : (Γ : _) (A B : _) → Tm190 Γ (arr190 A B) → Tm190 Γ A → Tm190 Γ B) → Tm190 Γ A var190 : ∀{Γ A} → Var190 Γ A → Tm190 Γ A;var190 = λ x Tm190 var190 lam app → var190 _ _ x lam190 : ∀{Γ A B} → Tm190 (snoc190 Γ A) B → Tm190 Γ (arr190 A B);lam190 = λ t Tm190 var190 lam190 app → lam190 _ _ _ (t Tm190 var190 lam190 app) app190 : ∀{Γ A B} → Tm190 Γ (arr190 A B) → Tm190 Γ A → Tm190 Γ B;app190 = λ t u Tm190 var190 lam190 app190 → app190 _ _ _ (t Tm190 var190 lam190 app190) (u Tm190 var190 lam190 app190) v0190 : ∀{Γ A} → Tm190 (snoc190 Γ A) A;v0190 = var190 vz190 v1190 : ∀{Γ A B} → Tm190 (snoc190 (snoc190 Γ A) B) A;v1190 = var190 (vs190 vz190) v2190 : ∀{Γ A B C} → Tm190 (snoc190 (snoc190 (snoc190 Γ A) B) C) A;v2190 = var190 (vs190 (vs190 vz190)) v3190 : ∀{Γ A B C D} → Tm190 (snoc190 (snoc190 (snoc190 (snoc190 Γ A) B) C) D) A;v3190 = var190 (vs190 (vs190 (vs190 vz190))) v4190 : ∀{Γ A B C D E} → Tm190 (snoc190 (snoc190 (snoc190 (snoc190 (snoc190 Γ A) B) C) D) E) A;v4190 = var190 (vs190 (vs190 (vs190 (vs190 vz190)))) test190 : ∀{Γ A} → Tm190 Γ (arr190 (arr190 A A) (arr190 A A));test190 = lam190 (lam190 (app190 v1190 (app190 v1190 (app190 v1190 (app190 v1190 (app190 v1190 (app190 v1190 v0190))))))) {-# OPTIONS --type-in-type #-} Ty191 : Set; Ty191 = (Ty : Set) (ι : Ty) (arr : Ty → Ty → Ty) → Ty ι191 : Ty191; ι191 = λ _ ι191 _ → ι191 arr191 : Ty191 → Ty191 → Ty191; arr191 = λ A B Ty191 ι191 arr191 → arr191 (A Ty191 ι191 arr191) (B Ty191 ι191 arr191) Con191 : Set;Con191 = (Con191 : Set) (nil : Con191) (snoc : Con191 → Ty191 → Con191) → Con191 nil191 : Con191;nil191 = λ Con191 nil191 snoc → nil191 snoc191 : Con191 → Ty191 → Con191;snoc191 = λ Γ A Con191 nil191 snoc191 → snoc191 (Γ Con191 nil191 snoc191) A Var191 : Con191 → Ty191 → Set;Var191 = λ Γ A → (Var191 : Con191 → Ty191 → Set) (vz : (Γ : _)(A : _) → Var191 (snoc191 Γ A) A) (vs : (Γ : _)(B A : _) → Var191 Γ A → Var191 (snoc191 Γ B) A) → Var191 Γ A vz191 : ∀{Γ A} → Var191 (snoc191 Γ A) A;vz191 = λ Var191 vz191 vs → vz191 _ _ vs191 : ∀{Γ B A} → Var191 Γ A → Var191 (snoc191 Γ B) A;vs191 = λ x Var191 vz191 vs191 → vs191 _ _ _ (x Var191 vz191 vs191) Tm191 : Con191 → Ty191 → Set;Tm191 = λ Γ A → (Tm191 : Con191 → Ty191 → Set) (var : (Γ : _) (A : _) → Var191 Γ A → Tm191 Γ A) (lam : (Γ : _) (A B : _) → Tm191 (snoc191 Γ A) B → Tm191 Γ (arr191 A B)) (app : (Γ : _) (A B : _) → Tm191 Γ (arr191 A B) → Tm191 Γ A → Tm191 Γ B) → Tm191 Γ A var191 : ∀{Γ A} → Var191 Γ A → Tm191 Γ A;var191 = λ x Tm191 var191 lam app → var191 _ _ x lam191 : ∀{Γ A B} → Tm191 (snoc191 Γ A) B → Tm191 Γ (arr191 A B);lam191 = λ t Tm191 var191 lam191 app → lam191 _ _ _ (t Tm191 var191 lam191 app) app191 : ∀{Γ A B} → Tm191 Γ (arr191 A B) → Tm191 Γ A → Tm191 Γ B;app191 = λ t u Tm191 var191 lam191 app191 → app191 _ _ _ (t Tm191 var191 lam191 app191) (u Tm191 var191 lam191 app191) v0191 : ∀{Γ A} → Tm191 (snoc191 Γ A) A;v0191 = var191 vz191 v1191 : ∀{Γ A B} → Tm191 (snoc191 (snoc191 Γ A) B) A;v1191 = var191 (vs191 vz191) v2191 : ∀{Γ A B C} → Tm191 (snoc191 (snoc191 (snoc191 Γ A) B) C) A;v2191 = var191 (vs191 (vs191 vz191)) v3191 : ∀{Γ A B C D} → Tm191 (snoc191 (snoc191 (snoc191 (snoc191 Γ A) B) C) D) A;v3191 = var191 (vs191 (vs191 (vs191 vz191))) v4191 : ∀{Γ A B C D E} → Tm191 (snoc191 (snoc191 (snoc191 (snoc191 (snoc191 Γ A) B) C) D) E) A;v4191 = var191 (vs191 (vs191 (vs191 (vs191 vz191)))) test191 : ∀{Γ A} → Tm191 Γ (arr191 (arr191 A A) (arr191 A A));test191 = lam191 (lam191 (app191 v1191 (app191 v1191 (app191 v1191 (app191 v1191 (app191 v1191 (app191 v1191 v0191)))))))
{ "alphanum_fraction": 0.5837596604, "avg_line_length": 32.346218734, "ext": "agda", "hexsha": "7dc3e239b4d152ee86d39d3f1c1ad375b5be591c", "lang": "Agda", "max_forks_count": 19, "max_forks_repo_forks_event_max_datetime": "2022-03-03T19:46:54.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-05T21:11:34.000Z", "max_forks_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "int-index/smalltt", "max_forks_repo_path": "bench/stlc_small10k.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_issues_repo_issues_event_max_datetime": "2022-02-28T21:51:10.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-16T09:14:57.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "int-index/smalltt", "max_issues_repo_path": "bench/stlc_small10k.agda", "max_line_length": 117, "max_stars_count": 377, "max_stars_repo_head_hexsha": "6a87f295148bd753d2519d50c2e1011b64c859ff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "int-index/smalltt", "max_stars_repo_path": "bench/stlc_small10k.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T21:31:01.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-26T16:57:16.000Z", "num_tokens": 207005, "size": 440976 }
-- Andreas, 2015-09-12, Issue 1637, reported by Nisse. -- {-# OPTIONS -v tc.display:100 -v reify.display:100 #-} record R (X : Set₁) : Set₁ where field f : X postulate A : Set₁ P : A → Set module M (_ : Set₁) where Unrelated-function : R Set → Set Unrelated-function Y = R.f Y -- eta expansion is necessary open M Set -- Here, the old implementation recursively added a display form -- for R.f because the body of Unrelated-function has the right -- form, looking as if it came from a module application. -- adding display forms -- Issue1637.M.Unrelated-function --> Issue1637._.Unrelated-function -- Issue1637.R.f --> Issue1637._.Unrelated-function -- If one restricts display forms to things that actually -- come from a module applications, i.e., are a defCopy, -- then this issue is fixed. Foo : ((Z : R A) → P (R.f Z)) → Set₁ Foo f = f -- The inferred type of f is (printed as?) -- -- (Z : R A) → P Unrelated-function, -- -- which is not a type-correct expression. -- -- The bug exists in Agda 2.3.2, but not in Agda 2.3.0.1.
{ "alphanum_fraction": 0.6601851852, "avg_line_length": 26.3414634146, "ext": "agda", "hexsha": "a29eff840b05dece3640ca390fe033f8b3cbbb8c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1637.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1637.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1637.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 329, "size": 1080 }
module Structure.Category.Categories where open import Data open import Data.Proofs open import Functional open import Logic import Lvl import Relator.Equals as Eq open import Structure.Setoid open import Structure.Category open import Structure.Categorical.Proofs open import Structure.Categorical.Properties open import Structure.Operator open import Type private variable ℓ ℓ₁ ℓ₂ ℓₑ : Lvl.Level private variable Obj A B : Type{ℓ} private variable _▫_ : Obj → Obj → Type{ℓ} private variable f : A → B -- The empty category is a category containing nothing. -- The objects are empty. -- The morphisms are empty. emptyCategory : Category{ℓ₁}{ℓ₂}{ℓₑ}(empty-morphism) ⦃ \{} ⦄ Category._∘_ emptyCategory = empty-comp Category.id emptyCategory = empty-id Category.binaryOperator emptyCategory {} Category.associativity emptyCategory = empty-associativity ⦃ \{} ⦄ Category.identity emptyCategory = empty-identity ⦃ \{} ⦄ -- The single category is a category containing a single object and a single morphism. -- The objects consists of a single thing. -- The morphisms consists of a single connection connecting the single thing to itself. singleCategory : ∀{ℓₒ ℓᵢ ℓₚₐ₁ ℓₚₐ₂ ℓₚᵢ₁ ℓₚᵢ₂ ℓₚᵢ₃ : Lvl.Level} → Category{ℓ₁}{ℓ₂}(single-morphism) Category._∘_ (singleCategory{ℓ₁}{ℓ₂}{ℓₒ}{ℓᵢ}{ℓₚₐ₁}{ℓₚₐ₂}{ℓₚᵢ₁}{ℓₚᵢ₂}{ℓₚᵢ₃}) = single-comp{ℓ₂}{ℓₒ} Category.id (singleCategory{ℓ₁}{ℓ₂}{ℓₒ}{ℓᵢ}{ℓₚₐ₁}{ℓₚₐ₂}{ℓₚᵢ₁}{ℓₚᵢ₂}{ℓₚᵢ₃}) = single-id{ℓ₂}{ℓᵢ} BinaryOperator.congruence (Category.binaryOperator singleCategory) Eq.[≡]-intro Eq.[≡]-intro = Eq.[≡]-intro Category.associativity (singleCategory{ℓ₁}{ℓ₂}{ℓₒ}{ℓᵢ}{ℓₚₐ₁}{ℓₚₐ₂}{ℓₚᵢ₁}{ℓₚᵢ₂}{ℓₚᵢ₃}) = single-associativity{ℓ₂}{ℓ₂}{ℓₚₐ₁}{ℓ₁}{ℓₚₐ₂} Category.identity (singleCategory{ℓ₁}{ℓ₂}{ℓₒ}{ℓᵢ}{ℓₚₐ₁}{ℓₚₐ₂}{ℓₚᵢ₁}{ℓₚᵢ₂}{ℓₚᵢ₃}) = single-identity{ℓ₂}{ℓ₂}{ℓₚᵢ₁}{ℓ₁}{ℓₚᵢ₂}{ℓₚᵢ₃} on₂-category : ⦃ morphism-equiv : ∀{x y} → Equiv{ℓₑ}{ℓ}(x ▫ y) ⦄ → Category{Obj = B}(_▫_) ⦃ morphism-equiv ⦄ → (f : A → B) → Category((_▫_) on₂ f) Category._∘_ (on₂-category C _) = Category._∘_ C Category.id (on₂-category C _) = Category.id C BinaryOperator.congruence (Category.binaryOperator (on₂-category C _)) = BinaryOperator.congruence(Category.binaryOperator C) Category.associativity (on₂-category C f) = on₂-associativity f (Category.associativity C) Category.identity (on₂-category C f) = on₂-identity f (Category.identity C) {- TODO: • https://en.wikipedia.org/wiki/Isomorphism_of_categories • https://en.wikipedia.org/wiki/Equivalence_of_categories ? -}
{ "alphanum_fraction": 0.7327517843, "avg_line_length": 46.7037037037, "ext": "agda", "hexsha": "bd7fccfa6b432c8b20f4eace1ad428694d324b39", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Category/Categories.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Category/Categories.agda", "max_line_length": 146, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Category/Categories.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1000, "size": 2522 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Relation.Binary.Raw.Definitions where open import Cubical.Core.Everything open import Cubical.Foundations.Function open import Cubical.Data.Maybe.Base using (Maybe) open import Cubical.Data.Prod.Base using (_×_) open import Cubical.Data.Sigma.Base using (∃-syntax) open import Cubical.Data.Sum.Base using (_⊎_) open import Cubical.HITs.PropositionalTruncation.Base using (∥_∥) open import Cubical.Relation.Binary.Base open import Cubical.Relation.Nullary.Decidable private variable a b c ℓ ℓ′ ℓ′′ : Level A : Type a B : Type b C : Type c infix 8 _⟶_Respects_ _Respects_ _Respectsˡ_ _Respectsʳ_ _Respects₂_ ------------------------------------------------------------------------ -- Basic definitions ------------------------------------------------------------------------ idRel : (A : Type ℓ) → RawRel A ℓ idRel A a b = a ≡ b invRel : ∀ {A B : Type ℓ} → RawREL A B ℓ′ → RawREL B A ℓ′ invRel R b a = R a b compRel : ∀ {A B C : Type ℓ} → RawREL A B ℓ′ → RawREL B C ℓ′′ → RawREL A C _ compRel R S a c = Σ[ b ∈ _ ] (R a b × S b c) graphRel : ∀ {A B : Type ℓ} → (A → B) → RawREL A B ℓ graphRel f a b = f a ≡ b infix 7 _⇒_ _⇔_ _=[_]⇒_ -- Implication/containment - could also be written _⊆_. -- and corresponding notion of equivalence _⇒_ : RawREL A B ℓ → RawREL A B ℓ′ → Type _ P ⇒ Q = ∀ {x y} → P x y → Q x y _⇔_ : RawREL A B ℓ → RawREL A B ℓ′ → Type _ P ⇔ Q = P ⇒ Q × Q ⇒ P -- Generalised implication - if P ≡ Q it can be read as "f preserves P". _=[_]⇒_ : RawRel A ℓ → (A → B) → RawRel B ℓ′ → Type _ P =[ f ]⇒ Q = P ⇒ (Q on f) -- A synonym for _=[_]⇒_. _Preserves_⟶_ : (A → B) → RawRel A ℓ → RawRel B ℓ′ → Type _ f Preserves P ⟶ Q = P =[ f ]⇒ Q -- An endomorphic variant of _Preserves_⟶_. _Preserves_ : (A → A) → RawRel A ℓ → Type _ f Preserves P = f Preserves P ⟶ P -- A binary variant of _Preserves_⟶_. _Preserves₂_⟶_⟶_ : (A → B → C) → RawRel A ℓ → RawRel B ℓ′ → RawRel C ℓ′′ → Type _ _∙_ Preserves₂ P ⟶ Q ⟶ R = ∀ {x y u v} → P x y → Q u v → R (x ∙ u) (y ∙ v) ------------------------------------------------------------------------ -- Property predicates ------------------------------------------------------------------------ -- Reflexivity. Reflexive : RawRel A ℓ → Type _ Reflexive _∼_ = ∀ {x} → x ∼ x -- Equality can be converted to proof of relation. FromEq : RawRel A ℓ → Type _ FromEq _∼_ = _≡_ ⇒ _∼_ -- Irreflexivity. Irreflexive : RawRel A ℓ → Type _ Irreflexive _<_ = ∀ {x} → ¬ (x < x) -- Relation implies inequality. ToNotEq : RawRel A ℓ → Type _ ToNotEq _<_ = _<_ ⇒ (λ x y → ¬ (x ≡ y)) -- Generalised symmetry. Sym : RawREL A B ℓ → RawREL B A ℓ′ → Type _ Sym P Q = P ⇒ flip Q -- Symmetry. Symmetric : RawRel A ℓ → Type _ Symmetric _∼_ = Sym _∼_ _∼_ -- Generalised transitivity. Trans : RawREL A B ℓ → RawREL B C ℓ′ → RawREL A C ℓ′′ → Type _ Trans P Q R = ∀ {i j k} → P i j → Q j k → R i k -- A flipped variant of generalised transitivity. TransFlip : RawREL A B ℓ → RawREL B C ℓ′ → RawREL A C ℓ′′ → Type _ TransFlip P Q R = ∀ {i j k} → Q j k → P i j → R i k -- Transitivity. Transitive : RawRel A ℓ → Type _ Transitive _∼_ = Trans _∼_ _∼_ _∼_ -- Generalised antisymmetry. Antisym : RawREL A B ℓ → RawREL B A ℓ′ → RawREL A B ℓ′′ → Type _ Antisym R S E = ∀ {i j} → R i j → S j i → E i j -- Antisymmetry. Antisymmetric : RawRel A ℓ → Type _ Antisymmetric _≤_ = Antisym _≤_ _≤_ _≡_ -- Asymmetry. Asymmetric : RawRel A ℓ → Type _ Asymmetric _<_ = ∀ {x y} → x < y → ¬ (y < x) -- Generalised connex - exactly one of the two relations holds. Connex : RawREL A B ℓ → RawREL B A ℓ′ → Type _ Connex P Q = ∀ x y → P x y ⊎ Q y x -- Totality. Total : RawRel A ℓ → Type _ Total _∼_ = Connex _∼_ _∼_ -- Truncated connex - Preserves propositions. PropConnex : RawREL A B ℓ → RawREL B A ℓ′ → Type _ PropConnex P Q = ∀ x y → ∥ P x y ⊎ Q y x ∥ -- Truncated totality. PropTotal : RawRel A ℓ → Type _ PropTotal _∼_ = PropConnex _∼_ _∼_ -- Generalised trichotomy - exactly one of three types has a witness. data Tri (A : Type a) (B : Type b) (C : Type c) : Type (ℓ-max a (ℓ-max b c)) where tri< : ( a : A) (¬b : ¬ B) (¬c : ¬ C) → Tri A B C tri≡ : (¬a : ¬ A) ( b : B) (¬c : ¬ C) → Tri A B C tri> : (¬a : ¬ A) (¬b : ¬ B) ( c : C) → Tri A B C -- Trichotomy. Trichotomous : RawRel A ℓ → Type _ Trichotomous _<_ = ∀ x y → Tri (x < y) (x ≡ y) (x > y) where _>_ = flip _<_ -- Generalised maximum element. Max : RawREL A B ℓ → B → Type _ Max _≤_ T = ∀ x → x ≤ T -- Maximum element. Maximum : RawRel A ℓ → A → Type _ Maximum = Max -- Generalised minimum element. Min : RawREL A B ℓ → A → Type _ Min R = Max (flip R) -- Minimum element. Minimum : RawRel A ℓ → A → Type _ Minimum = Min -- Unary relations respecting a binary relation. _⟶_Respects_ : (A → Type ℓ) → (B → Type ℓ′) → RawREL A B ℓ′′ → Type _ P ⟶ Q Respects _∼_ = ∀ {x y} → x ∼ y → P x → Q y -- Unary relation respects a binary relation. _Respects_ : (A → Type ℓ) → RawRel A ℓ′ → Type _ P Respects _∼_ = P ⟶ P Respects _∼_ -- Right respecting - relatedness is preserved on the right by some equivalence. _Respectsʳ_ : RawREL A B ℓ → RawRel B ℓ′ → Type _ _∼_ Respectsʳ _≈_ = ∀ {x} → (x ∼_) Respects _≈_ -- Left respecting - relatedness is preserved on the left by some equivalence. _Respectsˡ_ : RawREL A B ℓ → RawRel A ℓ′ → Type _ _∼_ Respectsˡ _≈_ = ∀ {y} → (_∼ y) Respects _≈_ -- Respecting - relatedness is preserved on both sides by some equivalence. _Respects₂_ : RawRel A ℓ → RawRel A ℓ′ → Type _ _∼_ Respects₂ _≈_ = (_∼_ Respectsʳ _≈_) × (_∼_ Respectsˡ _≈_) -- Substitutivity - any two related elements satisfy exactly the same -- set of unary relations. Note that only the various derivatives -- of propositional equality can satisfy this property. Substitutive : RawRel A ℓ → (ℓ′ : Level) → Type _ Substitutive {A = A} _∼_ p = (P : A → Type p) → P Respects _∼_ -- Decidability - it is possible to determine whether a given pair of -- elements are related. Decidable : RawREL A B ℓ → Type _ Decidable _∼_ = ∀ x y → Dec (x ∼ y) -- Weak decidability - it is sometimes possible to determine if a given -- pair of elements are related. WeaklyDecidable : RawREL A B ℓ → Type _ WeaklyDecidable _∼_ = ∀ x y → Maybe (x ∼ y) -- Universal - all pairs of elements are related Universal : RawREL A B ℓ → Type _ Universal _∼_ = ∀ x y → x ∼ y -- Non-emptiness - at least one pair of elements are related. NonEmpty : RawREL A B ℓ → Type _ NonEmpty _∼_ = ∃[ x ∈ _ ] ∃[ y ∈ _ ] x ∼ y
{ "alphanum_fraction": 0.5986781433, "avg_line_length": 26.4471544715, "ext": "agda", "hexsha": "697d6fea0e26b56ee81a2bee077df38701370e7a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Relation/Binary/Raw/Definitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Relation/Binary/Raw/Definitions.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Relation/Binary/Raw/Definitions.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2364, "size": 6506 }
module logic where open import Level open import Relation.Nullary open import Relation.Binary hiding (_⇔_ ) open import Data.Empty data Bool : Set where true : Bool false : Bool record _∧_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where constructor ⟪_,_⟫ field proj1 : A proj2 : B data _∨_ {n m : Level} (A : Set n) ( B : Set m ) : Set (n ⊔ m) where case1 : A → A ∨ B case2 : B → A ∨ B _⇔_ : {n m : Level } → ( A : Set n ) ( B : Set m ) → Set (n ⊔ m) _⇔_ A B = ( A → B ) ∧ ( B → A ) contra-position : {n m : Level } {A : Set n} {B : Set m} → (A → B) → ¬ B → ¬ A contra-position {n} {m} {A} {B} f ¬b a = ¬b ( f a ) double-neg : {n : Level } {A : Set n} → A → ¬ ¬ A double-neg A notnot = notnot A double-neg2 : {n : Level } {A : Set n} → ¬ ¬ ¬ A → ¬ A double-neg2 notnot A = notnot ( double-neg A ) de-morgan : {n : Level } {A B : Set n} → A ∧ B → ¬ ( (¬ A ) ∨ (¬ B ) ) de-morgan {n} {A} {B} and (case1 ¬A) = ⊥-elim ( ¬A ( _∧_.proj1 and )) de-morgan {n} {A} {B} and (case2 ¬B) = ⊥-elim ( ¬B ( _∧_.proj2 and )) dont-or : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ A → B dont-or {A} {B} (case1 a) ¬A = ⊥-elim ( ¬A a ) dont-or {A} {B} (case2 b) ¬A = b dont-orb : {n m : Level} {A : Set n} { B : Set m } → A ∨ B → ¬ B → A dont-orb {A} {B} (case2 b) ¬B = ⊥-elim ( ¬B b ) dont-orb {A} {B} (case1 a) ¬B = a infixr 130 _∧_ infixr 140 _∨_ infixr 150 _⇔_ _/\_ : Bool → Bool → Bool true /\ true = true _ /\ _ = false _\/_ : Bool → Bool → Bool false \/ false = false _ \/ _ = true not_ : Bool → Bool not true = false not false = true _<=>_ : Bool → Bool → Bool true <=> true = true false <=> false = true _ <=> _ = false infixr 130 _\/_ infixr 140 _/\_ open import Relation.Binary.PropositionalEquality ≡-Bool-func : {A B : Bool } → ( A ≡ true → B ≡ true ) → ( B ≡ true → A ≡ true ) → A ≡ B ≡-Bool-func {true} {true} a→b b→a = refl ≡-Bool-func {false} {true} a→b b→a with b→a refl ... | () ≡-Bool-func {true} {false} a→b b→a with a→b refl ... | () ≡-Bool-func {false} {false} a→b b→a = refl bool-≡-? : (a b : Bool) → Dec ( a ≡ b ) bool-≡-? true true = yes refl bool-≡-? true false = no (λ ()) bool-≡-? false true = no (λ ()) bool-≡-? false false = yes refl ¬-bool-t : {a : Bool} → ¬ ( a ≡ true ) → a ≡ false ¬-bool-t {true} ne = ⊥-elim ( ne refl ) ¬-bool-t {false} ne = refl ¬-bool-f : {a : Bool} → ¬ ( a ≡ false ) → a ≡ true ¬-bool-f {true} ne = refl ¬-bool-f {false} ne = ⊥-elim ( ne refl ) ¬-bool : {a : Bool} → a ≡ false → a ≡ true → ⊥ ¬-bool refl () lemma-∧-0 : {a b : Bool} → a /\ b ≡ true → a ≡ false → ⊥ lemma-∧-0 {true} {true} refl () lemma-∧-0 {true} {false} () lemma-∧-0 {false} {true} () lemma-∧-0 {false} {false} () lemma-∧-1 : {a b : Bool} → a /\ b ≡ true → b ≡ false → ⊥ lemma-∧-1 {true} {true} refl () lemma-∧-1 {true} {false} () lemma-∧-1 {false} {true} () lemma-∧-1 {false} {false} () bool-and-tt : {a b : Bool} → a ≡ true → b ≡ true → ( a /\ b ) ≡ true bool-and-tt refl refl = refl bool-∧→tt-0 : {a b : Bool} → ( a /\ b ) ≡ true → a ≡ true bool-∧→tt-0 {true} {true} refl = refl bool-∧→tt-0 {false} {_} () bool-∧→tt-1 : {a b : Bool} → ( a /\ b ) ≡ true → b ≡ true bool-∧→tt-1 {true} {true} refl = refl bool-∧→tt-1 {true} {false} () bool-∧→tt-1 {false} {false} () bool-or-1 : {a b : Bool} → a ≡ false → ( a \/ b ) ≡ b bool-or-1 {false} {true} refl = refl bool-or-1 {false} {false} refl = refl bool-or-2 : {a b : Bool} → b ≡ false → (a \/ b ) ≡ a bool-or-2 {true} {false} refl = refl bool-or-2 {false} {false} refl = refl bool-or-3 : {a : Bool} → ( a \/ true ) ≡ true bool-or-3 {true} = refl bool-or-3 {false} = refl bool-or-31 : {a b : Bool} → b ≡ true → ( a \/ b ) ≡ true bool-or-31 {true} {true} refl = refl bool-or-31 {false} {true} refl = refl bool-or-4 : {a : Bool} → ( true \/ a ) ≡ true bool-or-4 {true} = refl bool-or-4 {false} = refl bool-or-41 : {a b : Bool} → a ≡ true → ( a \/ b ) ≡ true bool-or-41 {true} {b} refl = refl bool-and-1 : {a b : Bool} → a ≡ false → (a /\ b ) ≡ false bool-and-1 {false} {b} refl = refl bool-and-2 : {a b : Bool} → b ≡ false → (a /\ b ) ≡ false bool-and-2 {true} {false} refl = refl bool-and-2 {false} {false} refl = refl
{ "alphanum_fraction": 0.5146393716, "avg_line_length": 27.6381578947, "ext": "agda", "hexsha": "872dbe08f824f3dc3a415870ef16bffe33d7026b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/Galois", "max_forks_repo_path": "src/logic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/Galois", "max_issues_repo_path": "src/logic.agda", "max_line_length": 87, "max_stars_count": 1, "max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/Galois", "max_stars_repo_path": "src/logic.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z", "num_tokens": 1837, "size": 4201 }
module Oscar.Class.Reflexivity where open import Oscar.Level record Reflexivity {a} {A : Set a} {ℓ} (_≋_ : A → A → Set ℓ) : Set (a ⊔ ℓ) where field reflexivity : ∀ {x} → x ≋ x open Reflexivity ⦃ … ⦄ public
{ "alphanum_fraction": 0.6203703704, "avg_line_length": 19.6363636364, "ext": "agda", "hexsha": "3ebbbcf92f8b3a14faf44f00f7775d98af9df1ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Class/Reflexivity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Class/Reflexivity.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Class/Reflexivity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 82, "size": 216 }
module Text.Greek.SBLGNT.1Cor where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΠΡΟΣ-ΚΟΡΙΝΘΙΟΥΣ-Α : List (Word) ΠΡΟΣ-ΚΟΡΙΝΘΙΟΥΣ-Α = word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.1.1" ∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.1.1" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.1" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.1.1" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.1.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.1" ∷ word (Σ ∷ ω ∷ σ ∷ θ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "1Cor.1.1" ∷ word (ὁ ∷ []) "1Cor.1.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.1.1" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.2" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.1.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.2" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.2" ∷ word (ἡ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.1.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.2" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.2" ∷ word (ο ∷ ὔ ∷ σ ∷ ῃ ∷ []) "1Cor.1.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.2" ∷ word (Κ ∷ ο ∷ ρ ∷ ί ∷ ν ∷ θ ∷ ῳ ∷ []) "1Cor.1.2" ∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.2" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.2" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.1.2" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.2" ∷ word (ἐ ∷ π ∷ ι ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.2" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.2" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "1Cor.1.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.1.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.2" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Cor.1.2" ∷ word (τ ∷ ό ∷ π ∷ ῳ ∷ []) "1Cor.1.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.2" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.2" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Cor.1.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.3" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "1Cor.1.3" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.1.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.3" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.1.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.3" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.1.3" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.3" ∷ word (Ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ []) "1Cor.1.4" ∷ word (τ ∷ ῷ ∷ []) "1Cor.1.4" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.1.4" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.1.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "1Cor.1.4" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.1.4" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.1.4" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.4" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "1Cor.1.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.4" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.4" ∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ί ∷ σ ∷ ῃ ∷ []) "1Cor.1.4" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.4" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.4" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.1.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.5" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Cor.1.5" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.1.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.1.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.5" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Cor.1.5" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Cor.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.5" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Cor.1.5" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.1.5" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.1.6" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.6" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.1.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.6" ∷ word (ἐ ∷ β ∷ ε ∷ β ∷ α ∷ ι ∷ ώ ∷ θ ∷ η ∷ []) "1Cor.1.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.6" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.6" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.1.7" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.1.7" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.7" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.1.7" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.7" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "1Cor.1.7" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.1.7" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ δ ∷ ε ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.1.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.1.7" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ ψ ∷ ι ∷ ν ∷ []) "1Cor.1.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.7" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.1.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.7" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.7" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.7" ∷ word (ὃ ∷ ς ∷ []) "1Cor.1.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.8" ∷ word (β ∷ ε ∷ β ∷ α ∷ ι ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.1.8" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.1.8" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Cor.1.8" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.1.8" ∷ word (ἀ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ∙λ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.1.8" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.8" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "1Cor.1.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.8" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.1.8" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.8" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.8" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.1.9" ∷ word (ὁ ∷ []) "1Cor.1.9" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.1.9" ∷ word (δ ∷ ι ∷ []) "1Cor.1.9" ∷ word (ο ∷ ὗ ∷ []) "1Cor.1.9" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.1.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.1.9" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "1Cor.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.9" ∷ word (υ ∷ ἱ ∷ ο ∷ ῦ ∷ []) "1Cor.1.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.9" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.9" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.9" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.1.9" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.9" ∷ word (Π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.1.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.10" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.1.10" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.1.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.1.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.10" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.1.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.10" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.1.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.10" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.10" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.1.10" ∷ word (∙λ ∷ έ ∷ γ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.1.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.10" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.10" ∷ word (ᾖ ∷ []) "1Cor.1.10" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.10" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.10" ∷ word (σ ∷ χ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.1.10" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "1Cor.1.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.10" ∷ word (κ ∷ α ∷ τ ∷ η ∷ ρ ∷ τ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.1.10" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.10" ∷ word (τ ∷ ῷ ∷ []) "1Cor.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.1.10" ∷ word (ν ∷ ο ∷ ῒ ∷ []) "1Cor.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.10" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.10" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "1Cor.1.10" ∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ ῃ ∷ []) "1Cor.1.10" ∷ word (ἐ ∷ δ ∷ η ∷ ∙λ ∷ ώ ∷ θ ∷ η ∷ []) "1Cor.1.11" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.1.11" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.1.11" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.1.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.11" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.1.11" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.1.11" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.1.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.11" ∷ word (Χ ∷ ∙λ ∷ ό ∷ η ∷ ς ∷ []) "1Cor.1.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.11" ∷ word (ἔ ∷ ρ ∷ ι ∷ δ ∷ ε ∷ ς ∷ []) "1Cor.1.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.11" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.1.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.12" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.1.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.12" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.1.12" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.1.12" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.1.12" ∷ word (μ ∷ έ ∷ ν ∷ []) "1Cor.1.12" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.1.12" ∷ word (Π ∷ α ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Cor.1.12" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.1.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.12" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ []) "1Cor.1.12" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.1.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.12" ∷ word (Κ ∷ η ∷ φ ∷ ᾶ ∷ []) "1Cor.1.12" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.1.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.12" ∷ word (μ ∷ ε ∷ μ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.1.13" ∷ word (ὁ ∷ []) "1Cor.1.13" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.1.13" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.13" ∷ word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.1.13" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "1Cor.1.13" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.1.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.13" ∷ word (ἢ ∷ []) "1Cor.1.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.1.13" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.13" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "1Cor.1.13" ∷ word (Π ∷ α ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Cor.1.13" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.1.13" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ []) "1Cor.1.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.14" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "1Cor.1.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.14" ∷ word (ἐ ∷ β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "1Cor.1.14" ∷ word (ε ∷ ἰ ∷ []) "1Cor.1.14" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.14" ∷ word (Κ ∷ ρ ∷ ί ∷ σ ∷ π ∷ ο ∷ ν ∷ []) "1Cor.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.14" ∷ word (Γ ∷ ά ∷ ϊ ∷ ο ∷ ν ∷ []) "1Cor.1.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.15" ∷ word (μ ∷ ή ∷ []) "1Cor.1.15" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.1.15" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "1Cor.1.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.1.15" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.15" ∷ word (ἐ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Cor.1.15" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "1Cor.1.15" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.1.15" ∷ word (ἐ ∷ β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "1Cor.1.16" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.1.16" ∷ word (Σ ∷ τ ∷ ε ∷ φ ∷ α ∷ ν ∷ ᾶ ∷ []) "1Cor.1.16" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "1Cor.1.16" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "1Cor.1.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.1.16" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "1Cor.1.16" ∷ word (ε ∷ ἴ ∷ []) "1Cor.1.16" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "1Cor.1.16" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.1.16" ∷ word (ἐ ∷ β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "1Cor.1.16" ∷ word (ο ∷ ὐ ∷ []) "1Cor.1.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.1.17" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ έ ∷ ν ∷ []) "1Cor.1.17" ∷ word (μ ∷ ε ∷ []) "1Cor.1.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.1.17" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.1.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.1.17" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.1.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.1.17" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.17" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ ᾳ ∷ []) "1Cor.1.17" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "1Cor.1.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.17" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.17" ∷ word (κ ∷ ε ∷ ν ∷ ω ∷ θ ∷ ῇ ∷ []) "1Cor.1.17" ∷ word (ὁ ∷ []) "1Cor.1.17" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.1.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.17" ∷ word (Ὁ ∷ []) "1Cor.1.18" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Cor.1.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.1.18" ∷ word (ὁ ∷ []) "1Cor.1.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.18" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "1Cor.1.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.18" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.1.18" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.18" ∷ word (μ ∷ ω ∷ ρ ∷ ί ∷ α ∷ []) "1Cor.1.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.1.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.18" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.18" ∷ word (σ ∷ ῳ ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.18" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.18" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "1Cor.1.18" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.1.18" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.1.19" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.1.19" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ῶ ∷ []) "1Cor.1.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.1.19" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.1.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.19" ∷ word (σ ∷ ο ∷ φ ∷ ῶ ∷ ν ∷ []) "1Cor.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.1.19" ∷ word (σ ∷ ύ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.19" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.19" ∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.1.19" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.1.20" ∷ word (σ ∷ ο ∷ φ ∷ ό ∷ ς ∷ []) "1Cor.1.20" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.1.20" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ς ∷ []) "1Cor.1.20" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.1.20" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ η ∷ τ ∷ ὴ ∷ ς ∷ []) "1Cor.1.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.20" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.1.20" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.1.20" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.1.20" ∷ word (ἐ ∷ μ ∷ ώ ∷ ρ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "1Cor.1.20" ∷ word (ὁ ∷ []) "1Cor.1.20" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.1.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.1.20" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.1.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.20" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.1.20" ∷ word (ἐ ∷ π ∷ ε ∷ ι ∷ δ ∷ ὴ ∷ []) "1Cor.1.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.1.21" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.21" ∷ word (τ ∷ ῇ ∷ []) "1Cor.1.21" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ ᾳ ∷ []) "1Cor.1.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.21" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.21" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.1.21" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ []) "1Cor.1.21" ∷ word (ὁ ∷ []) "1Cor.1.21" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.1.21" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.1.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.1.21" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.1.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.1.21" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "1Cor.1.21" ∷ word (ε ∷ ὐ ∷ δ ∷ ό ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.1.21" ∷ word (ὁ ∷ []) "1Cor.1.21" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.1.21" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.1.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.1.21" ∷ word (μ ∷ ω ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.1.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.21" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ γ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.1.21" ∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.1.21" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.1.21" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Cor.1.21" ∷ word (ἐ ∷ π ∷ ε ∷ ι ∷ δ ∷ ὴ ∷ []) "1Cor.1.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.22" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "1Cor.1.22" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "1Cor.1.22" ∷ word (α ∷ ἰ ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.22" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.1.22" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.1.22" ∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.22" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.1.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.23" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.1.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.1.23" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.1.23" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.23" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.1.23" ∷ word (σ ∷ κ ∷ ά ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.1.23" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.23" ∷ word (μ ∷ ω ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.1.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.24" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.24" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.24" ∷ word (κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.1.24" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.1.24" ∷ word (τ ∷ ε ∷ []) "1Cor.1.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.24" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.24" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.1.24" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.24" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "1Cor.1.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.24" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.24" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.1.24" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.25" ∷ word (μ ∷ ω ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Cor.1.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.25" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.25" ∷ word (σ ∷ ο ∷ φ ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.1.25" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.25" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.1.25" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.1.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.1.25" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ὲ ∷ ς ∷ []) "1Cor.1.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.25" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.25" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.1.25" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.1.25" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.1.25" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.1.26" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.1.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.1.26" ∷ word (κ ∷ ∙λ ∷ ῆ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.1.26" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.1.26" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.1.26" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.1.26" ∷ word (ο ∷ ὐ ∷ []) "1Cor.1.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "1Cor.1.26" ∷ word (σ ∷ ο ∷ φ ∷ ο ∷ ὶ ∷ []) "1Cor.1.26" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.1.26" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "1Cor.1.26" ∷ word (ο ∷ ὐ ∷ []) "1Cor.1.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "1Cor.1.26" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ο ∷ ί ∷ []) "1Cor.1.26" ∷ word (ο ∷ ὐ ∷ []) "1Cor.1.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "1Cor.1.26" ∷ word (ε ∷ ὐ ∷ γ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.1.26" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.1.27" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.27" ∷ word (μ ∷ ω ∷ ρ ∷ ὰ ∷ []) "1Cor.1.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.27" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.1.27" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "1Cor.1.27" ∷ word (ὁ ∷ []) "1Cor.1.27" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.1.27" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.27" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ῃ ∷ []) "1Cor.1.27" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.1.27" ∷ word (σ ∷ ο ∷ φ ∷ ο ∷ ύ ∷ ς ∷ []) "1Cor.1.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.27" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.27" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ῆ ∷ []) "1Cor.1.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.27" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.1.27" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "1Cor.1.27" ∷ word (ὁ ∷ []) "1Cor.1.27" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.1.27" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.27" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ῃ ∷ []) "1Cor.1.27" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.27" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ά ∷ []) "1Cor.1.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.28" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.28" ∷ word (ἀ ∷ γ ∷ ε ∷ ν ∷ ῆ ∷ []) "1Cor.1.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.28" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.1.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.28" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.28" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ν ∷ η ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "1Cor.1.28" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "1Cor.1.28" ∷ word (ὁ ∷ []) "1Cor.1.28" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.1.28" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.28" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.28" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ []) "1Cor.1.28" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.28" ∷ word (τ ∷ ὰ ∷ []) "1Cor.1.28" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ []) "1Cor.1.28" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ή ∷ σ ∷ ῃ ∷ []) "1Cor.1.28" ∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "1Cor.1.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.1.29" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ή ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.1.29" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "1Cor.1.29" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "1Cor.1.29" ∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.1.29" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.29" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.29" ∷ word (ἐ ∷ ξ ∷ []) "1Cor.1.30" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.1.30" ∷ word (δ ∷ ὲ ∷ []) "1Cor.1.30" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.1.30" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.1.30" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.30" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.1.30" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.1.30" ∷ word (ὃ ∷ ς ∷ []) "1Cor.1.30" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "1Cor.1.30" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "1Cor.1.30" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.1.30" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.1.30" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.1.30" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "1Cor.1.30" ∷ word (τ ∷ ε ∷ []) "1Cor.1.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.30" ∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "1Cor.1.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.1.30" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ τ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.1.30" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.1.31" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.1.31" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.1.31" ∷ word (Ὁ ∷ []) "1Cor.1.31" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.1.31" ∷ word (ἐ ∷ ν ∷ []) "1Cor.1.31" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.1.31" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ά ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.1.31" ∷ word (Κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "1Cor.2.1" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "1Cor.2.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.2.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.2.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.2.1" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "1Cor.2.1" ∷ word (ο ∷ ὐ ∷ []) "1Cor.2.1" ∷ word (κ ∷ α ∷ θ ∷ []) "1Cor.2.1" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ο ∷ χ ∷ ὴ ∷ ν ∷ []) "1Cor.2.1" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "1Cor.2.1" ∷ word (ἢ ∷ []) "1Cor.2.1" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.2.1" ∷ word (κ ∷ α ∷ τ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Cor.2.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.2.1" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.1" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.2.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.1" ∷ word (ο ∷ ὐ ∷ []) "1Cor.2.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.2" ∷ word (ἔ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ά ∷ []) "1Cor.2.2" ∷ word (τ ∷ ι ∷ []) "1Cor.2.2" ∷ word (ε ∷ ἰ ∷ δ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.2.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.2.2" ∷ word (ε ∷ ἰ ∷ []) "1Cor.2.2" ∷ word (μ ∷ ὴ ∷ []) "1Cor.2.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.2.2" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.2" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.2.2" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.2.2" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "1Cor.2.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.3" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Cor.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.3" ∷ word (φ ∷ ό ∷ β ∷ ῳ ∷ []) "1Cor.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.3" ∷ word (τ ∷ ρ ∷ ό ∷ μ ∷ ῳ ∷ []) "1Cor.2.3" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "1Cor.2.3" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "1Cor.2.3" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.2.3" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.4" ∷ word (ὁ ∷ []) "1Cor.2.4" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Cor.2.4" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.4" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.4" ∷ word (κ ∷ ή ∷ ρ ∷ υ ∷ γ ∷ μ ∷ ά ∷ []) "1Cor.2.4" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.2.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.2.4" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.4" ∷ word (π ∷ ε ∷ ι ∷ θ ∷ ο ∷ ῖ ∷ []) "1Cor.2.4" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.2.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.2.4" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.4" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ε ∷ ί ∷ ξ ∷ ε ∷ ι ∷ []) "1Cor.2.4" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.4" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "1Cor.2.4" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.2.5" ∷ word (ἡ ∷ []) "1Cor.2.5" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "1Cor.2.5" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.2.5" ∷ word (μ ∷ ὴ ∷ []) "1Cor.2.5" ∷ word (ᾖ ∷ []) "1Cor.2.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.5" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ ᾳ ∷ []) "1Cor.2.5" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.2.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.2.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.5" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "1Cor.2.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.5" ∷ word (Σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.2.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.6" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.2.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.2.6" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.2.6" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.2.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.6" ∷ word (ο ∷ ὐ ∷ []) "1Cor.2.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.6" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.2.6" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.2.6" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.2.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.2.6" ∷ word (ἀ ∷ ρ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.2.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.6" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.2.6" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.2.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.2.6" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.2.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.2.7" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.2.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.7" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.2.7" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.7" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.2.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.2.7" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ε ∷ κ ∷ ρ ∷ υ ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "1Cor.2.7" ∷ word (ἣ ∷ ν ∷ []) "1Cor.2.7" ∷ word (π ∷ ρ ∷ ο ∷ ώ ∷ ρ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.2.7" ∷ word (ὁ ∷ []) "1Cor.2.7" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.2.7" ∷ word (π ∷ ρ ∷ ὸ ∷ []) "1Cor.2.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.2.7" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.2.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.2.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "1Cor.2.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.2.7" ∷ word (ἣ ∷ ν ∷ []) "1Cor.2.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.2.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.2.8" ∷ word (ἀ ∷ ρ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.2.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.8" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.2.8" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.2.8" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.2.8" ∷ word (ε ∷ ἰ ∷ []) "1Cor.2.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.8" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.2.8" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.2.8" ∷ word (ἂ ∷ ν ∷ []) "1Cor.2.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.2.8" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.2.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.2.8" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "1Cor.2.8" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.2.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.2.9" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.2.9" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.2.9" ∷ word (Ἃ ∷ []) "1Cor.2.9" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ς ∷ []) "1Cor.2.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.2.9" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "1Cor.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.9" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "1Cor.2.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.2.9" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.2.9" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.2.9" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "1Cor.2.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.2.9" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "1Cor.2.9" ∷ word (ὅ ∷ σ ∷ α ∷ []) "1Cor.2.9" ∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.2.9" ∷ word (ὁ ∷ []) "1Cor.2.9" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.2.9" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.2.9" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.2.9" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.2.9" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.2.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.10" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ ψ ∷ ε ∷ ν ∷ []) "1Cor.2.10" ∷ word (ὁ ∷ []) "1Cor.2.10" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.2.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.2.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.10" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.2.10" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.10" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.2.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.2.10" ∷ word (ἐ ∷ ρ ∷ α ∷ υ ∷ ν ∷ ᾷ ∷ []) "1Cor.2.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.10" ∷ word (τ ∷ ὰ ∷ []) "1Cor.2.10" ∷ word (β ∷ ά ∷ θ ∷ η ∷ []) "1Cor.2.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.10" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.2.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.11" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "1Cor.2.11" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.2.11" ∷ word (τ ∷ ὰ ∷ []) "1Cor.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.11" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "1Cor.2.11" ∷ word (ε ∷ ἰ ∷ []) "1Cor.2.11" ∷ word (μ ∷ ὴ ∷ []) "1Cor.2.11" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.11" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "1Cor.2.11" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.2.11" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.2.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.11" ∷ word (τ ∷ ὰ ∷ []) "1Cor.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.11" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.2.11" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.2.11" ∷ word (ε ∷ ἰ ∷ []) "1Cor.2.11" ∷ word (μ ∷ ὴ ∷ []) "1Cor.2.11" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.11" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.2.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.12" ∷ word (ο ∷ ὐ ∷ []) "1Cor.2.12" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.12" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.2.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.12" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.2.12" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ β ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.2.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.2.12" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.12" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.2.12" ∷ word (τ ∷ ὸ ∷ []) "1Cor.2.12" ∷ word (ἐ ∷ κ ∷ []) "1Cor.2.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.2.12" ∷ word (ε ∷ ἰ ∷ δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.2.12" ∷ word (τ ∷ ὰ ∷ []) "1Cor.2.12" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.2.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.12" ∷ word (χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ θ ∷ έ ∷ ν ∷ τ ∷ α ∷ []) "1Cor.2.12" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.2.12" ∷ word (ἃ ∷ []) "1Cor.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.13" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.2.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.2.13" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.13" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ κ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.2.13" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "1Cor.2.13" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.2.13" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.2.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.2.13" ∷ word (ἐ ∷ ν ∷ []) "1Cor.2.13" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ κ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.2.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.2.13" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.2.13" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὰ ∷ []) "1Cor.2.13" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.2.13" ∷ word (Ψ ∷ υ ∷ χ ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Cor.2.14" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.14" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.2.14" ∷ word (ο ∷ ὐ ∷ []) "1Cor.2.14" ∷ word (δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.2.14" ∷ word (τ ∷ ὰ ∷ []) "1Cor.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.14" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.2.14" ∷ word (μ ∷ ω ∷ ρ ∷ ί ∷ α ∷ []) "1Cor.2.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.2.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.2.14" ∷ word (ο ∷ ὐ ∷ []) "1Cor.2.14" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "1Cor.2.14" ∷ word (γ ∷ ν ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.2.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.2.14" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ῶ ∷ ς ∷ []) "1Cor.2.14" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.2.14" ∷ word (ὁ ∷ []) "1Cor.2.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.15" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Cor.2.15" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.2.15" ∷ word (τ ∷ ὰ ∷ []) "1Cor.2.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.2.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.2.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.15" ∷ word (ὑ ∷ π ∷ []) "1Cor.2.15" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὸ ∷ ς ∷ []) "1Cor.2.15" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.2.15" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.2.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.2.16" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ []) "1Cor.2.16" ∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.2.16" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.2.16" ∷ word (ὃ ∷ ς ∷ []) "1Cor.2.16" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ ι ∷ β ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.2.16" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.2.16" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.2.16" ∷ word (δ ∷ ὲ ∷ []) "1Cor.2.16" ∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.2.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.2.16" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.2.16" ∷ word (Κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "1Cor.3.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.3.1" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.3.1" ∷ word (ἠ ∷ δ ∷ υ ∷ ν ∷ ή ∷ θ ∷ η ∷ ν ∷ []) "1Cor.3.1" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.3.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.3.1" ∷ word (ὡ ∷ ς ∷ []) "1Cor.3.1" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.3.1" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.3.1" ∷ word (ὡ ∷ ς ∷ []) "1Cor.3.1" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.3.1" ∷ word (ὡ ∷ ς ∷ []) "1Cor.3.1" ∷ word (ν ∷ η ∷ π ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.3.1" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.3.1" ∷ word (γ ∷ ά ∷ ∙λ ∷ α ∷ []) "1Cor.3.2" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.3.2" ∷ word (ἐ ∷ π ∷ ό ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "1Cor.3.2" ∷ word (ο ∷ ὐ ∷ []) "1Cor.3.2" ∷ word (β ∷ ρ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.3.2" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "1Cor.3.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.2" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.3.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.3.2" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.3.2" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "1Cor.3.2" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Cor.3.2" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.3.2" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "1Cor.3.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.3" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ι ∷ κ ∷ ο ∷ ί ∷ []) "1Cor.3.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.3" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "1Cor.3.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.3.3" ∷ word (ζ ∷ ῆ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.3" ∷ word (ἔ ∷ ρ ∷ ι ∷ ς ∷ []) "1Cor.3.3" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.3.3" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ι ∷ κ ∷ ο ∷ ί ∷ []) "1Cor.3.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.3" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.3.3" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Cor.3.3" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.3.3" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.3.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ῃ ∷ []) "1Cor.3.4" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.3.4" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.3.4" ∷ word (μ ∷ έ ∷ ν ∷ []) "1Cor.3.4" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.3.4" ∷ word (Π ∷ α ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Cor.3.4" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.3.4" ∷ word (δ ∷ έ ∷ []) "1Cor.3.4" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.3.4" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ []) "1Cor.3.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.3.4" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ί ∷ []) "1Cor.3.4" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.4" ∷ word (Τ ∷ ί ∷ []) "1Cor.3.5" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.3.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.5" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Cor.3.5" ∷ word (τ ∷ ί ∷ []) "1Cor.3.5" ∷ word (δ ∷ έ ∷ []) "1Cor.3.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.5" ∷ word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.3.5" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.3.5" ∷ word (δ ∷ ι ∷ []) "1Cor.3.5" ∷ word (ὧ ∷ ν ∷ []) "1Cor.3.5" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.5" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "1Cor.3.5" ∷ word (ὡ ∷ ς ∷ []) "1Cor.3.5" ∷ word (ὁ ∷ []) "1Cor.3.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.3.5" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.3.5" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.3.6" ∷ word (ἐ ∷ φ ∷ ύ ∷ τ ∷ ε ∷ υ ∷ σ ∷ α ∷ []) "1Cor.3.6" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Cor.3.6" ∷ word (ἐ ∷ π ∷ ό ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.3.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.3.6" ∷ word (ὁ ∷ []) "1Cor.3.6" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.3.6" ∷ word (η ∷ ὔ ∷ ξ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "1Cor.3.6" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.7" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.3.7" ∷ word (ὁ ∷ []) "1Cor.3.7" ∷ word (φ ∷ υ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.3.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.3.7" ∷ word (τ ∷ ι ∷ []) "1Cor.3.7" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.3.7" ∷ word (ὁ ∷ []) "1Cor.3.7" ∷ word (π ∷ ο ∷ τ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.3.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.3.7" ∷ word (ὁ ∷ []) "1Cor.3.7" ∷ word (α ∷ ὐ ∷ ξ ∷ ά ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.3.7" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.3.7" ∷ word (ὁ ∷ []) "1Cor.3.8" ∷ word (φ ∷ υ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.3.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.8" ∷ word (ὁ ∷ []) "1Cor.3.8" ∷ word (π ∷ ο ∷ τ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.3.8" ∷ word (ἕ ∷ ν ∷ []) "1Cor.3.8" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.3.8" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.3.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.3.8" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.3.8" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "1Cor.3.8" ∷ word (∙λ ∷ ή ∷ μ ∷ ψ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.8" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.3.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.3.8" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.3.8" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "1Cor.3.8" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.3.9" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.3.9" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ί ∷ []) "1Cor.3.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.9" ∷ word (γ ∷ ε ∷ ώ ∷ ρ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.3.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.9" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ή ∷ []) "1Cor.3.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.9" ∷ word (Κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.3.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.3.10" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "1Cor.3.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.3.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.3.10" ∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ ά ∷ ν ∷ []) "1Cor.3.10" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.3.10" ∷ word (ὡ ∷ ς ∷ []) "1Cor.3.10" ∷ word (σ ∷ ο ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.3.10" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ τ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.3.10" ∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.3.10" ∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ α ∷ []) "1Cor.3.10" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.3.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.10" ∷ word (ἐ ∷ π ∷ ο ∷ ι ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.3.10" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.3.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.10" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.3.10" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.3.10" ∷ word (ἐ ∷ π ∷ ο ∷ ι ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.3.10" ∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.3.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.11" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.3.11" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.3.11" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.11" ∷ word (θ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.3.11" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "1Cor.3.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.3.11" ∷ word (κ ∷ ε ∷ ί ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.3.11" ∷ word (ὅ ∷ ς ∷ []) "1Cor.3.11" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.11" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.3.11" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.3.11" ∷ word (ε ∷ ἰ ∷ []) "1Cor.3.12" ∷ word (δ ∷ έ ∷ []) "1Cor.3.12" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.3.12" ∷ word (ἐ ∷ π ∷ ο ∷ ι ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.3.12" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.3.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.3.12" ∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.3.12" ∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ό ∷ ν ∷ []) "1Cor.3.12" ∷ word (ἄ ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.3.12" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.3.12" ∷ word (τ ∷ ι ∷ μ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.3.12" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ α ∷ []) "1Cor.3.12" ∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.3.12" ∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "1Cor.3.12" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.3.13" ∷ word (τ ∷ ὸ ∷ []) "1Cor.3.13" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.3.13" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Cor.3.13" ∷ word (γ ∷ ε ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.13" ∷ word (ἡ ∷ []) "1Cor.3.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.13" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.3.13" ∷ word (δ ∷ η ∷ ∙λ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.3.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.3.13" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.13" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "1Cor.3.13" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.13" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.3.13" ∷ word (τ ∷ ὸ ∷ []) "1Cor.3.13" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.3.13" ∷ word (ὁ ∷ π ∷ ο ∷ ῖ ∷ ό ∷ ν ∷ []) "1Cor.3.13" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.13" ∷ word (τ ∷ ὸ ∷ []) "1Cor.3.13" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "1Cor.3.13" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.3.13" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.3.13" ∷ word (ε ∷ ἴ ∷ []) "1Cor.3.14" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.3.14" ∷ word (τ ∷ ὸ ∷ []) "1Cor.3.14" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.3.14" ∷ word (μ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ []) "1Cor.3.14" ∷ word (ὃ ∷ []) "1Cor.3.14" ∷ word (ἐ ∷ π ∷ ο ∷ ι ∷ κ ∷ ο ∷ δ ∷ ό ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.3.14" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "1Cor.3.14" ∷ word (∙λ ∷ ή ∷ μ ∷ ψ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.14" ∷ word (ε ∷ ἴ ∷ []) "1Cor.3.15" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.3.15" ∷ word (τ ∷ ὸ ∷ []) "1Cor.3.15" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.3.15" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.15" ∷ word (ζ ∷ η ∷ μ ∷ ι ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.3.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.15" ∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.15" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.3.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.15" ∷ word (ὡ ∷ ς ∷ []) "1Cor.3.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.3.15" ∷ word (π ∷ υ ∷ ρ ∷ ό ∷ ς ∷ []) "1Cor.3.15" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "1Cor.3.16" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.3.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.3.16" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "1Cor.3.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.16" ∷ word (τ ∷ ὸ ∷ []) "1Cor.3.16" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.3.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.3.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.16" ∷ word (ο ∷ ἰ ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.3.16" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.16" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.3.16" ∷ word (ε ∷ ἴ ∷ []) "1Cor.3.17" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.3.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.3.17" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "1Cor.3.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.3.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.17" ∷ word (φ ∷ θ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.3.17" ∷ word (φ ∷ θ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ []) "1Cor.3.17" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.3.17" ∷ word (ὁ ∷ []) "1Cor.3.17" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.3.17" ∷ word (ὁ ∷ []) "1Cor.3.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.17" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "1Cor.3.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.3.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.17" ∷ word (ἅ ∷ γ ∷ ι ∷ ό ∷ ς ∷ []) "1Cor.3.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.17" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ έ ∷ ς ∷ []) "1Cor.3.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.17" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.3.17" ∷ word (Μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.3.18" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.3.18" ∷ word (ἐ ∷ ξ ∷ α ∷ π ∷ α ∷ τ ∷ ά ∷ τ ∷ ω ∷ []) "1Cor.3.18" ∷ word (ε ∷ ἴ ∷ []) "1Cor.3.18" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.3.18" ∷ word (δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.3.18" ∷ word (σ ∷ ο ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.3.18" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.3.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.18" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.3.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.18" ∷ word (τ ∷ ῷ ∷ []) "1Cor.3.18" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ι ∷ []) "1Cor.3.18" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "1Cor.3.18" ∷ word (μ ∷ ω ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.3.18" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.3.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.3.18" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.18" ∷ word (σ ∷ ο ∷ φ ∷ ό ∷ ς ∷ []) "1Cor.3.18" ∷ word (ἡ ∷ []) "1Cor.3.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.19" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "1Cor.3.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.3.19" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.3.19" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.3.19" ∷ word (μ ∷ ω ∷ ρ ∷ ί ∷ α ∷ []) "1Cor.3.19" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "1Cor.3.19" ∷ word (τ ∷ ῷ ∷ []) "1Cor.3.19" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.3.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.19" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.3.19" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.3.19" ∷ word (Ὁ ∷ []) "1Cor.3.19" ∷ word (δ ∷ ρ ∷ α ∷ σ ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.3.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.3.19" ∷ word (σ ∷ ο ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.3.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.19" ∷ word (τ ∷ ῇ ∷ []) "1Cor.3.19" ∷ word (π ∷ α ∷ ν ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ί ∷ ᾳ ∷ []) "1Cor.3.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.3.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.3.20" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "1Cor.3.20" ∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.3.20" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "1Cor.3.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.3.20" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.3.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.3.20" ∷ word (σ ∷ ο ∷ φ ∷ ῶ ∷ ν ∷ []) "1Cor.3.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.3.20" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "1Cor.3.20" ∷ word (μ ∷ ά ∷ τ ∷ α ∷ ι ∷ ο ∷ ι ∷ []) "1Cor.3.20" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.3.21" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.3.21" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ά ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.3.21" ∷ word (ἐ ∷ ν ∷ []) "1Cor.3.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.3.21" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.3.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.3.21" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.3.21" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.3.21" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (Κ ∷ η ∷ φ ∷ ᾶ ∷ ς ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (ζ ∷ ω ∷ ὴ ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (ἐ ∷ ν ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ α ∷ []) "1Cor.3.22" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.3.22" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "1Cor.3.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.3.22" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.3.22" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.3.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.3.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.3.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.3.23" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.3.23" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.4.1" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.1" ∷ word (∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.4.1" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.4.1" ∷ word (ὡ ∷ ς ∷ []) "1Cor.4.1" ∷ word (ὑ ∷ π ∷ η ∷ ρ ∷ έ ∷ τ ∷ α ∷ ς ∷ []) "1Cor.4.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.1" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.4.1" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.4.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.4.1" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "1Cor.4.2" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "1Cor.4.2" ∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.4.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.4.2" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.4.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.4.2" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.4.2" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.4.2" ∷ word (ε ∷ ὑ ∷ ρ ∷ ε ∷ θ ∷ ῇ ∷ []) "1Cor.4.2" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "1Cor.4.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.4.3" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ χ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.4.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.4.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.4.3" ∷ word (ὑ ∷ φ ∷ []) "1Cor.4.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.4.3" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ []) "1Cor.4.3" ∷ word (ἢ ∷ []) "1Cor.4.3" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.4.3" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "1Cor.4.3" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Cor.4.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.4.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.4.3" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.4.3" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ω ∷ []) "1Cor.4.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "1Cor.4.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.4.4" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "1Cor.4.4" ∷ word (σ ∷ ύ ∷ ν ∷ ο ∷ ι ∷ δ ∷ α ∷ []) "1Cor.4.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.4.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.4.4" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.4" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "1Cor.4.4" ∷ word (δ ∷ ε ∷ δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.4.4" ∷ word (ὁ ∷ []) "1Cor.4.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.4" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.4.4" ∷ word (μ ∷ ε ∷ []) "1Cor.4.4" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ό ∷ ς ∷ []) "1Cor.4.4" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.4.4" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.4.5" ∷ word (μ ∷ ὴ ∷ []) "1Cor.4.5" ∷ word (π ∷ ρ ∷ ὸ ∷ []) "1Cor.4.5" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῦ ∷ []) "1Cor.4.5" ∷ word (τ ∷ ι ∷ []) "1Cor.4.5" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.4.5" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Cor.4.5" ∷ word (ἂ ∷ ν ∷ []) "1Cor.4.5" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.4.5" ∷ word (ὁ ∷ []) "1Cor.4.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.4.5" ∷ word (ὃ ∷ ς ∷ []) "1Cor.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.5" ∷ word (φ ∷ ω ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.4.5" ∷ word (τ ∷ ὰ ∷ []) "1Cor.4.5" ∷ word (κ ∷ ρ ∷ υ ∷ π ∷ τ ∷ ὰ ∷ []) "1Cor.4.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.5" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.5" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.4.5" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.4.5" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "1Cor.4.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.4.5" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ι ∷ ῶ ∷ ν ∷ []) "1Cor.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.5" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "1Cor.4.5" ∷ word (ὁ ∷ []) "1Cor.4.5" ∷ word (ἔ ∷ π ∷ α ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.4.5" ∷ word (γ ∷ ε ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.4.5" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "1Cor.4.5" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.4.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.4.5" ∷ word (Τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.4.6" ∷ word (δ ∷ έ ∷ []) "1Cor.4.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.4.6" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ σ ∷ χ ∷ η ∷ μ ∷ ά ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "1Cor.4.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.4.6" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.6" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.4.6" ∷ word (δ ∷ ι ∷ []) "1Cor.4.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.4.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.6" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.4.6" ∷ word (μ ∷ ά ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.4.6" ∷ word (τ ∷ ό ∷ []) "1Cor.4.6" ∷ word (Μ ∷ ὴ ∷ []) "1Cor.4.6" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.4.6" ∷ word (ἃ ∷ []) "1Cor.4.6" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.4.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.4.6" ∷ word (μ ∷ ὴ ∷ []) "1Cor.4.6" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.4.6" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.4.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.6" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "1Cor.4.6" ∷ word (φ ∷ υ ∷ σ ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.4.6" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.4.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.6" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "1Cor.4.6" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.4.7" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.4.7" ∷ word (σ ∷ ε ∷ []) "1Cor.4.7" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.4.7" ∷ word (τ ∷ ί ∷ []) "1Cor.4.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.7" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.4.7" ∷ word (ὃ ∷ []) "1Cor.4.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.4.7" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ς ∷ []) "1Cor.4.7" ∷ word (ε ∷ ἰ ∷ []) "1Cor.4.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.7" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ς ∷ []) "1Cor.4.7" ∷ word (τ ∷ ί ∷ []) "1Cor.4.7" ∷ word (κ ∷ α ∷ υ ∷ χ ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.4.7" ∷ word (ὡ ∷ ς ∷ []) "1Cor.4.7" ∷ word (μ ∷ ὴ ∷ []) "1Cor.4.7" ∷ word (∙λ ∷ α ∷ β ∷ ώ ∷ ν ∷ []) "1Cor.4.7" ∷ word (Ἤ ∷ δ ∷ η ∷ []) "1Cor.4.8" ∷ word (κ ∷ ε ∷ κ ∷ ο ∷ ρ ∷ ε ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.4.8" ∷ word (ἐ ∷ σ ∷ τ ∷ έ ∷ []) "1Cor.4.8" ∷ word (ἤ ∷ δ ∷ η ∷ []) "1Cor.4.8" ∷ word (ἐ ∷ π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.4.8" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "1Cor.4.8" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.4.8" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.8" ∷ word (ὄ ∷ φ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ []) "1Cor.4.8" ∷ word (γ ∷ ε ∷ []) "1Cor.4.8" ∷ word (ἐ ∷ β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.4.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.8" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.8" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.4.8" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.8" ∷ word (δ ∷ ο ∷ κ ∷ ῶ ∷ []) "1Cor.4.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.4.9" ∷ word (ὁ ∷ []) "1Cor.4.9" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.4.9" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.4.9" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.4.9" ∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.4.9" ∷ word (ἀ ∷ π ∷ έ ∷ δ ∷ ε ∷ ι ∷ ξ ∷ ε ∷ ν ∷ []) "1Cor.4.9" ∷ word (ὡ ∷ ς ∷ []) "1Cor.4.9" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ α ∷ ν ∷ α ∷ τ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.4.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.4.9" ∷ word (θ ∷ έ ∷ α ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.4.9" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.9" ∷ word (τ ∷ ῷ ∷ []) "1Cor.4.9" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "1Cor.4.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.9" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.4.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.9" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.4.9" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (μ ∷ ω ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.4.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.4.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.4.10" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.10" ∷ word (φ ∷ ρ ∷ ό ∷ ν ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "1Cor.4.10" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.10" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.4.10" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.10" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ο ∷ ί ∷ []) "1Cor.4.10" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (ἔ ∷ ν ∷ δ ∷ ο ∷ ξ ∷ ο ∷ ι ∷ []) "1Cor.4.10" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.4.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.10" ∷ word (ἄ ∷ τ ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "1Cor.4.10" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "1Cor.4.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.4.11" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.4.11" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "1Cor.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.11" ∷ word (π ∷ ε ∷ ι ∷ ν ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.11" ∷ word (δ ∷ ι ∷ ψ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.11" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ι ∷ τ ∷ ε ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.11" ∷ word (κ ∷ ο ∷ ∙λ ∷ α ∷ φ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.11" ∷ word (ἀ ∷ σ ∷ τ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.12" ∷ word (κ ∷ ο ∷ π ∷ ι ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.12" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.4.12" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.4.12" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Cor.4.12" ∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.4.12" ∷ word (∙λ ∷ ο ∷ ι ∷ δ ∷ ο ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.4.12" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.12" ∷ word (δ ∷ ι ∷ ω ∷ κ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.4.12" ∷ word (ἀ ∷ ν ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.4.12" ∷ word (δ ∷ υ ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.4.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.13" ∷ word (ὡ ∷ ς ∷ []) "1Cor.4.13" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.4.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.13" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.4.13" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.4.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.4.13" ∷ word (π ∷ ε ∷ ρ ∷ ί ∷ ψ ∷ η ∷ μ ∷ α ∷ []) "1Cor.4.13" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Cor.4.13" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.4.13" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "1Cor.4.14" ∷ word (ἐ ∷ ν ∷ τ ∷ ρ ∷ έ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.4.14" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.14" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ω ∷ []) "1Cor.4.14" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.4.14" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.4.14" ∷ word (ὡ ∷ ς ∷ []) "1Cor.4.14" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "1Cor.4.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.4.14" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ὰ ∷ []) "1Cor.4.14" ∷ word (ν ∷ ο ∷ υ ∷ θ ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.4.14" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.4.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.4.15" ∷ word (μ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.4.15" ∷ word (π ∷ α ∷ ι ∷ δ ∷ α ∷ γ ∷ ω ∷ γ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.4.15" ∷ word (ἔ ∷ χ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.4.15" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.4.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.4.15" ∷ word (ο ∷ ὐ ∷ []) "1Cor.4.15" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.4.15" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Cor.4.15" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.4.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.4.15" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.4.15" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.4.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.15" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.4.15" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.4.15" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.15" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ν ∷ η ∷ σ ∷ α ∷ []) "1Cor.4.15" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.4.16" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.4.16" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.16" ∷ word (μ ∷ ι ∷ μ ∷ η ∷ τ ∷ α ∷ ί ∷ []) "1Cor.4.16" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.4.16" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.4.16" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.4.17" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.4.17" ∷ word (ἔ ∷ π ∷ ε ∷ μ ∷ ψ ∷ α ∷ []) "1Cor.4.17" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.4.17" ∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ν ∷ []) "1Cor.4.17" ∷ word (ὅ ∷ ς ∷ []) "1Cor.4.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.4.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.4.17" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.4.17" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.4.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.17" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.4.17" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.17" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.4.17" ∷ word (ὃ ∷ ς ∷ []) "1Cor.4.17" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.17" ∷ word (ἀ ∷ ν ∷ α ∷ μ ∷ ν ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.4.17" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.4.17" ∷ word (ὁ ∷ δ ∷ ο ∷ ύ ∷ ς ∷ []) "1Cor.4.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.4.17" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.4.17" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.4.17" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.4.17" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.4.17" ∷ word (π ∷ α ∷ ν ∷ τ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "1Cor.4.17" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.17" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Cor.4.17" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.4.17" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ []) "1Cor.4.17" ∷ word (ὡ ∷ ς ∷ []) "1Cor.4.18" ∷ word (μ ∷ ὴ ∷ []) "1Cor.4.18" ∷ word (ἐ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "1Cor.4.18" ∷ word (δ ∷ έ ∷ []) "1Cor.4.18" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.4.18" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.4.18" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.18" ∷ word (ἐ ∷ φ ∷ υ ∷ σ ∷ ι ∷ ώ ∷ θ ∷ η ∷ σ ∷ ά ∷ ν ∷ []) "1Cor.4.18" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.4.18" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.4.19" ∷ word (δ ∷ ὲ ∷ []) "1Cor.4.19" ∷ word (τ ∷ α ∷ χ ∷ έ ∷ ω ∷ ς ∷ []) "1Cor.4.19" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.4.19" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.19" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.4.19" ∷ word (ὁ ∷ []) "1Cor.4.19" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.4.19" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ῃ ∷ []) "1Cor.4.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.4.19" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.4.19" ∷ word (ο ∷ ὐ ∷ []) "1Cor.4.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.4.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.4.19" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.4.19" ∷ word (π ∷ ε ∷ φ ∷ υ ∷ σ ∷ ι ∷ ω ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.4.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.4.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.4.19" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "1Cor.4.19" ∷ word (ο ∷ ὐ ∷ []) "1Cor.4.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.4.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.20" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Cor.4.20" ∷ word (ἡ ∷ []) "1Cor.4.20" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "1Cor.4.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.4.20" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.4.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.4.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.20" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "1Cor.4.20" ∷ word (τ ∷ ί ∷ []) "1Cor.4.21" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.4.21" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.21" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ῳ ∷ []) "1Cor.4.21" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ω ∷ []) "1Cor.4.21" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.4.21" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.4.21" ∷ word (ἢ ∷ []) "1Cor.4.21" ∷ word (ἐ ∷ ν ∷ []) "1Cor.4.21" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "1Cor.4.21" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "1Cor.4.21" ∷ word (τ ∷ ε ∷ []) "1Cor.4.21" ∷ word (π ∷ ρ ∷ α ∷ ΰ ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.4.21" ∷ word (Ὅ ∷ ∙λ ∷ ω ∷ ς ∷ []) "1Cor.5.1" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.5.1" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.5.1" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ []) "1Cor.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.1" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ η ∷ []) "1Cor.5.1" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ []) "1Cor.5.1" ∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "1Cor.5.1" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.5.1" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.1" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.5.1" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.5.1" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.5.1" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ ά ∷ []) "1Cor.5.1" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "1Cor.5.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.1" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.5.1" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.2" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.5.2" ∷ word (π ∷ ε ∷ φ ∷ υ ∷ σ ∷ ι ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.5.2" ∷ word (ἐ ∷ σ ∷ τ ∷ έ ∷ []) "1Cor.5.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.2" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.5.2" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.5.2" ∷ word (ἐ ∷ π ∷ ε ∷ ν ∷ θ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.5.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.5.2" ∷ word (ἀ ∷ ρ ∷ θ ∷ ῇ ∷ []) "1Cor.5.2" ∷ word (ἐ ∷ κ ∷ []) "1Cor.5.2" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ υ ∷ []) "1Cor.5.2" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.2" ∷ word (ὁ ∷ []) "1Cor.5.2" ∷ word (τ ∷ ὸ ∷ []) "1Cor.5.2" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.5.2" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.5.2" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "1Cor.5.2" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.5.3" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.5.3" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.5.3" ∷ word (ἀ ∷ π ∷ ὼ ∷ ν ∷ []) "1Cor.5.3" ∷ word (τ ∷ ῷ ∷ []) "1Cor.5.3" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.5.3" ∷ word (π ∷ α ∷ ρ ∷ ὼ ∷ ν ∷ []) "1Cor.5.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.5.3" ∷ word (τ ∷ ῷ ∷ []) "1Cor.5.3" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.5.3" ∷ word (ἤ ∷ δ ∷ η ∷ []) "1Cor.5.3" ∷ word (κ ∷ έ ∷ κ ∷ ρ ∷ ι ∷ κ ∷ α ∷ []) "1Cor.5.3" ∷ word (ὡ ∷ ς ∷ []) "1Cor.5.3" ∷ word (π ∷ α ∷ ρ ∷ ὼ ∷ ν ∷ []) "1Cor.5.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.5.3" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.5.3" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.5.3" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ρ ∷ γ ∷ α ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.5.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.4" ∷ word (τ ∷ ῷ ∷ []) "1Cor.5.4" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.5.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.4" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.5.4" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.5.4" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ χ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.5.4" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.4" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "1Cor.5.4" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.5.4" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.5.4" ∷ word (τ ∷ ῇ ∷ []) "1Cor.5.4" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "1Cor.5.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.4" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.5.4" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.5.4" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.5.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.5.5" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.5.5" ∷ word (τ ∷ ῷ ∷ []) "1Cor.5.5" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾷ ∷ []) "1Cor.5.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.5.5" ∷ word (ὄ ∷ ∙λ ∷ ε ∷ θ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.5.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.5.5" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.5.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.5.5" ∷ word (τ ∷ ὸ ∷ []) "1Cor.5.5" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.5.5" ∷ word (σ ∷ ω ∷ θ ∷ ῇ ∷ []) "1Cor.5.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.5" ∷ word (τ ∷ ῇ ∷ []) "1Cor.5.5" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "1Cor.5.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.5" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.5.5" ∷ word (Ο ∷ ὐ ∷ []) "1Cor.5.6" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Cor.5.6" ∷ word (τ ∷ ὸ ∷ []) "1Cor.5.6" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ μ ∷ α ∷ []) "1Cor.5.6" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.6" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.5.6" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.5.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.5.6" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὰ ∷ []) "1Cor.5.6" ∷ word (ζ ∷ ύ ∷ μ ∷ η ∷ []) "1Cor.5.6" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.5.6" ∷ word (τ ∷ ὸ ∷ []) "1Cor.5.6" ∷ word (φ ∷ ύ ∷ ρ ∷ α ∷ μ ∷ α ∷ []) "1Cor.5.6" ∷ word (ζ ∷ υ ∷ μ ∷ ο ∷ ῖ ∷ []) "1Cor.5.6" ∷ word (ἐ ∷ κ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.5.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.5.7" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ὰ ∷ ν ∷ []) "1Cor.5.7" ∷ word (ζ ∷ ύ ∷ μ ∷ η ∷ ν ∷ []) "1Cor.5.7" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.5.7" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "1Cor.5.7" ∷ word (ν ∷ έ ∷ ο ∷ ν ∷ []) "1Cor.5.7" ∷ word (φ ∷ ύ ∷ ρ ∷ α ∷ μ ∷ α ∷ []) "1Cor.5.7" ∷ word (κ ∷ α ∷ θ ∷ ώ ∷ ς ∷ []) "1Cor.5.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.5.7" ∷ word (ἄ ∷ ζ ∷ υ ∷ μ ∷ ο ∷ ι ∷ []) "1Cor.5.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.5.7" ∷ word (τ ∷ ὸ ∷ []) "1Cor.5.7" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "1Cor.5.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.7" ∷ word (ἐ ∷ τ ∷ ύ ∷ θ ∷ η ∷ []) "1Cor.5.7" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.5.7" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.5.8" ∷ word (ἑ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ ζ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.5.8" ∷ word (μ ∷ ὴ ∷ []) "1Cor.5.8" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.8" ∷ word (ζ ∷ ύ ∷ μ ∷ ῃ ∷ []) "1Cor.5.8" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ᾷ ∷ []) "1Cor.5.8" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Cor.5.8" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.8" ∷ word (ζ ∷ ύ ∷ μ ∷ ῃ ∷ []) "1Cor.5.8" ∷ word (κ ∷ α ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.8" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.5.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.5.8" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.8" ∷ word (ἀ ∷ ζ ∷ ύ ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.5.8" ∷ word (ε ∷ ἰ ∷ ∙λ ∷ ι ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Cor.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.8" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Cor.5.8" ∷ word (Ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ α ∷ []) "1Cor.5.9" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.5.9" ∷ word (ἐ ∷ ν ∷ []) "1Cor.5.9" ∷ word (τ ∷ ῇ ∷ []) "1Cor.5.9" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῇ ∷ []) "1Cor.5.9" ∷ word (μ ∷ ὴ ∷ []) "1Cor.5.9" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ μ ∷ ί ∷ γ ∷ ν ∷ υ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.5.9" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.5.9" ∷ word (ο ∷ ὐ ∷ []) "1Cor.5.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.5.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.5.10" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.5.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.10" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.5.10" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.5.10" ∷ word (ἢ ∷ []) "1Cor.5.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.5.10" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ έ ∷ κ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.5.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.5.10" ∷ word (ἅ ∷ ρ ∷ π ∷ α ∷ ξ ∷ ι ∷ ν ∷ []) "1Cor.5.10" ∷ word (ἢ ∷ []) "1Cor.5.10" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.5.10" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "1Cor.5.10" ∷ word (ὠ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.5.10" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "1Cor.5.10" ∷ word (ἐ ∷ κ ∷ []) "1Cor.5.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.5.10" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.5.10" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.5.10" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Cor.5.11" ∷ word (δ ∷ ὲ ∷ []) "1Cor.5.11" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ α ∷ []) "1Cor.5.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.5.11" ∷ word (μ ∷ ὴ ∷ []) "1Cor.5.11" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ μ ∷ ί ∷ γ ∷ ν ∷ υ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.5.11" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "1Cor.5.11" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.5.11" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.5.11" ∷ word (ὀ ∷ ν ∷ ο ∷ μ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.5.11" ∷ word (ᾖ ∷ []) "1Cor.5.11" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.5.11" ∷ word (ἢ ∷ []) "1Cor.5.11" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ έ ∷ κ ∷ τ ∷ η ∷ ς ∷ []) "1Cor.5.11" ∷ word (ἢ ∷ []) "1Cor.5.11" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ η ∷ ς ∷ []) "1Cor.5.11" ∷ word (ἢ ∷ []) "1Cor.5.11" ∷ word (∙λ ∷ ο ∷ ί ∷ δ ∷ ο ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.5.11" ∷ word (ἢ ∷ []) "1Cor.5.11" ∷ word (μ ∷ έ ∷ θ ∷ υ ∷ σ ∷ ο ∷ ς ∷ []) "1Cor.5.11" ∷ word (ἢ ∷ []) "1Cor.5.11" ∷ word (ἅ ∷ ρ ∷ π ∷ α ∷ ξ ∷ []) "1Cor.5.11" ∷ word (τ ∷ ῷ ∷ []) "1Cor.5.11" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "1Cor.5.11" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Cor.5.11" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.5.11" ∷ word (τ ∷ ί ∷ []) "1Cor.5.12" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.5.12" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.5.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.5.12" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "1Cor.5.12" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.5.12" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.5.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.5.12" ∷ word (ἔ ∷ σ ∷ ω ∷ []) "1Cor.5.12" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.5.12" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.5.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.5.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.5.13" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "1Cor.5.13" ∷ word (ὁ ∷ []) "1Cor.5.13" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.5.13" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.5.13" ∷ word (ἐ ∷ ξ ∷ ά ∷ ρ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.5.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.5.13" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Cor.5.13" ∷ word (ἐ ∷ ξ ∷ []) "1Cor.5.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.5.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.5.13" ∷ word (Τ ∷ ο ∷ ∙λ ∷ μ ∷ ᾷ ∷ []) "1Cor.6.1" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.6.1" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.6.1" ∷ word (π ∷ ρ ∷ ᾶ ∷ γ ∷ μ ∷ α ∷ []) "1Cor.6.1" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "1Cor.6.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.6.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.6.1" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.6.1" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.6.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.6.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.6.1" ∷ word (ἀ ∷ δ ∷ ί ∷ κ ∷ ω ∷ ν ∷ []) "1Cor.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.1" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.6.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.6.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.6.1" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.6.1" ∷ word (ἢ ∷ []) "1Cor.6.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.2" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.2" ∷ word (ο ∷ ἱ ∷ []) "1Cor.6.2" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ι ∷ []) "1Cor.6.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.6.2" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.6.2" ∷ word (κ ∷ ρ ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.2" ∷ word (ε ∷ ἰ ∷ []) "1Cor.6.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.6.2" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.2" ∷ word (ὁ ∷ []) "1Cor.6.2" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.6.2" ∷ word (ἀ ∷ ν ∷ ά ∷ ξ ∷ ι ∷ ο ∷ ί ∷ []) "1Cor.6.2" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.6.2" ∷ word (κ ∷ ρ ∷ ι ∷ τ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.6.2" ∷ word (ἐ ∷ ∙λ ∷ α ∷ χ ∷ ί ∷ σ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.6.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.3" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.3" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.6.3" ∷ word (κ ∷ ρ ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.6.3" ∷ word (μ ∷ ή ∷ τ ∷ ι ∷ γ ∷ ε ∷ []) "1Cor.6.3" ∷ word (β ∷ ι ∷ ω ∷ τ ∷ ι ∷ κ ∷ ά ∷ []) "1Cor.6.3" ∷ word (β ∷ ι ∷ ω ∷ τ ∷ ι ∷ κ ∷ ὰ ∷ []) "1Cor.6.4" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.6.4" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.6.4" ∷ word (κ ∷ ρ ∷ ι ∷ τ ∷ ή ∷ ρ ∷ ι ∷ α ∷ []) "1Cor.6.4" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.6.4" ∷ word (ἔ ∷ χ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.6.4" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.6.4" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ν ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.6.4" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.4" ∷ word (τ ∷ ῇ ∷ []) "1Cor.6.4" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.6.4" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.6.4" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.6.4" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.6.5" ∷ word (ἐ ∷ ν ∷ τ ∷ ρ ∷ ο ∷ π ∷ ὴ ∷ ν ∷ []) "1Cor.6.5" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.6.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.6.5" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.6.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.5" ∷ word (ἔ ∷ ν ∷ ι ∷ []) "1Cor.6.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.5" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.6.5" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.6.5" ∷ word (σ ∷ ο ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.6.5" ∷ word (ὃ ∷ ς ∷ []) "1Cor.6.5" ∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.5" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.6.5" ∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "1Cor.6.5" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "1Cor.6.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.5" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "1Cor.6.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.6.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.6.6" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Cor.6.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "1Cor.6.6" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.6" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.6.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.6.6" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.6.6" ∷ word (ἤ ∷ δ ∷ η ∷ []) "1Cor.6.7" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.6.7" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.6.7" ∷ word (ὅ ∷ ∙λ ∷ ω ∷ ς ∷ []) "1Cor.6.7" ∷ word (ἥ ∷ τ ∷ τ ∷ η ∷ μ ∷ α ∷ []) "1Cor.6.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.6.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.7" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.6.7" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.6.7" ∷ word (μ ∷ ε ∷ θ ∷ []) "1Cor.6.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.6.7" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.6.7" ∷ word (τ ∷ ί ∷ []) "1Cor.6.7" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.6.7" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.6.7" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.6.7" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.6.7" ∷ word (τ ∷ ί ∷ []) "1Cor.6.7" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.6.7" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.6.7" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.6.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.6.8" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.6.8" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.8" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.6.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.8" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.6.8" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ύ ∷ ς ∷ []) "1Cor.6.8" ∷ word (Ἢ ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.9" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.9" ∷ word (ἄ ∷ δ ∷ ι ∷ κ ∷ ο ∷ ι ∷ []) "1Cor.6.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.6.9" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὐ ∷ []) "1Cor.6.9" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.6.9" ∷ word (μ ∷ ὴ ∷ []) "1Cor.6.9" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.9" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.9" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.9" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ο ∷ ὶ ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.9" ∷ word (μ ∷ α ∷ ∙λ ∷ α ∷ κ ∷ ο ∷ ὶ ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.9" ∷ word (ἀ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ ο ∷ κ ∷ ο ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.9" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.10" ∷ word (κ ∷ ∙λ ∷ έ ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.10" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.6.10" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ έ ∷ κ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.10" ∷ word (ο ∷ ὐ ∷ []) "1Cor.6.10" ∷ word (μ ∷ έ ∷ θ ∷ υ ∷ σ ∷ ο ∷ ι ∷ []) "1Cor.6.10" ∷ word (ο ∷ ὐ ∷ []) "1Cor.6.10" ∷ word (∙λ ∷ ο ∷ ί ∷ δ ∷ ο ∷ ρ ∷ ο ∷ ι ∷ []) "1Cor.6.10" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.6.10" ∷ word (ἅ ∷ ρ ∷ π ∷ α ∷ γ ∷ ε ∷ ς ∷ []) "1Cor.6.10" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.6.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.6.10" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.11" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ ά ∷ []) "1Cor.6.11" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.6.11" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "1Cor.6.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.6.11" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.6.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.6.11" ∷ word (ἡ ∷ γ ∷ ι ∷ ά ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.6.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.6.11" ∷ word (ἐ ∷ δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.6.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.11" ∷ word (τ ∷ ῷ ∷ []) "1Cor.6.11" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.6.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.11" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.6.11" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.6.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.11" ∷ word (τ ∷ ῷ ∷ []) "1Cor.6.11" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.6.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.6.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.6.11" ∷ word (Π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.6.12" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.6.12" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.6.12" ∷ word (ο ∷ ὐ ∷ []) "1Cor.6.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.6.12" ∷ word (σ ∷ υ ∷ μ ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.6.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.6.12" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.6.12" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.6.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.12" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.6.12" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.6.12" ∷ word (ὑ ∷ π ∷ ό ∷ []) "1Cor.6.12" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.6.12" ∷ word (τ ∷ ὰ ∷ []) "1Cor.6.13" ∷ word (β ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.6.13" ∷ word (τ ∷ ῇ ∷ []) "1Cor.6.13" ∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "1Cor.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.13" ∷ word (ἡ ∷ []) "1Cor.6.13" ∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ []) "1Cor.6.13" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.6.13" ∷ word (β ∷ ρ ∷ ώ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.6.13" ∷ word (ὁ ∷ []) "1Cor.6.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.6.13" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.13" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "1Cor.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.13" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.6.13" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.6.13" ∷ word (τ ∷ ὸ ∷ []) "1Cor.6.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.6.13" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.6.13" ∷ word (ο ∷ ὐ ∷ []) "1Cor.6.13" ∷ word (τ ∷ ῇ ∷ []) "1Cor.6.13" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Cor.6.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.6.13" ∷ word (τ ∷ ῷ ∷ []) "1Cor.6.13" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.13" ∷ word (ὁ ∷ []) "1Cor.6.13" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.6.13" ∷ word (τ ∷ ῷ ∷ []) "1Cor.6.13" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.6.13" ∷ word (ὁ ∷ []) "1Cor.6.14" ∷ word (δ ∷ ὲ ∷ []) "1Cor.6.14" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.6.14" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.6.14" ∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "1Cor.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.14" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.6.14" ∷ word (ἐ ∷ ξ ∷ ε ∷ γ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ []) "1Cor.6.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.6.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.6.14" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "1Cor.6.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.15" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.15" ∷ word (τ ∷ ὰ ∷ []) "1Cor.6.15" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.6.15" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.6.15" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.6.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.15" ∷ word (ἄ ∷ ρ ∷ α ∷ ς ∷ []) "1Cor.6.15" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.6.15" ∷ word (τ ∷ ὰ ∷ []) "1Cor.6.15" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.6.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.15" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.6.15" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ η ∷ ς ∷ []) "1Cor.6.15" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.6.15" ∷ word (μ ∷ ὴ ∷ []) "1Cor.6.15" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ι ∷ τ ∷ ο ∷ []) "1Cor.6.15" ∷ word (ἢ ∷ []) "1Cor.6.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.16" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.16" ∷ word (ὁ ∷ []) "1Cor.6.16" ∷ word (κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.6.16" ∷ word (τ ∷ ῇ ∷ []) "1Cor.6.16" ∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ῃ ∷ []) "1Cor.6.16" ∷ word (ἓ ∷ ν ∷ []) "1Cor.6.16" ∷ word (σ ∷ ῶ ∷ μ ∷ ά ∷ []) "1Cor.6.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.16" ∷ word (Ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.6.16" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.6.16" ∷ word (φ ∷ η ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.6.16" ∷ word (ο ∷ ἱ ∷ []) "1Cor.6.16" ∷ word (δ ∷ ύ ∷ ο ∷ []) "1Cor.6.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.6.16" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "1Cor.6.16" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.6.16" ∷ word (ὁ ∷ []) "1Cor.6.17" ∷ word (δ ∷ ὲ ∷ []) "1Cor.6.17" ∷ word (κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.6.17" ∷ word (τ ∷ ῷ ∷ []) "1Cor.6.17" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.6.17" ∷ word (ἓ ∷ ν ∷ []) "1Cor.6.17" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ ά ∷ []) "1Cor.6.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.17" ∷ word (φ ∷ ε ∷ ύ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.6.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.6.18" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.6.18" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "1Cor.6.18" ∷ word (ἁ ∷ μ ∷ ά ∷ ρ ∷ τ ∷ η ∷ μ ∷ α ∷ []) "1Cor.6.18" ∷ word (ὃ ∷ []) "1Cor.6.18" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.6.18" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "1Cor.6.18" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.6.18" ∷ word (ἐ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.6.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.18" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.6.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.18" ∷ word (ὁ ∷ []) "1Cor.6.18" ∷ word (δ ∷ ὲ ∷ []) "1Cor.6.18" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.6.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.6.18" ∷ word (τ ∷ ὸ ∷ []) "1Cor.6.18" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.6.18" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.6.18" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.6.18" ∷ word (ἢ ∷ []) "1Cor.6.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.19" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.6.19" ∷ word (τ ∷ ὸ ∷ []) "1Cor.6.19" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.6.19" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.6.19" ∷ word (ν ∷ α ∷ ὸ ∷ ς ∷ []) "1Cor.6.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.6.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.19" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.6.19" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.6.19" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.6.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.6.19" ∷ word (ο ∷ ὗ ∷ []) "1Cor.6.19" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.6.19" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.6.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.6.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.6.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.6.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ὲ ∷ []) "1Cor.6.19" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.6.19" ∷ word (ἠ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.6.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.6.20" ∷ word (τ ∷ ι ∷ μ ∷ ῆ ∷ ς ∷ []) "1Cor.6.20" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.6.20" ∷ word (δ ∷ ὴ ∷ []) "1Cor.6.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.6.20" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "1Cor.6.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.6.20" ∷ word (τ ∷ ῷ ∷ []) "1Cor.6.20" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.6.20" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.6.20" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.7.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.1" ∷ word (ὧ ∷ ν ∷ []) "1Cor.7.1" ∷ word (ἐ ∷ γ ∷ ρ ∷ ά ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.7.1" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Cor.7.1" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "1Cor.7.1" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Cor.7.1" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.1" ∷ word (ἅ ∷ π ∷ τ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.7.1" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.7.2" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.2" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.7.2" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Cor.7.2" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.2" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.2" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.7.2" ∷ word (ἐ ∷ χ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.2" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ η ∷ []) "1Cor.7.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.7.2" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.7.2" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Cor.7.2" ∷ word (ἐ ∷ χ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.2" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.3" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὶ ∷ []) "1Cor.7.3" ∷ word (ὁ ∷ []) "1Cor.7.3" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.7.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.3" ∷ word (ὀ ∷ φ ∷ ε ∷ ι ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Cor.7.3" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ι ∷ δ ∷ ό ∷ τ ∷ ω ∷ []) "1Cor.7.3" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "1Cor.7.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.3" ∷ word (ἡ ∷ []) "1Cor.7.3" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.7.3" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.3" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ί ∷ []) "1Cor.7.3" ∷ word (ἡ ∷ []) "1Cor.7.4" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.7.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.4" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.4" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.7.4" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "1Cor.7.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.7.4" ∷ word (ὁ ∷ []) "1Cor.7.4" ∷ word (ἀ ∷ ν ∷ ή ∷ ρ ∷ []) "1Cor.7.4" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "1Cor.7.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.4" ∷ word (ὁ ∷ []) "1Cor.7.4" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.7.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.4" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.4" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.7.4" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "1Cor.7.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.7.4" ∷ word (ἡ ∷ []) "1Cor.7.4" ∷ word (γ ∷ υ ∷ ν ∷ ή ∷ []) "1Cor.7.4" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.5" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.7.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.7.5" ∷ word (ε ∷ ἰ ∷ []) "1Cor.7.5" ∷ word (μ ∷ ή ∷ τ ∷ ι ∷ []) "1Cor.7.5" ∷ word (ἂ ∷ ν ∷ []) "1Cor.7.5" ∷ word (ἐ ∷ κ ∷ []) "1Cor.7.5" ∷ word (σ ∷ υ ∷ μ ∷ φ ∷ ώ ∷ ν ∷ ο ∷ υ ∷ []) "1Cor.7.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.7.5" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Cor.7.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.7.5" ∷ word (σ ∷ χ ∷ ο ∷ ∙λ ∷ ά ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.7.5" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.5" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῇ ∷ []) "1Cor.7.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.5" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "1Cor.7.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.7.5" ∷ word (τ ∷ ὸ ∷ []) "1Cor.7.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.7.5" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "1Cor.7.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.7.5" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.5" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ῃ ∷ []) "1Cor.7.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.7.5" ∷ word (ὁ ∷ []) "1Cor.7.5" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "1Cor.7.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.7.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.5" ∷ word (ἀ ∷ κ ∷ ρ ∷ α ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.7.5" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.7.5" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.7.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.7.6" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.7.6" ∷ word (σ ∷ υ ∷ γ ∷ γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "1Cor.7.6" ∷ word (ο ∷ ὐ ∷ []) "1Cor.7.6" ∷ word (κ ∷ α ∷ τ ∷ []) "1Cor.7.6" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ α ∷ γ ∷ ή ∷ ν ∷ []) "1Cor.7.6" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.7.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.7" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Cor.7.7" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.7.7" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.7" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.7" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.7.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.7.7" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.7" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.7.7" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.7.7" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "1Cor.7.7" ∷ word (ἐ ∷ κ ∷ []) "1Cor.7.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.7.7" ∷ word (ὁ ∷ []) "1Cor.7.7" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.7.7" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.7" ∷ word (ὁ ∷ []) "1Cor.7.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.7" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.7" ∷ word (Λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.7.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.8" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.7.8" ∷ word (ἀ ∷ γ ∷ ά ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.7.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.8" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.7.8" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.7.8" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Cor.7.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.7.8" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.8" ∷ word (μ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.7.8" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.8" ∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "1Cor.7.8" ∷ word (ε ∷ ἰ ∷ []) "1Cor.7.9" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.7.9" ∷ word (ἐ ∷ γ ∷ κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.9" ∷ word (γ ∷ α ∷ μ ∷ η ∷ σ ∷ ά ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.7.9" ∷ word (κ ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.7.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.7.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.9" ∷ word (γ ∷ α ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.7.9" ∷ word (ἢ ∷ []) "1Cor.7.9" ∷ word (π ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.7.9" ∷ word (Τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.7.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.10" ∷ word (γ ∷ ε ∷ γ ∷ α ∷ μ ∷ η ∷ κ ∷ ό ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.7.10" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "1Cor.7.10" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.7.10" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.7.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.7.10" ∷ word (ὁ ∷ []) "1Cor.7.10" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.7.10" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.7.10" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.7.10" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.7.10" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.10" ∷ word (χ ∷ ω ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.10" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.11" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.11" ∷ word (χ ∷ ω ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "1Cor.7.11" ∷ word (μ ∷ ε ∷ ν ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.11" ∷ word (ἄ ∷ γ ∷ α ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.7.11" ∷ word (ἢ ∷ []) "1Cor.7.11" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.11" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "1Cor.7.11" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ ή ∷ τ ∷ ω ∷ []) "1Cor.7.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.11" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Cor.7.11" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.7.11" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.11" ∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.11" ∷ word (Τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.7.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.12" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.7.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.7.12" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "1Cor.7.12" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.7.12" ∷ word (ὁ ∷ []) "1Cor.7.12" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.7.12" ∷ word (ε ∷ ἴ ∷ []) "1Cor.7.12" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.7.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.7.12" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.7.12" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.7.12" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.12" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "1Cor.7.12" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ υ ∷ δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.7.12" ∷ word (ο ∷ ἰ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.7.12" ∷ word (μ ∷ ε ∷ τ ∷ []) "1Cor.7.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.12" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.12" ∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.12" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "1Cor.7.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.13" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.7.13" ∷ word (ε ∷ ἴ ∷ []) "1Cor.7.13" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.7.13" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.7.13" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Cor.7.13" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.7.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.13" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.13" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ υ ∷ δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.7.13" ∷ word (ο ∷ ἰ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.7.13" ∷ word (μ ∷ ε ∷ τ ∷ []) "1Cor.7.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Cor.7.13" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.13" ∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.7.13" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Cor.7.13" ∷ word (ἡ ∷ γ ∷ ί ∷ α ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.7.14" ∷ word (ὁ ∷ []) "1Cor.7.14" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.7.14" ∷ word (ὁ ∷ []) "1Cor.7.14" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.14" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.14" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.14" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "1Cor.7.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.14" ∷ word (ἡ ∷ γ ∷ ί ∷ α ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.14" ∷ word (ἡ ∷ []) "1Cor.7.14" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.7.14" ∷ word (ἡ ∷ []) "1Cor.7.14" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.14" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.14" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.14" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῷ ∷ []) "1Cor.7.14" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "1Cor.7.14" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "1Cor.7.14" ∷ word (τ ∷ ὰ ∷ []) "1Cor.7.14" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "1Cor.7.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.7.14" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ά ∷ []) "1Cor.7.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.14" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Cor.7.14" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.14" ∷ word (ἅ ∷ γ ∷ ι ∷ ά ∷ []) "1Cor.7.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.14" ∷ word (ε ∷ ἰ ∷ []) "1Cor.7.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.15" ∷ word (ὁ ∷ []) "1Cor.7.15" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.15" ∷ word (χ ∷ ω ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.15" ∷ word (χ ∷ ω ∷ ρ ∷ ι ∷ ζ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.7.15" ∷ word (ο ∷ ὐ ∷ []) "1Cor.7.15" ∷ word (δ ∷ ε ∷ δ ∷ ο ∷ ύ ∷ ∙λ ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.15" ∷ word (ὁ ∷ []) "1Cor.7.15" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.7.15" ∷ word (ἢ ∷ []) "1Cor.7.15" ∷ word (ἡ ∷ []) "1Cor.7.15" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὴ ∷ []) "1Cor.7.15" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.15" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.7.15" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.7.15" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.15" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ ῃ ∷ []) "1Cor.7.15" ∷ word (κ ∷ έ ∷ κ ∷ ∙λ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.7.15" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.7.15" ∷ word (ὁ ∷ []) "1Cor.7.15" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.7.15" ∷ word (τ ∷ ί ∷ []) "1Cor.7.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.7.16" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "1Cor.7.16" ∷ word (γ ∷ ύ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.16" ∷ word (ε ∷ ἰ ∷ []) "1Cor.7.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.7.16" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Cor.7.16" ∷ word (σ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.7.16" ∷ word (ἢ ∷ []) "1Cor.7.16" ∷ word (τ ∷ ί ∷ []) "1Cor.7.16" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "1Cor.7.16" ∷ word (ἄ ∷ ν ∷ ε ∷ ρ ∷ []) "1Cor.7.16" ∷ word (ε ∷ ἰ ∷ []) "1Cor.7.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.16" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.7.16" ∷ word (σ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.7.16" ∷ word (Ε ∷ ἰ ∷ []) "1Cor.7.17" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.17" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "1Cor.7.17" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.17" ∷ word (ἐ ∷ μ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.7.17" ∷ word (ὁ ∷ []) "1Cor.7.17" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.7.17" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.7.17" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.17" ∷ word (κ ∷ έ ∷ κ ∷ ∙λ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.7.17" ∷ word (ὁ ∷ []) "1Cor.7.17" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.7.17" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.17" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "1Cor.7.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.17" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.17" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.17" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.7.17" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Cor.7.17" ∷ word (π ∷ ά ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.7.17" ∷ word (δ ∷ ι ∷ α ∷ τ ∷ ά ∷ σ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.7.17" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ε ∷ τ ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.7.18" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.7.18" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "1Cor.7.18" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.18" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ π ∷ ά ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.7.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.18" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "1Cor.7.18" ∷ word (κ ∷ έ ∷ κ ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ί ∷ []) "1Cor.7.18" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.7.18" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.18" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ε ∷ μ ∷ ν ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.7.18" ∷ word (ἡ ∷ []) "1Cor.7.19" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ὴ ∷ []) "1Cor.7.19" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "1Cor.7.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.19" ∷ word (ἡ ∷ []) "1Cor.7.19" ∷ word (ἀ ∷ κ ∷ ρ ∷ ο ∷ β ∷ υ ∷ σ ∷ τ ∷ ί ∷ α ∷ []) "1Cor.7.19" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "1Cor.7.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.7.19" ∷ word (τ ∷ ή ∷ ρ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.7.19" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.7.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.7.19" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.20" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.20" ∷ word (κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.7.20" ∷ word (ᾗ ∷ []) "1Cor.7.20" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "1Cor.7.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.20" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "1Cor.7.20" ∷ word (μ ∷ ε ∷ ν ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.20" ∷ word (Δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.7.21" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ ς ∷ []) "1Cor.7.21" ∷ word (μ ∷ ή ∷ []) "1Cor.7.21" ∷ word (σ ∷ ο ∷ ι ∷ []) "1Cor.7.21" ∷ word (μ ∷ ε ∷ ∙λ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.21" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.7.21" ∷ word (ε ∷ ἰ ∷ []) "1Cor.7.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.21" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ α ∷ ι ∷ []) "1Cor.7.21" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.7.21" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.7.21" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.7.21" ∷ word (χ ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.7.21" ∷ word (ὁ ∷ []) "1Cor.7.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.7.22" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.22" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.7.22" ∷ word (κ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.7.22" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.7.22" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.7.22" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.7.22" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "1Cor.7.22" ∷ word (ὁ ∷ []) "1Cor.7.22" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.7.22" ∷ word (κ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.7.22" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ό ∷ ς ∷ []) "1Cor.7.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.22" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.22" ∷ word (τ ∷ ι ∷ μ ∷ ῆ ∷ ς ∷ []) "1Cor.7.23" ∷ word (ἠ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.7.23" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.23" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.7.23" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.7.23" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.7.23" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.24" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.24" ∷ word (ᾧ ∷ []) "1Cor.7.24" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ []) "1Cor.7.24" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.7.24" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.24" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "1Cor.7.24" ∷ word (μ ∷ ε ∷ ν ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.7.24" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "1Cor.7.24" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.7.24" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.7.25" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.25" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.7.25" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.7.25" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ α ∷ γ ∷ ὴ ∷ ν ∷ []) "1Cor.7.25" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.25" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.7.25" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.7.25" ∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "1Cor.7.25" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.25" ∷ word (δ ∷ ί ∷ δ ∷ ω ∷ μ ∷ ι ∷ []) "1Cor.7.25" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.25" ∷ word (ἠ ∷ ∙λ ∷ ε ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.7.25" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.7.25" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.25" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.7.25" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.25" ∷ word (ν ∷ ο ∷ μ ∷ ί ∷ ζ ∷ ω ∷ []) "1Cor.7.26" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.7.26" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.7.26" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Cor.7.26" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.7.26" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.7.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.26" ∷ word (ἐ ∷ ν ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.7.26" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ ν ∷ []) "1Cor.7.26" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.7.26" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Cor.7.26" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "1Cor.7.26" ∷ word (τ ∷ ὸ ∷ []) "1Cor.7.26" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.26" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.26" ∷ word (δ ∷ έ ∷ δ ∷ ε ∷ σ ∷ α ∷ ι ∷ []) "1Cor.7.27" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "1Cor.7.27" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.27" ∷ word (ζ ∷ ή ∷ τ ∷ ε ∷ ι ∷ []) "1Cor.7.27" ∷ word (∙λ ∷ ύ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.7.27" ∷ word (∙λ ∷ έ ∷ ∙λ ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.7.27" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.7.27" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.7.27" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.27" ∷ word (ζ ∷ ή ∷ τ ∷ ε ∷ ι ∷ []) "1Cor.7.27" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.7.27" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.28" ∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "1Cor.7.28" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.7.28" ∷ word (ἥ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.28" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.28" ∷ word (γ ∷ ή ∷ μ ∷ ῃ ∷ []) "1Cor.7.28" ∷ word (ἡ ∷ []) "1Cor.7.28" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.7.28" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.7.28" ∷ word (ἥ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ε ∷ ν ∷ []) "1Cor.7.28" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "1Cor.7.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.28" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.28" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ὶ ∷ []) "1Cor.7.28" ∷ word (ἕ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.7.28" ∷ word (ο ∷ ἱ ∷ []) "1Cor.7.28" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.7.28" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.7.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.28" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.7.28" ∷ word (φ ∷ ε ∷ ί ∷ δ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.7.28" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.7.29" ∷ word (δ ∷ έ ∷ []) "1Cor.7.29" ∷ word (φ ∷ η ∷ μ ∷ ι ∷ []) "1Cor.7.29" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.7.29" ∷ word (ὁ ∷ []) "1Cor.7.29" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.7.29" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ τ ∷ α ∷ ∙λ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.7.29" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "1Cor.7.29" ∷ word (τ ∷ ὸ ∷ []) "1Cor.7.29" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "1Cor.7.29" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.7.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.29" ∷ word (ο ∷ ἱ ∷ []) "1Cor.7.29" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.29" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ ς ∷ []) "1Cor.7.29" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.29" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.29" ∷ word (ὦ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.7.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.30" ∷ word (ο ∷ ἱ ∷ []) "1Cor.7.30" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.30" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.30" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.30" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.30" ∷ word (ο ∷ ἱ ∷ []) "1Cor.7.30" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.30" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.30" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.30" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.30" ∷ word (ο ∷ ἱ ∷ []) "1Cor.7.30" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.30" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.30" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.30" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.7.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.31" ∷ word (ο ∷ ἱ ∷ []) "1Cor.7.31" ∷ word (χ ∷ ρ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.7.31" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.7.31" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.7.31" ∷ word (ὡ ∷ ς ∷ []) "1Cor.7.31" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.31" ∷ word (κ ∷ α ∷ τ ∷ α ∷ χ ∷ ρ ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.7.31" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.7.31" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.7.31" ∷ word (τ ∷ ὸ ∷ []) "1Cor.7.31" ∷ word (σ ∷ χ ∷ ῆ ∷ μ ∷ α ∷ []) "1Cor.7.31" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.31" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.7.31" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.7.31" ∷ word (Θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.7.32" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.32" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.7.32" ∷ word (ἀ ∷ μ ∷ ε ∷ ρ ∷ ί ∷ μ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.7.32" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.32" ∷ word (ὁ ∷ []) "1Cor.7.32" ∷ word (ἄ ∷ γ ∷ α ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.7.32" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ᾷ ∷ []) "1Cor.7.32" ∷ word (τ ∷ ὰ ∷ []) "1Cor.7.32" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.32" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.32" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.7.32" ∷ word (ἀ ∷ ρ ∷ έ ∷ σ ∷ ῃ ∷ []) "1Cor.7.32" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.32" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.7.32" ∷ word (ὁ ∷ []) "1Cor.7.33" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.33" ∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "1Cor.7.33" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ᾷ ∷ []) "1Cor.7.33" ∷ word (τ ∷ ὰ ∷ []) "1Cor.7.33" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.33" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.7.33" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.7.33" ∷ word (ἀ ∷ ρ ∷ έ ∷ σ ∷ ῃ ∷ []) "1Cor.7.33" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.33" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ί ∷ []) "1Cor.7.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.34" ∷ word (μ ∷ ε ∷ μ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.34" ∷ word (ἡ ∷ []) "1Cor.7.34" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.7.34" ∷ word (ἡ ∷ []) "1Cor.7.34" ∷ word (ἄ ∷ γ ∷ α ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.7.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.34" ∷ word (ἡ ∷ []) "1Cor.7.34" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.7.34" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ᾷ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ὰ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.34" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.34" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.7.34" ∷ word (ᾖ ∷ []) "1Cor.7.34" ∷ word (ἁ ∷ γ ∷ ί ∷ α ∷ []) "1Cor.7.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.34" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.7.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.34" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.7.34" ∷ word (ἡ ∷ []) "1Cor.7.34" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.34" ∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ α ∷ σ ∷ α ∷ []) "1Cor.7.34" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ᾷ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ὰ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.34" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ υ ∷ []) "1Cor.7.34" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.7.34" ∷ word (ἀ ∷ ρ ∷ έ ∷ σ ∷ ῃ ∷ []) "1Cor.7.34" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.34" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ί ∷ []) "1Cor.7.34" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.7.35" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.35" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.7.35" ∷ word (τ ∷ ὸ ∷ []) "1Cor.7.35" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.7.35" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.7.35" ∷ word (σ ∷ ύ ∷ μ ∷ φ ∷ ο ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.7.35" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.7.35" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.7.35" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.7.35" ∷ word (β ∷ ρ ∷ ό ∷ χ ∷ ο ∷ ν ∷ []) "1Cor.7.35" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.7.35" ∷ word (ἐ ∷ π ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ω ∷ []) "1Cor.7.35" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.7.35" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.7.35" ∷ word (τ ∷ ὸ ∷ []) "1Cor.7.35" ∷ word (ε ∷ ὔ ∷ σ ∷ χ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.7.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.35" ∷ word (ε ∷ ὐ ∷ π ∷ ά ∷ ρ ∷ ε ∷ δ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.7.35" ∷ word (τ ∷ ῷ ∷ []) "1Cor.7.35" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.7.35" ∷ word (ἀ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ π ∷ ά ∷ σ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.35" ∷ word (Ε ∷ ἰ ∷ []) "1Cor.7.36" ∷ word (δ ∷ έ ∷ []) "1Cor.7.36" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.7.36" ∷ word (ἀ ∷ σ ∷ χ ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.7.36" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.7.36" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.36" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.7.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.36" ∷ word (ν ∷ ο ∷ μ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "1Cor.7.36" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.36" ∷ word (ᾖ ∷ []) "1Cor.7.36" ∷ word (ὑ ∷ π ∷ έ ∷ ρ ∷ α ∷ κ ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.7.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.36" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.36" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.7.36" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.7.36" ∷ word (ὃ ∷ []) "1Cor.7.36" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.7.36" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "1Cor.7.36" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.7.36" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.7.36" ∷ word (γ ∷ α ∷ μ ∷ ε ∷ ί ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.7.36" ∷ word (ὃ ∷ ς ∷ []) "1Cor.7.37" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.37" ∷ word (ἕ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.7.37" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.37" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.37" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "1Cor.7.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.37" ∷ word (ἑ ∷ δ ∷ ρ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "1Cor.7.37" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.37" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "1Cor.7.37" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ ν ∷ []) "1Cor.7.37" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.7.37" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.37" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.7.37" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.7.37" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.37" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.7.37" ∷ word (θ ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.7.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.37" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.7.37" ∷ word (κ ∷ έ ∷ κ ∷ ρ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.7.37" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.37" ∷ word (τ ∷ ῇ ∷ []) "1Cor.7.37" ∷ word (ἰ ∷ δ ∷ ί ∷ ᾳ ∷ []) "1Cor.7.37" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "1Cor.7.37" ∷ word (τ ∷ η ∷ ρ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.7.37" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.37" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.37" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.7.37" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Cor.7.37" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.7.37" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.7.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.38" ∷ word (ὁ ∷ []) "1Cor.7.38" ∷ word (γ ∷ α ∷ μ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.7.38" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.38" ∷ word (π ∷ α ∷ ρ ∷ θ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.7.38" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.7.38" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Cor.7.38" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "1Cor.7.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.7.38" ∷ word (ὁ ∷ []) "1Cor.7.38" ∷ word (μ ∷ ὴ ∷ []) "1Cor.7.38" ∷ word (γ ∷ α ∷ μ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.7.38" ∷ word (κ ∷ ρ ∷ ε ∷ ῖ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "1Cor.7.38" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.7.38" ∷ word (Γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.7.39" ∷ word (δ ∷ έ ∷ δ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.7.39" ∷ word (ἐ ∷ φ ∷ []) "1Cor.7.39" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "1Cor.7.39" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.7.39" ∷ word (ζ ∷ ῇ ∷ []) "1Cor.7.39" ∷ word (ὁ ∷ []) "1Cor.7.39" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.7.39" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Cor.7.39" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.39" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.39" ∷ word (κ ∷ ο ∷ ι ∷ μ ∷ η ∷ θ ∷ ῇ ∷ []) "1Cor.7.39" ∷ word (ὁ ∷ []) "1Cor.7.39" ∷ word (ἀ ∷ ν ∷ ή ∷ ρ ∷ []) "1Cor.7.39" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.7.39" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Cor.7.39" ∷ word (ᾧ ∷ []) "1Cor.7.39" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.7.39" ∷ word (γ ∷ α ∷ μ ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.7.39" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.7.39" ∷ word (ἐ ∷ ν ∷ []) "1Cor.7.39" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.7.39" ∷ word (μ ∷ α ∷ κ ∷ α ∷ ρ ∷ ι ∷ ω ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.7.40" ∷ word (δ ∷ έ ∷ []) "1Cor.7.40" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.7.40" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.7.40" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.7.40" ∷ word (μ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "1Cor.7.40" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.7.40" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.7.40" ∷ word (ἐ ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.7.40" ∷ word (γ ∷ ν ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "1Cor.7.40" ∷ word (δ ∷ ο ∷ κ ∷ ῶ ∷ []) "1Cor.7.40" ∷ word (δ ∷ ὲ ∷ []) "1Cor.7.40" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "1Cor.7.40" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.7.40" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.7.40" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.7.40" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.8.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.8.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.8.1" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ θ ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.8.1" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.8.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.8.1" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.8.1" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.8.1" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.8.1" ∷ word (ἡ ∷ []) "1Cor.8.1" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.8.1" ∷ word (φ ∷ υ ∷ σ ∷ ι ∷ ο ∷ ῖ ∷ []) "1Cor.8.1" ∷ word (ἡ ∷ []) "1Cor.8.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.8.1" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.8.1" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.8.1" ∷ word (ε ∷ ἴ ∷ []) "1Cor.8.2" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.8.2" ∷ word (δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.8.2" ∷ word (ἐ ∷ γ ∷ ν ∷ ω ∷ κ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.8.2" ∷ word (τ ∷ ι ∷ []) "1Cor.8.2" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "1Cor.8.2" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ []) "1Cor.8.2" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.8.2" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Cor.8.2" ∷ word (γ ∷ ν ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.8.2" ∷ word (ε ∷ ἰ ∷ []) "1Cor.8.3" ∷ word (δ ∷ έ ∷ []) "1Cor.8.3" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.8.3" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾷ ∷ []) "1Cor.8.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.8.3" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "1Cor.8.3" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.8.3" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.8.3" ∷ word (ὑ ∷ π ∷ []) "1Cor.8.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.8.3" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.8.4" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.8.4" ∷ word (β ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Cor.8.4" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.8.4" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.8.4" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ θ ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.8.4" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.8.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.8.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "1Cor.8.4" ∷ word (ε ∷ ἴ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.8.4" ∷ word (ἐ ∷ ν ∷ []) "1Cor.8.4" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "1Cor.8.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.8.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.8.4" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.8.4" ∷ word (ε ∷ ἰ ∷ []) "1Cor.8.4" ∷ word (μ ∷ ὴ ∷ []) "1Cor.8.4" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.8.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.8.5" ∷ word (ε ∷ ἴ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.8.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "1Cor.8.5" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.8.5" ∷ word (θ ∷ ε ∷ ο ∷ ὶ ∷ []) "1Cor.8.5" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.8.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.8.5" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "1Cor.8.5" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.8.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.8.5" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "1Cor.8.5" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.8.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "1Cor.8.5" ∷ word (θ ∷ ε ∷ ο ∷ ὶ ∷ []) "1Cor.8.5" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "1Cor.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ι ∷ []) "1Cor.8.5" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "1Cor.8.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.8.6" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.8.6" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.8.6" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.8.6" ∷ word (ὁ ∷ []) "1Cor.8.6" ∷ word (π ∷ α ∷ τ ∷ ή ∷ ρ ∷ []) "1Cor.8.6" ∷ word (ἐ ∷ ξ ∷ []) "1Cor.8.6" ∷ word (ο ∷ ὗ ∷ []) "1Cor.8.6" ∷ word (τ ∷ ὰ ∷ []) "1Cor.8.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.6" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.8.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.8.6" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.6" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.8.6" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.8.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.8.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.8.6" ∷ word (δ ∷ ι ∷ []) "1Cor.8.6" ∷ word (ο ∷ ὗ ∷ []) "1Cor.8.6" ∷ word (τ ∷ ὰ ∷ []) "1Cor.8.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.6" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.8.6" ∷ word (δ ∷ ι ∷ []) "1Cor.8.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.8.6" ∷ word (Ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.8.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.8.7" ∷ word (ἐ ∷ ν ∷ []) "1Cor.8.7" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.8.7" ∷ word (ἡ ∷ []) "1Cor.8.7" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.8.7" ∷ word (τ ∷ ι ∷ ν ∷ ὲ ∷ ς ∷ []) "1Cor.8.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.8.7" ∷ word (τ ∷ ῇ ∷ []) "1Cor.8.7" ∷ word (σ ∷ υ ∷ ν ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Cor.8.7" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Cor.8.7" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.8.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.8.7" ∷ word (ε ∷ ἰ ∷ δ ∷ ώ ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Cor.8.7" ∷ word (ὡ ∷ ς ∷ []) "1Cor.8.7" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.8.7" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.7" ∷ word (ἡ ∷ []) "1Cor.8.7" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.8.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.8.7" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ὴ ∷ ς ∷ []) "1Cor.8.7" ∷ word (ο ∷ ὖ ∷ σ ∷ α ∷ []) "1Cor.8.7" ∷ word (μ ∷ ο ∷ ∙λ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.8.7" ∷ word (β ∷ ρ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.8.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.8.8" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.8.8" ∷ word (ο ∷ ὐ ∷ []) "1Cor.8.8" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.8.8" ∷ word (τ ∷ ῷ ∷ []) "1Cor.8.8" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.8.8" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.8.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.8.8" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.8.8" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.8.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.8.8" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.8.8" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.8.8" ∷ word (μ ∷ ὴ ∷ []) "1Cor.8.8" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.8.8" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.8.8" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.8.9" ∷ word (δ ∷ ὲ ∷ []) "1Cor.8.9" ∷ word (μ ∷ ή ∷ []) "1Cor.8.9" ∷ word (π ∷ ω ∷ ς ∷ []) "1Cor.8.9" ∷ word (ἡ ∷ []) "1Cor.8.9" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ []) "1Cor.8.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.8.9" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "1Cor.8.9" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ ο ∷ μ ∷ μ ∷ α ∷ []) "1Cor.8.9" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.8.9" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.8.9" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ έ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.8.9" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.8.10" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.8.10" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.8.10" ∷ word (ἴ ∷ δ ∷ ῃ ∷ []) "1Cor.8.10" ∷ word (σ ∷ ὲ ∷ []) "1Cor.8.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.8.10" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "1Cor.8.10" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.8.10" ∷ word (ἐ ∷ ν ∷ []) "1Cor.8.10" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ε ∷ ί ∷ ῳ ∷ []) "1Cor.8.10" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ε ∷ ί ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.8.10" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.8.10" ∷ word (ἡ ∷ []) "1Cor.8.10" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.8.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.8.10" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.8.10" ∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.8.10" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.8.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.8.10" ∷ word (τ ∷ ὸ ∷ []) "1Cor.8.10" ∷ word (τ ∷ ὰ ∷ []) "1Cor.8.10" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ α ∷ []) "1Cor.8.10" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.8.10" ∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ ∙λ ∷ υ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.8.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.8.11" ∷ word (ὁ ∷ []) "1Cor.8.11" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ῶ ∷ ν ∷ []) "1Cor.8.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.8.11" ∷ word (τ ∷ ῇ ∷ []) "1Cor.8.11" ∷ word (σ ∷ ῇ ∷ []) "1Cor.8.11" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.8.11" ∷ word (ὁ ∷ []) "1Cor.8.11" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "1Cor.8.11" ∷ word (δ ∷ ι ∷ []) "1Cor.8.11" ∷ word (ὃ ∷ ν ∷ []) "1Cor.8.11" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.8.11" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "1Cor.8.11" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.8.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.8.12" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.8.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.8.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.8.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.8.12" ∷ word (τ ∷ ύ ∷ π ∷ τ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.8.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.8.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.8.12" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.8.12" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.8.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.8.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.8.12" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.8.12" ∷ word (δ ∷ ι ∷ ό ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.8.13" ∷ word (ε ∷ ἰ ∷ []) "1Cor.8.13" ∷ word (β ∷ ρ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.8.13" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "1Cor.8.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.8.13" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ν ∷ []) "1Cor.8.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.8.13" ∷ word (ο ∷ ὐ ∷ []) "1Cor.8.13" ∷ word (μ ∷ ὴ ∷ []) "1Cor.8.13" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ []) "1Cor.8.13" ∷ word (κ ∷ ρ ∷ έ ∷ α ∷ []) "1Cor.8.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.8.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.8.13" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "1Cor.8.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.8.13" ∷ word (μ ∷ ὴ ∷ []) "1Cor.8.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.8.13" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ν ∷ []) "1Cor.8.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.8.13" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ σ ∷ ω ∷ []) "1Cor.8.13" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.1" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.9.1" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.9.1" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.1" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.9.1" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.9.1" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.9.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.9.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.9.1" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.9.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.9.1" ∷ word (ἑ ∷ ό ∷ ρ ∷ α ∷ κ ∷ α ∷ []) "1Cor.9.1" ∷ word (ο ∷ ὐ ∷ []) "1Cor.9.1" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.1" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.9.1" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.9.1" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.1" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.9.1" ∷ word (ἐ ∷ ν ∷ []) "1Cor.9.1" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.9.1" ∷ word (ε ∷ ἰ ∷ []) "1Cor.9.2" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.9.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.2" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.9.2" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.9.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "1Cor.9.2" ∷ word (γ ∷ ε ∷ []) "1Cor.9.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.9.2" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.9.2" ∷ word (ἡ ∷ []) "1Cor.9.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.9.2" ∷ word (σ ∷ φ ∷ ρ ∷ α ∷ γ ∷ ί ∷ ς ∷ []) "1Cor.9.2" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.9.2" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.9.2" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "1Cor.9.2" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.2" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.9.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.9.2" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.9.2" ∷ word (Ἡ ∷ []) "1Cor.9.3" ∷ word (ἐ ∷ μ ∷ ὴ ∷ []) "1Cor.9.3" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ []) "1Cor.9.3" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.3" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "1Cor.9.3" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.9.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.9.3" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "1Cor.9.3" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.4" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.4" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.9.4" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.4" ∷ word (π ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.9.4" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.5" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.5" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.9.5" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὴ ∷ ν ∷ []) "1Cor.9.5" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.9.5" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ά ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.9.5" ∷ word (ὡ ∷ ς ∷ []) "1Cor.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.5" ∷ word (ο ∷ ἱ ∷ []) "1Cor.9.5" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "1Cor.9.5" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.5" ∷ word (ο ∷ ἱ ∷ []) "1Cor.9.5" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "1Cor.9.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.5" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.5" ∷ word (Κ ∷ η ∷ φ ∷ ᾶ ∷ ς ∷ []) "1Cor.9.5" ∷ word (ἢ ∷ []) "1Cor.9.6" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.9.6" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.9.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.6" ∷ word (Β ∷ α ∷ ρ ∷ ν ∷ α ∷ β ∷ ᾶ ∷ ς ∷ []) "1Cor.9.6" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.6" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.6" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.9.6" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.6" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.9.6" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.9.7" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.9.7" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.9.7" ∷ word (ὀ ∷ ψ ∷ ω ∷ ν ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.9.7" ∷ word (π ∷ ο ∷ τ ∷ έ ∷ []) "1Cor.9.7" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.9.7" ∷ word (φ ∷ υ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ []) "1Cor.9.7" ∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ []) "1Cor.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.9.7" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "1Cor.9.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.7" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "1Cor.9.7" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.9.7" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.9.7" ∷ word (π ∷ ο ∷ ί ∷ μ ∷ ν ∷ η ∷ ν ∷ []) "1Cor.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.7" ∷ word (ἐ ∷ κ ∷ []) "1Cor.9.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.7" ∷ word (γ ∷ ά ∷ ∙λ ∷ α ∷ κ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.9.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.9.7" ∷ word (π ∷ ο ∷ ί ∷ μ ∷ ν ∷ η ∷ ς ∷ []) "1Cor.9.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.7" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "1Cor.9.7" ∷ word (Μ ∷ ὴ ∷ []) "1Cor.9.8" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.9.8" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Cor.9.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.9.8" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.9.8" ∷ word (ἢ ∷ []) "1Cor.9.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.8" ∷ word (ὁ ∷ []) "1Cor.9.8" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.9.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.9.8" ∷ word (ο ∷ ὐ ∷ []) "1Cor.9.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.9.8" ∷ word (ἐ ∷ ν ∷ []) "1Cor.9.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.9.9" ∷ word (τ ∷ ῷ ∷ []) "1Cor.9.9" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "1Cor.9.9" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "1Cor.9.9" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.9.9" ∷ word (Ο ∷ ὐ ∷ []) "1Cor.9.9" ∷ word (κ ∷ η ∷ μ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.9.9" ∷ word (β ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.9.9" ∷ word (ἀ ∷ ∙λ ∷ ο ∷ ῶ ∷ ν ∷ τ ∷ α ∷ []) "1Cor.9.9" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.9.9" ∷ word (β ∷ ο ∷ ῶ ∷ ν ∷ []) "1Cor.9.9" ∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.9.9" ∷ word (τ ∷ ῷ ∷ []) "1Cor.9.9" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.9.9" ∷ word (ἢ ∷ []) "1Cor.9.10" ∷ word (δ ∷ ι ∷ []) "1Cor.9.10" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.9.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.9.10" ∷ word (δ ∷ ι ∷ []) "1Cor.9.10" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.9.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.9.10" ∷ word (ἐ ∷ γ ∷ ρ ∷ ά ∷ φ ∷ η ∷ []) "1Cor.9.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.9.10" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.9.10" ∷ word (ἐ ∷ π ∷ []) "1Cor.9.10" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ι ∷ []) "1Cor.9.10" ∷ word (ὁ ∷ []) "1Cor.9.10" ∷ word (ἀ ∷ ρ ∷ ο ∷ τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "1Cor.9.10" ∷ word (ἀ ∷ ρ ∷ ο ∷ τ ∷ ρ ∷ ι ∷ ᾶ ∷ ν ∷ []) "1Cor.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.10" ∷ word (ὁ ∷ []) "1Cor.9.10" ∷ word (ἀ ∷ ∙λ ∷ ο ∷ ῶ ∷ ν ∷ []) "1Cor.9.10" ∷ word (ἐ ∷ π ∷ []) "1Cor.9.10" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ι ∷ []) "1Cor.9.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.10" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.9.10" ∷ word (ε ∷ ἰ ∷ []) "1Cor.9.11" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.9.11" ∷ word (τ ∷ ὰ ∷ []) "1Cor.9.11" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὰ ∷ []) "1Cor.9.11" ∷ word (ἐ ∷ σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.11" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "1Cor.9.11" ∷ word (ε ∷ ἰ ∷ []) "1Cor.9.11" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.9.11" ∷ word (τ ∷ ὰ ∷ []) "1Cor.9.11" ∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ι ∷ κ ∷ ὰ ∷ []) "1Cor.9.11" ∷ word (θ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.11" ∷ word (ε ∷ ἰ ∷ []) "1Cor.9.12" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.9.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.9.12" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.9.12" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.9.12" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.12" ∷ word (ο ∷ ὐ ∷ []) "1Cor.9.12" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.9.12" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.12" ∷ word (Ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.9.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.12" ∷ word (ἐ ∷ χ ∷ ρ ∷ η ∷ σ ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.9.12" ∷ word (τ ∷ ῇ ∷ []) "1Cor.9.12" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.9.12" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "1Cor.9.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.9.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.9.12" ∷ word (σ ∷ τ ∷ έ ∷ γ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.12" ∷ word (μ ∷ ή ∷ []) "1Cor.9.12" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "1Cor.9.12" ∷ word (ἐ ∷ γ ∷ κ ∷ ο ∷ π ∷ ὴ ∷ ν ∷ []) "1Cor.9.12" ∷ word (δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.9.12" ∷ word (τ ∷ ῷ ∷ []) "1Cor.9.12" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "1Cor.9.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.13" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.9.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.9.13" ∷ word (ο ∷ ἱ ∷ []) "1Cor.9.13" ∷ word (τ ∷ ὰ ∷ []) "1Cor.9.13" ∷ word (ἱ ∷ ε ∷ ρ ∷ ὰ ∷ []) "1Cor.9.13" ∷ word (ἐ ∷ ρ ∷ γ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.9.13" ∷ word (τ ∷ ὰ ∷ []) "1Cor.9.13" ∷ word (ἐ ∷ κ ∷ []) "1Cor.9.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.13" ∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "1Cor.9.13" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.13" ∷ word (ο ∷ ἱ ∷ []) "1Cor.9.13" ∷ word (τ ∷ ῷ ∷ []) "1Cor.9.13" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.9.13" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ δ ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.9.13" ∷ word (τ ∷ ῷ ∷ []) "1Cor.9.13" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.9.13" ∷ word (σ ∷ υ ∷ μ ∷ μ ∷ ε ∷ ρ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.9.13" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.14" ∷ word (ὁ ∷ []) "1Cor.9.14" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.9.14" ∷ word (δ ∷ ι ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "1Cor.9.14" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.14" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.14" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.9.14" ∷ word (κ ∷ α ∷ τ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.14" ∷ word (ἐ ∷ κ ∷ []) "1Cor.9.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.14" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.9.14" ∷ word (ζ ∷ ῆ ∷ ν ∷ []) "1Cor.9.14" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.9.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.15" ∷ word (ο ∷ ὐ ∷ []) "1Cor.9.15" ∷ word (κ ∷ έ ∷ χ ∷ ρ ∷ η ∷ μ ∷ α ∷ ι ∷ []) "1Cor.9.15" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "1Cor.9.15" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.9.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.15" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ α ∷ []) "1Cor.9.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.15" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.9.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.15" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.15" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.9.15" ∷ word (ἐ ∷ ν ∷ []) "1Cor.9.15" ∷ word (ἐ ∷ μ ∷ ο ∷ ί ∷ []) "1Cor.9.15" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Cor.9.15" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.9.15" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.9.15" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.9.15" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.9.15" ∷ word (ἤ ∷ []) "1Cor.9.15" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.15" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ μ ∷ ά ∷ []) "1Cor.9.15" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.9.15" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.9.15" ∷ word (κ ∷ ε ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.9.15" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.9.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.9.16" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ζ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.9.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.16" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.9.16" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.9.16" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ μ ∷ α ∷ []) "1Cor.9.16" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ κ ∷ η ∷ []) "1Cor.9.16" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.9.16" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.9.16" ∷ word (ἐ ∷ π ∷ ί ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "1Cor.9.16" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "1Cor.9.16" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.9.16" ∷ word (μ ∷ ο ∷ ί ∷ []) "1Cor.9.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.9.16" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.9.16" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.16" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ σ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.9.16" ∷ word (ε ∷ ἰ ∷ []) "1Cor.9.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.9.17" ∷ word (ἑ ∷ κ ∷ ὼ ∷ ν ∷ []) "1Cor.9.17" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.9.17" ∷ word (π ∷ ρ ∷ ά ∷ σ ∷ σ ∷ ω ∷ []) "1Cor.9.17" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "1Cor.9.17" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.9.17" ∷ word (ε ∷ ἰ ∷ []) "1Cor.9.17" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.17" ∷ word (ἄ ∷ κ ∷ ω ∷ ν ∷ []) "1Cor.9.17" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.9.17" ∷ word (π ∷ ε ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ μ ∷ α ∷ ι ∷ []) "1Cor.9.17" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.9.18" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.9.18" ∷ word (μ ∷ ο ∷ ύ ∷ []) "1Cor.9.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.9.18" ∷ word (ὁ ∷ []) "1Cor.9.18" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ό ∷ ς ∷ []) "1Cor.9.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.18" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.9.18" ∷ word (ἀ ∷ δ ∷ ά ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.9.18" ∷ word (θ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.9.18" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.18" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.9.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.9.18" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.18" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.18" ∷ word (κ ∷ α ∷ τ ∷ α ∷ χ ∷ ρ ∷ ή ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.9.18" ∷ word (τ ∷ ῇ ∷ []) "1Cor.9.18" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.9.18" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.9.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.9.18" ∷ word (τ ∷ ῷ ∷ []) "1Cor.9.18" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "1Cor.9.18" ∷ word (Ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.9.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.9.19" ∷ word (ὢ ∷ ν ∷ []) "1Cor.9.19" ∷ word (ἐ ∷ κ ∷ []) "1Cor.9.19" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.9.19" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.19" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.9.19" ∷ word (ἐ ∷ δ ∷ ο ∷ ύ ∷ ∙λ ∷ ω ∷ σ ∷ α ∷ []) "1Cor.9.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.9.19" ∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ α ∷ ς ∷ []) "1Cor.9.19" ∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.9.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.20" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "1Cor.9.20" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.20" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.9.20" ∷ word (ὡ ∷ ς ∷ []) "1Cor.9.20" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "1Cor.9.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.20" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.9.20" ∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.9.20" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.20" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.9.20" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.9.20" ∷ word (ὡ ∷ ς ∷ []) "1Cor.9.20" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.9.20" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.9.20" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.20" ∷ word (ὢ ∷ ν ∷ []) "1Cor.9.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.9.20" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.9.20" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.9.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.9.20" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.9.20" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.9.20" ∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.9.20" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.21" ∷ word (ἀ ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.9.21" ∷ word (ὡ ∷ ς ∷ []) "1Cor.9.21" ∷ word (ἄ ∷ ν ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.9.21" ∷ word (μ ∷ ὴ ∷ []) "1Cor.9.21" ∷ word (ὢ ∷ ν ∷ []) "1Cor.9.21" ∷ word (ἄ ∷ ν ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.9.21" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.9.21" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.9.21" ∷ word (ἔ ∷ ν ∷ ν ∷ ο ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.9.21" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.21" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.21" ∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ω ∷ []) "1Cor.9.21" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.9.21" ∷ word (ἀ ∷ ν ∷ ό ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.9.21" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "1Cor.9.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.22" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ έ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.22" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ή ∷ ς ∷ []) "1Cor.9.22" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.9.22" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.22" ∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.9.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.9.22" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.22" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ α ∷ []) "1Cor.9.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.9.22" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.22" ∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ ς ∷ []) "1Cor.9.22" ∷ word (σ ∷ ώ ∷ σ ∷ ω ∷ []) "1Cor.9.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.9.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.23" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "1Cor.9.23" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.9.23" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.23" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.9.23" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.23" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ὸ ∷ ς ∷ []) "1Cor.9.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.9.23" ∷ word (γ ∷ έ ∷ ν ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.9.23" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.24" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.9.24" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.9.24" ∷ word (ο ∷ ἱ ∷ []) "1Cor.9.24" ∷ word (ἐ ∷ ν ∷ []) "1Cor.9.24" ∷ word (σ ∷ τ ∷ α ∷ δ ∷ ί ∷ ῳ ∷ []) "1Cor.9.24" ∷ word (τ ∷ ρ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.9.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.9.24" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.9.24" ∷ word (τ ∷ ρ ∷ έ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.24" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.9.24" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.24" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.9.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.24" ∷ word (β ∷ ρ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "1Cor.9.24" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.24" ∷ word (τ ∷ ρ ∷ έ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.9.24" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.24" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ά ∷ β ∷ η ∷ τ ∷ ε ∷ []) "1Cor.9.24" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "1Cor.9.25" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.25" ∷ word (ὁ ∷ []) "1Cor.9.25" ∷ word (ἀ ∷ γ ∷ ω ∷ ν ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.9.25" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.9.25" ∷ word (ἐ ∷ γ ∷ κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.9.25" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.9.25" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.9.25" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.9.25" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.9.25" ∷ word (φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.9.25" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.9.25" ∷ word (∙λ ∷ ά ∷ β ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.9.25" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.9.25" ∷ word (δ ∷ ὲ ∷ []) "1Cor.9.25" ∷ word (ἄ ∷ φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.9.25" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.9.26" ∷ word (τ ∷ ο ∷ ί ∷ ν ∷ υ ∷ ν ∷ []) "1Cor.9.26" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.26" ∷ word (τ ∷ ρ ∷ έ ∷ χ ∷ ω ∷ []) "1Cor.9.26" ∷ word (ὡ ∷ ς ∷ []) "1Cor.9.26" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.26" ∷ word (ἀ ∷ δ ∷ ή ∷ ∙λ ∷ ω ∷ ς ∷ []) "1Cor.9.26" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.9.26" ∷ word (π ∷ υ ∷ κ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ []) "1Cor.9.26" ∷ word (ὡ ∷ ς ∷ []) "1Cor.9.26" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.9.26" ∷ word (ἀ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.9.26" ∷ word (δ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "1Cor.9.26" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.9.27" ∷ word (ὑ ∷ π ∷ ω ∷ π ∷ ι ∷ ά ∷ ζ ∷ ω ∷ []) "1Cor.9.27" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.9.27" ∷ word (τ ∷ ὸ ∷ []) "1Cor.9.27" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.9.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.9.27" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ α ∷ γ ∷ ω ∷ γ ∷ ῶ ∷ []) "1Cor.9.27" ∷ word (μ ∷ ή ∷ []) "1Cor.9.27" ∷ word (π ∷ ω ∷ ς ∷ []) "1Cor.9.27" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.9.27" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ ξ ∷ α ∷ ς ∷ []) "1Cor.9.27" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.9.27" ∷ word (ἀ ∷ δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.9.27" ∷ word (γ ∷ έ ∷ ν ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.9.27" ∷ word (Ο ∷ ὐ ∷ []) "1Cor.10.1" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.10.1" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.10.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.10.1" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.10.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.10.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.10.1" ∷ word (ο ∷ ἱ ∷ []) "1Cor.10.1" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "1Cor.10.1" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.10.1" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.1" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.10.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.1" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ν ∷ []) "1Cor.10.1" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.1" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.1" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.10.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.10.1" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "1Cor.10.1" ∷ word (δ ∷ ι ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "1Cor.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.10.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.10.2" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ν ∷ []) "1Cor.10.2" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "1Cor.10.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.10.2" ∷ word (τ ∷ ῇ ∷ []) "1Cor.10.2" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "1Cor.10.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.2" ∷ word (ἐ ∷ ν ∷ []) "1Cor.10.2" ∷ word (τ ∷ ῇ ∷ []) "1Cor.10.2" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.10.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.3" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.10.3" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "1Cor.10.3" ∷ word (β ∷ ρ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.10.3" ∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.10.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.4" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.10.4" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "1Cor.10.4" ∷ word (ἔ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.10.4" ∷ word (π ∷ ό ∷ μ ∷ α ∷ []) "1Cor.10.4" ∷ word (ἔ ∷ π ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.10.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.10.4" ∷ word (ἐ ∷ κ ∷ []) "1Cor.10.4" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ῆ ∷ ς ∷ []) "1Cor.10.4" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "1Cor.10.4" ∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ς ∷ []) "1Cor.10.4" ∷ word (ἡ ∷ []) "1Cor.10.4" ∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ []) "1Cor.10.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.4" ∷ word (ἦ ∷ ν ∷ []) "1Cor.10.4" ∷ word (ὁ ∷ []) "1Cor.10.4" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.10.4" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.10.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.10.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.10.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.10.5" ∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.5" ∷ word (η ∷ ὐ ∷ δ ∷ ό ∷ κ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.10.5" ∷ word (ὁ ∷ []) "1Cor.10.5" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.10.5" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ τ ∷ ρ ∷ ώ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.10.5" ∷ word (ἐ ∷ ν ∷ []) "1Cor.10.5" ∷ word (τ ∷ ῇ ∷ []) "1Cor.10.5" ∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "1Cor.10.5" ∷ word (Τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.10.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.6" ∷ word (τ ∷ ύ ∷ π ∷ ο ∷ ι ∷ []) "1Cor.10.6" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.10.6" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.6" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.10.6" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.6" ∷ word (μ ∷ ὴ ∷ []) "1Cor.10.6" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.10.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.10.6" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "1Cor.10.6" ∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ν ∷ []) "1Cor.10.6" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.10.6" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.10.6" ∷ word (ἐ ∷ π ∷ ε ∷ θ ∷ ύ ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.6" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Cor.10.7" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ ά ∷ τ ∷ ρ ∷ α ∷ ι ∷ []) "1Cor.10.7" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.10.7" ∷ word (κ ∷ α ∷ θ ∷ ώ ∷ ς ∷ []) "1Cor.10.7" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.10.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.7" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.10.7" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.10.7" ∷ word (Ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.10.7" ∷ word (ὁ ∷ []) "1Cor.10.7" ∷ word (∙λ ∷ α ∷ ὸ ∷ ς ∷ []) "1Cor.10.7" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.10.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.7" ∷ word (π ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.10.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.7" ∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.7" ∷ word (π ∷ α ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.10.7" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Cor.10.8" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ύ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.8" ∷ word (κ ∷ α ∷ θ ∷ ώ ∷ ς ∷ []) "1Cor.10.8" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.10.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.8" ∷ word (ἐ ∷ π ∷ ό ∷ ρ ∷ ν ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.8" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.8" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "1Cor.10.8" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "1Cor.10.8" ∷ word (ε ∷ ἴ ∷ κ ∷ ο ∷ σ ∷ ι ∷ []) "1Cor.10.8" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.10.8" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ δ ∷ ε ∷ ς ∷ []) "1Cor.10.8" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Cor.10.9" ∷ word (ἐ ∷ κ ∷ π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.10.9" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.10.9" ∷ word (κ ∷ α ∷ θ ∷ ώ ∷ ς ∷ []) "1Cor.10.9" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.10.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.9" ∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ρ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.9" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.10.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.9" ∷ word (ὄ ∷ φ ∷ ε ∷ ω ∷ ν ∷ []) "1Cor.10.9" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ∙λ ∷ υ ∷ ν ∷ τ ∷ ο ∷ []) "1Cor.10.9" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Cor.10.10" ∷ word (γ ∷ ο ∷ γ ∷ γ ∷ ύ ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.10" ∷ word (κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.10.10" ∷ word (τ ∷ ι ∷ ν ∷ ὲ ∷ ς ∷ []) "1Cor.10.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.10" ∷ word (ἐ ∷ γ ∷ ό ∷ γ ∷ γ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.10.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.10" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "1Cor.10.10" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.10.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.10" ∷ word (ὀ ∷ ∙λ ∷ ο ∷ θ ∷ ρ ∷ ε ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.10" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.10.11" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.11" ∷ word (τ ∷ υ ∷ π ∷ ι ∷ κ ∷ ῶ ∷ ς ∷ []) "1Cor.10.11" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ β ∷ α ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "1Cor.10.11" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.10.11" ∷ word (ἐ ∷ γ ∷ ρ ∷ ά ∷ φ ∷ η ∷ []) "1Cor.10.11" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.11" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.10.11" ∷ word (ν ∷ ο ∷ υ ∷ θ ∷ ε ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.10.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.10.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.10.11" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "1Cor.10.11" ∷ word (τ ∷ ὰ ∷ []) "1Cor.10.11" ∷ word (τ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.10.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.11" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.10.11" ∷ word (κ ∷ α ∷ τ ∷ ή ∷ ν ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "1Cor.10.11" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.10.12" ∷ word (ὁ ∷ []) "1Cor.10.12" ∷ word (δ ∷ ο ∷ κ ∷ ῶ ∷ ν ∷ []) "1Cor.10.12" ∷ word (ἑ ∷ σ ∷ τ ∷ ά ∷ ν ∷ α ∷ ι ∷ []) "1Cor.10.12" ∷ word (β ∷ ∙λ ∷ ε ∷ π ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.10.12" ∷ word (μ ∷ ὴ ∷ []) "1Cor.10.12" ∷ word (π ∷ έ ∷ σ ∷ ῃ ∷ []) "1Cor.10.12" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "1Cor.10.13" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.10.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.10.13" ∷ word (ε ∷ ἴ ∷ ∙λ ∷ η ∷ φ ∷ ε ∷ ν ∷ []) "1Cor.10.13" ∷ word (ε ∷ ἰ ∷ []) "1Cor.10.13" ∷ word (μ ∷ ὴ ∷ []) "1Cor.10.13" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.10.13" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.10.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.13" ∷ word (ὁ ∷ []) "1Cor.10.13" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.10.13" ∷ word (ὃ ∷ ς ∷ []) "1Cor.10.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.10.13" ∷ word (ἐ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.10.13" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.10.13" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.10.13" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.10.13" ∷ word (ὃ ∷ []) "1Cor.10.13" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.10.13" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.10.13" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.10.13" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.10.13" ∷ word (τ ∷ ῷ ∷ []) "1Cor.10.13" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ῷ ∷ []) "1Cor.10.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.13" ∷ word (ἔ ∷ κ ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.13" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.10.13" ∷ word (ὑ ∷ π ∷ ε ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.10.13" ∷ word (Δ ∷ ι ∷ ό ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.10.14" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "1Cor.10.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.10.14" ∷ word (φ ∷ ε ∷ ύ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.14" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.10.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.10.14" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ο ∷ ∙λ ∷ α ∷ τ ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.10.14" ∷ word (ὡ ∷ ς ∷ []) "1Cor.10.15" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ί ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.10.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.10.15" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "1Cor.10.15" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.10.15" ∷ word (ὅ ∷ []) "1Cor.10.15" ∷ word (φ ∷ η ∷ μ ∷ ι ∷ []) "1Cor.10.15" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.16" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.10.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.10.16" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.10.16" ∷ word (ὃ ∷ []) "1Cor.10.16" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.16" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.10.16" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ []) "1Cor.10.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Cor.10.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.16" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.10.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.10.16" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.10.16" ∷ word (ὃ ∷ ν ∷ []) "1Cor.10.16" ∷ word (κ ∷ ∙λ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.16" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.10.16" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ί ∷ α ∷ []) "1Cor.10.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.16" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.10.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.10.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.10.17" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.10.17" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.10.17" ∷ word (ἓ ∷ ν ∷ []) "1Cor.10.17" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.10.17" ∷ word (ο ∷ ἱ ∷ []) "1Cor.10.17" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "1Cor.10.17" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.17" ∷ word (ο ∷ ἱ ∷ []) "1Cor.10.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.10.17" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.17" ∷ word (ἐ ∷ κ ∷ []) "1Cor.10.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.17" ∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "1Cor.10.17" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.10.17" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.17" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.10.18" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "1Cor.10.18" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.10.18" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "1Cor.10.18" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "1Cor.10.18" ∷ word (ο ∷ ἱ ∷ []) "1Cor.10.18" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.10.18" ∷ word (θ ∷ υ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.10.18" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ο ∷ ὶ ∷ []) "1Cor.10.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.18" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.10.18" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.10.18" ∷ word (τ ∷ ί ∷ []) "1Cor.10.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.10.19" ∷ word (φ ∷ η ∷ μ ∷ ι ∷ []) "1Cor.10.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.10.19" ∷ word (ε ∷ ἰ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ θ ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.10.19" ∷ word (τ ∷ ί ∷ []) "1Cor.10.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.10.19" ∷ word (ἢ ∷ []) "1Cor.10.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.10.19" ∷ word (ε ∷ ἴ ∷ δ ∷ ω ∷ ∙λ ∷ ό ∷ ν ∷ []) "1Cor.10.19" ∷ word (τ ∷ ί ∷ []) "1Cor.10.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.10.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.10.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.10.20" ∷ word (ἃ ∷ []) "1Cor.10.20" ∷ word (θ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.20" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.10.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.20" ∷ word (ο ∷ ὐ ∷ []) "1Cor.10.20" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.10.20" ∷ word (θ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.20" ∷ word (ο ∷ ὐ ∷ []) "1Cor.10.20" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.10.20" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.20" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.10.20" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.10.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.20" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.10.20" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.10.20" ∷ word (ο ∷ ὐ ∷ []) "1Cor.10.21" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.10.21" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.10.21" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.10.21" ∷ word (π ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.10.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.21" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.10.21" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.10.21" ∷ word (ο ∷ ὐ ∷ []) "1Cor.10.21" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.10.21" ∷ word (τ ∷ ρ ∷ α ∷ π ∷ έ ∷ ζ ∷ η ∷ ς ∷ []) "1Cor.10.21" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.10.21" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.10.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.21" ∷ word (τ ∷ ρ ∷ α ∷ π ∷ έ ∷ ζ ∷ η ∷ ς ∷ []) "1Cor.10.21" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.10.21" ∷ word (ἢ ∷ []) "1Cor.10.22" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ζ ∷ η ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.22" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.10.22" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.10.22" ∷ word (μ ∷ ὴ ∷ []) "1Cor.10.22" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "1Cor.10.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.22" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.10.22" ∷ word (Π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.23" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.10.23" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.10.23" ∷ word (ο ∷ ὐ ∷ []) "1Cor.10.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.23" ∷ word (σ ∷ υ ∷ μ ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.10.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.23" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.10.23" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.10.23" ∷ word (ο ∷ ὐ ∷ []) "1Cor.10.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.23" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.10.23" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.10.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.24" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.24" ∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "1Cor.10.24" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.10.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.24" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "1Cor.10.24" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "1Cor.10.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.25" ∷ word (ἐ ∷ ν ∷ []) "1Cor.10.25" ∷ word (μ ∷ α ∷ κ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.10.25" ∷ word (π ∷ ω ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.10.25" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.25" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "1Cor.10.25" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.25" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.10.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.25" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.26" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.10.26" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.10.26" ∷ word (ἡ ∷ []) "1Cor.10.26" ∷ word (γ ∷ ῆ ∷ []) "1Cor.10.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.26" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.26" ∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ μ ∷ α ∷ []) "1Cor.10.26" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Cor.10.26" ∷ word (ε ∷ ἴ ∷ []) "1Cor.10.27" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.10.27" ∷ word (κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Cor.10.27" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.10.27" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.27" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.10.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.27" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.27" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.10.27" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "1Cor.10.27" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.27" ∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ έ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.10.27" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.10.27" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.27" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "1Cor.10.27" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.10.27" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.10.27" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.27" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.27" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.10.28" ∷ word (δ ∷ έ ∷ []) "1Cor.10.28" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.10.28" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.10.28" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "1Cor.10.28" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.10.28" ∷ word (ἱ ∷ ε ∷ ρ ∷ ό ∷ θ ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.10.28" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.10.28" ∷ word (μ ∷ ὴ ∷ []) "1Cor.10.28" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.28" ∷ word (δ ∷ ι ∷ []) "1Cor.10.28" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.10.28" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.10.28" ∷ word (μ ∷ η ∷ ν ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.28" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.28" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.29" ∷ word (δ ∷ ὲ ∷ []) "1Cor.10.29" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.10.29" ∷ word (ο ∷ ὐ ∷ χ ∷ ὶ ∷ []) "1Cor.10.29" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.29" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.29" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.10.29" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.10.29" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.29" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "1Cor.10.29" ∷ word (ἱ ∷ ν ∷ α ∷ τ ∷ ί ∷ []) "1Cor.10.29" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.10.29" ∷ word (ἡ ∷ []) "1Cor.10.29" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ρ ∷ ί ∷ α ∷ []) "1Cor.10.29" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.10.29" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.10.29" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.10.29" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ ς ∷ []) "1Cor.10.29" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Cor.10.29" ∷ word (ε ∷ ἰ ∷ []) "1Cor.10.30" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.10.30" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "1Cor.10.30" ∷ word (μ ∷ ε ∷ τ ∷ έ ∷ χ ∷ ω ∷ []) "1Cor.10.30" ∷ word (τ ∷ ί ∷ []) "1Cor.10.30" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ῦ ∷ μ ∷ α ∷ ι ∷ []) "1Cor.10.30" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.10.30" ∷ word (ο ∷ ὗ ∷ []) "1Cor.10.30" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.10.30" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ []) "1Cor.10.30" ∷ word (Ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.10.31" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (π ∷ ί ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (τ ∷ ι ∷ []) "1Cor.10.31" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.31" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.10.31" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ ν ∷ []) "1Cor.10.31" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.10.31" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.10.31" ∷ word (ἀ ∷ π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ ο ∷ π ∷ ο ∷ ι ∷ []) "1Cor.10.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.32" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.10.32" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.10.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.32" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.10.32" ∷ word (τ ∷ ῇ ∷ []) "1Cor.10.32" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.10.32" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.32" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.10.32" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.10.33" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "1Cor.10.33" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.10.33" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.33" ∷ word (ἀ ∷ ρ ∷ έ ∷ σ ∷ κ ∷ ω ∷ []) "1Cor.10.33" ∷ word (μ ∷ ὴ ∷ []) "1Cor.10.33" ∷ word (ζ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.33" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.33" ∷ word (ἐ ∷ μ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.10.33" ∷ word (σ ∷ ύ ∷ μ ∷ φ ∷ ο ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.10.33" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.10.33" ∷ word (τ ∷ ὸ ∷ []) "1Cor.10.33" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.10.33" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.10.33" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.10.33" ∷ word (σ ∷ ω ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.10.33" ∷ word (μ ∷ ι ∷ μ ∷ η ∷ τ ∷ α ∷ ί ∷ []) "1Cor.11.1" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.11.1" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.11.1" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.11.1" ∷ word (κ ∷ ἀ ∷ γ ∷ ὼ ∷ []) "1Cor.11.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.1" ∷ word (Ἐ ∷ π ∷ α ∷ ι ∷ ν ∷ ῶ ∷ []) "1Cor.11.2" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.2" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.11.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.11.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.11.2" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.11.2" ∷ word (μ ∷ έ ∷ μ ∷ ν ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.2" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.11.2" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "1Cor.11.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.2" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.11.2" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ό ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.11.2" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.11.2" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.11.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.3" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.11.3" ∷ word (ε ∷ ἰ ∷ δ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.11.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.11.3" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.11.3" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.11.3" ∷ word (ἡ ∷ []) "1Cor.11.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "1Cor.11.3" ∷ word (ὁ ∷ []) "1Cor.11.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.11.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "1Cor.11.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.3" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Cor.11.3" ∷ word (ὁ ∷ []) "1Cor.11.3" ∷ word (ἀ ∷ ν ∷ ή ∷ ρ ∷ []) "1Cor.11.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "1Cor.11.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.3" ∷ word (ὁ ∷ []) "1Cor.11.3" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.11.3" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "1Cor.11.4" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.11.4" ∷ word (ἢ ∷ []) "1Cor.11.4" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.11.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.11.4" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "1Cor.11.4" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "1Cor.11.4" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.11.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.11.4" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Cor.11.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.4" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "1Cor.11.5" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.5" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.5" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "1Cor.11.5" ∷ word (ἢ ∷ []) "1Cor.11.5" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "1Cor.11.5" ∷ word (ἀ ∷ κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ῳ ∷ []) "1Cor.11.5" ∷ word (τ ∷ ῇ ∷ []) "1Cor.11.5" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῇ ∷ []) "1Cor.11.5" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.11.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.11.5" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Cor.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Cor.11.5" ∷ word (ἓ ∷ ν ∷ []) "1Cor.11.5" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.11.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.5" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.11.5" ∷ word (τ ∷ ῇ ∷ []) "1Cor.11.5" ∷ word (ἐ ∷ ξ ∷ υ ∷ ρ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῃ ∷ []) "1Cor.11.5" ∷ word (ε ∷ ἰ ∷ []) "1Cor.11.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.6" ∷ word (ο ∷ ὐ ∷ []) "1Cor.11.6" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.11.6" ∷ word (γ ∷ υ ∷ ν ∷ ή ∷ []) "1Cor.11.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.6" ∷ word (κ ∷ ε ∷ ι ∷ ρ ∷ ά ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.11.6" ∷ word (ε ∷ ἰ ∷ []) "1Cor.11.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.6" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Cor.11.6" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὶ ∷ []) "1Cor.11.6" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.6" ∷ word (κ ∷ ε ∷ ί ∷ ρ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.11.6" ∷ word (ἢ ∷ []) "1Cor.11.6" ∷ word (ξ ∷ υ ∷ ρ ∷ ᾶ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.11.6" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ π ∷ τ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.11.6" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.7" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.11.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.7" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.11.7" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.11.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.11.7" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ή ∷ ν ∷ []) "1Cor.11.7" ∷ word (ε ∷ ἰ ∷ κ ∷ ὼ ∷ ν ∷ []) "1Cor.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.11.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.11.7" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ω ∷ ν ∷ []) "1Cor.11.7" ∷ word (ἡ ∷ []) "1Cor.11.7" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.7" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.11.7" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ό ∷ ς ∷ []) "1Cor.11.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.7" ∷ word (ο ∷ ὐ ∷ []) "1Cor.11.8" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.11.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.8" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.8" ∷ word (ἐ ∷ κ ∷ []) "1Cor.11.8" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.11.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.11.8" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.8" ∷ word (ἐ ∷ ξ ∷ []) "1Cor.11.8" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ό ∷ ς ∷ []) "1Cor.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.9" ∷ word (ἐ ∷ κ ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "1Cor.11.9" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.11.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.11.9" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.11.9" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.11.9" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.11.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.11.9" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Cor.11.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.11.10" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.11.10" ∷ word (ὀ ∷ φ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Cor.11.10" ∷ word (ἡ ∷ []) "1Cor.11.10" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.10" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.11.10" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.11.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.11.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.11.10" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "1Cor.11.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.11.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.11.10" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.11.10" ∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Cor.11.11" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.11.11" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.11" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "1Cor.11.11" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.11.11" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "1Cor.11.11" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.11" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "1Cor.11.11" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Cor.11.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.11" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.11.11" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.11.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.12" ∷ word (ἡ ∷ []) "1Cor.11.12" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.12" ∷ word (ἐ ∷ κ ∷ []) "1Cor.11.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.12" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ό ∷ ς ∷ []) "1Cor.11.12" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.12" ∷ word (ὁ ∷ []) "1Cor.11.12" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.12" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.11.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.11.12" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.11.12" ∷ word (τ ∷ ὰ ∷ []) "1Cor.11.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.11.12" ∷ word (ἐ ∷ κ ∷ []) "1Cor.11.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.12" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.11.12" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.11.13" ∷ word (κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "1Cor.11.13" ∷ word (π ∷ ρ ∷ έ ∷ π ∷ ο ∷ ν ∷ []) "1Cor.11.13" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Cor.11.13" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "1Cor.11.13" ∷ word (ἀ ∷ κ ∷ α ∷ τ ∷ α ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.13" ∷ word (τ ∷ ῷ ∷ []) "1Cor.11.13" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.11.13" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.11.13" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.11.14" ∷ word (ἡ ∷ []) "1Cor.11.14" ∷ word (φ ∷ ύ ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.11.14" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "1Cor.11.14" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "1Cor.11.14" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.11.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.11.14" ∷ word (ἀ ∷ ν ∷ ὴ ∷ ρ ∷ []) "1Cor.11.14" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.11.14" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.11.14" ∷ word (κ ∷ ο ∷ μ ∷ ᾷ ∷ []) "1Cor.11.14" ∷ word (ἀ ∷ τ ∷ ι ∷ μ ∷ ί ∷ α ∷ []) "1Cor.11.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.11.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.14" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Cor.11.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.15" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.11.15" ∷ word (κ ∷ ο ∷ μ ∷ ᾷ ∷ []) "1Cor.11.15" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.11.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "1Cor.11.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.11.15" ∷ word (ἡ ∷ []) "1Cor.11.15" ∷ word (κ ∷ ό ∷ μ ∷ η ∷ []) "1Cor.11.15" ∷ word (ἀ ∷ ν ∷ τ ∷ ὶ ∷ []) "1Cor.11.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.15" ∷ word (δ ∷ έ ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "1Cor.11.15" ∷ word (ε ∷ ἰ ∷ []) "1Cor.11.16" ∷ word (δ ∷ έ ∷ []) "1Cor.11.16" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.11.16" ∷ word (δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.11.16" ∷ word (φ ∷ ι ∷ ∙λ ∷ ό ∷ ν ∷ ε ∷ ι ∷ κ ∷ ο ∷ ς ∷ []) "1Cor.11.16" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.11.16" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.11.16" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "1Cor.11.16" ∷ word (σ ∷ υ ∷ ν ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Cor.11.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.16" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.11.16" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.11.16" ∷ word (α ∷ ἱ ∷ []) "1Cor.11.16" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "1Cor.11.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.16" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.11.16" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.11.17" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.17" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Cor.11.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.17" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ ν ∷ ῶ ∷ []) "1Cor.11.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.11.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.17" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.17" ∷ word (κ ∷ ρ ∷ ε ∷ ῖ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "1Cor.11.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.11.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.17" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.17" ∷ word (ἧ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "1Cor.11.17" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.11.17" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.18" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.11.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.18" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.11.18" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.11.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.18" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.11.18" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ []) "1Cor.11.18" ∷ word (σ ∷ χ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.11.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.18" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.18" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.18" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.11.18" ∷ word (τ ∷ ι ∷ []) "1Cor.11.18" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ []) "1Cor.11.18" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Cor.11.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.19" ∷ word (α ∷ ἱ ∷ ρ ∷ έ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.11.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.19" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.19" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.11.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.11.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.19" ∷ word (ο ∷ ἱ ∷ []) "1Cor.11.19" ∷ word (δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "1Cor.11.19" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.11.19" ∷ word (γ ∷ έ ∷ ν ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.11.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.19" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.19" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.11.20" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.11.20" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.11.20" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.11.20" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.11.20" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.20" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.20" ∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ α ∷ κ ∷ ὸ ∷ ν ∷ []) "1Cor.11.20" ∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.11.20" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.11.20" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.11.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.21" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.21" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.11.21" ∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.11.21" ∷ word (π ∷ ρ ∷ ο ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.11.21" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.21" ∷ word (τ ∷ ῷ ∷ []) "1Cor.11.21" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.11.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.21" ∷ word (ὃ ∷ ς ∷ []) "1Cor.11.21" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.11.21" ∷ word (π ∷ ε ∷ ι ∷ ν ∷ ᾷ ∷ []) "1Cor.11.21" ∷ word (ὃ ∷ ς ∷ []) "1Cor.11.21" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.21" ∷ word (μ ∷ ε ∷ θ ∷ ύ ∷ ε ∷ ι ∷ []) "1Cor.11.21" ∷ word (μ ∷ ὴ ∷ []) "1Cor.11.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.22" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.11.22" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.22" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.11.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.22" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.22" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.11.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.22" ∷ word (π ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.11.22" ∷ word (ἢ ∷ []) "1Cor.11.22" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.11.22" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.11.22" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.22" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.11.22" ∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.11.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.22" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ι ∷ σ ∷ χ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.11.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.11.22" ∷ word (μ ∷ ὴ ∷ []) "1Cor.11.22" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Cor.11.22" ∷ word (τ ∷ ί ∷ []) "1Cor.11.22" ∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ []) "1Cor.11.22" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.22" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ ν ∷ έ ∷ σ ∷ ω ∷ []) "1Cor.11.22" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.11.22" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.22" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "1Cor.11.22" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.22" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ ν ∷ ῶ ∷ []) "1Cor.11.22" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.11.23" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.23" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "1Cor.11.23" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Cor.11.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.23" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.23" ∷ word (ὃ ∷ []) "1Cor.11.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.23" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "1Cor.11.23" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.11.23" ∷ word (ὁ ∷ []) "1Cor.11.23" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.11.23" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.11.23" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.23" ∷ word (τ ∷ ῇ ∷ []) "1Cor.11.23" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὶ ∷ []) "1Cor.11.23" ∷ word (ᾗ ∷ []) "1Cor.11.23" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ δ ∷ ί ∷ δ ∷ ε ∷ τ ∷ ο ∷ []) "1Cor.11.23" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "1Cor.11.23" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.24" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "1Cor.11.24" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.11.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.24" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "1Cor.11.24" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "1Cor.11.24" ∷ word (μ ∷ ο ∷ ύ ∷ []) "1Cor.11.24" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.11.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.24" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.11.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.24" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.11.24" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.11.24" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.11.24" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.11.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.11.24" ∷ word (ἐ ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.11.24" ∷ word (ἀ ∷ ν ∷ ά ∷ μ ∷ ν ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.11.24" ∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.11.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.25" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.11.25" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Cor.11.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.25" ∷ word (δ ∷ ε ∷ ι ∷ π ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.11.25" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "1Cor.11.25" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.11.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.25" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.11.25" ∷ word (ἡ ∷ []) "1Cor.11.25" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὴ ∷ []) "1Cor.11.25" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ []) "1Cor.11.25" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Cor.11.25" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.25" ∷ word (τ ∷ ῷ ∷ []) "1Cor.11.25" ∷ word (ἐ ∷ μ ∷ ῷ ∷ []) "1Cor.11.25" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.11.25" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.11.25" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.11.25" ∷ word (ὁ ∷ σ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "1Cor.11.25" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.11.25" ∷ word (π ∷ ί ∷ ν ∷ η ∷ τ ∷ ε ∷ []) "1Cor.11.25" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.11.25" ∷ word (ἐ ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.11.25" ∷ word (ἀ ∷ ν ∷ ά ∷ μ ∷ ν ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.11.25" ∷ word (ὁ ∷ σ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "1Cor.11.26" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.26" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.11.26" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ η ∷ τ ∷ ε ∷ []) "1Cor.11.26" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.11.26" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.26" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.26" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.26" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.11.26" ∷ word (π ∷ ί ∷ ν ∷ η ∷ τ ∷ ε ∷ []) "1Cor.11.26" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.11.26" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.26" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.26" ∷ word (κ ∷ α ∷ τ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.11.26" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "1Cor.11.26" ∷ word (ο ∷ ὗ ∷ []) "1Cor.11.26" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.11.26" ∷ word (Ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.11.27" ∷ word (ὃ ∷ ς ∷ []) "1Cor.11.27" ∷ word (ἂ ∷ ν ∷ []) "1Cor.11.27" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ῃ ∷ []) "1Cor.11.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.11.27" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.11.27" ∷ word (ἢ ∷ []) "1Cor.11.27" ∷ word (π ∷ ί ∷ ν ∷ ῃ ∷ []) "1Cor.11.27" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.27" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.11.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.27" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.27" ∷ word (ἀ ∷ ν ∷ α ∷ ξ ∷ ί ∷ ω ∷ ς ∷ []) "1Cor.11.27" ∷ word (ἔ ∷ ν ∷ ο ∷ χ ∷ ο ∷ ς ∷ []) "1Cor.11.27" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.11.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.27" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.11.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.27" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.11.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.27" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.27" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ α ∷ ζ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.11.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.28" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.11.28" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.11.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.28" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.11.28" ∷ word (ἐ ∷ κ ∷ []) "1Cor.11.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.28" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.11.28" ∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.11.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.28" ∷ word (ἐ ∷ κ ∷ []) "1Cor.11.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.11.28" ∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.28" ∷ word (π ∷ ι ∷ ν ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.11.28" ∷ word (ὁ ∷ []) "1Cor.11.29" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.11.29" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.11.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.29" ∷ word (π ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.11.29" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "1Cor.11.29" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "1Cor.11.29" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "1Cor.11.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.29" ∷ word (π ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.11.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.11.29" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.11.29" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.29" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.11.29" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.11.30" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.11.30" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.30" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.11.30" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "1Cor.11.30" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.11.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.30" ∷ word (ἄ ∷ ρ ∷ ρ ∷ ω ∷ σ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.11.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.11.30" ∷ word (κ ∷ ο ∷ ι ∷ μ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.11.30" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ο ∷ ί ∷ []) "1Cor.11.30" ∷ word (ε ∷ ἰ ∷ []) "1Cor.11.31" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.31" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.11.31" ∷ word (δ ∷ ι ∷ ε ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.11.31" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.11.31" ∷ word (ἂ ∷ ν ∷ []) "1Cor.11.31" ∷ word (ἐ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.11.31" ∷ word (κ ∷ ρ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.11.32" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.32" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.11.32" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.11.32" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.11.32" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.11.32" ∷ word (μ ∷ ὴ ∷ []) "1Cor.11.32" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.11.32" ∷ word (τ ∷ ῷ ∷ []) "1Cor.11.32" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "1Cor.11.32" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.11.32" ∷ word (Ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.11.33" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.11.33" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.11.33" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.11.33" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.33" ∷ word (τ ∷ ὸ ∷ []) "1Cor.11.33" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.11.33" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.11.33" ∷ word (ἐ ∷ κ ∷ δ ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.11.33" ∷ word (ε ∷ ἴ ∷ []) "1Cor.11.34" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.11.34" ∷ word (π ∷ ε ∷ ι ∷ ν ∷ ᾷ ∷ []) "1Cor.11.34" ∷ word (ἐ ∷ ν ∷ []) "1Cor.11.34" ∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "1Cor.11.34" ∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.11.34" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.11.34" ∷ word (μ ∷ ὴ ∷ []) "1Cor.11.34" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.11.34" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "1Cor.11.34" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.11.34" ∷ word (Τ ∷ ὰ ∷ []) "1Cor.11.34" ∷ word (δ ∷ ὲ ∷ []) "1Cor.11.34" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὰ ∷ []) "1Cor.11.34" ∷ word (ὡ ∷ ς ∷ []) "1Cor.11.34" ∷ word (ἂ ∷ ν ∷ []) "1Cor.11.34" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ω ∷ []) "1Cor.11.34" ∷ word (δ ∷ ι ∷ α ∷ τ ∷ ά ∷ ξ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.11.34" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.12.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.12.1" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ῶ ∷ ν ∷ []) "1Cor.12.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.12.1" ∷ word (ο ∷ ὐ ∷ []) "1Cor.12.1" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.12.1" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.12.1" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.12.1" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.12.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.12.2" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "1Cor.12.2" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "1Cor.12.2" ∷ word (ἦ ∷ τ ∷ ε ∷ []) "1Cor.12.2" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.12.2" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.2" ∷ word (ε ∷ ἴ ∷ δ ∷ ω ∷ ∙λ ∷ α ∷ []) "1Cor.12.2" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.2" ∷ word (ἄ ∷ φ ∷ ω ∷ ν ∷ α ∷ []) "1Cor.12.2" ∷ word (ὡ ∷ ς ∷ []) "1Cor.12.2" ∷ word (ἂ ∷ ν ∷ []) "1Cor.12.2" ∷ word (ἤ ∷ γ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.12.2" ∷ word (ἀ ∷ π ∷ α ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.12.2" ∷ word (δ ∷ ι ∷ ὸ ∷ []) "1Cor.12.3" ∷ word (γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ []) "1Cor.12.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.12.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.12.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.12.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.3" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.12.3" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.12.3" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.12.3" ∷ word (Ἀ ∷ ν ∷ ά ∷ θ ∷ ε ∷ μ ∷ α ∷ []) "1Cor.12.3" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.12.3" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.3" ∷ word (ε ∷ ἰ ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.12.3" ∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.12.3" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.12.3" ∷ word (ε ∷ ἰ ∷ []) "1Cor.12.3" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.3" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.3" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "1Cor.12.3" ∷ word (Δ ∷ ι ∷ α ∷ ι ∷ ρ ∷ έ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.4" ∷ word (χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.12.4" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.12.4" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.12.4" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.5" ∷ word (δ ∷ ι ∷ α ∷ ι ∷ ρ ∷ έ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.5" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ι ∷ ῶ ∷ ν ∷ []) "1Cor.12.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.12.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.5" ∷ word (ὁ ∷ []) "1Cor.12.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.12.5" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.12.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.6" ∷ word (δ ∷ ι ∷ α ∷ ι ∷ ρ ∷ έ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.6" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.12.6" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.12.6" ∷ word (ὁ ∷ []) "1Cor.12.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.12.6" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Cor.12.6" ∷ word (ὁ ∷ []) "1Cor.12.6" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ῶ ∷ ν ∷ []) "1Cor.12.6" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.6" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.12.6" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "1Cor.12.7" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.7" ∷ word (δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.7" ∷ word (ἡ ∷ []) "1Cor.12.7" ∷ word (φ ∷ α ∷ ν ∷ έ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.12.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.7" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.12.7" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.7" ∷ word (σ ∷ υ ∷ μ ∷ φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.12.7" ∷ word (ᾧ ∷ []) "1Cor.12.8" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.12.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.12.8" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.12.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.8" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.8" ∷ word (δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.8" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Cor.12.8" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.12.8" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.12.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.8" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Cor.12.8" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Cor.12.8" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.12.8" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.8" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.12.8" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.12.8" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ῳ ∷ []) "1Cor.12.9" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "1Cor.12.9" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.9" ∷ word (τ ∷ ῷ ∷ []) "1Cor.12.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.12.9" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.9" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.12.9" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.12.9" ∷ word (ἰ ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.12.9" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.9" ∷ word (τ ∷ ῷ ∷ []) "1Cor.12.9" ∷ word (ἑ ∷ ν ∷ ὶ ∷ []) "1Cor.12.9" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.9" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.12.10" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.12.10" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ν ∷ []) "1Cor.12.10" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.12.10" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ []) "1Cor.12.10" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.12.10" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.10" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.12.10" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ῳ ∷ []) "1Cor.12.10" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ []) "1Cor.12.10" ∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "1Cor.12.10" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.12.10" ∷ word (ἑ ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ ί ∷ α ∷ []) "1Cor.12.10" ∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "1Cor.12.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.11" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.11" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.12.11" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ []) "1Cor.12.11" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.11" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.11" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.12.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.12.11" ∷ word (δ ∷ ι ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.12.11" ∷ word (ἰ ∷ δ ∷ ί ∷ ᾳ ∷ []) "1Cor.12.11" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "1Cor.12.11" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.12.11" ∷ word (β ∷ ο ∷ ύ ∷ ∙λ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.11" ∷ word (Κ ∷ α ∷ θ ∷ ά ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.12.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.12.12" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.12" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.12" ∷ word (ἕ ∷ ν ∷ []) "1Cor.12.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.12" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.12" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.12.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.12" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.12" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.12" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.12" ∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.12" ∷ word (ἕ ∷ ν ∷ []) "1Cor.12.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.12.12" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.12" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.12" ∷ word (ὁ ∷ []) "1Cor.12.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.12.13" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.13" ∷ word (ἑ ∷ ν ∷ ὶ ∷ []) "1Cor.12.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.13" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.12.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.12.13" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.13" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.13" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.12.13" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.12.13" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "1Cor.12.13" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.12.13" ∷ word (Ἕ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.12.13" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.12.13" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.12.13" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.12.13" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ θ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "1Cor.12.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.13" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.13" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.12.13" ∷ word (ἐ ∷ π ∷ ο ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.12.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "1Cor.12.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.12.14" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.14" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.14" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.12.14" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.14" ∷ word (μ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.12.14" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.14" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "1Cor.12.14" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.12.15" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "1Cor.12.15" ∷ word (ὁ ∷ []) "1Cor.12.15" ∷ word (π ∷ ο ∷ ύ ∷ ς ∷ []) "1Cor.12.15" ∷ word (Ὅ ∷ τ ∷ ι ∷ []) "1Cor.12.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.15" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.12.15" ∷ word (χ ∷ ε ∷ ί ∷ ρ ∷ []) "1Cor.12.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.15" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.12.15" ∷ word (ἐ ∷ κ ∷ []) "1Cor.12.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.15" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.15" ∷ word (ο ∷ ὐ ∷ []) "1Cor.12.15" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "1Cor.12.15" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.12.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.15" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.12.15" ∷ word (ἐ ∷ κ ∷ []) "1Cor.12.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.15" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.16" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.12.16" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "1Cor.12.16" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.16" ∷ word (ο ∷ ὖ ∷ ς ∷ []) "1Cor.12.16" ∷ word (Ὅ ∷ τ ∷ ι ∷ []) "1Cor.12.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.16" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.12.16" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ό ∷ ς ∷ []) "1Cor.12.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.16" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.12.16" ∷ word (ἐ ∷ κ ∷ []) "1Cor.12.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.16" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.16" ∷ word (ο ∷ ὐ ∷ []) "1Cor.12.16" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "1Cor.12.16" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.12.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.16" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.12.16" ∷ word (ἐ ∷ κ ∷ []) "1Cor.12.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.16" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.16" ∷ word (ε ∷ ἰ ∷ []) "1Cor.12.17" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.12.17" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.17" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.17" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ό ∷ ς ∷ []) "1Cor.12.17" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.12.17" ∷ word (ἡ ∷ []) "1Cor.12.17" ∷ word (ἀ ∷ κ ∷ ο ∷ ή ∷ []) "1Cor.12.17" ∷ word (ε ∷ ἰ ∷ []) "1Cor.12.17" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.12.17" ∷ word (ἀ ∷ κ ∷ ο ∷ ή ∷ []) "1Cor.12.17" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.12.17" ∷ word (ἡ ∷ []) "1Cor.12.17" ∷ word (ὄ ∷ σ ∷ φ ∷ ρ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.12.17" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "1Cor.12.18" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.18" ∷ word (ὁ ∷ []) "1Cor.12.18" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.12.18" ∷ word (ἔ ∷ θ ∷ ε ∷ τ ∷ ο ∷ []) "1Cor.12.18" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.18" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.18" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.18" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.12.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.12.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.18" ∷ word (τ ∷ ῷ ∷ []) "1Cor.12.18" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.18" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.12.18" ∷ word (ἠ ∷ θ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.12.18" ∷ word (ε ∷ ἰ ∷ []) "1Cor.12.19" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.19" ∷ word (ἦ ∷ ν ∷ []) "1Cor.12.19" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.19" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.19" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.19" ∷ word (μ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.12.19" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.12.19" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.19" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.19" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Cor.12.20" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.20" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.20" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.12.20" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.20" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.20" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.20" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.20" ∷ word (ο ∷ ὐ ∷ []) "1Cor.12.21" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.21" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.21" ∷ word (ὁ ∷ []) "1Cor.12.21" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ς ∷ []) "1Cor.12.21" ∷ word (ε ∷ ἰ ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.12.21" ∷ word (τ ∷ ῇ ∷ []) "1Cor.12.21" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ί ∷ []) "1Cor.12.21" ∷ word (Χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.12.21" ∷ word (σ ∷ ο ∷ υ ∷ []) "1Cor.12.21" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.21" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.12.21" ∷ word (ἢ ∷ []) "1Cor.12.21" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "1Cor.12.21" ∷ word (ἡ ∷ []) "1Cor.12.21" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ []) "1Cor.12.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.12.21" ∷ word (π ∷ ο ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.12.21" ∷ word (Χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.12.21" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.12.21" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.12.21" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.12.21" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.22" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "1Cor.12.22" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.12.22" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.22" ∷ word (δ ∷ ο ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.22" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.22" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.22" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.22" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ έ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ α ∷ []) "1Cor.12.22" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.12.22" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ῖ ∷ ά ∷ []) "1Cor.12.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.12.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.23" ∷ word (ἃ ∷ []) "1Cor.12.23" ∷ word (δ ∷ ο ∷ κ ∷ ο ∷ ῦ ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.12.23" ∷ word (ἀ ∷ τ ∷ ι ∷ μ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ α ∷ []) "1Cor.12.23" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.12.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.23" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.12.23" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.12.23" ∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.12.23" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "1Cor.12.23" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ί ∷ θ ∷ ε ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.12.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.23" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.23" ∷ word (ἀ ∷ σ ∷ χ ∷ ή ∷ μ ∷ ο ∷ ν ∷ α ∷ []) "1Cor.12.23" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.12.23" ∷ word (ε ∷ ὐ ∷ σ ∷ χ ∷ η ∷ μ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "1Cor.12.23" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "1Cor.12.23" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.12.23" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.24" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.24" ∷ word (ε ∷ ὐ ∷ σ ∷ χ ∷ ή ∷ μ ∷ ο ∷ ν ∷ α ∷ []) "1Cor.12.24" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.12.24" ∷ word (ο ∷ ὐ ∷ []) "1Cor.12.24" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.12.24" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.12.24" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.24" ∷ word (ὁ ∷ []) "1Cor.12.24" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.12.24" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ κ ∷ έ ∷ ρ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.12.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.24" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.24" ∷ word (τ ∷ ῷ ∷ []) "1Cor.12.24" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ι ∷ []) "1Cor.12.24" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "1Cor.12.24" ∷ word (δ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.12.24" ∷ word (τ ∷ ι ∷ μ ∷ ή ∷ ν ∷ []) "1Cor.12.24" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.12.25" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.25" ∷ word (ᾖ ∷ []) "1Cor.12.25" ∷ word (σ ∷ χ ∷ ί ∷ σ ∷ μ ∷ α ∷ []) "1Cor.12.25" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.25" ∷ word (τ ∷ ῷ ∷ []) "1Cor.12.25" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.12.25" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.12.25" ∷ word (τ ∷ ὸ ∷ []) "1Cor.12.25" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.12.25" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.12.25" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Cor.12.25" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ []) "1Cor.12.25" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.25" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.26" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.12.26" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.12.26" ∷ word (ἓ ∷ ν ∷ []) "1Cor.12.26" ∷ word (μ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.12.26" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ ά ∷ σ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.12.26" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.26" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.26" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.26" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.12.26" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.26" ∷ word (μ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.12.26" ∷ word (σ ∷ υ ∷ γ ∷ χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.12.26" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.12.26" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.26" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.26" ∷ word (Ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.12.27" ∷ word (δ ∷ έ ∷ []) "1Cor.12.27" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.12.27" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.12.27" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.12.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.27" ∷ word (μ ∷ έ ∷ ∙λ ∷ η ∷ []) "1Cor.12.27" ∷ word (ἐ ∷ κ ∷ []) "1Cor.12.27" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.12.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.28" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "1Cor.12.28" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.12.28" ∷ word (ἔ ∷ θ ∷ ε ∷ τ ∷ ο ∷ []) "1Cor.12.28" ∷ word (ὁ ∷ []) "1Cor.12.28" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.12.28" ∷ word (ἐ ∷ ν ∷ []) "1Cor.12.28" ∷ word (τ ∷ ῇ ∷ []) "1Cor.12.28" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.12.28" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.12.28" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.12.28" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.12.28" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ς ∷ []) "1Cor.12.28" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.12.28" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.12.28" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "1Cor.12.28" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.28" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "1Cor.12.28" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.12.28" ∷ word (ἰ ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.12.28" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ ∙λ ∷ ή ∷ μ ∷ ψ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.28" ∷ word (κ ∷ υ ∷ β ∷ ε ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.28" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ []) "1Cor.12.28" ∷ word (γ ∷ ∙λ ∷ ω ∷ σ ∷ σ ∷ ῶ ∷ ν ∷ []) "1Cor.12.28" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.29" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.29" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.12.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.29" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.29" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.12.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.29" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.29" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.12.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.29" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.29" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.12.29" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.30" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.30" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.12.30" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.12.30" ∷ word (ἰ ∷ α ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.12.30" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.30" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.30" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.12.30" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.12.30" ∷ word (μ ∷ ὴ ∷ []) "1Cor.12.30" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.12.30" ∷ word (δ ∷ ι ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.12.30" ∷ word (ζ ∷ η ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ε ∷ []) "1Cor.12.31" ∷ word (δ ∷ ὲ ∷ []) "1Cor.12.31" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.31" ∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.12.31" ∷ word (τ ∷ ὰ ∷ []) "1Cor.12.31" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ο ∷ ν ∷ α ∷ []) "1Cor.12.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.12.31" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "1Cor.12.31" ∷ word (κ ∷ α ∷ θ ∷ []) "1Cor.12.31" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Cor.12.31" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "1Cor.12.31" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.12.31" ∷ word (δ ∷ ε ∷ ί ∷ κ ∷ ν ∷ υ ∷ μ ∷ ι ∷ []) "1Cor.12.31" ∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.13.1" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.13.1" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.13.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.13.1" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.13.1" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.13.1" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Cor.13.1" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "1Cor.13.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.1" ∷ word (μ ∷ ὴ ∷ []) "1Cor.13.1" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.13.1" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ α ∷ []) "1Cor.13.1" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ὸ ∷ ς ∷ []) "1Cor.13.1" ∷ word (ἠ ∷ χ ∷ ῶ ∷ ν ∷ []) "1Cor.13.1" ∷ word (ἢ ∷ []) "1Cor.13.1" ∷ word (κ ∷ ύ ∷ μ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.13.1" ∷ word (ἀ ∷ ∙λ ∷ α ∷ ∙λ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ []) "1Cor.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.2" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.13.2" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.13.2" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.2" ∷ word (ε ∷ ἰ ∷ δ ∷ ῶ ∷ []) "1Cor.13.2" ∷ word (τ ∷ ὰ ∷ []) "1Cor.13.2" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ α ∷ []) "1Cor.13.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.2" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.13.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.13.2" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.2" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.13.2" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.13.2" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.13.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.13.2" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.13.2" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.13.2" ∷ word (ὄ ∷ ρ ∷ η ∷ []) "1Cor.13.2" ∷ word (μ ∷ ε ∷ θ ∷ ι ∷ σ ∷ τ ∷ ά ∷ ν ∷ α ∷ ι ∷ []) "1Cor.13.2" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "1Cor.13.2" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.2" ∷ word (μ ∷ ὴ ∷ []) "1Cor.13.2" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.13.2" ∷ word (ο ∷ ὐ ∷ θ ∷ έ ∷ ν ∷ []) "1Cor.13.2" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.13.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.13.3" ∷ word (ψ ∷ ω ∷ μ ∷ ί ∷ σ ∷ ω ∷ []) "1Cor.13.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.13.3" ∷ word (τ ∷ ὰ ∷ []) "1Cor.13.3" ∷ word (ὑ ∷ π ∷ ά ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ά ∷ []) "1Cor.13.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.13.3" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ῶ ∷ []) "1Cor.13.3" ∷ word (τ ∷ ὸ ∷ []) "1Cor.13.3" ∷ word (σ ∷ ῶ ∷ μ ∷ ά ∷ []) "1Cor.13.3" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.13.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.13.3" ∷ word (κ ∷ α ∷ υ ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.13.3" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "1Cor.13.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.3" ∷ word (μ ∷ ὴ ∷ []) "1Cor.13.3" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.13.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "1Cor.13.3" ∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ ο ∷ ῦ ∷ μ ∷ α ∷ ι ∷ []) "1Cor.13.3" ∷ word (Ἡ ∷ []) "1Cor.13.4" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.13.4" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.13.4" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.4" ∷ word (ἡ ∷ []) "1Cor.13.4" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.13.4" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.4" ∷ word (ζ ∷ η ∷ ∙λ ∷ ο ∷ ῖ ∷ []) "1Cor.13.4" ∷ word (ἡ ∷ []) "1Cor.13.4" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.13.4" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.4" ∷ word (π ∷ ε ∷ ρ ∷ π ∷ ε ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.4" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.4" ∷ word (φ ∷ υ ∷ σ ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.13.5" ∷ word (ἀ ∷ σ ∷ χ ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ []) "1Cor.13.5" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.5" ∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ []) "1Cor.13.5" ∷ word (τ ∷ ὰ ∷ []) "1Cor.13.5" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Cor.13.5" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.5" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ ξ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.5" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.5" ∷ word (∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.5" ∷ word (τ ∷ ὸ ∷ []) "1Cor.13.5" ∷ word (κ ∷ α ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.13.5" ∷ word (ο ∷ ὐ ∷ []) "1Cor.13.6" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.13.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.13.6" ∷ word (τ ∷ ῇ ∷ []) "1Cor.13.6" ∷ word (ἀ ∷ δ ∷ ι ∷ κ ∷ ί ∷ ᾳ ∷ []) "1Cor.13.6" ∷ word (σ ∷ υ ∷ γ ∷ χ ∷ α ∷ ί ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.13.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.6" ∷ word (τ ∷ ῇ ∷ []) "1Cor.13.6" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Cor.13.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.13.7" ∷ word (σ ∷ τ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.13.7" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.13.7" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ []) "1Cor.13.7" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.13.7" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "1Cor.13.7" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.13.7" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.13.7" ∷ word (Ἡ ∷ []) "1Cor.13.8" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.13.8" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "1Cor.13.8" ∷ word (π ∷ ί ∷ π ∷ τ ∷ ε ∷ ι ∷ []) "1Cor.13.8" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.13.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.8" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "1Cor.13.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ η ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.8" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.13.8" ∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.13.8" ∷ word (π ∷ α ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.8" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.13.8" ∷ word (γ ∷ ν ∷ ῶ ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.13.8" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.8" ∷ word (ἐ ∷ κ ∷ []) "1Cor.13.9" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.13.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.13.9" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.13.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.9" ∷ word (ἐ ∷ κ ∷ []) "1Cor.13.9" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.13.9" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.13.9" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.13.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.10" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.13.10" ∷ word (τ ∷ ὸ ∷ []) "1Cor.13.10" ∷ word (τ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.13.10" ∷ word (τ ∷ ὸ ∷ []) "1Cor.13.10" ∷ word (ἐ ∷ κ ∷ []) "1Cor.13.10" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.13.10" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.13.10" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "1Cor.13.11" ∷ word (ἤ ∷ μ ∷ η ∷ ν ∷ []) "1Cor.13.11" ∷ word (ν ∷ ή ∷ π ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.13.11" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ν ∷ []) "1Cor.13.11" ∷ word (ὡ ∷ ς ∷ []) "1Cor.13.11" ∷ word (ν ∷ ή ∷ π ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.13.11" ∷ word (ἐ ∷ φ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "1Cor.13.11" ∷ word (ὡ ∷ ς ∷ []) "1Cor.13.11" ∷ word (ν ∷ ή ∷ π ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.13.11" ∷ word (ἐ ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ η ∷ ν ∷ []) "1Cor.13.11" ∷ word (ὡ ∷ ς ∷ []) "1Cor.13.11" ∷ word (ν ∷ ή ∷ π ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.13.11" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "1Cor.13.11" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ α ∷ []) "1Cor.13.11" ∷ word (ἀ ∷ ν ∷ ή ∷ ρ ∷ []) "1Cor.13.11" ∷ word (κ ∷ α ∷ τ ∷ ή ∷ ρ ∷ γ ∷ η ∷ κ ∷ α ∷ []) "1Cor.13.11" ∷ word (τ ∷ ὰ ∷ []) "1Cor.13.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.13.11" ∷ word (ν ∷ η ∷ π ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.13.11" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.13.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.13.12" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.13.12" ∷ word (δ ∷ ι ∷ []) "1Cor.13.12" ∷ word (ἐ ∷ σ ∷ ό ∷ π ∷ τ ∷ ρ ∷ ο ∷ υ ∷ []) "1Cor.13.12" ∷ word (ἐ ∷ ν ∷ []) "1Cor.13.12" ∷ word (α ∷ ἰ ∷ ν ∷ ί ∷ γ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.13.12" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "1Cor.13.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.12" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Cor.13.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.13.12" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Cor.13.12" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.13.12" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ω ∷ []) "1Cor.13.12" ∷ word (ἐ ∷ κ ∷ []) "1Cor.13.12" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.13.12" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "1Cor.13.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.12" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ώ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.13.12" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.13.12" ∷ word (ἐ ∷ π ∷ ε ∷ γ ∷ ν ∷ ώ ∷ σ ∷ θ ∷ η ∷ ν ∷ []) "1Cor.13.12" ∷ word (ν ∷ υ ∷ ν ∷ ὶ ∷ []) "1Cor.13.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.13" ∷ word (μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "1Cor.13.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "1Cor.13.13" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ς ∷ []) "1Cor.13.13" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.13.13" ∷ word (τ ∷ ὰ ∷ []) "1Cor.13.13" ∷ word (τ ∷ ρ ∷ ί ∷ α ∷ []) "1Cor.13.13" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.13.13" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.13.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.13.13" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.13.13" ∷ word (ἡ ∷ []) "1Cor.13.13" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.13.13" ∷ word (Δ ∷ ι ∷ ώ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.14.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.14.1" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "1Cor.14.1" ∷ word (ζ ∷ η ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ε ∷ []) "1Cor.14.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.1" ∷ word (τ ∷ ὰ ∷ []) "1Cor.14.1" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ά ∷ []) "1Cor.14.1" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.14.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.1" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.14.1" ∷ word (ὁ ∷ []) "1Cor.14.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.2" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.14.2" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.14.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.14.2" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.14.2" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Cor.14.2" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.2" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.14.2" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Cor.14.2" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.2" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ []) "1Cor.14.2" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.14.2" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.2" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Cor.14.2" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ α ∷ []) "1Cor.14.2" ∷ word (ὁ ∷ []) "1Cor.14.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.3" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.14.3" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.14.3" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Cor.14.3" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.14.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.3" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.3" ∷ word (π ∷ α ∷ ρ ∷ α ∷ μ ∷ υ ∷ θ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.14.3" ∷ word (ὁ ∷ []) "1Cor.14.4" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.14.4" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.14.4" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.14.4" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.14.4" ∷ word (ὁ ∷ []) "1Cor.14.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.4" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.14.4" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.14.4" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.14.4" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.14.5" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.5" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Cor.14.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.14.5" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.14.5" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.5" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.14.5" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.5" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.14.5" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.14.5" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.5" ∷ word (ὁ ∷ []) "1Cor.14.5" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.14.5" ∷ word (ἢ ∷ []) "1Cor.14.5" ∷ word (ὁ ∷ []) "1Cor.14.5" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.14.5" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.5" ∷ word (ἐ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.14.5" ∷ word (ε ∷ ἰ ∷ []) "1Cor.14.5" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.5" ∷ word (δ ∷ ι ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ ύ ∷ ῃ ∷ []) "1Cor.14.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.5" ∷ word (ἡ ∷ []) "1Cor.14.5" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ []) "1Cor.14.5" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.14.5" ∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "1Cor.14.5" ∷ word (Ν ∷ ῦ ∷ ν ∷ []) "1Cor.14.6" ∷ word (δ ∷ έ ∷ []) "1Cor.14.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.14.6" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.6" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ω ∷ []) "1Cor.14.6" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.14.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.14.6" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.6" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.14.6" ∷ word (τ ∷ ί ∷ []) "1Cor.14.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.14.6" ∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.14.6" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.6" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.6" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.14.6" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.14.6" ∷ word (ἢ ∷ []) "1Cor.14.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.6" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ ψ ∷ ε ∷ ι ∷ []) "1Cor.14.6" ∷ word (ἢ ∷ []) "1Cor.14.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.6" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.14.6" ∷ word (ἢ ∷ []) "1Cor.14.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.6" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Cor.14.6" ∷ word (ἢ ∷ []) "1Cor.14.6" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.6" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "1Cor.14.6" ∷ word (ὅ ∷ μ ∷ ω ∷ ς ∷ []) "1Cor.14.7" ∷ word (τ ∷ ὰ ∷ []) "1Cor.14.7" ∷ word (ἄ ∷ ψ ∷ υ ∷ χ ∷ α ∷ []) "1Cor.14.7" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "1Cor.14.7" ∷ word (δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ α ∷ []) "1Cor.14.7" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.14.7" ∷ word (α ∷ ὐ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "1Cor.14.7" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.14.7" ∷ word (κ ∷ ι ∷ θ ∷ ά ∷ ρ ∷ α ∷ []) "1Cor.14.7" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.7" ∷ word (δ ∷ ι ∷ α ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Cor.14.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.14.7" ∷ word (φ ∷ θ ∷ ό ∷ γ ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.14.7" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.7" ∷ word (δ ∷ ῷ ∷ []) "1Cor.14.7" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.14.7" ∷ word (γ ∷ ν ∷ ω ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.7" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.7" ∷ word (α ∷ ὐ ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.14.7" ∷ word (ἢ ∷ []) "1Cor.14.7" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.7" ∷ word (κ ∷ ι ∷ θ ∷ α ∷ ρ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.8" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.8" ∷ word (ἄ ∷ δ ∷ η ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.14.8" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "1Cor.14.8" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ ξ ∷ []) "1Cor.14.8" ∷ word (δ ∷ ῷ ∷ []) "1Cor.14.8" ∷ word (τ ∷ ί ∷ ς ∷ []) "1Cor.14.8" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ά ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.14.8" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.14.8" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.14.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.9" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.14.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.14.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.14.9" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "1Cor.14.9" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.9" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.9" ∷ word (ε ∷ ὔ ∷ σ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "1Cor.14.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.14.9" ∷ word (δ ∷ ῶ ∷ τ ∷ ε ∷ []) "1Cor.14.9" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.14.9" ∷ word (γ ∷ ν ∷ ω ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.9" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.9" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.14.9" ∷ word (ἔ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.14.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.14.9" ∷ word (ἀ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.14.9" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.14.9" ∷ word (τ ∷ ο ∷ σ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Cor.14.10" ∷ word (ε ∷ ἰ ∷ []) "1Cor.14.10" ∷ word (τ ∷ ύ ∷ χ ∷ ο ∷ ι ∷ []) "1Cor.14.10" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ []) "1Cor.14.10" ∷ word (φ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "1Cor.14.10" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.10" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.10" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "1Cor.14.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.10" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "1Cor.14.10" ∷ word (ἄ ∷ φ ∷ ω ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.14.10" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.11" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.14.11" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.11" ∷ word (ε ∷ ἰ ∷ δ ∷ ῶ ∷ []) "1Cor.14.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.14.11" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "1Cor.14.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.14.11" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ ς ∷ []) "1Cor.14.11" ∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.14.11" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.11" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ι ∷ []) "1Cor.14.11" ∷ word (β ∷ ά ∷ ρ ∷ β ∷ α ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.11" ∷ word (ὁ ∷ []) "1Cor.14.11" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.14.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.11" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "1Cor.14.11" ∷ word (β ∷ ά ∷ ρ ∷ β ∷ α ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.14.11" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.14.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.12" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.14.12" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "1Cor.14.12" ∷ word (ζ ∷ η ∷ ∙λ ∷ ω ∷ τ ∷ α ∷ ί ∷ []) "1Cor.14.12" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.14.12" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.14.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.14.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.14.12" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.14.12" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.14.12" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.14.12" ∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.14.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.12" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.14.12" ∷ word (Δ ∷ ι ∷ ὸ ∷ []) "1Cor.14.13" ∷ word (ὁ ∷ []) "1Cor.14.13" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.14.13" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.14.13" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.14.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.13" ∷ word (δ ∷ ι ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ ύ ∷ ῃ ∷ []) "1Cor.14.13" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.14.14" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.14.14" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.14" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ ά ∷ []) "1Cor.14.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.14.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.14" ∷ word (ὁ ∷ []) "1Cor.14.14" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.14" ∷ word (ν ∷ ο ∷ ῦ ∷ ς ∷ []) "1Cor.14.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.14.14" ∷ word (ἄ ∷ κ ∷ α ∷ ρ ∷ π ∷ ό ∷ ς ∷ []) "1Cor.14.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.14.14" ∷ word (τ ∷ ί ∷ []) "1Cor.14.15" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.14.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.14.15" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ ξ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.14.15" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.15" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.14.15" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ ξ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.14.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.15" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.15" ∷ word (ν ∷ ο ∷ ΐ ∷ []) "1Cor.14.15" ∷ word (ψ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.14.15" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.15" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.14.15" ∷ word (ψ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.14.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.15" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.15" ∷ word (ν ∷ ο ∷ ΐ ∷ []) "1Cor.14.15" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "1Cor.14.16" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.16" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ῇ ∷ ς ∷ []) "1Cor.14.16" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.14.16" ∷ word (ὁ ∷ []) "1Cor.14.16" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ ∙λ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.14.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.14.16" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "1Cor.14.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.14.16" ∷ word (ἰ ∷ δ ∷ ι ∷ ώ ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.14.16" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.14.16" ∷ word (ἐ ∷ ρ ∷ ε ∷ ῖ ∷ []) "1Cor.14.16" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.16" ∷ word (Ἀ ∷ μ ∷ ή ∷ ν ∷ []) "1Cor.14.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.14.16" ∷ word (τ ∷ ῇ ∷ []) "1Cor.14.16" ∷ word (σ ∷ ῇ ∷ []) "1Cor.14.16" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "1Cor.14.16" ∷ word (ἐ ∷ π ∷ ε ∷ ι ∷ δ ∷ ὴ ∷ []) "1Cor.14.16" ∷ word (τ ∷ ί ∷ []) "1Cor.14.16" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.14.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.14.16" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "1Cor.14.16" ∷ word (σ ∷ ὺ ∷ []) "1Cor.14.17" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.14.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.17" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Cor.14.17" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.14.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.14.17" ∷ word (ὁ ∷ []) "1Cor.14.17" ∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.14.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.14.17" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.17" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ []) "1Cor.14.18" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.18" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.14.18" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.14.18" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.14.18" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.14.18" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.18" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.14.18" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.19" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.14.19" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.14.19" ∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "1Cor.14.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.14.19" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.19" ∷ word (ν ∷ ο ∷ ΐ ∷ []) "1Cor.14.19" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.14.19" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.14.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.19" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.14.19" ∷ word (κ ∷ α ∷ τ ∷ η ∷ χ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.14.19" ∷ word (ἢ ∷ []) "1Cor.14.19" ∷ word (μ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.14.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.14.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.19" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.14.19" ∷ word (Ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.14.20" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.20" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ α ∷ []) "1Cor.14.20" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.14.20" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.14.20" ∷ word (φ ∷ ρ ∷ ε ∷ σ ∷ ί ∷ ν ∷ []) "1Cor.14.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.20" ∷ word (τ ∷ ῇ ∷ []) "1Cor.14.20" ∷ word (κ ∷ α ∷ κ ∷ ί ∷ ᾳ ∷ []) "1Cor.14.20" ∷ word (ν ∷ η ∷ π ∷ ι ∷ ά ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.14.20" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.14.20" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.20" ∷ word (φ ∷ ρ ∷ ε ∷ σ ∷ ὶ ∷ ν ∷ []) "1Cor.14.20" ∷ word (τ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ο ∷ ι ∷ []) "1Cor.14.20" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.14.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.21" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.21" ∷ word (ν ∷ ό ∷ μ ∷ ῳ ∷ []) "1Cor.14.21" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.21" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.14.21" ∷ word (Ἐ ∷ ν ∷ []) "1Cor.14.21" ∷ word (ἑ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.14.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.21" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.21" ∷ word (χ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.21" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "1Cor.14.21" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ []) "1Cor.14.21" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.21" ∷ word (∙λ ∷ α ∷ ῷ ∷ []) "1Cor.14.21" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "1Cor.14.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.21" ∷ word (ο ∷ ὐ ∷ δ ∷ []) "1Cor.14.21" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.14.21" ∷ word (ε ∷ ἰ ∷ σ ∷ α ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "1Cor.14.21" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.14.21" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.14.21" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.14.21" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.14.22" ∷ word (α ∷ ἱ ∷ []) "1Cor.14.22" ∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.14.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.14.22" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ό ∷ ν ∷ []) "1Cor.14.22" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.22" ∷ word (ο ∷ ὐ ∷ []) "1Cor.14.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.14.22" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.22" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.14.22" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.14.22" ∷ word (ἡ ∷ []) "1Cor.14.22" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.22" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ []) "1Cor.14.22" ∷ word (ο ∷ ὐ ∷ []) "1Cor.14.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.14.22" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.14.22" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.14.22" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.22" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.23" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.14.23" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.14.23" ∷ word (ἡ ∷ []) "1Cor.14.23" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ []) "1Cor.14.23" ∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "1Cor.14.23" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.14.23" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.23" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "1Cor.14.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.14.23" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.23" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.23" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.23" ∷ word (ἰ ∷ δ ∷ ι ∷ ῶ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.23" ∷ word (ἢ ∷ []) "1Cor.14.23" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.14.23" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.14.23" ∷ word (ἐ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.14.23" ∷ word (μ ∷ α ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.14.23" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.24" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.14.24" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.24" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.14.24" ∷ word (δ ∷ έ ∷ []) "1Cor.14.24" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.14.24" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.14.24" ∷ word (ἢ ∷ []) "1Cor.14.24" ∷ word (ἰ ∷ δ ∷ ι ∷ ώ ∷ τ ∷ η ∷ ς ∷ []) "1Cor.14.24" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ γ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.24" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.14.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.14.24" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.24" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.14.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.14.24" ∷ word (τ ∷ ὰ ∷ []) "1Cor.14.25" ∷ word (κ ∷ ρ ∷ υ ∷ π ∷ τ ∷ ὰ ∷ []) "1Cor.14.25" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.14.25" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.14.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.14.25" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὰ ∷ []) "1Cor.14.25" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.25" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.14.25" ∷ word (π ∷ ε ∷ σ ∷ ὼ ∷ ν ∷ []) "1Cor.14.25" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.14.25" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Cor.14.25" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.14.25" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.25" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.14.25" ∷ word (ἀ ∷ π ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Cor.14.25" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.14.25" ∷ word (Ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.14.25" ∷ word (ὁ ∷ []) "1Cor.14.25" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.14.25" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.25" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.14.25" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.14.25" ∷ word (Τ ∷ ί ∷ []) "1Cor.14.26" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.14.26" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.14.26" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.14.26" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.14.26" ∷ word (ψ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.14.26" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.14.26" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ά ∷ ∙λ ∷ υ ∷ ψ ∷ ι ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.14.26" ∷ word (γ ∷ ∙λ ∷ ῶ ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.14.26" ∷ word (ἑ ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.14.26" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Cor.14.26" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.14.26" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.14.26" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ὴ ∷ ν ∷ []) "1Cor.14.26" ∷ word (γ ∷ ι ∷ ν ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.14.26" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.14.27" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ ῃ ∷ []) "1Cor.14.27" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.14.27" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Cor.14.27" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.14.27" ∷ word (δ ∷ ύ ∷ ο ∷ []) "1Cor.14.27" ∷ word (ἢ ∷ []) "1Cor.14.27" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.27" ∷ word (π ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.14.27" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.14.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.27" ∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "1Cor.14.27" ∷ word (μ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.14.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.27" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Cor.14.27" ∷ word (δ ∷ ι ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.14.27" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.28" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.28" ∷ word (ᾖ ∷ []) "1Cor.14.28" ∷ word (δ ∷ ι ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ τ ∷ ή ∷ ς ∷ []) "1Cor.14.28" ∷ word (σ ∷ ι ∷ γ ∷ ά ∷ τ ∷ ω ∷ []) "1Cor.14.28" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.28" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.14.28" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "1Cor.14.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.28" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "1Cor.14.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.28" ∷ word (τ ∷ ῷ ∷ []) "1Cor.14.28" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.14.28" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.29" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.29" ∷ word (δ ∷ ύ ∷ ο ∷ []) "1Cor.14.29" ∷ word (ἢ ∷ []) "1Cor.14.29" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.14.29" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.14.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.29" ∷ word (ο ∷ ἱ ∷ []) "1Cor.14.29" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Cor.14.29" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ι ∷ ν ∷ έ ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.14.29" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.14.30" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.30" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ῳ ∷ []) "1Cor.14.30" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ ∙λ ∷ υ ∷ φ ∷ θ ∷ ῇ ∷ []) "1Cor.14.30" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "1Cor.14.30" ∷ word (ὁ ∷ []) "1Cor.14.30" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.14.30" ∷ word (σ ∷ ι ∷ γ ∷ ά ∷ τ ∷ ω ∷ []) "1Cor.14.30" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.14.31" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.31" ∷ word (κ ∷ α ∷ θ ∷ []) "1Cor.14.31" ∷ word (ἕ ∷ ν ∷ α ∷ []) "1Cor.14.31" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.14.31" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.14.31" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.14.31" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.14.31" ∷ word (μ ∷ α ∷ ν ∷ θ ∷ ά ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.31" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.14.31" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.32" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.14.32" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.14.32" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.32" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ σ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.32" ∷ word (ο ∷ ὐ ∷ []) "1Cor.14.33" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.14.33" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.14.33" ∷ word (ἀ ∷ κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ α ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.14.33" ∷ word (ὁ ∷ []) "1Cor.14.33" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.14.33" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.33" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "1Cor.14.33" ∷ word (ὡ ∷ ς ∷ []) "1Cor.14.33" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.33" ∷ word (π ∷ ά ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.33" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.14.33" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.33" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.14.33" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.14.33" ∷ word (Α ∷ ἱ ∷ []) "1Cor.14.34" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ ε ∷ ς ∷ []) "1Cor.14.34" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.34" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.14.34" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.34" ∷ word (σ ∷ ι ∷ γ ∷ ά ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.14.34" ∷ word (ο ∷ ὐ ∷ []) "1Cor.14.34" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.14.34" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ρ ∷ έ ∷ π ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.34" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.14.34" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.14.34" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.14.34" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ σ ∷ σ ∷ έ ∷ σ ∷ θ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.14.34" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.14.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.34" ∷ word (ὁ ∷ []) "1Cor.14.34" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.14.34" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Cor.14.34" ∷ word (ε ∷ ἰ ∷ []) "1Cor.14.35" ∷ word (δ ∷ έ ∷ []) "1Cor.14.35" ∷ word (τ ∷ ι ∷ []) "1Cor.14.35" ∷ word (μ ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.14.35" ∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.14.35" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.35" ∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "1Cor.14.35" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.14.35" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.14.35" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ ς ∷ []) "1Cor.14.35" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ά ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.14.35" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ρ ∷ ὸ ∷ ν ∷ []) "1Cor.14.35" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.14.35" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.14.35" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὶ ∷ []) "1Cor.14.35" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.14.35" ∷ word (ἐ ∷ ν ∷ []) "1Cor.14.35" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.14.35" ∷ word (ἢ ∷ []) "1Cor.14.36" ∷ word (ἀ ∷ φ ∷ []) "1Cor.14.36" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.14.36" ∷ word (ὁ ∷ []) "1Cor.14.36" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Cor.14.36" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.14.36" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.14.36" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "1Cor.14.36" ∷ word (ἢ ∷ []) "1Cor.14.36" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.14.36" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.14.36" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.14.36" ∷ word (κ ∷ α ∷ τ ∷ ή ∷ ν ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.14.36" ∷ word (Ε ∷ ἴ ∷ []) "1Cor.14.37" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.14.37" ∷ word (δ ∷ ο ∷ κ ∷ ε ∷ ῖ ∷ []) "1Cor.14.37" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "1Cor.14.37" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.14.37" ∷ word (ἢ ∷ []) "1Cor.14.37" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.14.37" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ι ∷ ν ∷ ω ∷ σ ∷ κ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.14.37" ∷ word (ἃ ∷ []) "1Cor.14.37" ∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ω ∷ []) "1Cor.14.37" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.14.37" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.14.37" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.14.37" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Cor.14.37" ∷ word (ε ∷ ἰ ∷ []) "1Cor.14.38" ∷ word (δ ∷ έ ∷ []) "1Cor.14.38" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.14.38" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ []) "1Cor.14.38" ∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.14.38" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.14.39" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.14.39" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.14.39" ∷ word (ζ ∷ η ∷ ∙λ ∷ ο ∷ ῦ ∷ τ ∷ ε ∷ []) "1Cor.14.39" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.39" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.14.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.39" ∷ word (τ ∷ ὸ ∷ []) "1Cor.14.39" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.14.39" ∷ word (μ ∷ ὴ ∷ []) "1Cor.14.39" ∷ word (κ ∷ ω ∷ ∙λ ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.14.39" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "1Cor.14.39" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.14.40" ∷ word (δ ∷ ὲ ∷ []) "1Cor.14.40" ∷ word (ε ∷ ὐ ∷ σ ∷ χ ∷ η ∷ μ ∷ ό ∷ ν ∷ ω ∷ ς ∷ []) "1Cor.14.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.14.40" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.14.40" ∷ word (τ ∷ ά ∷ ξ ∷ ι ∷ ν ∷ []) "1Cor.14.40" ∷ word (γ ∷ ι ∷ ν ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.14.40" ∷ word (Γ ∷ ν ∷ ω ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ []) "1Cor.15.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.1" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.15.1" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.1" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.15.1" ∷ word (ὃ ∷ []) "1Cor.15.1" ∷ word (ε ∷ ὐ ∷ η ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ σ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "1Cor.15.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.1" ∷ word (ὃ ∷ []) "1Cor.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.1" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.15.1" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.1" ∷ word (ᾧ ∷ []) "1Cor.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.1" ∷ word (ἑ ∷ σ ∷ τ ∷ ή ∷ κ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.15.1" ∷ word (δ ∷ ι ∷ []) "1Cor.15.2" ∷ word (ο ∷ ὗ ∷ []) "1Cor.15.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.2" ∷ word (σ ∷ ῴ ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.15.2" ∷ word (τ ∷ ί ∷ ν ∷ ι ∷ []) "1Cor.15.2" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Cor.15.2" ∷ word (ε ∷ ὐ ∷ η ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ι ∷ σ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "1Cor.15.2" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.2" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.2" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.15.2" ∷ word (ἐ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.2" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.2" ∷ word (μ ∷ ὴ ∷ []) "1Cor.15.2" ∷ word (ε ∷ ἰ ∷ κ ∷ ῇ ∷ []) "1Cor.15.2" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.15.2" ∷ word (Π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "1Cor.15.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.3" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.3" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.15.3" ∷ word (ὃ ∷ []) "1Cor.15.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.3" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "1Cor.15.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.3" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.3" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "1Cor.15.3" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.15.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.3" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "1Cor.15.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.3" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.15.3" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.15.3" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ά ∷ ς ∷ []) "1Cor.15.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.4" ∷ word (ἐ ∷ τ ∷ ά ∷ φ ∷ η ∷ []) "1Cor.15.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.4" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.4" ∷ word (τ ∷ ῇ ∷ []) "1Cor.15.4" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "1Cor.15.4" ∷ word (τ ∷ ῇ ∷ []) "1Cor.15.4" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ῃ ∷ []) "1Cor.15.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.15.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Cor.15.4" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ά ∷ ς ∷ []) "1Cor.15.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.5" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.5" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "1Cor.15.5" ∷ word (Κ ∷ η ∷ φ ∷ ᾷ ∷ []) "1Cor.15.5" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "1Cor.15.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.15.5" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "1Cor.15.5" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "1Cor.15.6" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "1Cor.15.6" ∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "1Cor.15.6" ∷ word (π ∷ ε ∷ ν ∷ τ ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.15.6" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.15.6" ∷ word (ἐ ∷ φ ∷ ά ∷ π ∷ α ∷ ξ ∷ []) "1Cor.15.6" ∷ word (ἐ ∷ ξ ∷ []) "1Cor.15.6" ∷ word (ὧ ∷ ν ∷ []) "1Cor.15.6" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.6" ∷ word (π ∷ ∙λ ∷ ε ∷ ί ∷ ο ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.15.6" ∷ word (μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.6" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Cor.15.6" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.15.6" ∷ word (τ ∷ ι ∷ ν ∷ ὲ ∷ ς ∷ []) "1Cor.15.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.6" ∷ word (ἐ ∷ κ ∷ ο ∷ ι ∷ μ ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Cor.15.6" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "1Cor.15.7" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "1Cor.15.7" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ῳ ∷ []) "1Cor.15.7" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "1Cor.15.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.15.7" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.15.7" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.7" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.15.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.8" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.15.8" ∷ word (ὡ ∷ σ ∷ π ∷ ε ∷ ρ ∷ ε ∷ ὶ ∷ []) "1Cor.15.8" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.8" ∷ word (ἐ ∷ κ ∷ τ ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.15.8" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "1Cor.15.8" ∷ word (κ ∷ ἀ ∷ μ ∷ ο ∷ ί ∷ []) "1Cor.15.8" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.15.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.15.9" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.15.9" ∷ word (ὁ ∷ []) "1Cor.15.9" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ χ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.9" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ό ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Cor.15.9" ∷ word (ὃ ∷ ς ∷ []) "1Cor.15.9" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.9" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "1Cor.15.9" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "1Cor.15.9" ∷ word (κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.15.9" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.15.9" ∷ word (δ ∷ ι ∷ ό ∷ τ ∷ ι ∷ []) "1Cor.15.9" ∷ word (ἐ ∷ δ ∷ ί ∷ ω ∷ ξ ∷ α ∷ []) "1Cor.15.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.15.9" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.9" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "1Cor.15.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.10" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.15.10" ∷ word (ὅ ∷ []) "1Cor.15.10" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Cor.15.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.10" ∷ word (ἡ ∷ []) "1Cor.15.10" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Cor.15.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.10" ∷ word (ἡ ∷ []) "1Cor.15.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.15.10" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "1Cor.15.10" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.10" ∷ word (κ ∷ ε ∷ ν ∷ ὴ ∷ []) "1Cor.15.10" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "1Cor.15.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.10" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.15.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.15.10" ∷ word (ἐ ∷ κ ∷ ο ∷ π ∷ ί ∷ α ∷ σ ∷ α ∷ []) "1Cor.15.10" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.10" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.15.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.10" ∷ word (ἡ ∷ []) "1Cor.15.10" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Cor.15.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.10" ∷ word (ἡ ∷ []) "1Cor.15.10" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.15.10" ∷ word (ἐ ∷ μ ∷ ο ∷ ί ∷ []) "1Cor.15.10" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.15.11" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.15.11" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Cor.15.11" ∷ word (ε ∷ ἴ ∷ τ ∷ ε ∷ []) "1Cor.15.11" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.15.11" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.15.11" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.11" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.15.11" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.15.11" ∷ word (Ε ∷ ἰ ∷ []) "1Cor.15.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.12" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.12" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.12" ∷ word (ἐ ∷ κ ∷ []) "1Cor.15.12" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.12" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.12" ∷ word (π ∷ ῶ ∷ ς ∷ []) "1Cor.15.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.12" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.12" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.12" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.15.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.12" ∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.15.12" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.12" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.15.12" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.13" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.13" ∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.15.13" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.13" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.15.13" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.15.13" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.13" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.13" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.14" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.14" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.14" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.14" ∷ word (κ ∷ ε ∷ ν ∷ ὸ ∷ ν ∷ []) "1Cor.15.14" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "1Cor.15.14" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.14" ∷ word (κ ∷ ή ∷ ρ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "1Cor.15.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.14" ∷ word (κ ∷ ε ∷ ν ∷ ὴ ∷ []) "1Cor.15.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.14" ∷ word (ἡ ∷ []) "1Cor.15.14" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "1Cor.15.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.14" ∷ word (ε ∷ ὑ ∷ ρ ∷ ι ∷ σ ∷ κ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.15.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.15" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ ά ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ε ∷ ς ∷ []) "1Cor.15.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.15" ∷ word (ἐ ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ή ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.15" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.15.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.15" ∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "1Cor.15.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.15.15" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "1Cor.15.15" ∷ word (ὃ ∷ ν ∷ []) "1Cor.15.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.15" ∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "1Cor.15.15" ∷ word (ε ∷ ἴ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.15.15" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "1Cor.15.15" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.15.15" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.15" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.15" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.16" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.15.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.16" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.16" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.15.16" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.16" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.16" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.17" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.17" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.17" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.17" ∷ word (μ ∷ α ∷ τ ∷ α ∷ ί ∷ α ∷ []) "1Cor.15.17" ∷ word (ἡ ∷ []) "1Cor.15.17" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "1Cor.15.17" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.17" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "1Cor.15.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ὲ ∷ []) "1Cor.15.17" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.17" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.15.17" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Cor.15.17" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.17" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "1Cor.15.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.18" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.18" ∷ word (κ ∷ ο ∷ ι ∷ μ ∷ η ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.18" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.18" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.15.18" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "1Cor.15.18" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.19" ∷ word (τ ∷ ῇ ∷ []) "1Cor.15.19" ∷ word (ζ ∷ ω ∷ ῇ ∷ []) "1Cor.15.19" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "1Cor.15.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.19" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.15.19" ∷ word (ἠ ∷ ∙λ ∷ π ∷ ι ∷ κ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.19" ∷ word (ἐ ∷ σ ∷ μ ∷ ὲ ∷ ν ∷ []) "1Cor.15.19" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.15.19" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ε ∷ ι ∷ ν ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "1Cor.15.19" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.15.19" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.15.19" ∷ word (ἐ ∷ σ ∷ μ ∷ έ ∷ ν ∷ []) "1Cor.15.19" ∷ word (Ν ∷ υ ∷ ν ∷ ὶ ∷ []) "1Cor.15.20" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.20" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.20" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.20" ∷ word (ἐ ∷ κ ∷ []) "1Cor.15.20" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.20" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ []) "1Cor.15.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.20" ∷ word (κ ∷ ε ∷ κ ∷ ο ∷ ι ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Cor.15.20" ∷ word (ἐ ∷ π ∷ ε ∷ ι ∷ δ ∷ ὴ ∷ []) "1Cor.15.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.21" ∷ word (δ ∷ ι ∷ []) "1Cor.15.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "1Cor.15.21" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.21" ∷ word (δ ∷ ι ∷ []) "1Cor.15.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "1Cor.15.21" ∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.15.21" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.21" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.15.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.22" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.22" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.22" ∷ word (Ἀ ∷ δ ∷ ὰ ∷ μ ∷ []) "1Cor.15.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.22" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.22" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.15.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.22" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.22" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.22" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.15.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.22" ∷ word (ζ ∷ ῳ ∷ ο ∷ π ∷ ο ∷ ι ∷ η ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.22" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.23" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.23" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.23" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.23" ∷ word (ἰ ∷ δ ∷ ί ∷ ῳ ∷ []) "1Cor.15.23" ∷ word (τ ∷ ά ∷ γ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.15.23" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ []) "1Cor.15.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "1Cor.15.23" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "1Cor.15.23" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.23" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.23" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.23" ∷ word (τ ∷ ῇ ∷ []) "1Cor.15.23" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.15.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.23" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "1Cor.15.24" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.24" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.15.24" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.15.24" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ῷ ∷ []) "1Cor.15.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.15.24" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.24" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.24" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.15.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.24" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ί ∷ []) "1Cor.15.24" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.15.24" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ή ∷ σ ∷ ῃ ∷ []) "1Cor.15.24" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.15.24" ∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ ν ∷ []) "1Cor.15.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.24" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.15.24" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.24" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "1Cor.15.24" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Cor.15.25" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.25" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.15.25" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "1Cor.15.25" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "1Cor.15.25" ∷ word (ο ∷ ὗ ∷ []) "1Cor.15.25" ∷ word (θ ∷ ῇ ∷ []) "1Cor.15.25" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Cor.15.25" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.15.25" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.15.25" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.15.25" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.15.25" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "1Cor.15.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.25" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.26" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.15.26" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.26" ∷ word (ὁ ∷ []) "1Cor.15.26" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.26" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.15.27" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.27" ∷ word (ὑ ∷ π ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "1Cor.15.27" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Cor.15.27" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.15.27" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "1Cor.15.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.27" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.15.27" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.27" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "1Cor.15.27" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.27" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.15.27" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ έ ∷ τ ∷ α ∷ κ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.27" ∷ word (δ ∷ ῆ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Cor.15.27" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.27" ∷ word (ἐ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.27" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.27" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.15.27" ∷ word (τ ∷ ὰ ∷ []) "1Cor.15.27" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.15.27" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.15.28" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.28" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ γ ∷ ῇ ∷ []) "1Cor.15.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.15.28" ∷ word (τ ∷ ὰ ∷ []) "1Cor.15.28" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.15.28" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "1Cor.15.28" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Cor.15.28" ∷ word (ὁ ∷ []) "1Cor.15.28" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "1Cor.15.28" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ γ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.28" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.28" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ ξ ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "1Cor.15.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.15.28" ∷ word (τ ∷ ὰ ∷ []) "1Cor.15.28" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.15.28" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.15.28" ∷ word (ᾖ ∷ []) "1Cor.15.28" ∷ word (ὁ ∷ []) "1Cor.15.28" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.15.28" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.15.28" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.28" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.28" ∷ word (Ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "1Cor.15.29" ∷ word (τ ∷ ί ∷ []) "1Cor.15.29" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.29" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.29" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.15.29" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.15.29" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.29" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.29" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.29" ∷ word (ὅ ∷ ∙λ ∷ ω ∷ ς ∷ []) "1Cor.15.29" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.15.29" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.29" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.29" ∷ word (τ ∷ ί ∷ []) "1Cor.15.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.29" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.29" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Cor.15.29" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.29" ∷ word (τ ∷ ί ∷ []) "1Cor.15.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.30" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.15.30" ∷ word (κ ∷ ι ∷ ν ∷ δ ∷ υ ∷ ν ∷ ε ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.30" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.15.30" ∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "1Cor.15.30" ∷ word (κ ∷ α ∷ θ ∷ []) "1Cor.15.31" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "1Cor.15.31" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ω ∷ []) "1Cor.15.31" ∷ word (ν ∷ ὴ ∷ []) "1Cor.15.31" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.15.31" ∷ word (ὑ ∷ μ ∷ ε ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "1Cor.15.31" ∷ word (κ ∷ α ∷ ύ ∷ χ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.31" ∷ word (ἣ ∷ ν ∷ []) "1Cor.15.31" ∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Cor.15.31" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.31" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.15.31" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.15.31" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.31" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.15.31" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.31" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.32" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.15.32" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "1Cor.15.32" ∷ word (ἐ ∷ θ ∷ η ∷ ρ ∷ ι ∷ ο ∷ μ ∷ ά ∷ χ ∷ η ∷ σ ∷ α ∷ []) "1Cor.15.32" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.32" ∷ word (Ἐ ∷ φ ∷ έ ∷ σ ∷ ῳ ∷ []) "1Cor.15.32" ∷ word (τ ∷ ί ∷ []) "1Cor.15.32" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.15.32" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.32" ∷ word (ὄ ∷ φ ∷ ε ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Cor.15.32" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.32" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.15.32" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.32" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.32" ∷ word (Φ ∷ ά ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.32" ∷ word (π ∷ ί ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.32" ∷ word (α ∷ ὔ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.15.32" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.32" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.32" ∷ word (μ ∷ ὴ ∷ []) "1Cor.15.33" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.15.33" ∷ word (φ ∷ θ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.33" ∷ word (ἤ ∷ θ ∷ η ∷ []) "1Cor.15.33" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ὰ ∷ []) "1Cor.15.33" ∷ word (ὁ ∷ μ ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ι ∷ []) "1Cor.15.33" ∷ word (κ ∷ α ∷ κ ∷ α ∷ ί ∷ []) "1Cor.15.33" ∷ word (ἐ ∷ κ ∷ ν ∷ ή ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.15.34" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ ς ∷ []) "1Cor.15.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.34" ∷ word (μ ∷ ὴ ∷ []) "1Cor.15.34" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.15.34" ∷ word (ἀ ∷ γ ∷ ν ∷ ω ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.34" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.34" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.34" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Cor.15.34" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.34" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.15.34" ∷ word (ἐ ∷ ν ∷ τ ∷ ρ ∷ ο ∷ π ∷ ὴ ∷ ν ∷ []) "1Cor.15.34" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.34" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.15.34" ∷ word (Ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.35" ∷ word (ἐ ∷ ρ ∷ ε ∷ ῖ ∷ []) "1Cor.15.35" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.15.35" ∷ word (Π ∷ ῶ ∷ ς ∷ []) "1Cor.15.35" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.35" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.35" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ί ∷ []) "1Cor.15.35" ∷ word (π ∷ ο ∷ ί ∷ ῳ ∷ []) "1Cor.15.35" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.35" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.15.35" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.35" ∷ word (ἄ ∷ φ ∷ ρ ∷ ω ∷ ν ∷ []) "1Cor.15.36" ∷ word (σ ∷ ὺ ∷ []) "1Cor.15.36" ∷ word (ὃ ∷ []) "1Cor.15.36" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.15.36" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.36" ∷ word (ζ ∷ ῳ ∷ ο ∷ π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.36" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.15.36" ∷ word (μ ∷ ὴ ∷ []) "1Cor.15.36" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ά ∷ ν ∷ ῃ ∷ []) "1Cor.15.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.37" ∷ word (ὃ ∷ []) "1Cor.15.37" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.15.37" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.37" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.37" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.15.37" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.37" ∷ word (γ ∷ ε ∷ ν ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.15.37" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ς ∷ []) "1Cor.15.37" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.37" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ὸ ∷ ν ∷ []) "1Cor.15.37" ∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ο ∷ ν ∷ []) "1Cor.15.37" ∷ word (ε ∷ ἰ ∷ []) "1Cor.15.37" ∷ word (τ ∷ ύ ∷ χ ∷ ο ∷ ι ∷ []) "1Cor.15.37" ∷ word (σ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.15.37" ∷ word (ἤ ∷ []) "1Cor.15.37" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.15.37" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.37" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ῶ ∷ ν ∷ []) "1Cor.15.37" ∷ word (ὁ ∷ []) "1Cor.15.38" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.38" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Cor.15.38" ∷ word (δ ∷ ί ∷ δ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Cor.15.38" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Cor.15.38" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.15.38" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.15.38" ∷ word (ἠ ∷ θ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Cor.15.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.38" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "1Cor.15.38" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.38" ∷ word (σ ∷ π ∷ ε ∷ ρ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.15.38" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.15.38" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.15.38" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.39" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "1Cor.15.39" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "1Cor.15.39" ∷ word (ἡ ∷ []) "1Cor.15.39" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "1Cor.15.39" ∷ word (σ ∷ ά ∷ ρ ∷ ξ ∷ []) "1Cor.15.39" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.39" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.39" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.15.39" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Cor.15.39" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.39" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.39" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "1Cor.15.39" ∷ word (κ ∷ τ ∷ η ∷ ν ∷ ῶ ∷ ν ∷ []) "1Cor.15.39" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.39" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.39" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "1Cor.15.39" ∷ word (π ∷ τ ∷ η ∷ ν ∷ ῶ ∷ ν ∷ []) "1Cor.15.39" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.39" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.39" ∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ ω ∷ ν ∷ []) "1Cor.15.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.40" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.15.40" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ ά ∷ ν ∷ ι ∷ α ∷ []) "1Cor.15.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.40" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Cor.15.40" ∷ word (ἐ ∷ π ∷ ί ∷ γ ∷ ε ∷ ι ∷ α ∷ []) "1Cor.15.40" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.40" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.15.40" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "1Cor.15.40" ∷ word (ἡ ∷ []) "1Cor.15.40" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.40" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.15.40" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.15.40" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "1Cor.15.40" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.40" ∷ word (ἡ ∷ []) "1Cor.15.40" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.40" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "1Cor.15.40" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.41" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.15.41" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.15.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.41" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.41" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.15.41" ∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ ς ∷ []) "1Cor.15.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.41" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "1Cor.15.41" ∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Cor.15.41" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "1Cor.15.41" ∷ word (ἀ ∷ σ ∷ τ ∷ ὴ ∷ ρ ∷ []) "1Cor.15.41" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.41" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.15.41" ∷ word (δ ∷ ι ∷ α ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "1Cor.15.41" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.41" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "1Cor.15.41" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.15.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.42" ∷ word (ἡ ∷ []) "1Cor.15.42" ∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "1Cor.15.42" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.15.42" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Cor.15.42" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.42" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.42" ∷ word (φ ∷ θ ∷ ο ∷ ρ ∷ ᾷ ∷ []) "1Cor.15.42" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.42" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.42" ∷ word (ἀ ∷ φ ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.15.42" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.43" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.43" ∷ word (ἀ ∷ τ ∷ ι ∷ μ ∷ ί ∷ ᾳ ∷ []) "1Cor.15.43" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.43" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.43" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "1Cor.15.43" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.43" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.43" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Cor.15.43" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.43" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.43" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "1Cor.15.43" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.44" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.15.44" ∷ word (ψ ∷ υ ∷ χ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.15.44" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.44" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.15.44" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.15.44" ∷ word (Ε ∷ ἰ ∷ []) "1Cor.15.44" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.15.44" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "1Cor.15.44" ∷ word (ψ ∷ υ ∷ χ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.15.44" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.15.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.44" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.15.44" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.15.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.45" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.45" ∷ word (Ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "1Cor.15.45" ∷ word (ὁ ∷ []) "1Cor.15.45" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.45" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.15.45" ∷ word (Ἀ ∷ δ ∷ ὰ ∷ μ ∷ []) "1Cor.15.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.15.45" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "1Cor.15.45" ∷ word (ζ ∷ ῶ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.15.45" ∷ word (ὁ ∷ []) "1Cor.15.45" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.45" ∷ word (Ἀ ∷ δ ∷ ὰ ∷ μ ∷ []) "1Cor.15.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.15.45" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.15.45" ∷ word (ζ ∷ ῳ ∷ ο ∷ π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ []) "1Cor.15.45" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Cor.15.46" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.46" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Cor.15.46" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.46" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "1Cor.15.46" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.15.46" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.46" ∷ word (ψ ∷ υ ∷ χ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.15.46" ∷ word (ἔ ∷ π ∷ ε ∷ ι ∷ τ ∷ α ∷ []) "1Cor.15.46" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.46" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Cor.15.46" ∷ word (ὁ ∷ []) "1Cor.15.47" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.47" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.15.47" ∷ word (ἐ ∷ κ ∷ []) "1Cor.15.47" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "1Cor.15.47" ∷ word (χ ∷ ο ∷ ϊ ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.15.47" ∷ word (ὁ ∷ []) "1Cor.15.47" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "1Cor.15.47" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Cor.15.47" ∷ word (ἐ ∷ ξ ∷ []) "1Cor.15.47" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "1Cor.15.47" ∷ word (ο ∷ ἷ ∷ ο ∷ ς ∷ []) "1Cor.15.48" ∷ word (ὁ ∷ []) "1Cor.15.48" ∷ word (χ ∷ ο ∷ ϊ ∷ κ ∷ ό ∷ ς ∷ []) "1Cor.15.48" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.15.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.48" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.48" ∷ word (χ ∷ ο ∷ ϊ ∷ κ ∷ ο ∷ ί ∷ []) "1Cor.15.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.48" ∷ word (ο ∷ ἷ ∷ ο ∷ ς ∷ []) "1Cor.15.48" ∷ word (ὁ ∷ []) "1Cor.15.48" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ ά ∷ ν ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.15.48" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.15.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.48" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.48" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ ά ∷ ν ∷ ι ∷ ο ∷ ι ∷ []) "1Cor.15.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.49" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Cor.15.49" ∷ word (ἐ ∷ φ ∷ ο ∷ ρ ∷ έ ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.49" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.15.49" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "1Cor.15.49" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.49" ∷ word (χ ∷ ο ∷ ϊ ∷ κ ∷ ο ∷ ῦ ∷ []) "1Cor.15.49" ∷ word (φ ∷ ο ∷ ρ ∷ έ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "1Cor.15.49" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.49" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.15.49" ∷ word (ε ∷ ἰ ∷ κ ∷ ό ∷ ν ∷ α ∷ []) "1Cor.15.49" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.49" ∷ word (ἐ ∷ π ∷ ο ∷ υ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.15.49" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.15.50" ∷ word (δ ∷ έ ∷ []) "1Cor.15.50" ∷ word (φ ∷ η ∷ μ ∷ ι ∷ []) "1Cor.15.50" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.15.50" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.50" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "1Cor.15.50" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.50" ∷ word (α ∷ ἷ ∷ μ ∷ α ∷ []) "1Cor.15.50" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.50" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Cor.15.50" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "1Cor.15.50" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.50" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.50" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Cor.15.50" ∷ word (ἡ ∷ []) "1Cor.15.50" ∷ word (φ ∷ θ ∷ ο ∷ ρ ∷ ὰ ∷ []) "1Cor.15.50" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.15.50" ∷ word (ἀ ∷ φ ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.50" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ε ∷ ῖ ∷ []) "1Cor.15.50" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "1Cor.15.51" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.15.51" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.51" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Cor.15.51" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.51" ∷ word (ο ∷ ὐ ∷ []) "1Cor.15.51" ∷ word (κ ∷ ο ∷ ι ∷ μ ∷ η ∷ θ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.15.51" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.51" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.51" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.15.51" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.52" ∷ word (ἀ ∷ τ ∷ ό ∷ μ ∷ ῳ ∷ []) "1Cor.15.52" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.52" ∷ word (ῥ ∷ ι ∷ π ∷ ῇ ∷ []) "1Cor.15.52" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ῦ ∷ []) "1Cor.15.52" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.52" ∷ word (τ ∷ ῇ ∷ []) "1Cor.15.52" ∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ῃ ∷ []) "1Cor.15.52" ∷ word (σ ∷ ά ∷ ∙λ ∷ π ∷ ι ∷ γ ∷ γ ∷ ι ∷ []) "1Cor.15.52" ∷ word (σ ∷ α ∷ ∙λ ∷ π ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "1Cor.15.52" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.15.52" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.52" ∷ word (ο ∷ ἱ ∷ []) "1Cor.15.52" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ο ∷ ὶ ∷ []) "1Cor.15.52" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.52" ∷ word (ἄ ∷ φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.15.52" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.52" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.15.52" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Cor.15.52" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Cor.15.53" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.15.53" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.53" ∷ word (φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.15.53" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.15.53" ∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.15.53" ∷ word (ἀ ∷ φ ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.53" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.53" ∷ word (θ ∷ ν ∷ η ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.15.53" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.15.53" ∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.15.53" ∷ word (ἀ ∷ θ ∷ α ∷ ν ∷ α ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.53" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.15.54" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.54" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.54" ∷ word (φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.15.54" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.15.54" ∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.54" ∷ word (ἀ ∷ φ ∷ θ ∷ α ∷ ρ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.54" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.15.54" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.54" ∷ word (θ ∷ ν ∷ η ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.15.54" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Cor.15.54" ∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.54" ∷ word (ἀ ∷ θ ∷ α ∷ ν ∷ α ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.15.54" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "1Cor.15.54" ∷ word (γ ∷ ε ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.15.54" ∷ word (ὁ ∷ []) "1Cor.15.54" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Cor.15.54" ∷ word (ὁ ∷ []) "1Cor.15.54" ∷ word (γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "1Cor.15.54" ∷ word (Κ ∷ α ∷ τ ∷ ε ∷ π ∷ ό ∷ θ ∷ η ∷ []) "1Cor.15.54" ∷ word (ὁ ∷ []) "1Cor.15.54" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.15.54" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.15.54" ∷ word (ν ∷ ῖ ∷ κ ∷ ο ∷ ς ∷ []) "1Cor.15.54" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.15.55" ∷ word (σ ∷ ο ∷ υ ∷ []) "1Cor.15.55" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "1Cor.15.55" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.55" ∷ word (ν ∷ ῖ ∷ κ ∷ ο ∷ ς ∷ []) "1Cor.15.55" ∷ word (π ∷ ο ∷ ῦ ∷ []) "1Cor.15.55" ∷ word (σ ∷ ο ∷ υ ∷ []) "1Cor.15.55" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "1Cor.15.55" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.55" ∷ word (κ ∷ έ ∷ ν ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.15.55" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.56" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.56" ∷ word (κ ∷ έ ∷ ν ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.15.56" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.56" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.15.56" ∷ word (ἡ ∷ []) "1Cor.15.56" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ []) "1Cor.15.56" ∷ word (ἡ ∷ []) "1Cor.15.56" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.56" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ς ∷ []) "1Cor.15.56" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.15.56" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.15.56" ∷ word (ὁ ∷ []) "1Cor.15.56" ∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "1Cor.15.56" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.57" ∷ word (δ ∷ ὲ ∷ []) "1Cor.15.57" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Cor.15.57" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Cor.15.57" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.57" ∷ word (δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ ι ∷ []) "1Cor.15.57" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Cor.15.57" ∷ word (τ ∷ ὸ ∷ []) "1Cor.15.57" ∷ word (ν ∷ ῖ ∷ κ ∷ ο ∷ ς ∷ []) "1Cor.15.57" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Cor.15.57" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.57" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.15.57" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.57" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.15.57" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.57" ∷ word (Ὥ ∷ σ ∷ τ ∷ ε ∷ []) "1Cor.15.58" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.15.58" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.15.58" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "1Cor.15.58" ∷ word (ἑ ∷ δ ∷ ρ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "1Cor.15.58" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.15.58" ∷ word (ἀ ∷ μ ∷ ε ∷ τ ∷ α ∷ κ ∷ ί ∷ ν ∷ η ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.15.58" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.58" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.58" ∷ word (τ ∷ ῷ ∷ []) "1Cor.15.58" ∷ word (ἔ ∷ ρ ∷ γ ∷ ῳ ∷ []) "1Cor.15.58" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.15.58" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.15.58" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "1Cor.15.58" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.15.58" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.15.58" ∷ word (ὁ ∷ []) "1Cor.15.58" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "1Cor.15.58" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.15.58" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.15.58" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Cor.15.58" ∷ word (κ ∷ ε ∷ ν ∷ ὸ ∷ ς ∷ []) "1Cor.15.58" ∷ word (ἐ ∷ ν ∷ []) "1Cor.15.58" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.15.58" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.16.1" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.1" ∷ word (∙λ ∷ ο ∷ γ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Cor.16.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.16.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.16.1" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.16.1" ∷ word (ὥ ∷ σ ∷ π ∷ ε ∷ ρ ∷ []) "1Cor.16.1" ∷ word (δ ∷ ι ∷ έ ∷ τ ∷ α ∷ ξ ∷ α ∷ []) "1Cor.16.1" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Cor.16.1" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Cor.16.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.1" ∷ word (Γ ∷ α ∷ ∙λ ∷ α ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.16.1" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.16.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.1" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.16.1" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.16.1" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Cor.16.2" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.16.2" ∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.16.2" ∷ word (ἕ ∷ κ ∷ α ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "1Cor.16.2" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.16.2" ∷ word (π ∷ α ∷ ρ ∷ []) "1Cor.16.2" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "1Cor.16.2" ∷ word (τ ∷ ι ∷ θ ∷ έ ∷ τ ∷ ω ∷ []) "1Cor.16.2" ∷ word (θ ∷ η ∷ σ ∷ α ∷ υ ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Cor.16.2" ∷ word (ὅ ∷ []) "1Cor.16.2" ∷ word (τ ∷ ι ∷ []) "1Cor.16.2" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.16.2" ∷ word (ε ∷ ὐ ∷ ο ∷ δ ∷ ῶ ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.2" ∷ word (μ ∷ ὴ ∷ []) "1Cor.16.2" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.16.2" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ω ∷ []) "1Cor.16.2" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "1Cor.16.2" ∷ word (∙λ ∷ ο ∷ γ ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "1Cor.16.2" ∷ word (γ ∷ ί ∷ ν ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.2" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.16.3" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.3" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ έ ∷ ν ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.16.3" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "1Cor.16.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.16.3" ∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ ά ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.16.3" ∷ word (δ ∷ ι ∷ []) "1Cor.16.3" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Cor.16.3" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.16.3" ∷ word (π ∷ έ ∷ μ ∷ ψ ∷ ω ∷ []) "1Cor.16.3" ∷ word (ἀ ∷ π ∷ ε ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.16.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.16.3" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "1Cor.16.3" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.16.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.16.3" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ο ∷ υ ∷ σ ∷ α ∷ ∙λ ∷ ή ∷ μ ∷ []) "1Cor.16.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.16.4" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.4" ∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.16.4" ∷ word (ᾖ ∷ []) "1Cor.16.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.16.4" ∷ word (κ ∷ ἀ ∷ μ ∷ ὲ ∷ []) "1Cor.16.4" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Cor.16.4" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.16.4" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "1Cor.16.4" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.4" ∷ word (Ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.16.5" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.16.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.5" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.16.5" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "1Cor.16.5" ∷ word (δ ∷ ι ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ []) "1Cor.16.5" ∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "1Cor.16.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.16.5" ∷ word (δ ∷ ι ∷ έ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.16.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.16.6" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.6" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.6" ∷ word (τ ∷ υ ∷ χ ∷ ὸ ∷ ν ∷ []) "1Cor.16.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ μ ∷ ε ∷ ν ∷ ῶ ∷ []) "1Cor.16.6" ∷ word (ἢ ∷ []) "1Cor.16.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ χ ∷ ε ∷ ι ∷ μ ∷ ά ∷ σ ∷ ω ∷ []) "1Cor.16.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.6" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.16.6" ∷ word (μ ∷ ε ∷ []) "1Cor.16.6" ∷ word (π ∷ ρ ∷ ο ∷ π ∷ έ ∷ μ ∷ ψ ∷ η ∷ τ ∷ ε ∷ []) "1Cor.16.6" ∷ word (ο ∷ ὗ ∷ []) "1Cor.16.6" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.16.6" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "1Cor.16.6" ∷ word (ο ∷ ὐ ∷ []) "1Cor.16.7" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "1Cor.16.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.16.7" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.7" ∷ word (ἄ ∷ ρ ∷ τ ∷ ι ∷ []) "1Cor.16.7" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.7" ∷ word (π ∷ α ∷ ρ ∷ ό ∷ δ ∷ ῳ ∷ []) "1Cor.16.7" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Cor.16.7" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ω ∷ []) "1Cor.16.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.16.7" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Cor.16.7" ∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ []) "1Cor.16.7" ∷ word (ἐ ∷ π ∷ ι ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "1Cor.16.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.16.7" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.7" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.16.7" ∷ word (ὁ ∷ []) "1Cor.16.7" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Cor.16.7" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ ῃ ∷ []) "1Cor.16.7" ∷ word (ἐ ∷ π ∷ ι ∷ μ ∷ ε ∷ ν ∷ ῶ ∷ []) "1Cor.16.8" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.8" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.8" ∷ word (Ἐ ∷ φ ∷ έ ∷ σ ∷ ῳ ∷ []) "1Cor.16.8" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Cor.16.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.8" ∷ word (π ∷ ε ∷ ν ∷ τ ∷ η ∷ κ ∷ ο ∷ σ ∷ τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.8" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ []) "1Cor.16.9" ∷ word (γ ∷ ά ∷ ρ ∷ []) "1Cor.16.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "1Cor.16.9" ∷ word (ἀ ∷ ν ∷ έ ∷ ῳ ∷ γ ∷ ε ∷ ν ∷ []) "1Cor.16.9" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "1Cor.16.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.9" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ή ∷ ς ∷ []) "1Cor.16.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.9" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ κ ∷ ε ∷ ί ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Cor.16.9" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "1Cor.16.9" ∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "1Cor.16.10" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.10" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.16.10" ∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ο ∷ ς ∷ []) "1Cor.16.10" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.16.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.10" ∷ word (ἀ ∷ φ ∷ ό ∷ β ∷ ω ∷ ς ∷ []) "1Cor.16.10" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.10" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.16.10" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.10" ∷ word (τ ∷ ὸ ∷ []) "1Cor.16.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.16.10" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "1Cor.16.10" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.16.10" ∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.10" ∷ word (ὡ ∷ ς ∷ []) "1Cor.16.10" ∷ word (κ ∷ ἀ ∷ γ ∷ ώ ∷ []) "1Cor.16.10" ∷ word (μ ∷ ή ∷ []) "1Cor.16.11" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.16.11" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.16.11" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "1Cor.16.11" ∷ word (π ∷ ρ ∷ ο ∷ π ∷ έ ∷ μ ∷ ψ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.16.11" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.16.11" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.11" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ ῃ ∷ []) "1Cor.16.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.11" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.16.11" ∷ word (π ∷ ρ ∷ ό ∷ ς ∷ []) "1Cor.16.11" ∷ word (μ ∷ ε ∷ []) "1Cor.16.11" ∷ word (ἐ ∷ κ ∷ δ ∷ έ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Cor.16.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.16.11" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Cor.16.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.16.11" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "1Cor.16.11" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Cor.16.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.12" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ []) "1Cor.16.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.16.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "1Cor.16.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.16.12" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ α ∷ []) "1Cor.16.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Cor.16.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.12" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.16.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Cor.16.12" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.12" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Cor.16.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Cor.16.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῶ ∷ ν ∷ []) "1Cor.16.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Cor.16.12" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Cor.16.12" ∷ word (ἦ ∷ ν ∷ []) "1Cor.16.12" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "1Cor.16.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.12" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Cor.16.12" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "1Cor.16.12" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.12" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.12" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Cor.16.12" ∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ι ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ []) "1Cor.16.12" ∷ word (Γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "1Cor.16.13" ∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.16.13" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.13" ∷ word (τ ∷ ῇ ∷ []) "1Cor.16.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Cor.16.13" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.16.13" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ α ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.16.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Cor.16.14" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.16.14" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.14" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "1Cor.16.14" ∷ word (γ ∷ ι ∷ ν ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Cor.16.14" ∷ word (Π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Cor.16.15" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.15" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.15" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Cor.16.15" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "1Cor.16.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Cor.16.15" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "1Cor.16.15" ∷ word (Σ ∷ τ ∷ ε ∷ φ ∷ α ∷ ν ∷ ᾶ ∷ []) "1Cor.16.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.16.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Cor.16.15" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ χ ∷ ὴ ∷ []) "1Cor.16.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.15" ∷ word (Ἀ ∷ χ ∷ α ∷ ΐ ∷ α ∷ ς ∷ []) "1Cor.16.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Cor.16.15" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "1Cor.16.15" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.16.15" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.16.15" ∷ word (ἔ ∷ τ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "1Cor.16.15" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "1Cor.16.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "1Cor.16.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.16" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Cor.16.16" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ σ ∷ σ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.16.16" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Cor.16.16" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Cor.16.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.16" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Cor.16.16" ∷ word (τ ∷ ῷ ∷ []) "1Cor.16.16" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ι ∷ []) "1Cor.16.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.16" ∷ word (κ ∷ ο ∷ π ∷ ι ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "1Cor.16.16" ∷ word (χ ∷ α ∷ ί ∷ ρ ∷ ω ∷ []) "1Cor.16.17" ∷ word (δ ∷ ὲ ∷ []) "1Cor.16.17" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Cor.16.17" ∷ word (τ ∷ ῇ ∷ []) "1Cor.16.17" ∷ word (π ∷ α ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.16.17" ∷ word (Σ ∷ τ ∷ ε ∷ φ ∷ α ∷ ν ∷ ᾶ ∷ []) "1Cor.16.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.17" ∷ word (Φ ∷ ο ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "1Cor.16.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.17" ∷ word (Ἀ ∷ χ ∷ α ∷ ϊ ∷ κ ∷ ο ∷ ῦ ∷ []) "1Cor.16.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Cor.16.17" ∷ word (τ ∷ ὸ ∷ []) "1Cor.16.17" ∷ word (ὑ ∷ μ ∷ έ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Cor.16.17" ∷ word (ὑ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ η ∷ μ ∷ α ∷ []) "1Cor.16.17" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "1Cor.16.17" ∷ word (ἀ ∷ ν ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Cor.16.17" ∷ word (ἀ ∷ ν ∷ έ ∷ π ∷ α ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "1Cor.16.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Cor.16.18" ∷ word (τ ∷ ὸ ∷ []) "1Cor.16.18" ∷ word (ἐ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Cor.16.18" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Cor.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.18" ∷ word (τ ∷ ὸ ∷ []) "1Cor.16.18" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.16.18" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "1Cor.16.18" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Cor.16.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Cor.16.18" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.16.18" ∷ word (Ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.19" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.19" ∷ word (α ∷ ἱ ∷ []) "1Cor.16.19" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ι ∷ []) "1Cor.16.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Cor.16.19" ∷ word (Ἀ ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Cor.16.19" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.19" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.19" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.19" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Cor.16.19" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Cor.16.19" ∷ word (Ἀ ∷ κ ∷ ύ ∷ ∙λ ∷ α ∷ ς ∷ []) "1Cor.16.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "1Cor.16.19" ∷ word (Π ∷ ρ ∷ ί ∷ σ ∷ κ ∷ α ∷ []) "1Cor.16.19" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "1Cor.16.19" ∷ word (τ ∷ ῇ ∷ []) "1Cor.16.19" ∷ word (κ ∷ α ∷ τ ∷ []) "1Cor.16.19" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "1Cor.16.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Cor.16.19" ∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "1Cor.16.19" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Cor.16.20" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "1Cor.16.20" ∷ word (ο ∷ ἱ ∷ []) "1Cor.16.20" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "1Cor.16.20" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Cor.16.20" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "1Cor.16.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Cor.16.20" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.20" ∷ word (φ ∷ ι ∷ ∙λ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Cor.16.20" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "1Cor.16.20" ∷ word (Ὁ ∷ []) "1Cor.16.21" ∷ word (ἀ ∷ σ ∷ π ∷ α ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "1Cor.16.21" ∷ word (τ ∷ ῇ ∷ []) "1Cor.16.21" ∷ word (ἐ ∷ μ ∷ ῇ ∷ []) "1Cor.16.21" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὶ ∷ []) "1Cor.16.21" ∷ word (Π ∷ α ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Cor.16.21" ∷ word (ε ∷ ἴ ∷ []) "1Cor.16.22" ∷ word (τ ∷ ι ∷ ς ∷ []) "1Cor.16.22" ∷ word (ο ∷ ὐ ∷ []) "1Cor.16.22" ∷ word (φ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Cor.16.22" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Cor.16.22" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Cor.16.22" ∷ word (ἤ ∷ τ ∷ ω ∷ []) "1Cor.16.22" ∷ word (ἀ ∷ ν ∷ ά ∷ θ ∷ ε ∷ μ ∷ α ∷ []) "1Cor.16.22" ∷ word (Μ ∷ α ∷ ρ ∷ ά ∷ ν ∷ α ∷ []) "1Cor.16.22" ∷ word (θ ∷ ά ∷ []) "1Cor.16.22" ∷ word (ἡ ∷ []) "1Cor.16.23" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Cor.16.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Cor.16.23" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Cor.16.23" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.16.23" ∷ word (μ ∷ ε ∷ θ ∷ []) "1Cor.16.23" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.16.23" ∷ word (ἡ ∷ []) "1Cor.16.24" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Cor.16.24" ∷ word (μ ∷ ο ∷ υ ∷ []) "1Cor.16.24" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Cor.16.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Cor.16.24" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Cor.16.24" ∷ word (ἐ ∷ ν ∷ []) "1Cor.16.24" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Cor.16.24" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Cor.16.24" ∷ []
{ "alphanum_fraction": 0.3513271341, "avg_line_length": 45.4719331672, "ext": "agda", "hexsha": "18794b9f90c2bd57cb3b6f18b380480a878f66bb", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z", "max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "scott-fleischman/GreekGrammar", "max_forks_repo_path": "agda/Text/Greek/SBLGNT/1Cor.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "scott-fleischman/GreekGrammar", "max_issues_repo_path": "agda/Text/Greek/SBLGNT/1Cor.agda", "max_line_length": 86, "max_stars_count": 44, "max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "scott-fleischman/GreekGrammar", "max_stars_repo_path": "agda/Text/Greek/SBLGNT/1Cor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z", "num_tokens": 217794, "size": 310255 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.Consensus.Types.EpochIndep open import LibraBFT.Impl.NetworkMsg open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Abstract.Types.EpochConfig UID NodeId open WithAbsVote -- Here we have the abstraction functions that connect -- the datatypes defined in LibraBFT.Impl.Consensus.Types -- to the abstract records from LibraBFT.Abstract.Records -- for a given EpochConfig. -- module LibraBFT.Concrete.Records (𝓔 : EpochConfig) where open import LibraBFT.Impl.Consensus.Types.EpochDep 𝓔 open import LibraBFT.Abstract.Abstract UID _≟UID_ NodeId 𝓔 ConcreteVoteEvidence as Abs hiding (bId; qcVotes; Block) open EpochConfig 𝓔 -------------------------------- -- Abstracting Blocks and QCs -- -------------------------------- α-Block : Block → Abs.Block α-Block b with ₋bdBlockType (₋bBlockData b) ...| NilBlock = record { bId = ₋bId b ; bPrevQC = just (b ^∙ (bBlockData ∙ bdQuorumCert ∙ qcVoteData ∙ vdParent ∙ biId)) ; bRound = b ^∙ bBlockData ∙ bdRound } ...| Genesis = record { bId = b ^∙ bId ; bPrevQC = nothing ; bRound = b ^∙ bBlockData ∙ bdRound } ...| Proposal cmd α = record { bId = b ^∙ bId ; bPrevQC = just (b ^∙ bBlockData ∙ bdQuorumCert ∙ qcVoteData ∙ vdParent ∙ biId) ; bRound = b ^∙ bBlockData ∙ bdRound } α-VoteData-Block : VoteData → Abs.Block α-VoteData-Block vd = record { bId = vd ^∙ vdProposed ∙ biId ; bPrevQC = just (vd ^∙ vdParent ∙ biId) ; bRound = vd ^∙ vdProposed ∙ biRound } α-Vote : (qc : QuorumCert)(valid : MetaIsValidQC qc) → ∀ {as} → as ∈ qcVotes qc → Abs.Vote α-Vote qc v {as} as∈QC = α-ValidVote (rebuildVote qc as) (₋ivvMember (All-lookup (₋ivqcMetaVotesValid v) as∈QC)) -- Abstraction of votes produce votes that carry evidence -- they have been cast. α-Vote-evidence : (qc : QuorumCert)(valid : MetaIsValidQC qc) → ∀{vs} (prf : vs ∈ qcVotes qc) → ConcreteVoteEvidence (α-Vote qc valid prf) α-Vote-evidence qc valid {as} v∈qc = record { ₋cveVote = rebuildVote qc as ; ₋cveIsValidVote = All-lookup (₋ivqcMetaVotesValid valid) v∈qc ; ₋cveIsAbs = refl } α-QC : Σ QuorumCert MetaIsValidQC → Abs.QC α-QC (qc , valid) = record { qCertBlockId = qc ^∙ qcVoteData ∙ vdProposed ∙ biId ; qRound = qc ^∙ qcVoteData ∙ vdProposed ∙ biRound ; qVotes = All-reduce (α-Vote qc valid) All-self ; qVotes-C1 = {! MetaIsValidQC.₋ivqcMetaIsQuorum valid!} ; qVotes-C2 = All-reduce⁺ (α-Vote qc valid) (λ _ → refl) All-self ; qVotes-C3 = All-reduce⁺ (α-Vote qc valid) (λ _ → refl) All-self ; qVotes-C4 = All-reduce⁺ (α-Vote qc valid) (α-Vote-evidence qc valid) All-self } -- What does it mean for an (abstract) Block or QC to be represented in a NetworkMsg? data _α-∈NM_ : Abs.Record → NetworkMsg → Set where qc∈NM : ∀ {cqc q nm} → (valid : MetaIsValidQC cqc) → cqc QC∈NM nm → q ≡ α-QC (cqc , valid) → Abs.Q q α-∈NM nm b∈NM : ∀ {cb pm nm} → nm ≡ P pm → pm ^∙ pmProposal ≡ cb → Abs.B (α-Block cb) α-∈NM nm -- Our system model contains a message pool, which is a list of NodeId-NetworkMsg pairs. The -- following relation expresses that an abstract record r is represented in a given message pool -- sm. data _α-Sent_ (r : Abs.Record) (sm : List (NodeId × NetworkMsg)) : Set where ws : ∀ {p nm} → getEpoch nm ≡ epoch → (p , nm) ∈ sm → r α-∈NM nm → r α-Sent sm
{ "alphanum_fraction": 0.6299634592, "avg_line_length": 40.6435643564, "ext": "agda", "hexsha": "dcce79f5b28d082ca607724f9b8a42bcf1c83003", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Concrete/Records.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Concrete/Records.agda", "max_line_length": 116, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Concrete/Records.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1346, "size": 4105 }
module Selective.Examples.TestAO where open import Selective.ActorMonad open import Prelude open import Selective.Libraries.Call2 open import Selective.Libraries.ActiveObjects open import Debug open import Data.Nat.Show using (show) ℕ-ReplyMessage : MessageType ℕ-ReplyMessage = ValueType UniqueTag ∷ [ ValueType ℕ ]ˡ ℕ-Reply : InboxShape ℕ-Reply = [ ℕ-ReplyMessage ]ˡ ℕ×ℕ→ℕ-Message : MessageType ℕ×ℕ→ℕ-Message = ValueType UniqueTag ∷ ReferenceType ℕ-Reply ∷ ValueType ℕ ∷ [ ValueType ℕ ]ˡ Calculate : InboxShape Calculate = [ ℕ×ℕ→ℕ-Message ]ˡ CalculateProtocol : ChannelInitiation CalculateProtocol = record { request = Calculate ; response = record { channel-shape = ℕ-Reply ; all-tagged = (HasTag _) ∷ [] } ; request-tagged = [ HasTag+Ref _ ]ᵃ } ℕ×ℕ→ℕ-ci : ChannelInitiation ℕ×ℕ→ℕ-ci = record { request = Calculate ; response = record { channel-shape = ℕ-Reply ; all-tagged = (HasTag _) ∷ [] } ; request-tagged = (HasTag+Ref _) ∷ [] } add-method-header = ResponseMethod ℕ×ℕ→ℕ-ci multiply-method-header = ResponseMethod ℕ×ℕ→ℕ-ci calculator-methods : List ActiveMethod calculator-methods = add-method-header ∷ multiply-method-header ∷ [] calculator-inbox = methods-shape calculator-methods calculator-state-vars : ⊤₁ → TypingContext calculator-state-vars _ = [] add : (active-method calculator-inbox ⊤₁ calculator-state-vars add-method-header) add _ (_ sent Msg Z (n ∷ m ∷ [])) v = return₁ (record { new-state = _ ; reply = SendM Z [ lift (n + m)]ᵃ }) add _ (_ sent Msg (S ()) _) _ multiply : (active-method calculator-inbox ⊤₁ (λ _ → []) multiply-method-header) multiply _ (_ sent Msg Z (n ∷ m ∷ [])) v = return₁ (record { new-state = _ ; reply = SendM Z [ lift (n * m)]ᵃ }) multiply _ (_ sent Msg (S ()) _) _ calculator : ActiveObject calculator = record { state-type = ⊤₁ ; vars = calculator-state-vars ; methods = calculator-methods ; extra-messages = [] ; handlers = add ∷ multiply ∷ [] } calculator-actor = run-active-object calculator _ TestBox : InboxShape TestBox = ℕ-Reply -- import Selective.Examples.CalculatorProtocol as CP -- calculator-test-actor = CP.calculator-test-actor calculator-actor calculator-test-actor : ∀{i} → ∞ActorM i TestBox (Lift (lsuc lzero) ℕ) [] (λ _ → []) calculator-test-actor = do spawn∞ calculator-actor Msg Z (_ ∷ n ∷ []) ← call CalculateProtocol (record { var = Z ; chosen-field = Z ; fields = lift 32 ∷ [ lift 10 ]ᵃ ; session = record { can-request = [ Z ]ᵐ -- Pick add method ; response-session = record { can-receive = [ Z ]ᵐ ; tag = 0 } } }) where Msg (S ()) _ Msg Z (_ ∷ m ∷ []) ← debug (show n) (call CalculateProtocol (record { var = Z ; chosen-field = Z ; fields = lift n ∷ [ lift 10 ]ᵃ ; session = record { can-request = [ S Z ]ᵐ -- Pick multiply method ; response-session = record { can-receive = [ Z ]ᵐ ; tag = 1 } } })) where Msg (S ()) _ debug (show m) (strengthen []) return m
{ "alphanum_fraction": 0.6141559662, "avg_line_length": 29.0272727273, "ext": "agda", "hexsha": "b99ad486d668770942d6392f4ba955283e68bd7c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "src/Selective/Examples/TestAO.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "src/Selective/Examples/TestAO.agda", "max_line_length": 112, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/thesis", "max_stars_repo_path": "src/Selective/Examples/TestAO.agda", "max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z", "num_tokens": 926, "size": 3193 }
module Everything where open import Pi.Everything -- Formalization for Π open import RevMachine -- Formalization of reversible machine and partial reversible machine open import RevNoRepeat -- Non-repeating theorem for reversible machine open import PartialRevNoRepeat -- Non-repeating theorem for partial reversible machine open import TimeSpace -- Time space trade-off open import Pi-.Everything -- Formalization for Π⁻ open import PiFrac.Everything -- Formalization for Π/ open import PiQ.Everything -- Formalization for Π^ℚ
{ "alphanum_fraction": 0.7526132404, "avg_line_length": 57.4, "ext": "agda", "hexsha": "b12289d01b098dba6c97c9c43d0f7f7d4926a072", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "Everything.agda", "max_line_length": 101, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "Everything.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 126, "size": 574 }
module RecordUpdateSyntax where open import Common.Prelude open import Common.Equality data Param : Nat → Set where param : ∀ n → Param (suc n) record R : Set where field {i} : Nat p : Param i s : Nat old : R old = record { p = param 0; s = 1 } -- Simple update, it should be able to infer the type and the implicit. new : _ new = record old { p = param 1 } new′ : R new′ = record { i = 2; p = param 1; s = 1 } -- Here's a needlessly complex update. upd-p-s : Nat → _ → _ → R upd-p-s zero s r = record r { p = param zero; s = s } upd-p-s (suc n) s r = record (upd-p-s n 0 r) { p = param n; s = s } eq₁ : new ≡ new′ eq₁ = refl eq₂ : upd-p-s zero 1 (record new { s = 0 }) ≡ old eq₂ = refl -- Check that instance arguments are handled properly postulate T : Nat → Set instance t0 : T 0 t1 : T 1 record Instance : Set where field n : Nat {{t}} : T n r0 : Instance r0 = record { n = 0 } r1 : Instance r1 = record r0 { n = 1 } check : Instance.t r1 ≡ t1 check = refl -- Andreas, 2020-03-27, issue #3684 -- warn only if there are invalid or duplicate fields _ = record old { invalidField = 1 } _ = record old { s = 1; s = 0 } _ = record old { foo = 1; bar = 0; s = 1; s = 0 } -- The record type R does not have the field invalidField but it would -- have the fields i, p, s -- when checking that the expression record old { invalidField = 1 } -- has type R -- Duplicate field s in record -- when checking that the expression record old { s = 1 ; s = 0 } has -- type R -- /Users/abel/agda-erasure/test/Succeed/RecordUpdateSyntax.agda:59,5-50 -- The record type R does not have the fields foo, bar but it would -- have the fields i, p -- when checking that the expression -- record old { foo = 1 ; bar = 0 ; s = 1 ; s = 0 } has type R -- Duplicate field s in record -- when checking that the expression -- record old { foo = 1 ; bar = 0 ; s = 1 ; s = 0 } has type R
{ "alphanum_fraction": 0.6224543081, "avg_line_length": 23.3536585366, "ext": "agda", "hexsha": "353e16250d8eaff4fca3f4706cb838ec4b0be58f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-06-14T11:07:38.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-14T11:07:38.000Z", "max_forks_repo_head_hexsha": "57165760eeffdbf2aec92b636cb92075d79ac7a3", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alexarice/agda", "max_forks_repo_path": "test/Succeed/RecordUpdateSyntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "57165760eeffdbf2aec92b636cb92075d79ac7a3", "max_issues_repo_issues_event_max_datetime": "2020-05-29T19:45:38.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-29T19:45:38.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alexarice/agda", "max_issues_repo_path": "test/Succeed/RecordUpdateSyntax.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "57165760eeffdbf2aec92b636cb92075d79ac7a3", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alexarice/agda", "max_stars_repo_path": "test/Succeed/RecordUpdateSyntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-14T11:08:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-14T11:08:59.000Z", "num_tokens": 643, "size": 1915 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Empty type ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Empty where ------------------------------------------------------------------------ -- Definition -- Note that by default the empty type is not universe polymorphic as it -- often results in unsolved metas. See `Data.Empty.Polymorphic` for a -- universe polymorphic variant. data ⊥ : Set where ------------------------------------------------------------------------ -- Functions ⊥-elim : ∀ {w} {Whatever : Set w} → ⊥ → Whatever ⊥-elim ()
{ "alphanum_fraction": 0.389212828, "avg_line_length": 27.44, "ext": "agda", "hexsha": "decbac8c3efa8c1d9e3914a67d50796783fbaf69", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Empty.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Empty.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 117, "size": 686 }
module StateSized.GUI.SpaceShipSimpleVar where open import SizedIO.Base open import StateSizedIO.GUI.BaseStateDependent open import Data.Bool.Base open import Data.List.Base open import Data.Integer open import Data.Product hiding (map) open import SizedIO.Object open import SizedIO.IOObject open import NativeIO open import StateSizedIO.GUI.WxBindingsFFI open import StateSizedIO.GUI.VariableList open import StateSizedIO.GUI.WxGraphicsLib open import StateSized.GUI.BitMaps VarType : Set VarType = ℤ varInit : VarType varInit = (+ 150) onPaint : ∀{i} → VarType → DC → Rect → IO GuiLev1Interface i VarType onPaint z dc rect = exec (drawBitmap dc ship (z , (+ 150)) true) λ _ → return z moveSpaceShip : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType moveSpaceShip fra z = return (z + + 20) callRepaint : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType callRepaint fra z = exec (repaint fra) λ _ → return z program : ∀{i} → IOˢ GuiLev2Interface i (λ _ → Unit) [] program = execˢ (level1C makeFrame) λ fra → execˢ (level1C (makeButton fra)) λ bt → execˢ (level1C (addButton fra bt)) λ _ → execˢ (createVar varInit) λ _ → execˢ (setButtonHandler bt (moveSpaceShip fra ∷ [ callRepaint fra ])) λ _ → execˢ (setOnPaint fra [ onPaint ]) returnˢ main : NativeIO Unit main = start (translateLev2 program)
{ "alphanum_fraction": 0.657180675, "avg_line_length": 28.5094339623, "ext": "agda", "hexsha": "e35ef6a5afa75f687e8d1ba0b95c037d9f4467c4", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/StateSized/GUI/SpaceShipSimpleVar.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/StateSized/GUI/SpaceShipSimpleVar.agda", "max_line_length": 71, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/StateSized/GUI/SpaceShipSimpleVar.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 441, "size": 1511 }
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-} module 24-sequences where import 23-id-pushout open 23-id-pushout public {- We introduce two types of sequences: one with the arrows going up and one with the arrows going down. -} Sequence : ( l : Level) → UU (lsuc l) Sequence l = Σ (ℕ → UU l) (λ A → (n : ℕ) → A n → A (succ-ℕ n)) type-seq : { l : Level} (A : Sequence l) → (n : ℕ) → UU l type-seq A = pr1 A map-seq : { l : Level} (A : Sequence l) → ( n : ℕ) → (type-seq A n) → (type-seq A (succ-ℕ n)) map-seq A = pr2 A Sequence' : ( l : Level) → UU (lsuc l) Sequence' l = Σ (ℕ → UU l) (λ A → (n : ℕ) → A (succ-ℕ n) → A n) type-seq' : { l : Level} (A : Sequence' l) → (n : ℕ) → UU l type-seq' A = pr1 A map-seq' : { l : Level} (A : Sequence' l) → (n : ℕ) → (type-seq' A (succ-ℕ n)) → (type-seq' A n) map-seq' A = pr2 A {- We characterize the identity type of Sequence l. -} naturality-hom-Seq : { l1 l2 : Level} (A : Sequence l1) (B : Sequence l2) ( h : (n : ℕ) → type-seq A n → type-seq B n) (n : ℕ) → UU (l1 ⊔ l2) naturality-hom-Seq A B h n = ((map-seq B n) ∘ (h n)) ~ ((h (succ-ℕ n)) ∘ (map-seq A n)) equiv-Seq : { l1 l2 : Level} (A : Sequence l1) (B : Sequence l2) → UU (l1 ⊔ l2) equiv-Seq A B = Σ ( (n : ℕ) → (type-seq A n) ≃ (type-seq B n)) ( λ e → (n : ℕ) → naturality-hom-Seq A B (λ n → map-equiv (e n)) n) reflexive-equiv-Seq : { l1 : Level} (A : Sequence l1) → equiv-Seq A A reflexive-equiv-Seq A = pair ( λ n → equiv-id (type-seq A n)) ( λ n → htpy-refl) equiv-eq-Seq : { l1 : Level} (A B : Sequence l1) → Id A B → equiv-Seq A B equiv-eq-Seq A .A refl = reflexive-equiv-Seq A is-contr-total-equiv-Seq : { l1 : Level} (A : Sequence l1) → is-contr (Σ (Sequence l1) (equiv-Seq A)) is-contr-total-equiv-Seq A = is-contr-total-Eq-structure ( λ B g (e : (n : ℕ) → (type-seq A n) ≃ B n) → (n : ℕ) → naturality-hom-Seq A (pair B g) (λ n → map-equiv (e n)) n) ( is-contr-total-Eq-Π ( λ n X → type-seq A n ≃ X) ( λ n → is-contr-total-equiv (type-seq A n)) ( type-seq A)) ( pair (type-seq A) (λ n → equiv-id (type-seq A n))) ( is-contr-total-Eq-Π ( λ n h → h ~ (map-seq A n)) ( λ n → is-contr-total-htpy' (map-seq A n)) ( map-seq A)) is-equiv-equiv-eq-Seq : { l1 : Level} (A B : Sequence l1) → is-equiv (equiv-eq-Seq A B) is-equiv-equiv-eq-Seq A = fundamental-theorem-id A ( reflexive-equiv-Seq A) ( is-contr-total-equiv-Seq A) ( equiv-eq-Seq A) eq-equiv-Seq : { l1 : Level} {A B : Sequence l1} → equiv-Seq A B → Id A B eq-equiv-Seq {A = A} {B} = inv-is-equiv (is-equiv-equiv-eq-Seq A B) {- We characterize the identity type of Sequence' l. -} equiv-Seq' : { l1 l2 : Level} (A : Sequence' l1) (B : Sequence' l2) → UU (l1 ⊔ l2) equiv-Seq' A B = Σ ( (n : ℕ) → (type-seq' A n) ≃ (type-seq' B n)) (λ e → ( n : ℕ) → ( (map-seq' B n) ∘ (map-equiv (e (succ-ℕ n)))) ~ ( (map-equiv (e n)) ∘ (map-seq' A n))) reflexive-equiv-Seq' : { l1 : Level} (A : Sequence' l1) → equiv-Seq' A A reflexive-equiv-Seq' A = pair ( λ n → equiv-id (type-seq' A n)) ( λ n → htpy-refl) equiv-eq-Seq' : { l1 : Level} (A B : Sequence' l1) → Id A B → equiv-Seq' A B equiv-eq-Seq' A .A refl = reflexive-equiv-Seq' A is-contr-total-equiv-Seq' : { l1 : Level} (A : Sequence' l1) → is-contr (Σ (Sequence' l1) (equiv-Seq' A)) is-contr-total-equiv-Seq' A = is-contr-total-Eq-structure ( λ B g (e : (n : ℕ) → (type-seq' A n) ≃ (B n)) → (n : ℕ) → ( (g n) ∘ (map-equiv (e (succ-ℕ n)))) ~ ( (map-equiv (e n)) ∘ (map-seq' A n))) ( is-contr-total-Eq-Π ( λ n B → (type-seq' A n) ≃ B) ( λ n → is-contr-total-equiv (type-seq' A n)) ( type-seq' A)) ( pair (type-seq' A) (λ n → equiv-id (type-seq' A n))) ( is-contr-total-Eq-Π ( λ n g → g ~ (map-seq' A n)) ( λ n → is-contr-total-htpy' (map-seq' A n)) ( map-seq' A)) is-equiv-equiv-eq-Seq' : { l1 : Level} (A B : Sequence' l1) → is-equiv (equiv-eq-Seq' A B) is-equiv-equiv-eq-Seq' A = fundamental-theorem-id A ( reflexive-equiv-Seq' A) ( is-contr-total-equiv-Seq' A) ( equiv-eq-Seq' A) eq-equiv-Seq' : { l1 : Level} (A B : Sequence' l1) → equiv-Seq' A B → Id A B eq-equiv-Seq' A B = inv-is-equiv (is-equiv-equiv-eq-Seq' A B) {- We introduce cones on a type sequence. -} cone-sequence : { l1 l2 : Level} (A : Sequence' l1) (X : UU l2) → UU (l1 ⊔ l2) cone-sequence A X = Σ ( (n : ℕ) → X → type-seq' A n) ( λ p → (n : ℕ) → ((map-seq' A n) ∘ (p (succ-ℕ n))) ~ (p n)) map-cone-sequence : { l1 l2 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → ( n : ℕ) → X → type-seq' A n map-cone-sequence A c = pr1 c triangle-cone-sequence : { l1 l2 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → ( n : ℕ) → ( (map-seq' A n) ∘ (map-cone-sequence A c (succ-ℕ n))) ~ ( map-cone-sequence A c n) triangle-cone-sequence A c = pr2 c {- We characterize the identity type of cone-sequence. -} naturality-htpy-cone-sequence : { l1 l2 : Level} (A : Sequence' l1) {X : UU l2} (c c' : cone-sequence A X) → ( H : (n : ℕ) → (map-cone-sequence A c n) ~ (map-cone-sequence A c' n)) → ( n : ℕ) → UU (l1 ⊔ l2) naturality-htpy-cone-sequence A c c' H n = ( ((map-seq' A n) ·l (H (succ-ℕ n))) ∙h (triangle-cone-sequence A c' n)) ~ ( (triangle-cone-sequence A c n) ∙h (H n)) htpy-cone-sequence : { l1 l2 : Level} (A : Sequence' l1) {X : UU l2} → ( c c' : cone-sequence A X) → UU (l1 ⊔ l2) htpy-cone-sequence A c c' = Σ ( (n : ℕ) → (map-cone-sequence A c n) ~ (map-cone-sequence A c' n)) (λ H → (n : ℕ) → naturality-htpy-cone-sequence A c c' H n) reflexive-htpy-cone-sequence : { l1 l2 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → htpy-cone-sequence A c c reflexive-htpy-cone-sequence A c = pair ( λ n → htpy-refl) ( λ n → htpy-inv htpy-right-unit) htpy-cone-sequence-eq : { l1 l2 : Level} (A : Sequence' l1) {X : UU l2} (c c' : cone-sequence A X) → Id c c' → htpy-cone-sequence A c c' htpy-cone-sequence-eq A c .c refl = reflexive-htpy-cone-sequence A c is-contr-total-htpy-cone-sequence : { l1 l2 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → is-contr (Σ (cone-sequence A X) (htpy-cone-sequence A c)) is-contr-total-htpy-cone-sequence A c = is-contr-total-Eq-structure ( λ p t H → (n : ℕ) → naturality-htpy-cone-sequence A c (pair p t) H n) ( is-contr-total-Eq-Π ( λ n pn → (map-cone-sequence A c n) ~ pn) ( λ n → is-contr-total-htpy (map-cone-sequence A c n)) ( map-cone-sequence A c)) ( pair (map-cone-sequence A c) (λ n → htpy-refl)) ( is-contr-total-Eq-Π ( λ n H → H ~ ((triangle-cone-sequence A c n) ∙h htpy-refl)) ( λ n → is-contr-total-htpy' ((triangle-cone-sequence A c n) ∙h htpy-refl)) ( triangle-cone-sequence A c)) is-equiv-htpy-cone-sequence-eq : { l1 l2 : Level} (A : Sequence' l1) {X : UU l2} (c c' : cone-sequence A X) → is-equiv (htpy-cone-sequence-eq A c c') is-equiv-htpy-cone-sequence-eq A c = fundamental-theorem-id c ( reflexive-htpy-cone-sequence A c) ( is-contr-total-htpy-cone-sequence A c) ( htpy-cone-sequence-eq A c) eq-htpy-cone-sequence : { l1 l2 : Level} (A : Sequence' l1) {X : UU l2} (c c' : cone-sequence A X) → htpy-cone-sequence A c c' → Id c c' eq-htpy-cone-sequence A {X} c c' = inv-is-equiv (is-equiv-htpy-cone-sequence-eq A c c') equiv-htpy-cone-sequence-eq : { l1 l2 : Level} (A : Sequence' l1) {X : UU l2} (c c' : cone-sequence A X) → Id c c' ≃ (htpy-cone-sequence A c c') equiv-htpy-cone-sequence-eq A c c' = pair ( htpy-cone-sequence-eq A c c') ( is-equiv-htpy-cone-sequence-eq A c c') {- We introduce sequential limits. -} cone-sequence-map : { l1 l2 l3 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → ( Y : UU l3) → (Y → X) → cone-sequence A Y cone-sequence-map A c Y h = pair ( λ n → (map-cone-sequence A c n) ∘ h) ( λ n → (triangle-cone-sequence A c n) ·r h) universal-property-sequential-limit : ( l : Level) {l1 l2 : Level} (A : Sequence' l1) {X : UU l2} ( c : cone-sequence A X) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-sequential-limit l A c = (Y : UU l) → is-equiv (cone-sequence-map A c Y) {- We introduce the canonical sequential limit. -} canonical-sequential-limit : { l1 : Level} (A : Sequence' l1) → UU l1 canonical-sequential-limit A = Σ ( (n : ℕ) → type-seq' A n) ( λ a → (n : ℕ) → Id (map-seq' A n (a (succ-ℕ n))) (a n)) {- We characterize the identity type of the canonical sequential limit. -} Eq-canonical-sequential-limit : { l1 : Level} (A : Sequence' l1) (x y : canonical-sequential-limit A) → UU l1 Eq-canonical-sequential-limit A x y = Σ ( (pr1 x) ~ (pr1 y)) (λ H → (n : ℕ) → Id ((ap (map-seq' A n) (H (succ-ℕ n))) ∙ (pr2 y n)) ((pr2 x n) ∙ (H n))) reflexive-Eq-canonical-sequential-limit : { l1 : Level} (A : Sequence' l1) (x : canonical-sequential-limit A) → Eq-canonical-sequential-limit A x x reflexive-Eq-canonical-sequential-limit A x = pair htpy-refl (htpy-inv htpy-right-unit) Eq-canonical-sequential-limit-eq : { l1 : Level} (A : Sequence' l1) (x y : canonical-sequential-limit A) → Id x y → Eq-canonical-sequential-limit A x y Eq-canonical-sequential-limit-eq A x .x refl = reflexive-Eq-canonical-sequential-limit A x is-contr-total-Eq-canonical-sequential-limit : { l1 : Level} (A : Sequence' l1) (x : canonical-sequential-limit A) → is-contr ( Σ (canonical-sequential-limit A) (Eq-canonical-sequential-limit A x)) is-contr-total-Eq-canonical-sequential-limit A x = is-contr-total-Eq-structure ( λ y q (H : (n : ℕ) → Id (pr1 x n) (y n)) → (n : ℕ) → Id ((ap (map-seq' A n) (H (succ-ℕ n))) ∙ (q n)) ((pr2 x n) ∙ (H n))) ( is-contr-total-Eq-Π ( λ n yn → Id (pr1 x n) yn) ( λ n → is-contr-total-path (pr1 x n)) ( pr1 x)) ( pair (pr1 x) htpy-refl) ( is-contr-total-Eq-Π ( λ n q → Id q ((pr2 x n) ∙ refl)) ( λ n → is-contr-total-path' ((pr2 x n) ∙ refl)) ( pr2 x)) is-equiv-Eq-canonical-sequential-limit : { l1 : Level} (A : Sequence' l1) (x y : canonical-sequential-limit A) → is-equiv (Eq-canonical-sequential-limit-eq A x y) is-equiv-Eq-canonical-sequential-limit A x = fundamental-theorem-id x ( reflexive-Eq-canonical-sequential-limit A x) ( is-contr-total-Eq-canonical-sequential-limit A x) ( Eq-canonical-sequential-limit-eq A x) eq-Eq-canonical-sequential-limit : { l1 : Level} (A : Sequence' l1) {x y : canonical-sequential-limit A} → Eq-canonical-sequential-limit A x y → Id x y eq-Eq-canonical-sequential-limit A {x} {y} = inv-is-equiv (is-equiv-Eq-canonical-sequential-limit A x y) {- We equip the canonical sequential limit with the structure of a cone. -} cone-canonical-sequential-limit : { l1 : Level} (A : Sequence' l1) → cone-sequence A (canonical-sequential-limit A) cone-canonical-sequential-limit A = pair ( λ n a → pr1 a n) ( λ n a → pr2 a n) {- We show that the canonical sequential limit satisfies the universal property of sequential limits. -} inv-canonical-cone-sequence-map : { l1 l2 : Level} (A : Sequence' l1) (Y : UU l2) → cone-sequence A Y → (Y → canonical-sequential-limit A) inv-canonical-cone-sequence-map A Y c y = pair ( λ n → map-cone-sequence A c n y) ( λ n → triangle-cone-sequence A c n y) issec-inv-canonical-cone-sequence-map : { l1 l2 : Level} (A : Sequence' l1) (Y : UU l2) → ( ( cone-sequence-map A (cone-canonical-sequential-limit A) Y) ∘ ( inv-canonical-cone-sequence-map A Y)) ~ id issec-inv-canonical-cone-sequence-map A Y c = eq-htpy-cone-sequence A ( cone-sequence-map A ( cone-canonical-sequential-limit A) ( Y) ( inv-canonical-cone-sequence-map A Y c)) ( c) ( reflexive-htpy-cone-sequence A c) isretr-inv-canonical-cone-sequence-map : { l1 l2 : Level} (A : Sequence' l1) (Y : UU l2) → ( ( inv-canonical-cone-sequence-map A Y) ∘ ( cone-sequence-map A (cone-canonical-sequential-limit A) Y)) ~ id isretr-inv-canonical-cone-sequence-map A Y h = eq-htpy (λ y → eq-Eq-canonical-sequential-limit A ( reflexive-Eq-canonical-sequential-limit A (h y))) universal-property-canonical-sequential-limit : ( l : Level) {l1 : Level} (A : Sequence' l1) → universal-property-sequential-limit l A (cone-canonical-sequential-limit A) universal-property-canonical-sequential-limit l A Y = is-equiv-has-inverse ( inv-canonical-cone-sequence-map A Y) ( issec-inv-canonical-cone-sequence-map A Y) ( isretr-inv-canonical-cone-sequence-map A Y) {- Unique mapping property for sequential limits. -} unique-mapping-property-sequential-limit' : { l1 l2 l3 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → ( up-X : (l : Level) → universal-property-sequential-limit l A c) { Y : UU l3} (c' : cone-sequence A Y) → is-contr (fib (cone-sequence-map A c Y) c') unique-mapping-property-sequential-limit' {l3 = l3} A c up-X {Y} = is-contr-map-is-equiv (up-X l3 Y) map-universal-property-sequential-limit : { l1 l2 l3 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → ( up-X : (l : Level) → universal-property-sequential-limit l A c) → { Y : UU l3} (c' : cone-sequence A Y) → Y → X map-universal-property-sequential-limit A c up-X c' = pr1 (center (unique-mapping-property-sequential-limit' A c up-X c')) path-universal-property-sequential-limit : { l1 l2 l3 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → ( up-X : (l : Level) → universal-property-sequential-limit l A c) → { Y : UU l3} (c' : cone-sequence A Y) → Id ( cone-sequence-map A c Y ( map-universal-property-sequential-limit A c up-X c')) ( c') path-universal-property-sequential-limit A c up-X c' = pr2 (center (unique-mapping-property-sequential-limit' A c up-X c')) unique-mapping-property-sequential-limit : { l1 l2 l3 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → ( up-X : (l : Level) → universal-property-sequential-limit l A c) → { Y : UU l3} (c' : cone-sequence A Y) → is-contr ( Σ ( Y → X) ( λ h → htpy-cone-sequence A (cone-sequence-map A c Y h) c')) unique-mapping-property-sequential-limit {l3 = l3} A c up-X {Y} c' = is-contr-equiv' ( fib (cone-sequence-map A c Y) c') ( equiv-tot ( λ h → equiv-htpy-cone-sequence-eq A (cone-sequence-map A c Y h) c')) ( unique-mapping-property-sequential-limit' A c up-X c') htpy-universal-property-sequential-limit : { l1 l2 l3 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → ( up-X : (l : Level) → universal-property-sequential-limit l A c) → { Y : UU l3} (c' : cone-sequence A Y) → htpy-cone-sequence A ( cone-sequence-map A c Y ( map-universal-property-sequential-limit A c up-X c')) ( c') htpy-universal-property-sequential-limit A c up-X {Y} c' = htpy-cone-sequence-eq A ( cone-sequence-map A c Y ( map-universal-property-sequential-limit A c up-X c')) ( c') ( path-universal-property-sequential-limit A c up-X c') uniqueness-map-sequential-limit' : { l1 l2 l3 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → ( up-X : (l : Level) → universal-property-sequential-limit l A c) { Y : UU l3} (c' : cone-sequence A Y) → ( h : Y → X) (H : Id (cone-sequence-map A c Y h) c') ( h' : Y → X) (H' : Id (cone-sequence-map A c Y h') c') → h ~ h' uniqueness-map-sequential-limit' A c up-X c' h H h' H' = htpy-eq ( ap pr1 ( is-prop-is-contr' ( unique-mapping-property-sequential-limit' A c up-X c') ( pair h H) ( pair h' H'))) uniqueness-map-sequential-limit : { l1 l2 l3 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → ( up-X : (l : Level) → universal-property-sequential-limit l A c) → { Y : UU l3} (c' : cone-sequence A Y) ( h : Y → X) (H : htpy-cone-sequence A (cone-sequence-map A c Y h) c') ( h' : Y → X) (H' : htpy-cone-sequence A (cone-sequence-map A c Y h') c') → h ~ h' uniqueness-map-sequential-limit A c up-X c' h H h' H' = htpy-eq ( ap pr1 ( is-prop-is-contr' ( unique-mapping-property-sequential-limit A c up-X c') ( pair h H) ( pair h' H'))) {- We show a 3-for-2 property of sequential limits. -} compose-cone-sequence-map : { l1 l2 l3 l4 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) { Y : UU l3} {Z : UU l4} (h : Y → X) (k : Z → Y) → Id ( cone-sequence-map A (cone-sequence-map A c Y h) Z k) ( cone-sequence-map A c Z (h ∘ k)) compose-cone-sequence-map A c h k = refl module 3-for-2-sequential-limit { l1 l2 l3 : Level} (A : Sequence' l1) {X : UU l2} {Y : UU l3} ( c : cone-sequence A X) (c' : cone-sequence A Y) (h : Y → X) ( e : htpy-cone-sequence A (cone-sequence-map A c Y h) c') where triangle-cone-cone-sequence : {l4 : Level} (Z : UU l4) → ( cone-sequence-map A c' Z) ~ ( ( cone-sequence-map A c Z) ∘ (λ (k : Z → Y) → h ∘ k)) triangle-cone-cone-sequence Z k = ap (λ t → cone-sequence-map A t Z k) (inv (eq-htpy-cone-sequence A (cone-sequence-map A c Y h) c' e)) is-equiv-universal-property-sequential-limit : ((l : Level) → universal-property-sequential-limit l A c) → ((l : Level) → universal-property-sequential-limit l A c') → is-equiv h is-equiv-universal-property-sequential-limit up-X up-Y = is-equiv-is-equiv-postcomp h (λ {l} Z → is-equiv-right-factor ( cone-sequence-map A c' Z) ( cone-sequence-map A c Z) ( λ k → h ∘ k) ( triangle-cone-cone-sequence Z) ( up-X l Z) ( up-Y l Z)) universal-property-sequential-limit-is-equiv' : ((l : Level) → universal-property-sequential-limit l A c) → is-equiv h → ((l : Level) → universal-property-sequential-limit l A c') universal-property-sequential-limit-is-equiv' up-X is-equiv-h l Z = is-equiv-comp ( cone-sequence-map A c' Z) ( cone-sequence-map A c Z) ( λ k → h ∘ k) ( triangle-cone-cone-sequence Z) ( is-equiv-postcomp-is-equiv h is-equiv-h Z) ( up-X l Z) universal-property-sequential-limit-is-equiv : ((l : Level) → universal-property-sequential-limit l A c') → is-equiv h → ((l : Level) → universal-property-sequential-limit l A c) universal-property-sequential-limit-is-equiv up-Y is-equiv-h l Z = is-equiv-left-factor ( cone-sequence-map A c' Z) ( cone-sequence-map A c Z) ( λ k → h ∘ k) ( triangle-cone-cone-sequence Z) ( up-Y l Z) ( is-equiv-postcomp-is-equiv h is-equiv-h Z) open 3-for-2-sequential-limit public {- We prove the uniquely uniqueness of sequential limits. -} uniquely-uniqueness-sequential-limit : { l1 l2 l3 : Level} (A : Sequence' l1) {X : UU l2} {Y : UU l3} → ( c : cone-sequence A X) (c' : cone-sequence A Y) → ( (l : Level) → universal-property-sequential-limit l A c) → ( (l : Level) → universal-property-sequential-limit l A c') → is-contr (Σ (Y ≃ X) (λ e → htpy-cone-sequence A (cone-sequence-map A c Y (map-equiv e)) c')) uniquely-uniqueness-sequential-limit A {X} {Y} c c' up-X up-Y = is-contr-total-Eq-substructure ( unique-mapping-property-sequential-limit A c up-X c') ( is-subtype-is-equiv) ( map-universal-property-sequential-limit A c up-X c') ( htpy-universal-property-sequential-limit A c up-X c') ( is-equiv-universal-property-sequential-limit A c c' ( map-universal-property-sequential-limit A c up-X c') ( htpy-universal-property-sequential-limit A c up-X c') ( up-X) ( up-Y)) {- We introduce the sequence of function types. -} mapping-sequence : { l1 l2 : Level} (A : Sequence' l1) (X : UU l2) → Sequence' (l1 ⊔ l2) mapping-sequence A X = pair ( λ n → X → type-seq' A n) ( λ n h → (map-seq' A n) ∘ h) cone-mapping-sequence : { l1 l2 l3 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → ( Y : UU l3) → cone-sequence (mapping-sequence A Y) (Y → X) cone-mapping-sequence A c Y = pair ( λ n h → (map-cone-sequence A c n) ∘ h) ( λ n h → eq-htpy ((triangle-cone-sequence A c n) ·r h)) universal-property-sequential-limit-cone-mapping-sequence : { l1 l2 l3 : Level} (A : Sequence' l1) {X : UU l2} (c : cone-sequence A X) → ( up-X : (l : Level) → universal-property-sequential-limit l A c) → ( Y : UU l3) (l : Level) → universal-property-sequential-limit l ( mapping-sequence A Y) ( cone-mapping-sequence A c Y) universal-property-sequential-limit-cone-mapping-sequence A c up-X Y l Z = {!!} {- We introduce cocones on a type sequence. -} cocone-sequence : { l1 l2 : Level} (A : Sequence l1) (X : UU l2) → UU (l1 ⊔ l2) cocone-sequence A X = Σ ( (n : ℕ) → type-seq A n → X) (λ i → (n : ℕ) → (i n) ~ ((i (succ-ℕ n)) ∘ (map-seq A n))) map-cocone-sequence : { l1 l2 : Level} (A : Sequence l1) {X : UU l2} (c : cocone-sequence A X) → ( n : ℕ) → type-seq A n → X map-cocone-sequence A c = pr1 c triangle-cocone-sequence : { l1 l2 : Level} (A : Sequence l1) {X : UU l2} (c : cocone-sequence A X) → ( n : ℕ) → ( map-cocone-sequence A c n) ~ ( (map-cocone-sequence A c (succ-ℕ n)) ∘ (map-seq A n)) triangle-cocone-sequence A c = pr2 c {- We characterize the identity type of cocone-sequence. -} naturality-htpy-cocone-sequence : { l1 l2 : Level} (A : Sequence l1) {X : UU l2} (c c' : cocone-sequence A X) → ( H : (n : ℕ) → (map-cocone-sequence A c n) ~ (map-cocone-sequence A c' n)) → ( n : ℕ) → UU (l1 ⊔ l2) naturality-htpy-cocone-sequence A c c' H n = ( (H n) ∙h (triangle-cocone-sequence A c' n)) ~ ( ( triangle-cocone-sequence A c n) ∙h ( (H (succ-ℕ n)) ·r (map-seq A n))) htpy-cocone-sequence : { l1 l2 : Level} (A : Sequence l1) {X : UU l2} ( c c' : cocone-sequence A X) → UU (l1 ⊔ l2) htpy-cocone-sequence A c c' = Σ ( (n : ℕ) → (map-cocone-sequence A c n) ~ (map-cocone-sequence A c' n)) ( λ H → (n : ℕ) → naturality-htpy-cocone-sequence A c c' H n) reflexive-htpy-cocone-sequence : { l1 l2 : Level} (A : Sequence l1) {X : UU l2} → ( c : cocone-sequence A X) → htpy-cocone-sequence A c c reflexive-htpy-cocone-sequence A c = pair ( λ n → htpy-refl) ( λ n → htpy-inv htpy-right-unit) htpy-cocone-sequence-eq : { l1 l2 : Level} (A : Sequence l1) {X : UU l2} → ( c c' : cocone-sequence A X) → Id c c' → htpy-cocone-sequence A c c' htpy-cocone-sequence-eq A c .c refl = reflexive-htpy-cocone-sequence A c is-contr-total-htpy-cocone-sequence : { l1 l2 : Level} (A : Sequence l1) {X : UU l2} (c : cocone-sequence A X) → is-contr (Σ (cocone-sequence A X) (htpy-cocone-sequence A c)) is-contr-total-htpy-cocone-sequence A c = is-contr-total-Eq-structure ( λ j t H → (n : ℕ) → naturality-htpy-cocone-sequence A c (pair j t) H n) ( is-contr-total-Eq-Π ( λ n j → map-cocone-sequence A c n ~ j) ( λ n → is-contr-total-htpy (map-cocone-sequence A c n)) ( map-cocone-sequence A c)) ( pair ( map-cocone-sequence A c) ( λ n → htpy-refl)) ( is-contr-total-Eq-Π ( λ n H → H ~ ((triangle-cocone-sequence A c n) ∙h htpy-refl)) ( λ n → is-contr-total-htpy' ( (triangle-cocone-sequence A c n) ∙h htpy-refl)) ( triangle-cocone-sequence A c)) is-equiv-htpy-cocone-sequence-eq : { l1 l2 : Level} (A : Sequence l1) {X : UU l2} (c c' : cocone-sequence A X) → is-equiv (htpy-cocone-sequence-eq A c c') is-equiv-htpy-cocone-sequence-eq A c = fundamental-theorem-id c ( reflexive-htpy-cocone-sequence A c) ( is-contr-total-htpy-cocone-sequence A c) ( htpy-cocone-sequence-eq A c) {- We introduce the universal property of sequential colimits. -} cocone-sequence-map : { l1 l2 l3 : Level} (A : Sequence l1) {X : UU l2} → cocone-sequence A X → (Y : UU l3) → (X → Y) → cocone-sequence A Y cocone-sequence-map A c Y h = pair ( λ n → h ∘ (map-cocone-sequence A c n)) ( λ n → h ·l (triangle-cocone-sequence A c n)) universal-property-sequential-colimit : ( l : Level) {l1 l2 : Level} (A : Sequence l1) {X : UU l2} ( c : cocone-sequence A X) → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-sequential-colimit l A c = (Y : UU l) → is-equiv (cocone-sequence-map A c Y)
{ "alphanum_fraction": 0.5983292869, "avg_line_length": 36.7084592145, "ext": "agda", "hexsha": "3505a824fb14410dda6f0f1030c92a0db3811d53", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "tmoux/HoTT-Intro", "max_forks_repo_path": "Agda/24-sequences.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "tmoux/HoTT-Intro", "max_issues_repo_path": "Agda/24-sequences.agda", "max_line_length": 79, "max_stars_count": null, "max_stars_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "tmoux/HoTT-Intro", "max_stars_repo_path": "Agda/24-sequences.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9069, "size": 24301 }
module Container.Traversable where open import Prelude record Traversable {a} (T : Set a → Set a) : Set (lsuc a) where field traverse : ∀ {F : Set a → Set a} {A B} {{AppF : Applicative F}} → (A → F B) → T A → F (T B) overlap {{super}} : Functor T open Traversable {{...}} public record Traversable′ {a b} (T : ∀ {a} → Set a → Set a) : Set (lsuc (a ⊔ b)) where field traverse′ : ∀ {F : Set b → Set b} {A : Set a} {B : Set b} {{AppF : Applicative F}} → (A → F B) → T A → F (T B) overlap {{super}} : Functor′ {a} {b} T open Traversable′ {{...}} public {-# DISPLAY Traversable.traverse _ = traverse #-} {-# DISPLAY Traversable′.traverse′ _ = traverse′ #-} --- Instances --- instance TraversableMaybe : ∀ {a} → Traversable {a} Maybe traverse {{TraversableMaybe}} f m = maybe (pure nothing) (λ x -> pure just <*> f x) m TraversableList : ∀ {a} → Traversable {a} List traverse {{TraversableList}} f xs = foldr (λ x fxs → pure _∷_ <*> f x <*> fxs) (pure []) xs TraversableVec : ∀ {a n} → Traversable {a} (λ A → Vec A n) traverse {{TraversableVec}} f [] = pure [] traverse {{TraversableVec}} f (x ∷ xs) = ⦇ f x ∷ traverse f xs ⦈ Traversable′Maybe : ∀ {a b} → Traversable′ {a} {b} Maybe traverse′ {{Traversable′Maybe}} f m = maybe (pure nothing) (λ x -> pure just <*> f x) m Traversable′List : ∀ {a b} → Traversable′ {a} {b} List traverse′ {{Traversable′List}} f xs = foldr (λ x fxs → pure _∷_ <*> f x <*> fxs) (pure []) xs Traversable′Vec : ∀ {a b n} → Traversable′ {a} {b} (λ A → Vec A n) traverse′ {{Traversable′Vec}} f [] = pure [] traverse′ {{Traversable′Vec}} f (x ∷ xs) = ⦇ f x ∷ traverse′ f xs ⦈ mapM : ∀ {a b} {F : Set b → Set b} {A : Set a} {B : Set b} {{AppF : Applicative F}} → (A → F B) → List A → F (List B) mapM = traverse′ mapM! : ∀ {a} {F : Set → Set} {A : Set a} {{AppF : Applicative F}} → (A → F ⊤) → List A → F ⊤ mapM! f xs = _ <$ mapM f xs
{ "alphanum_fraction": 0.5518819939, "avg_line_length": 36.4074074074, "ext": "agda", "hexsha": "c69e15654e7c134427495f3adf7baae9b85be0d6", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Container/Traversable.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Container/Traversable.agda", "max_line_length": 95, "max_stars_count": 111, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Container/Traversable.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 713, "size": 1966 }
-- This file tests that implicit record fields are not printed out (by -- default). module ImplicitRecordFields where record R : Set₁ where field {A} : Set f : A → A {B C} D {E} : Set g : B → C → E postulate A : Set r₁ : R r₂ : R r₂ = record { A = A ; f = λ x → x ; B = A ; C = A ; D = A ; g = λ x _ → x } data _≡_ {A : Set₁} (x : A) : A → Set where refl : x ≡ x foo : r₁ ≡ r₂ foo = refl
{ "alphanum_fraction": 0.4728850325, "avg_line_length": 14.40625, "ext": "agda", "hexsha": "5b8b8eed7a193e34ff8d15979863456e839bd885", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/ImplicitRecordFields.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/ImplicitRecordFields.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/ImplicitRecordFields.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 185, "size": 461 }
{-# OPTIONS --cubical --safe #-} module Data.Maybe where open import Data.Maybe.Base public
{ "alphanum_fraction": 0.7127659574, "avg_line_length": 15.6666666667, "ext": "agda", "hexsha": "306d04dee8ddb27dfc1703317e6e2fc7ff41f9d3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/Maybe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/Maybe.agda", "max_line_length": 34, "max_stars_count": 6, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/Maybe.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 21, "size": 94 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Equivalence (coinhabitance) ------------------------------------------------------------------------ module Function.Equivalence where open import Function using (flip) open import Function.Equality as F using (_⟶_; _⟨$⟩_) renaming (_∘_ to _⟪∘⟫_) open import Level open import Relation.Binary import Relation.Binary.PropositionalEquality as P -- Setoid equivalence. record Equivalence {f₁ f₂ t₁ t₂} (From : Setoid f₁ f₂) (To : Setoid t₁ t₂) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where field to : From ⟶ To from : To ⟶ From -- Set equivalence. infix 3 _⇔_ _⇔_ : ∀ {f t} → Set f → Set t → Set _ From ⇔ To = Equivalence (P.setoid From) (P.setoid To) equivalence : ∀ {f t} {From : Set f} {To : Set t} → (From → To) → (To → From) → From ⇔ To equivalence to from = record { to = P.→-to-⟶ to; from = P.→-to-⟶ from } ------------------------------------------------------------------------ -- Map and zip map : ∀ {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} {f₁′ f₂′ t₁′ t₂′} {From′ : Setoid f₁′ f₂′} {To′ : Setoid t₁′ t₂′} → ((From ⟶ To) → (From′ ⟶ To′)) → ((To ⟶ From) → (To′ ⟶ From′)) → Equivalence From To → Equivalence From′ To′ map t f eq = record { to = t to; from = f from } where open Equivalence eq zip : ∀ {f₁₁ f₂₁ t₁₁ t₂₁} {From₁ : Setoid f₁₁ f₂₁} {To₁ : Setoid t₁₁ t₂₁} {f₁₂ f₂₂ t₁₂ t₂₂} {From₂ : Setoid f₁₂ f₂₂} {To₂ : Setoid t₁₂ t₂₂} {f₁ f₂ t₁ t₂} {From : Setoid f₁ f₂} {To : Setoid t₁ t₂} → ((From₁ ⟶ To₁) → (From₂ ⟶ To₂) → (From ⟶ To)) → ((To₁ ⟶ From₁) → (To₂ ⟶ From₂) → (To ⟶ From)) → Equivalence From₁ To₁ → Equivalence From₂ To₂ → Equivalence From To zip t f eq₁ eq₂ = record { to = t (to eq₁) (to eq₂); from = f (from eq₁) (from eq₂) } where open Equivalence ------------------------------------------------------------------------ -- Equivalence is an equivalence relation -- Identity and composition (reflexivity and transitivity). id : ∀ {s₁ s₂} → Reflexive (Equivalence {s₁} {s₂}) id {x = S} = record { to = F.id ; from = F.id } infixr 9 _∘_ _∘_ : ∀ {f₁ f₂ m₁ m₂ t₁ t₂} → TransFlip (Equivalence {f₁} {f₂} {m₁} {m₂}) (Equivalence {m₁} {m₂} {t₁} {t₂}) (Equivalence {f₁} {f₂} {t₁} {t₂}) f ∘ g = record { to = to f ⟪∘⟫ to g ; from = from g ⟪∘⟫ from f } where open Equivalence -- Symmetry. sym : ∀ {f₁ f₂ t₁ t₂} → Sym (Equivalence {f₁} {f₂} {t₁} {t₂}) (Equivalence {t₁} {t₂} {f₁} {f₂}) sym eq = record { from = to ; to = from } where open Equivalence eq -- For fixed universe levels we can construct setoids. setoid : (s₁ s₂ : Level) → Setoid (suc (s₁ ⊔ s₂)) (s₁ ⊔ s₂) setoid s₁ s₂ = record { Carrier = Setoid s₁ s₂ ; _≈_ = Equivalence ; isEquivalence = record {refl = id; sym = sym; trans = flip _∘_} } ⇔-setoid : (ℓ : Level) → Setoid (suc ℓ) ℓ ⇔-setoid ℓ = record { Carrier = Set ℓ ; _≈_ = _⇔_ ; isEquivalence = record {refl = id; sym = sym; trans = flip _∘_} }
{ "alphanum_fraction": 0.5049875312, "avg_line_length": 29.7037037037, "ext": "agda", "hexsha": "f32f8f5bfd2bf319052ad1acb4a6eee59be2e5e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Function/Equivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Function/Equivalence.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Function/Equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 1172, "size": 3208 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Paths open import lib.types.Pointed open import lib.types.Pushout open import lib.types.Span module lib.types.PushoutFlip where module _ {i j k} {d : Span {i} {j} {k}} where module PushoutFlip = PushoutRec (right {d = Span-flip d}) (left {d = Span-flip d}) (λ z → ! (glue {d = Span-flip d} z)) Pushout-flip : Pushout d → Pushout (Span-flip d) Pushout-flip = PushoutFlip.f Pushout-flip-involutive : ∀ {i j k} (d : Span {i} {j} {k}) (s : Pushout d) → Pushout-flip (Pushout-flip s) == s Pushout-flip-involutive d = Pushout-elim (λ a → idp) (λ b → idp) (λ c → ↓-∘=idf-in' Pushout-flip Pushout-flip $ ap Pushout-flip (ap Pushout-flip (glue c)) =⟨ ap (ap Pushout-flip) (PushoutFlip.glue-β c) ⟩ ap Pushout-flip (! (glue c)) =⟨ ap-! Pushout-flip (glue c) ⟩ ! (ap Pushout-flip (glue c)) =⟨ ap ! (PushoutFlip.glue-β c) ⟩ ! (! (glue c)) =⟨ !-! (glue c) ⟩ glue c =∎) {- Equivalence for spans with proofs that the equivalence swaps the - injections -} Pushout-flip-equiv : ∀ {i j k} (d : Span {i} {j} {k}) → Pushout d ≃ Pushout (Span-flip d) Pushout-flip-equiv d = equiv Pushout-flip Pushout-flip (Pushout-flip-involutive (Span-flip d)) (Pushout-flip-involutive d) where open Span d module _ {i j k} (ps : ⊙Span {i} {j} {k}) where open ⊙Span ps private s = ⊙Span-to-Span ps preserves : –> (Pushout-flip-equiv s) (left (pt X)) == left (pt Y) preserves = snd (⊙right (⊙Span-flip ps)) ⊙Pushout-flip : ⊙Pushout ps ⊙→ ⊙Pushout (⊙Span-flip ps) ⊙Pushout-flip = (PushoutFlip.f , preserves) {- action of [Pushout-flip] on [snd ⊙right] -} ap-Pushout-flip-right-pt : ap Pushout-flip (snd (⊙right ps)) == ! (snd (⊙right (⊙Span-flip ps))) ap-Pushout-flip-right-pt = lemma f g where lemma : {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (f : Z ⊙→ X) (g : Z ⊙→ Y) → ap (Pushout-flip {d = ⊙Span-to-Span (⊙span X Y Z f g)}) (ap right (! (snd g)) ∙ ! (glue (pt Z)) ∙' ap left (snd f)) == ! (ap right (! (snd f)) ∙ ! (glue (pt Z)) ∙' ap left (snd g)) lemma {Z = Z} (f , idp) (g , idp) = ap Pushout-flip (! (glue (pt Z))) =⟨ ap-! Pushout-flip (glue (pt Z)) ⟩ ! (ap Pushout-flip (glue (pt Z))) =⟨ PushoutFlip.glue-β (pt Z) |in-ctx ! ⟩ ! (! (glue (pt Z))) =∎ module _ {i j k} (ps : ⊙Span {i} {j} {k}) where open ⊙Span ps ⊙Pushout-flip-involutive : ∀ {i j k} (ps : ⊙Span {i} {j} {k}) → ⊙Pushout-flip (⊙Span-flip ps) ⊙∘ ⊙Pushout-flip ps == ⊙idf _ ⊙Pushout-flip-involutive ps = ⊙λ= (Pushout-flip-involutive _) lemma where lemma : ap Pushout-flip (snd (⊙right (⊙Span-flip ps))) ∙ snd (⊙right ps) == idp lemma = ap Pushout-flip (snd (⊙right (⊙Span-flip ps))) ∙ snd (⊙right ps) =⟨ ap-Pushout-flip-right-pt (⊙Span-flip ps) |in-ctx _∙ snd (⊙right ps) ⟩ ! (snd (⊙right ps)) ∙ snd (⊙right ps) =⟨ !-inv-l (snd (⊙right ps)) ⟩ idp =∎
{ "alphanum_fraction": 0.5522146783, "avg_line_length": 31.5612244898, "ext": "agda", "hexsha": "defbcede23dca98e5a0ec441a23f06cd76bb58a9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/types/PushoutFlip.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/types/PushoutFlip.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/types/PushoutFlip.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1237, "size": 3093 }
module Numeral.Natural.Prime where import Lvl open import Data.Boolean.Stmt open import Logic open import Logic.Propositional open import Numeral.Natural open import Numeral.Natural.Relation.Divisibility open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Comparisons open import Relator.Equals PrimeProof : {_ : ℕ} → Stmt{Lvl.𝟎} PrimeProof{n} = (∀{x} → (𝐒(x) ∣ 𝐒(𝐒(n))) → ((x ≡ 𝟎) ∨ (x ≡ 𝐒(n)))) -- A prime number is a number `n` in which its only divisors are `{1,n}`. data Prime : ℕ → Stmt{Lvl.𝟎} where intro : ∀{n} → PrimeProof{n} → Prime(𝐒(𝐒(n))) -- A composite number is a number which are the product of two numbers greater than or equals 2. data Composite : ℕ → Stmt{Lvl.𝟎} where intro : (a b : ℕ) → Composite(𝐒(𝐒(a)) ⋅ 𝐒(𝐒(b))) Composite-intro : (a b : ℕ) → ⦃ _ : IsTrue(a ≥? 2) ⦄ ⦃ _ : IsTrue(b ≥? 2) ⦄ → Composite(a ⋅ b) Composite-intro (𝐒(𝐒 a)) (𝐒(𝐒 b)) = intro a b -- PrimeFactor(n)(p) means that `p` is a prime factor of `n`. -- A prime factor `p` of `n` is a prime number that divides `n`. record PrimeFactor(n : ℕ) (p : ℕ) : Stmt{Lvl.𝟎} where constructor intro field ⦃ prime ⦄ : Prime(p) ⦃ factor ⦄ : (p ∣ n) -- greater-prime-existence : ∀{p} → Prime(p) → ∃(p₂ ↦ Prime(p₂) ∧ (p₂ > p)) -- TODO: https://math.stackexchange.com/questions/2786458/a-formal-statement-of-the-fundamental-theorem-of-arithmetic -- TODO: Needs to be a finite multiset of primes. -- PrimeMultiset = Type{Lvl.𝟎} -- PrimeMultiSet = ((p : ℕ) → ⦃ _ : Prime(p) ⦄ → ℕ)
{ "alphanum_fraction": 0.6532528504, "avg_line_length": 36.3658536585, "ext": "agda", "hexsha": "01cc135aae06e255cf2d7ed71b1df4086847cac2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Prime.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Prime.agda", "max_line_length": 117, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Prime.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 569, "size": 1491 }
------------------------------------------------------------------------ -- Some simple binary relations ------------------------------------------------------------------------ module Relation.Binary.Simple where open import Relation.Binary open import Data.Unit open import Data.Empty -- Constant relations. Const : ∀ {a} → Set → Rel a Const I = λ _ _ → I -- The universally true relation. Always : ∀ {a} → Rel a Always = Const ⊤ -- The universally false relation. Never : ∀ {a} → Rel a Never = Const ⊥ -- Always is an equivalence. Always-isEquivalence : ∀ {a} → IsEquivalence (Always {a}) Always-isEquivalence = record {}
{ "alphanum_fraction": 0.5322834646, "avg_line_length": 21.1666666667, "ext": "agda", "hexsha": "ff5c8095f2fcf7c7e4e7212d685ceceb2bfd3980", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/Simple.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/Simple.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/Simple.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 131, "size": 635 }
------------------------------------------------------------------------ -- Propositional equality ------------------------------------------------------------------------ -- This file contains some core definitions which are reexported by -- Relation.Binary.PropositionalEquality. module Relation.Binary.PropositionalEquality.Core where open import Relation.Binary.Core open import Relation.Binary.Consequences.Core ------------------------------------------------------------------------ -- Some properties sym : {a : Set} → Symmetric {a} _≡_ sym refl = refl trans : {a : Set} → Transitive {a} _≡_ trans refl refl = refl subst : {a : Set} → Substitutive {a} _≡_ subst P refl p = p resp₂ : ∀ {a} (∼ : Rel a) → ∼ Respects₂ _≡_ resp₂ _∼_ = subst⟶resp₂ _∼_ subst isEquivalence : ∀ {a} → IsEquivalence {a} _≡_ isEquivalence = record { refl = refl ; sym = sym ; trans = trans }
{ "alphanum_fraction": 0.5212527964, "avg_line_length": 26.2941176471, "ext": "agda", "hexsha": "5eb95bb3649b43d14347820312a4da12512abfad", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/PropositionalEquality/Core.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/PropositionalEquality/Core.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/PropositionalEquality/Core.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 219, "size": 894 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.S3 where open import Cubical.HITs.S3.Base public -- open import Cubical.HITs.S3.Properties public
{ "alphanum_fraction": 0.7426900585, "avg_line_length": 24.4285714286, "ext": "agda", "hexsha": "d743ef406662d1be4e42d2ec2b938c6794097d37", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/S3.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/S3.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/S3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 49, "size": 171 }
{-# OPTIONS --without-K #-} module container.m.from-nat.core where open import level open import sum open import equality open import function open import container.core open import sets.nat.core open import sets.nat.struct open import sets.unit open import hott.level -- Definition 9 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO]) module Limit {i} (X : ℕ → Set i) (π : (n : ℕ) → X (suc n) → X n) where L : Set _ L = Σ ((n : ℕ) → X n) λ x → (∀ n → π n (x (suc n)) ≡ x n) p : (n : ℕ) → L → X n p n (x , q) = x n β : (n : ℕ) → ∀ x → π n (p (suc n) x) ≡ p n x β n (x , q) = q n module Limit-univ {i j}{Z : Set i} (X : Z → ℕ → Set j) (π : (z : Z)(n : ℕ) → X z (suc n) → X z n) where open module WithZ (z : Z) = Limit (X z) (π z) -- Lemma 10 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO]) univ-iso : ( Σ ((n : ℕ)(z : Z) → X z n) λ u → ∀ n z → π z n (u (suc n) z) ≡ u n z ) ≅ ((z : Z) → L z) univ-iso = record { to = λ { (u , q) z → (λ n → u n z) , (λ n → q n z) } ; from = λ f → (λ n z → p z n (f z)) , (λ n z → β z n (f z)) ; iso₁ = λ { (u , q) → refl } ; iso₂ = λ f → refl } module Limit-op {i} (X : ℕ → Set i) (ρ : (n : ℕ) → X n → X (suc n)) where L : Set _ L = Σ ((n : ℕ) → X n) λ x → (∀ n → x (suc n) ≡ ρ n (x n)) module _ (χ : (x₀ : X 0) → contr ( Σ ((n : ℕ) → X n) λ x → (x₀ ≡ x 0) × (∀ n → ρ n (x n) ≡ x (suc n)) ) ) where lim-contr' : L ≅ X 0 lim-contr' = begin L ≅⟨ sym≅ ( Σ-ap-iso refl≅ λ x → Π-ap-iso refl≅ λ n → sym≡-iso _ _ ) ⟩ ( Σ ((n : ℕ) → X n) λ x → (∀ n → ρ n (x n) ≡ x (suc n)) ) ≅⟨ sym≅ ( Σ-ap-iso refl≅ λ x → ×-left-unit ) ⟩ ( Σ ((n : ℕ) → X n) λ x → Σ ⊤ λ _ → (∀ n → ρ n (x n) ≡ x (suc n)) ) ≅⟨ sym≅ ( Σ-ap-iso refl≅ λ x → Σ-ap-iso (contr-⊤-iso (singl-contr' (x 0))) λ _ → refl≅ ) ⟩ ( Σ ((n : ℕ) → X n) λ x → Σ (singleton' (x 0)) λ _ → (∀ n → ρ n (x n) ≡ x (suc n)) ) ≅⟨ record { to = λ { (x , (z , p) , q) → (z , x , p , q) } ; from = λ { (z , x , p , q) → (x , (z , p) , q) } ; iso₁ = λ { (x , (z , p) , q) → refl } ; iso₂ = λ { (z , x , p , q) → refl } } ⟩ ( Σ (X 0) λ z → Σ ((n : ℕ) → X n) λ x → Σ (z ≡ x 0) λ _ → (∀ n → ρ n (x n) ≡ x (suc n)) ) ≅⟨ (Σ-ap-iso refl≅ λ z → contr-⊤-iso (χ z)) ·≅ ×-right-unit ⟩ X 0 ∎ where open ≅-Reasoning -- Lemma 11 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO]) lim-contr : L ≅ X 0 lim-contr = lim-contr' (λ z → ℕ-initial X z ρ) module Limit-op-simple {i} (X : Set i) where module L = Limit-op (λ _ → X) (λ _ x → x) lim-contr : L.L ≅ X lim-contr = L.lim-contr' ℕ-initial-simple module Limit-univⁱ {ℓ li}(I : Set li) (X : ℕ → I → Set ℓ) (π : ∀ n → X (suc n) →ⁱ X n) where open module WithI (i : I) = Limit (λ n → X n i) (λ n → π n i) module _ {ℓ'}{Z : I → Set ℓ'} where private IZ = Σ I Z XZ : IZ → ℕ → Set _ XZ (i , _) n = X n i πZ : (iz : IZ)(n : ℕ) → XZ iz (suc n) → XZ iz n πZ (i , _) n = π n i -- Lemma 10 (indexed version) in Ahrens, Capriotti and Spadotti univ-iso : ( Σ ((n : ℕ) → Z →ⁱ X n) λ f → (∀ n → π n ∘ⁱ f (suc n) ≡ f n) ) ≅ (Z →ⁱ L) univ-iso = begin ( Σ ((n : ℕ)(i : I) → Z i → X n i) λ f → ∀ n → (λ i z → π n i (f (suc n) i z)) ≡ f n ) ≅⟨ sym≅ ( Σ-ap-iso refl≅ λ f → Π-ap-iso refl≅ λ n → funext-isoⁱ ) ⟩ ( Σ ((n : ℕ)(i : I) → Z i → X n i) λ f → ∀ n i z → π n i (f (suc n) i z) ≡ f n i z ) ≅⟨ record { to = λ { (u , q) → (λ { n (i , z) → u n i z }) , (λ { n (i , z) → q n i z }) } ; from = λ { (u , q) → (λ { n i z → u n (i , z) }) , (λ { n i z → q n (i , z) }) } ; iso₁ = λ { (u , q) → refl } ; iso₂ = λ { (u , q) → refl } } ⟩ ( Σ ((n : ℕ)(iz : IZ) → XZ iz n) λ f → (∀ n iz → πZ iz n (f (suc n) iz) ≡ f n iz) ) ≅⟨ Limit-univ.univ-iso XZ πZ ⟩ ((iz : IZ) → L (proj₁ iz)) ≅⟨ curry-iso (λ i z → L i) ⟩ (Z →ⁱ L) ∎ where open ≅-Reasoning module F-Limit {ℓ li la lb} (c : Container li la lb) (X : Container.I c → ℕ → Set ℓ) (π : ∀ i → (n : ℕ) → X i (suc n) → X i n) where open Container c private open module WithI (i : I) = Limit (X i) (π i) X' : I → ℕ → Set _ X' i n = F (λ i → X i n) i π' : ∀ i n → X' i (suc n) → X' i n π' i n = imap (λ i → π i n) i open module WithI' (i : I) = Limit (X' i) (π' i) using () renaming ( L to L' ; p to p' ; β to β' ) -- Lemma 13 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO]) lim-iso : ∀ i → F L i ≅ L' i lim-iso i = begin F L i ≅⟨ ( Σ-ap-iso refl≅ λ a → sym≅ (Limit-univ.univ-iso (λ b n → X (r b) n) (λ b n → π (r b) n)) ) ⟩ ( Σ (A i) λ a → Σ ((n : ℕ) → (b : B a) → X (r b) n) λ u → ∀ n b → π (r b) n (u (suc n) b) ≡ u n b ) ≅⟨ ( Σ-ap-iso refl≅ λ a → Σ-ap-iso refl≅ λ u → Π-ap-iso refl≅ λ n → strong-funext-iso ) ⟩ ( Σ (A i) λ a → Σ ((n : ℕ) → (b : B a) → X (r b) n) λ u → ∀ n → (λ b → π (r b) n (u (suc n) b)) ≡ u n ) ≅⟨ ( Σ-ap-iso (sym≅ (Limit-op-simple.lim-contr (A i))) λ a → refl≅ ) ⟩ ( Σ (Σ (ℕ → A i) λ a → ∀ n → a (suc n) ≡ a n) λ { (a , q) → Σ ((n : ℕ) → (b : B (a n)) → X (r b) n) λ u → ∀ n → subst (λ a → (b : B a) → X (r b) n) (q n) (λ b → π (r b) n (u (suc n) b)) ≡ u n } ) ≅⟨ record { to = λ { ((a , q) , u , z) → ((a , u) , q , z) } ; from = λ { ((a , u) , q , z) → ((a , q) , u , z) } ; iso₁ = λ { ((a , q) , u , z) → refl } ; iso₂ = λ { ((a , u) , q , z) → refl } } ⟩ ( Σ (Σ (ℕ → A i) λ a → ((n : ℕ) → (b : B (a n)) → X (r b) n)) λ { (a , u) → Σ (∀ n → a (suc n) ≡ a n) λ q → ∀ n → subst (λ a → (b : B a) → X (r b) n) (q n) (λ b → π (r b) n (u (suc n) b)) ≡ u n } ) ≅⟨ ( Σ-ap-iso refl≅ λ { (a , u) → sym≅ ΠΣ-swap-iso } ) ⟩ ( Σ (Σ (ℕ → A i) λ a → ((n : ℕ) → (b : B (a n)) → X (r b) n)) λ { (a , u) → ∀ n → Σ (a (suc n) ≡ a n) λ q → subst (λ a → (b : B a) → X (r b) n) q (λ b → π (r b) n (u (suc n) b)) ≡ u n } ) ≅⟨ ( Σ-ap-iso refl≅ λ { (a , u) → Π-ap-iso refl≅ λ n → Σ-split-iso } ) ⟩ ( Σ (Σ (ℕ → A i) λ a → ((n : ℕ) → (b : B (a n)) → X (r b) n)) λ { (a , u) → ∀ n → _≡_ { A = Σ (A i) λ a → (b : B a) → X (r b) n } (a (suc n) , λ b → π (r b) n (u (suc n) b)) (a n , u n) } ) ≅⟨ ( Σ-ap-iso (sym≅ ΠΣ-swap-iso) λ w → Π-ap-iso refl≅ λ n → refl≅ ) ⟩ ( Σ ((n : ℕ) → F (λ i → X i n) i) λ w → (∀ n → imap (λ i → π i n) i (w (suc n)) ≡ w n) ) ∎ where open ≅-Reasoning module Limit-shift {ℓ} (X : ℕ → Set ℓ) (π : (n : ℕ) → X (suc n) → X n) where open Limit X π X' : ℕ → Set ℓ X' n = X (suc n) π' : (n : ℕ) → X' (suc n) → X' n π' n = π (suc n) open Limit X' π' using () renaming (L to L' ; p to p' ; β to β') -- Lemma 12 in Ahrens, Capriotti and Spadotti (arXiv:1504.02949v1 [cs.LO]) shift-iso : L' ≅ L shift-iso = begin ( Σ ((n : ℕ) → X (suc n)) λ x → ∀ n → π (suc n) (x (suc n)) ≡ x n ) ≅⟨ ( Σ-ap-iso refl≅ λ y → sym≅ ×-left-unit ·≅ (Σ-ap-iso (sym≅ (contr-⊤-iso (singl-contr _))) λ _ → refl≅) ) ⟩ ( Σ ((n : ℕ) → X (suc n)) λ y → Σ (singleton (π 0 (y 0))) λ _ → (∀ n → π (suc n) (y (suc n)) ≡ y n) ) ≅⟨ record { to = λ { (y , (x₀ , q₀) , q) → ((x₀ , y) , (q₀ , q)) } ; from = λ { ((x₀ , y) , (q₀ , q)) → (y , (x₀ , q₀) , q) } ; iso₁ = λ { (y , (x₀ , q₀) , q) → refl } ; iso₂ = λ { ((x₀ , y) , (q₀ , q)) → refl } } ⟩ ( Σ (X 0 × ((n : ℕ) → X (suc n))) λ { (x₀ , y) → ((π 0 (y 0) ≡ x₀) × (∀ n → π (suc n) (y (suc n)) ≡ y n)) } ) ≅⟨ (Σ-ap-iso (sym≅ ℕ-elim-shift) λ _ → (sym≅ ℕ-elim-shift)) ⟩ ( Σ ((n : ℕ) → X n) λ x → ∀ n → π n (x (suc n)) ≡ x n ) ∎ where open ≅-Reasoning
{ "alphanum_fraction": 0.3722334004, "avg_line_length": 34.9132231405, "ext": "agda", "hexsha": "f787d0033ada3ba5dfabab23e3b7f49511625818", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "container/m/from-nat/core.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "container/m/from-nat/core.agda", "max_line_length": 79, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "container/m/from-nat/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 3901, "size": 8449 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A categorical view of the identity function ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Identity.Categorical {ℓ} where open import Category.Functor open import Category.Applicative open import Category.Monad open import Category.Comonad open import Function Identity : Set ℓ → Set ℓ Identity A = A functor : RawFunctor Identity functor = record { _<$>_ = id } applicative : RawApplicative Identity applicative = record { pure = id ; _⊛_ = id } monad : RawMonad Identity monad = record { return = id ; _>>=_ = _|>′_ } comonad : RawComonad Identity comonad = record { extract = id ; extend = id }
{ "alphanum_fraction": 0.568627451, "avg_line_length": 19.4285714286, "ext": "agda", "hexsha": "13794c5d064fb6fd66abb25b592d684ebb2d96ae", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Function/Identity/Categorical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Function/Identity/Categorical.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Function/Identity/Categorical.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 201, "size": 816 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Environments (heterogeneous collections) ------------------------------------------------------------------------ module Data.Star.Environment (Ty : Set) where open import Data.Star open import Data.Star.List open import Data.Star.Decoration open import Data.Star.Pointer as Pointer hiding (lookup) open import Data.Unit open import Relation.Binary.PropositionalEquality -- Contexts, listing the types of all the elements in an environment. Ctxt : Set Ctxt = List Ty -- Variables (de Bruijn indices); pointers into environments. infix 4 _∋_ _∋_ : Ctxt → Ty → Set Γ ∋ σ = Any (λ _ → ⊤) (_≡_ σ) Γ vz : ∀ {Γ σ} → Γ ▻ σ ∋ σ vz = this refl vs : ∀ {Γ σ τ} → Γ ∋ τ → Γ ▻ σ ∋ τ vs = that tt -- Environments. The T function maps types to element types. Env : (Ty → Set) → Ctxt → Set Env T Γ = All T Γ -- A safe lookup function for environments. lookup : ∀ {Γ σ} {T : Ty → Set} → Γ ∋ σ → Env T Γ → T σ lookup i ρ with Pointer.lookup i ρ ... | result refl x = x
{ "alphanum_fraction": 0.5802238806, "avg_line_length": 24.3636363636, "ext": "agda", "hexsha": "826d8e74f0da0cf276c5e7077017eda3a8f4c860", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Star/Environment.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Star/Environment.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Star/Environment.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 303, "size": 1072 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Congruence of application. -- -- If f ≡ g and x ≡ y, then (f x) ≡ (g y). ------------------------------------------------------------------------ module Theorem.CongApp where open import Relation.Binary.PropositionalEquality public infixl 0 _⟨$⟩_ _⟨$⟩_ : ∀ {a b} {A : Set a} {B : Set b} {f g : A → B} {x y : A} → f ≡ g → x ≡ y → f x ≡ g y _⟨$⟩_ = cong₂ (λ x y → x y)
{ "alphanum_fraction": 0.3866943867, "avg_line_length": 24.05, "ext": "agda", "hexsha": "0ac84a34b127befa5eba3c3039b84d88b69fe0bc", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Theorem/CongApp.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Theorem/CongApp.agda", "max_line_length": 72, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Theorem/CongApp.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 152, "size": 481 }
-- Andreas, 2017-09-09 -- Builtin constructors may be ambiguous / overloaded. data Semmel : Set where false : Semmel data Bool : Set where true : Bool false : Bool {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} -- This is accepted. data Brezel A : Set where _∷_ : (x : A) (xs : Brezel A) → Brezel A data List₀ A : Set where [] : List₀ A _∷_ : (x : A) (xs : List₀ A) → List₀ A data List {a} (A : Set a) : Set a where [] : List A _∷_ : (x : A) (xs : List A) → List A {-# BUILTIN LIST List₀ #-}
{ "alphanum_fraction": 0.5801801802, "avg_line_length": 20.5555555556, "ext": "agda", "hexsha": "d63ab1f965160863c87f9aa8380816e129e085f6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/eagda", "max_forks_repo_path": "test/Succeed/BuiltinAmbiguousConstructor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/eagda", "max_issues_repo_path": "test/Succeed/BuiltinAmbiguousConstructor.agda", "max_line_length": 54, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/eagda", "max_stars_repo_path": "test/Succeed/BuiltinAmbiguousConstructor.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 200, "size": 555 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Test where data _∨_ (A B : Set) : Set where inj₁ : A → A ∨ B inj₂ : B → A ∨ B postulate A B : Set ∨-comm : A ∨ B → B ∨ A {-# ATP prove ∨-comm #-}
{ "alphanum_fraction": 0.4831081081, "avg_line_length": 19.7333333333, "ext": "agda", "hexsha": "dffac9f183a2c1ac7b5307e3d4f4c1613c475d72", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "notes/README/Test.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "notes/README/Test.agda", "max_line_length": 42, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "notes/README/Test.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 99, "size": 296 }
{- This second-order term syntax was created from the following second-order syntax description: syntax Prod | P type _⊗_ : 2-ary | l40 term pair : α β -> α ⊗ β | ⟨_,_⟩ fst : α ⊗ β -> α snd : α ⊗ β -> β theory (fβ) a : α b : β |> fst (pair(a, b)) = a (sβ) a : α b : β |> snd (pair(a, b)) = b (pη) p : α ⊗ β |> pair (fst(p), snd(p)) = p -} module Prod.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import Prod.Signature private variable Γ Δ Π : Ctx α β : PT 𝔛 : Familyₛ -- Inductive term declaration module P:Terms (𝔛 : Familyₛ) where data P : Familyₛ where var : ℐ ⇾̣ P mvar : 𝔛 α Π → Sub P Π Γ → P α Γ ⟨_,_⟩ : P α Γ → P β Γ → P (α ⊗ β) Γ fst : P (α ⊗ β) Γ → P α Γ snd : P (α ⊗ β) Γ → P β Γ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 Pᵃ : MetaAlg P Pᵃ = record { 𝑎𝑙𝑔 = λ where (pairₒ ⋮ a , b) → ⟨_,_⟩ a b (fstₒ ⋮ a) → fst a (sndₒ ⋮ a) → snd a ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module Pᵃ = MetaAlg Pᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : P ⇾̣ 𝒜 𝕊 : Sub P Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 (⟨_,_⟩ a b) = 𝑎𝑙𝑔 (pairₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 (fst a) = 𝑎𝑙𝑔 (fstₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞 (snd a) = 𝑎𝑙𝑔 (sndₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ Pᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ P α Γ) → 𝕤𝕖𝕞 (Pᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (pairₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (fstₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (sndₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ P ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : P ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ Pᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : P α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub P Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! (⟨_,_⟩ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (fst a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (snd a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature P:Syn : Syntax P:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = P:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open P:Terms 𝔛 in record { ⊥ = P ⋉ Pᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax P:Syn public open P:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands Pᵃ public open import SOAS.Metatheory P:Syn public
{ "alphanum_fraction": 0.5191073066, "avg_line_length": 25.1615384615, "ext": "agda", "hexsha": "c4d56f6eac140cffb9948da865ce4fa507aa49ad", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Prod/Syntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Prod/Syntax.agda", "max_line_length": 93, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Prod/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 2058, "size": 3271 }
module Issue363 where infixl 0 _>>=_ postulate A : Set x : A _>>=_ : A → (A → A) → A P : A → Set lemma : P ((x >>= λ x → x) >>= λ x → x) lemma = {!!} -- The type of the goal above was printed as follows: -- -- P (x >>= λ x' → x' >>= λ x' → x') -- -- This is not correct.
{ "alphanum_fraction": 0.4579124579, "avg_line_length": 15.6315789474, "ext": "agda", "hexsha": "70dfb278f45d495035c3ac759503253544a9de7c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue363.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue363.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue363.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 112, "size": 297 }
-- Andreas, 2014-04-11, issue reported by James Chapman -- {-# OPTIONS -v tc.decl.ax:100 #-} -- {-# OPTIONS -v tc.polarity:100 #-} {-# OPTIONS --copatterns --sized-types #-} module _ where open import Common.Size module Works where mutual data Delay i (A : Set) : Set where now : A → Delay i A later : ∞Delay i A → Delay i A record ∞Delay i A : Set where coinductive field force : {j : Size< i} → Delay j A open ∞Delay mutual _=<<_ : ∀{i A B} → Delay i A → (A → Delay i B) → Delay i B now x =<< f = f x later x =<< f = later (x ∞=<< f) _∞=<<_ : ∀{i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B force (c ∞=<< f) = force c =<< f -- Polarity of Issue1099.Delay from positivity: [Contravariant,Covariant] -- Refining polarity with type Size → Set → Set -- Polarity of Issue1099.Delay: [Contravariant,Covariant] module Fails where mutual data Delay i A : Set where now : A → Delay i A later : ∞Delay i A → Delay i A record ∞Delay i A : Set where coinductive field force : {j : Size< i} → Delay j A open ∞Delay mutual _=<<_ : ∀{i A B} → Delay i A → (A → Delay i B) → Delay i B now x =<< f = f x later x =<< f = later (x ∞=<< f) _∞=<<_ : ∀{i A B} → ∞Delay i A → (A → Delay i B) → ∞Delay i B force (c ∞=<< f) = force c =<< f -- Polarity of Issue1099.Delay from positivity: [Contravariant,Covariant] -- Refining polarity with type (i₁ : Size) → Set → Set -- WAS: Polarity of Issue1099.Delay: [Invariant,Covariant] -- NOW: Polarity of Issue1099.Delay: [Contravariant,Covariant] -- Polarity refinement calls free variable analysis, which is not in the -- monad. Thus, need to instantiate metas before polarity refinement.
{ "alphanum_fraction": 0.5965811966, "avg_line_length": 29.7457627119, "ext": "agda", "hexsha": "2e18f0558e6adf9228e365a51e0ca5c431227eb7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue1099.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue1099.agda", "max_line_length": 73, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue1099.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 596, "size": 1755 }
{-# OPTIONS --safe #-} module Issue2728-3 where foo = Set -- something to cache postulate B : Set
{ "alphanum_fraction": 0.6836734694, "avg_line_length": 19.6, "ext": "agda", "hexsha": "f2c9428982fa37a051b0f315d75b80f00517a580", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue2728-3.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue2728-3.agda", "max_line_length": 31, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue2728-3.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 27, "size": 98 }
{-# OPTIONS --cubical --safe #-} module Cubical.ZCohomology.Everything where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.S1.S1
{ "alphanum_fraction": 0.807106599, "avg_line_length": 24.625, "ext": "agda", "hexsha": "160104dcea8bacaa85439a049aacc8e86b5cd86f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Everything.agda", "max_line_length": 43, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 58, "size": 197 }
open import Level hiding ( suc ; zero ) open import Algebra module Gutil {n m : Level} (G : Group n m ) where open import Data.Unit open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_) open import Function open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero) open import Relation.Nullary open import Data.Empty open import Data.Product open import Relation.Binary.PropositionalEquality hiding ( [_] ) open Group G import Relation.Binary.Reasoning.Setoid as EqReasoning gsym = Algebra.Group.sym G grefl = Algebra.Group.refl G gtrans = Algebra.Group.trans G lemma3 : ε ≈ ε ⁻¹ lemma3 = begin ε ≈⟨ gsym (proj₁ inverse _) ⟩ ε ⁻¹ ∙ ε ≈⟨ proj₂ identity _ ⟩ ε ⁻¹ ∎ where open EqReasoning (Algebra.Group.setoid G) lemma6 : {f : Carrier } → ( f ⁻¹ ) ⁻¹ ≈ f lemma6 {f} = begin ( f ⁻¹ ) ⁻¹ ≈⟨ gsym ( proj₁ identity _) ⟩ ε ∙ ( f ⁻¹ ) ⁻¹ ≈⟨ ∙-cong (gsym ( proj₂ inverse _ )) grefl ⟩ (f ∙ f ⁻¹ ) ∙ ( f ⁻¹ ) ⁻¹ ≈⟨ assoc _ _ _ ⟩ f ∙ ( f ⁻¹ ∙ ( f ⁻¹ ) ⁻¹ ) ≈⟨ ∙-cong grefl (proj₂ inverse _) ⟩ f ∙ ε ≈⟨ proj₂ identity _ ⟩ f ∎ where open EqReasoning (Algebra.Group.setoid G) ≡→≈ : {f g : Carrier } → f ≡ g → f ≈ g ≡→≈ refl = grefl --- -- to avoid assoc storm, flatten multiplication according to the template -- data MP : Carrier → Set (Level.suc n) where am : (x : Carrier ) → MP x _o_ : {x y : Carrier } → MP x → MP y → MP ( x ∙ y ) mpf : {x : Carrier } → (m : MP x ) → Carrier → Carrier mpf (am x) y = x ∙ y mpf (m o m₁) y = mpf m ( mpf m₁ y ) mp-flatten : {x : Carrier } → (m : MP x ) → Carrier mp-flatten m = mpf m ε mpl1 : Carrier → {x : Carrier } → MP x → Carrier mpl1 x (am y) = x ∙ y mpl1 x (y o y1) = mpl1 ( mpl1 x y ) y1 mpl : {x z : Carrier } → MP x → MP z → Carrier mpl (am x) m = mpl1 x m mpl (m o m1) m2 = mpl m (m1 o m2) mp-flattenl : {x : Carrier } → (m : MP x ) → Carrier mp-flattenl m = mpl m (am ε) test1 : ( f g : Carrier ) → Carrier test1 f g = mp-flattenl ((am (g ⁻¹) o am (f ⁻¹) ) o ( (am f o am g) o am ((f ∙ g) ⁻¹ ))) test2 : ( f g : Carrier ) → test1 f g ≡ g ⁻¹ ∙ f ⁻¹ ∙ f ∙ g ∙ (f ∙ g) ⁻¹ ∙ ε test2 f g = _≡_.refl test3 : ( f g : Carrier ) → Carrier test3 f g = mp-flatten ((am (g ⁻¹) o am (f ⁻¹) ) o ( (am f o am g) o am ((f ∙ g) ⁻¹ ))) test4 : ( f g : Carrier ) → test3 f g ≡ g ⁻¹ ∙ (f ⁻¹ ∙ (f ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε)))) test4 f g = _≡_.refl ∙-flatten : {x : Carrier } → (m : MP x ) → x ≈ mp-flatten m ∙-flatten {x} (am x) = gsym (proj₂ identity _) ∙-flatten {_} (am x o q) = ∙-cong grefl ( ∙-flatten q ) ∙-flatten (_o_ {_} {z} (_o_ {x} {y} p q) r) = lemma9 _ _ _ ( ∙-flatten {x ∙ y } (p o q )) ( ∙-flatten {z} r ) where mp-cong : {p q r : Carrier} → (P : MP p) → q ≈ r → mpf P q ≈ mpf P r mp-cong (am x) q=r = ∙-cong grefl q=r mp-cong (P o P₁) q=r = mp-cong P ( mp-cong P₁ q=r ) mp-assoc : {p q r : Carrier} → (P : MP p) → mpf P q ∙ r ≈ mpf P (q ∙ r ) mp-assoc (am x) = assoc _ _ _ mp-assoc {p} {q} {r} (P o P₁) = begin mpf P (mpf P₁ q) ∙ r ≈⟨ mp-assoc P ⟩ mpf P (mpf P₁ q ∙ r) ≈⟨ mp-cong P (mp-assoc P₁) ⟩ mpf P ((mpf P₁) (q ∙ r)) ∎ where open EqReasoning (Algebra.Group.setoid G) lemma9 : (x y z : Carrier) → x ∙ y ≈ mpf p (mpf q ε) → z ≈ mpf r ε → x ∙ y ∙ z ≈ mp-flatten ((p o q) o r) lemma9 x y z t s = begin x ∙ y ∙ z ≈⟨ ∙-cong t grefl ⟩ mpf p (mpf q ε) ∙ z ≈⟨ mp-assoc p ⟩ mpf p (mpf q ε ∙ z) ≈⟨ mp-cong p (mp-assoc q ) ⟩ mpf p (mpf q (ε ∙ z)) ≈⟨ mp-cong p (mp-cong q (proj₁ identity _ )) ⟩ mpf p (mpf q z) ≈⟨ mp-cong p (mp-cong q s) ⟩ mpf p (mpf q (mpf r ε)) ∎ where open EqReasoning (Algebra.Group.setoid G) grepl : { x y0 y1 z : Carrier } → x ∙ y0 ≈ y1 → x ∙ ( y0 ∙ z ) ≈ y1 ∙ z grepl eq = gtrans (gsym (assoc _ _ _ )) (∙-cong eq grefl ) grm : { x y0 y1 z : Carrier } → x ∙ y0 ≈ ε → x ∙ ( y0 ∙ z ) ≈ z grm eq = gtrans ( gtrans (gsym (assoc _ _ _ )) (∙-cong eq grefl )) ( proj₁ identity _ ) -- ∙-flattenl : {x : Carrier } → (m : MP x ) → x ≈ mp-flattenl m -- ∙-flattenl (am x) = gsym (proj₂ identity _) -- ∙-flattenl (q o am x) with ∙-flattenl q -- x₁ ∙ x ≈ mpl q (am x o am ε) , t : x₁ ≈ mpl q (am ε) -- ... | t = {!!} -- ∙-flattenl (q o (x o y )) with ∙-flattenl q -- ... | t = gtrans (gsym (assoc _ _ _ )) {!!} lemma5 : (f g : Carrier ) → g ⁻¹ ∙ f ⁻¹ ≈ (f ∙ g) ⁻¹ lemma5 f g = begin g ⁻¹ ∙ f ⁻¹ ≈⟨ gsym (proj₂ identity _) ⟩ g ⁻¹ ∙ f ⁻¹ ∙ ε ≈⟨ gsym (∙-cong grefl (proj₂ inverse _ )) ⟩ g ⁻¹ ∙ f ⁻¹ ∙ ( (f ∙ g) ∙ (f ∙ g) ⁻¹ ) ≈⟨ ∙-flatten ((am (g ⁻¹) o am (f ⁻¹) ) o ( (am f o am g) o am ((f ∙ g) ⁻¹ ))) ⟩ g ⁻¹ ∙ (f ⁻¹ ∙ (f ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε)))) ≈⟨ ∙-cong grefl (gsym (assoc _ _ _ )) ⟩ g ⁻¹ ∙ ((f ⁻¹ ∙ f) ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε))) ≈⟨ ∙-cong grefl (gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _)) ⟩ g ⁻¹ ∙ (g ∙ ((f ∙ g) ⁻¹ ∙ ε)) ≈⟨ gsym (assoc _ _ _) ⟩ (g ⁻¹ ∙ g ) ∙ ((f ∙ g) ⁻¹ ∙ ε) ≈⟨ gtrans (∙-cong (proj₁ inverse _ ) grefl) (proj₁ identity _) ⟩ (f ∙ g) ⁻¹ ∙ ε ≈⟨ proj₂ identity _ ⟩ (f ∙ g) ⁻¹ ∎ where open EqReasoning (Algebra.Group.setoid G)
{ "alphanum_fraction": 0.4923915085, "avg_line_length": 40.6335877863, "ext": "agda", "hexsha": "857863b65f8e5f44c23059e6077bda74569eba42", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/Galois", "max_forks_repo_path": "src/Gutil.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/Galois", "max_issues_repo_path": "src/Gutil.agda", "max_line_length": 133, "max_stars_count": 1, "max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/Galois", "max_stars_repo_path": "src/Gutil.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z", "num_tokens": 2398, "size": 5323 }
{- Generate univalent reflexive graph characterizations for record types from characterizations of the field types using reflection. See end of file for an example. -} {-# OPTIONS --no-exact-split --safe #-} module Cubical.Displayed.Record where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Path open import Cubical.Data.Sigma open import Cubical.Data.List as List open import Cubical.Data.Unit open import Cubical.Data.Bool open import Cubical.Data.Maybe as Maybe open import Cubical.Displayed.Base open import Cubical.Displayed.Properties open import Cubical.Displayed.Prop open import Cubical.Displayed.Sigma open import Cubical.Displayed.Unit open import Cubical.Displayed.Universe open import Cubical.Displayed.Auto import Agda.Builtin.Reflection as R open import Cubical.Reflection.Base import Cubical.Reflection.RecordEquiv as RE {- `DUAFields` A collection of DURG characterizations for fields of a record is described by an element of this inductive family. If you just want to see how to use it, have a look at the end of the file first. An element of `DUAFields 𝒮-A R _≅R⟨_⟩_ πS 𝒮ᴰ-S πS≅` describes a mapping - from a structure `R : A → Type _` and notion of structured equivalence `_≅R⟨_⟩_`, which are meant to be defined as parameterized record types, - to a DURG `𝒮ᴰ-S`, the underlying structure of which will be an iterated Σ-type, - via projections `πS` and `πS≅`. `𝒮-A`, `R`, and `_≅R⟨_⟩_` are parameters, while `πS`, `𝒮ᴰ-S`, and `πS≅` are indices; the user builds up the Σ-type representation of the record using the DUAFields constructors. A DUAFields representation is _total_ when the projections `πS` and `πS≅` are equivalences, in which case we obtain a DURG on `R` with `_≅R⟨_⟩_` as the notion of structured equivalence---see `𝒮ᴰ-Fields` below. When `R`, and `_≅R⟨_⟩_` are defined by record types, we can use reflection to automatically generate proofs `πS` and `πS≅` are equivalences---see `𝒮ᴰ-Record` below. -} data DUAFields {ℓA ℓ≅A ℓR ℓ≅R} {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) (R : A → Type ℓR) (_≅R⟨_⟩_ : {a a' : A} → R a → UARel._≅_ 𝒮-A a a' → R a' → Type ℓ≅R) : ∀ {ℓS ℓ≅S} {S : A → Type ℓS} (πS : ∀ {a} → R a → S a) (𝒮ᴰ-S : DUARel 𝒮-A S ℓ≅S) (πS≅ : ∀ {a} {r : R a} {e} {r' : R a} → r ≅R⟨ e ⟩ r' → DUARel._≅ᴰ⟨_⟩_ 𝒮ᴰ-S (πS r) e (πS r')) → Typeω where -- `fields:` -- Base case, no fields yet recorded in `𝒮ᴰ-S`. fields: : DUAFields 𝒮-A R _≅R⟨_⟩_ (λ _ → tt) (𝒮ᴰ-Unit 𝒮-A) (λ _ → tt) -- `… data[ πF ∣ 𝒮ᴰ-F ∣ πF≅ ]` -- Add a new field with a DURG. `πF` should be the name of the field in the structure record `R` and `πF≅` -- the name of the corresponding field in the equivalence record `_≅R⟨_⟩_`, while `𝒮ᴰ-F` is a DURG for the -- field's type over `𝒮-A`. Data fields that depend on previous fields of the record are not currently -- supported. _data[_∣_∣_] : ∀ {ℓS ℓ≅S} {S : A → Type ℓS} {πS : ∀ {a} → R a → S a} {𝒮ᴰ-S : DUARel 𝒮-A S ℓ≅S} {πS≅ : ∀ {a} {r : R a} {e} {r' : R a} → r ≅R⟨ e ⟩ r' → DUARel._≅ᴰ⟨_⟩_ 𝒮ᴰ-S (πS r) e (πS r')} → DUAFields 𝒮-A R _≅R⟨_⟩_ πS 𝒮ᴰ-S πS≅ → ∀ {ℓF ℓ≅F} {F : A → Type ℓF} (πF : ∀ {a} → (r : R a) → F a) (𝒮ᴰ-F : DUARel 𝒮-A F ℓ≅F) (πF≅ : ∀ {a} {r : R a} {e} {r' : R a} (p : r ≅R⟨ e ⟩ r') → DUARel._≅ᴰ⟨_⟩_ 𝒮ᴰ-F (πF r) e (πF r')) → DUAFields 𝒮-A R _≅R⟨_⟩_ (λ r → πS r , πF r) (𝒮ᴰ-S ×𝒮ᴰ 𝒮ᴰ-F) (λ p → πS≅ p , πF≅ p) -- `… prop[ πF ∣ propF ]` -- Add a new propositional field. `πF` should be the name of the field in the structure record `R`, while -- propF is a proof that this field is a proposition. _prop[_∣_] : ∀ {ℓS ℓ≅S} {S : A → Type ℓS} {πS : ∀ {a} → R a → S a} {𝒮ᴰ-S : DUARel 𝒮-A S ℓ≅S} {πS≅ : ∀ {a} {r : R a} {e} {r' : R a} → r ≅R⟨ e ⟩ r' → DUARel._≅ᴰ⟨_⟩_ 𝒮ᴰ-S (πS r) e (πS r')} → DUAFields 𝒮-A R _≅R⟨_⟩_ πS 𝒮ᴰ-S πS≅ → ∀ {ℓF} {F : (a : A) → S a → Type ℓF} (πF : ∀ {a} → (r : R a) → F a (πS r)) (propF : ∀ a s → isProp (F a s)) → DUAFields 𝒮-A R _≅R⟨_⟩_ (λ r → πS r , πF r) (𝒮ᴰ-subtype 𝒮ᴰ-S propF) (λ p → πS≅ p) module _ {ℓA ℓ≅A} {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {ℓR ℓ≅R} {R : A → Type ℓR} (_≅R⟨_⟩_ : {a a' : A} → R a → UARel._≅_ 𝒮-A a a' → R a' → Type ℓ≅R) {ℓS ℓ≅S} {S : A → Type ℓS} {πS : ∀ {a} → R a → S a} {𝒮ᴰ-S : DUARel 𝒮-A S ℓ≅S} {πS≅ : ∀ {a} {r : R a} {e} {r' : R a} → r ≅R⟨ e ⟩ r' → DUARel._≅ᴰ⟨_⟩_ 𝒮ᴰ-S (πS r) e (πS r')} (fs : DUAFields 𝒮-A R _≅R⟨_⟩_ πS 𝒮ᴰ-S πS≅) where open UARel 𝒮-A open DUARel 𝒮ᴰ-S 𝒮ᴰ-Fields : (e : ∀ a → Iso (R a) (S a)) (e≅ : ∀ a a' (r : R a) p (r' : R a') → Iso (r ≅R⟨ p ⟩ r') ((e a .Iso.fun r ≅ᴰ⟨ p ⟩ e a' .Iso.fun r'))) → DUARel 𝒮-A R ℓ≅R DUARel._≅ᴰ⟨_⟩_ (𝒮ᴰ-Fields e e≅) r p r' = r ≅R⟨ p ⟩ r' DUARel.uaᴰ (𝒮ᴰ-Fields e e≅) r p r' = isoToEquiv (compIso (e≅ _ _ r p r') (compIso (equivToIso (uaᴰ (e _ .Iso.fun r) p (e _ .Iso.fun r'))) (invIso (congPathIso λ i → isoToEquiv (e _))))) module DisplayedRecordMacro where -- Extract a name from a term findName : R.Term → R.TC R.Name findName t = Maybe.rec (R.typeError (R.strErr "Not a name: " ∷ R.termErr t ∷ [])) (λ s → s) (go t) where go : R.Term → Maybe (R.TC R.Name) go (R.meta x _) = just (R.blockOnMeta x) go (R.def name _) = just (R.returnTC name) go (R.lam _ (R.abs _ t)) = go t go t = nothing -- ℓA ℓ≅A ℓR ℓ≅R A 𝒮-A R _≅R⟨_⟩_ pattern family∷ hole = _ h∷ _ h∷ _ h∷ _ h∷ _ h∷ _ h∷ _ h∷ _ h∷ hole -- ℓS ℓ≅S S πS 𝒮ᴰ-S πS≅ pattern indices∷ hole = _ h∷ _ h∷ _ h∷ _ h∷ _ h∷ _ h∷ hole {- Takes a reflected DUAFields term as input and collects lists of structure field names and equivalence field names. (These are returned in reverse order. -} parseFields : R.Term → R.TC (List R.Name × List R.Name) parseFields (R.con (quote fields:) _) = R.returnTC ([] , []) parseFields (R.con (quote _data[_∣_∣_]) (family∷ (indices∷ (fs v∷ ℓF h∷ ℓ≅F h∷ F h∷ πF v∷ 𝒮ᴰ-F v∷ πF≅ v∷ _)))) = parseFields fs >>= λ (fs , f≅s) → findName πF >>= λ f → findName πF≅ >>= λ f≅ → R.returnTC (f ∷ fs , f≅ ∷ f≅s) parseFields (R.con (quote _prop[_∣_]) (family∷ (indices∷ (fs v∷ ℓF h∷ F h∷ πF v∷ _)))) = parseFields fs >>= λ (fs , f≅s) → findName πF >>= λ f → R.returnTC (f ∷ fs , f≅s) parseFields (R.meta x _) = R.blockOnMeta x parseFields t = R.typeError (R.strErr "Malformed specification: " ∷ R.termErr t ∷ []) {- Given a list of record field names (in reverse order), generates a ΣFormat (in the sense of Cubical.Reflection.RecordEquiv) associating the record fields with the fields of a left-associated iterated Σ-type -} List→LeftAssoc : List R.Name → RE.ΣFormat List→LeftAssoc [] = RE.unit List→LeftAssoc (x ∷ xs) = List→LeftAssoc xs RE., RE.leaf x module _ {ℓA ℓ≅A} {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) {ℓR ℓ≅R} {R : A → Type ℓR} (≅R : {a a' : A} → R a → UARel._≅_ 𝒮-A a a' → R a' → Type ℓ≅R) {ℓS ℓ≅S} {S : A → Type ℓS} {πS : ∀ {a} → R a → S a} {𝒮ᴰ-S : DUARel 𝒮-A S ℓ≅S} {πS≅ : ∀ {a} {r : R a} {e} {r' : R a} → ≅R r e r' → DUARel._≅ᴰ⟨_⟩_ 𝒮ᴰ-S (πS r) e (πS r')} where {- "𝒮ᴰ-Record ... : DUARel 𝒮-A R ℓ≅R" Requires that `R` and `_≅R⟨_⟩_` are defined by records and `πS` and `πS≅` are equivalences. The proofs of equivalence are generated using Cubical.Reflection.RecordEquiv and then `𝒮ᴰ-Fields` is applied. -} 𝒮ᴰ-Record : DUAFields 𝒮-A R ≅R πS 𝒮ᴰ-S πS≅ → R.Term → R.TC Unit 𝒮ᴰ-Record fs hole = R.quoteTC (DUARel 𝒮-A R ℓ≅R) >>= R.checkType hole >>= λ hole → R.quoteωTC fs >>= λ `fs` → parseFields `fs` >>= λ (fields , ≅fields) → R.freshName "fieldsIso" >>= λ fieldsIso → R.freshName "≅fieldsIso" >>= λ ≅fieldsIso → R.quoteTC R >>= R.normalise >>= λ `R` → R.quoteTC {A = {a a' : A} → R a → UARel._≅_ 𝒮-A a a' → R a' → Type ℓ≅R} ≅R >>= R.normalise >>= λ `≅R` → findName `R` >>= RE.declareRecordIsoΣ' fieldsIso (List→LeftAssoc fields) >> findName `≅R` >>= RE.declareRecordIsoΣ' ≅fieldsIso (List→LeftAssoc ≅fields) >> R.unify hole (R.def (quote 𝒮ᴰ-Fields) (`≅R` v∷ `fs` v∷ vlam "_" (R.def fieldsIso []) v∷ vlam "a" (vlam "a'" (vlam "r" (vlam "p" (vlam "r'" (R.def ≅fieldsIso []))))) v∷ [])) macro 𝒮ᴰ-Record = DisplayedRecordMacro.𝒮ᴰ-Record -- Example private module Example where record Example (A : Type) : Type where no-eta-equality -- works with or without eta equality field dog : A → A → A cat : A → A → A mouse : Unit open Example record ExampleEquiv {A B : Type} (x : Example A) (e : A ≃ B) (y : Example B) : Type where no-eta-equality -- works with or without eta equality field dogEq : ∀ a a' → e .fst (x .dog a a') ≡ y .dog (e .fst a) (e .fst a') catEq : ∀ a a' → e .fst (x .cat a a') ≡ y .cat (e .fst a) (e .fst a') open ExampleEquiv example : DUARel (𝒮-Univ ℓ-zero) Example ℓ-zero example = 𝒮ᴰ-Record (𝒮-Univ ℓ-zero) ExampleEquiv (fields: data[ dog ∣ autoDUARel _ _ ∣ dogEq ] data[ cat ∣ autoDUARel _ _ ∣ catEq ] prop[ mouse ∣ (λ _ _ → isPropUnit) ])
{ "alphanum_fraction": 0.5793710422, "avg_line_length": 40.1594827586, "ext": "agda", "hexsha": "bfec660d99de74258a960ff176958eea0b8c7efd", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Displayed/Record.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Displayed/Record.agda", "max_line_length": 114, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Displayed/Record.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 4112, "size": 9317 }
module Pi.Eval where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Data.List as L hiding (_∷_) open import Relation.Binary.PropositionalEquality open import Pi.Syntax open import Pi.Opsem open import Pi.NoRepeat -- Stuck states must be of the form [ c ∣ v ∣ ☐ ] Stuck : ∀ {st} → is-stuck st → (Σ[ A ∈ 𝕌 ] Σ[ B ∈ 𝕌 ] Σ[ c ∈ A ↔ B ] Σ[ v ∈ ⟦ B ⟧ ] st ≡ [ c ∣ v ∣ ☐ ]) Stuck {⟨ unite₊l ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ uniti₊l ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ swap₊ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ assocl₊ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ assocr₊ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ unite⋆l ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ uniti⋆l ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ swap⋆ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ assocl⋆ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ assocr⋆ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ dist ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ factor ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ absorbr ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ factorzl ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₁)) Stuck {⟨ id↔ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₂)) Stuck {⟨ c₁ ⨾ c₂ ∣ v ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₃)) Stuck {⟨ c₁ ⊕ c₂ ∣ inj₁ x ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₄)) Stuck {⟨ c₁ ⊕ c₂ ∣ inj₂ y ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₅)) Stuck {⟨ c₁ ⊗ c₂ ∣ (x , y) ∣ κ ⟩} stuck = ⊥-elim (stuck (_ , ↦₆)) Stuck {[ c ∣ v ∣ ☐ ]} stuck = _ , _ , _ , _ , refl Stuck {[ c ∣ v ∣ ☐⨾ c₂ • κ ]} stuck = ⊥-elim (stuck (_ , ↦₇)) Stuck {[ c ∣ v ∣ c₁ ⨾☐• κ ]} stuck = ⊥-elim (stuck (_ , ↦₁₀)) Stuck {[ c ∣ v ∣ ☐⊕ c₂ • κ ]} stuck = ⊥-elim (stuck (_ , ↦₁₁)) Stuck {[ c ∣ v ∣ c₁ ⊕☐• κ ]} stuck = ⊥-elim (stuck (_ , ↦₁₂)) Stuck {[ c ∣ v ∣ ☐⊗[ c₂ , y ]• κ ]} stuck = ⊥-elim (stuck (_ , ↦₈)) Stuck {[ c ∣ v ∣ [ c₁ , x ]⊗☐• κ ]} stuck = ⊥-elim (stuck (_ , ↦₉)) -- Auxiliary function for forward evaluator ev : ∀ {A B κ} → (c : A ↔ B) (v : ⟦ A ⟧) → Σ[ v' ∈ ⟦ B ⟧ ] ⟨ c ∣ v ∣ κ ⟩ ↦* [ c ∣ v' ∣ κ ] ev unite₊l (inj₂ v) = v , (↦₁ ∷ ◾) ev uniti₊l v = inj₂ v , (↦₁ ∷ ◾) ev swap₊ (inj₁ v) = inj₂ v , (↦₁ ∷ ◾) ev swap₊ (inj₂ v) = inj₁ v , (↦₁ ∷ ◾) ev assocl₊ (inj₁ v) = inj₁ (inj₁ v) , (↦₁ ∷ ◾) ev assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) , (↦₁ ∷ ◾) ev assocl₊ (inj₂ (inj₂ v)) = inj₂ v , (↦₁ ∷ ◾) ev assocr₊ (inj₁ (inj₁ v)) = inj₁ v , (↦₁ ∷ ◾) ev assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) , (↦₁ ∷ ◾) ev assocr₊ (inj₂ v) = inj₂ (inj₂ v) , (↦₁ ∷ ◾) ev unite⋆l (tt , v) = v , (↦₁ ∷ ◾) ev uniti⋆l v = (tt , v) , (↦₁ ∷ ◾) ev swap⋆ (x , y) = (y , x) , (↦₁ ∷ ◾) ev assocl⋆ (x , (y , z)) = ((x , y) , z) , (↦₁ ∷ ◾) ev assocr⋆ ((x , y) , z) = (x , (y , z)) , (↦₁ ∷ ◾) ev dist (inj₁ x , z) = inj₁ (x , z) , (↦₁ ∷ ◾) ev dist (inj₂ y , z) = inj₂ (y , z) , (↦₁ ∷ ◾) ev factor (inj₁ (x , z)) = (inj₁ x , z) , (↦₁ ∷ ◾) ev factor (inj₂ (y , z)) = (inj₂ y , z) , (↦₁ ∷ ◾) ev id↔ v = v , (↦₂ ∷ ◾) ev {κ = κ} (c₁ ⨾ c₂) v₁ with ev {κ = ☐⨾ c₂ • κ} c₁ v₁ ... | (v₂ , c₁↦*) with ev {κ = c₁ ⨾☐• κ} c₂ v₂ ... | (v₃ , c₂↦*) = v₃ , ((↦₃ ∷ c₁↦* ++↦ (↦₇ ∷ ◾)) ++↦ (c₂↦* ++↦ (↦₁₀ ∷ ◾))) ev {κ = κ} (c₁ ⊕ c₂) (inj₁ x) with ev {κ = ☐⊕ c₂ • κ} c₁ x ... | x' , c₁↦* = inj₁ x' , ↦₄ ∷ c₁↦* ++↦ (↦₁₁ ∷ ◾) ev {κ = κ} (c₁ ⊕ c₂) (inj₂ y) with ev {κ = c₁ ⊕☐• κ} c₂ y ... | y' , c₂↦* = inj₂ y' , ↦₅ ∷ c₂↦* ++↦ (↦₁₂ ∷ ◾) ev {κ = κ} (c₁ ⊗ c₂) (x , y) with ev {κ = ☐⊗[ c₂ , y ]• κ} c₁ x ... | x' , c₁↦* with ev {κ = [ c₁ , x' ]⊗☐• κ} c₂ y ... | y' , c₂↦* = (x' , y') , ((↦₆ ∷ c₁↦*) ++↦ ((↦₈ ∷ c₂↦*) ++↦ (↦₉ ∷ ◾))) -- Forward evaluator for Pi eval : ∀ {A B} → (c : A ↔ B) → ⟦ A ⟧ → ⟦ B ⟧ eval c v = proj₁ (ev {κ = ☐} c v) -- Forward evaluator which returns execution trace evalₜᵣ : ∀ {A B} → (c : A ↔ B) → ⟦ A ⟧ → List State evalₜᵣ c v = convert (proj₂ (ev {κ = ☐} c v)) where convert : ∀ {st st'} → st ↦* st' → List State convert (◾ {st}) = st L.∷ [] convert (_∷_ {st} r rs) = st L.∷ convert rs -- Auxiliary function for backward evaluator evᵣₑᵥ : ∀ {A B κ} → (c : A ↔ B) (v' : ⟦ B ⟧) → Σ[ v ∈ ⟦ A ⟧ ] [ c ∣ v' ∣ κ ] ↦ᵣₑᵥ* ⟨ c ∣ v ∣ κ ⟩ evᵣₑᵥ unite₊l v' = inj₂ v' , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ uniti₊l (inj₂ v') = v' , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ swap₊ (inj₁ v') = inj₂ v' , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ swap₊ (inj₂ v') = inj₁ v' , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocl₊ (inj₁ (inj₁ v')) = inj₁ v' , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocl₊ (inj₁ (inj₂ v')) = inj₂ (inj₁ v') , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocl₊ (inj₂ v') = inj₂ (inj₂ v') , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocr₊ (inj₁ v') = inj₁ (inj₁ v') , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocr₊ (inj₂ (inj₁ v')) = inj₁ (inj₂ v') , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocr₊ (inj₂ (inj₂ v')) = inj₂ v' , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ unite⋆l v' = (tt , v') , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ uniti⋆l (tt , v') = v' , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ swap⋆ (x' , y') = (y' , x') , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocl⋆ ((x' , y') , z') = (x' , (y' , z')) , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ assocr⋆ (x' , (y' , z')) = ((x' , y') , z') , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ dist (inj₁ (x' , z')) = (inj₁ x' , z') , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ dist (inj₂ (y' , z')) = (inj₂ y' , z') , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ factor (inj₁ x' , z') = (inj₁ (x' , z')) , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ factor (inj₂ y' , z') = (inj₂ (y' , z')) , ((↦₁ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ id↔ v' = v' , ((↦₂ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ {κ = κ} (c₁ ⨾ c₂) v₃ with evᵣₑᵥ {κ = c₁ ⨾☐• κ} c₂ v₃ ... | (v₂ , c₂↦ᵣₑᵥ*) with evᵣₑᵥ {κ = ☐⨾ c₂ • κ} c₁ v₂ ... | (v₁ , c₁↦ᵣₑᵥ*) = v₁ , ((↦₁₀ ᵣₑᵥ) ∷ c₂↦ᵣₑᵥ*) ++↦ᵣₑᵥ ((↦₇ ᵣₑᵥ) ∷ (c₁↦ᵣₑᵥ* ++↦ᵣₑᵥ ((↦₃ ᵣₑᵥ) ∷ ◾))) evᵣₑᵥ {κ = κ} (c₁ ⊕ c₂) (inj₁ v') with evᵣₑᵥ {κ = ☐⊕ c₂ • κ} c₁ v' ... | v , c₁↦ᵣₑᵥ* = inj₁ v , ((↦₁₁ ᵣₑᵥ) ∷ c₁↦ᵣₑᵥ*) ++↦ᵣₑᵥ ((↦₄ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ {κ = κ} (c₁ ⊕ c₂) (inj₂ v') with evᵣₑᵥ {κ = c₁ ⊕☐• κ} c₂ v' ... | v , c₂↦ᵣₑᵥ* = inj₂ v , ((↦₁₂ ᵣₑᵥ) ∷ c₂↦ᵣₑᵥ*) ++↦ᵣₑᵥ ((↦₅ ᵣₑᵥ) ∷ ◾) evᵣₑᵥ {κ = κ} (c₁ ⊗ c₂) (x' , y') with evᵣₑᵥ {κ = [ c₁ , x' ]⊗☐• κ} c₂ y' ... | y , c₂↦ᵣₑᵥ* with evᵣₑᵥ {κ = ☐⊗[ c₂ , y ]• κ} c₁ x' ... | x , c₁↦ᵣₑᵥ* = (x , y) , ((↦₉ ᵣₑᵥ) ∷ c₂↦ᵣₑᵥ*) ++↦ᵣₑᵥ (((↦₈ ᵣₑᵥ) ∷ c₁↦ᵣₑᵥ*) ++↦ᵣₑᵥ ((↦₆ ᵣₑᵥ) ∷ ◾)) -- Backward evaluator for Pi evalᵣₑᵥ : ∀ {A B} → (c : A ↔ B) → ⟦ B ⟧ → ⟦ A ⟧ evalᵣₑᵥ c v' = proj₁ (evᵣₑᵥ {κ = ☐} c v')
{ "alphanum_fraction": 0.4335085205, "avg_line_length": 51.0487804878, "ext": "agda", "hexsha": "95859aa4b6463c80363b7b94927e9d5fa7e91b4a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "Pi/Eval.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "Pi/Eval.agda", "max_line_length": 102, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "Pi/Eval.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 4132, "size": 6279 }
{-# OPTIONS --no-termination-check #-} module Pi where open import Data.Empty open import Data.Unit open import Data.Sum hiding (map) open import Data.Product hiding (map) open import Relation.Binary.PropositionalEquality hiding (sym; [_]) infixr 30 _⟷_ infixr 30 _⟺_ infixr 20 _◎_ ------------------------------------------------------------------------------ -- A universe of our value types data B : Set where ZERO : B ONE : B PLUS : B → B → B TIMES : B → B → B ⟦_⟧ : B → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS b1 b2 ⟧ = ⟦ b1 ⟧ ⊎ ⟦ b2 ⟧ ⟦ TIMES b1 b2 ⟧ = ⟦ b1 ⟧ × ⟦ b2 ⟧ ------------------------------------------------------------------------------ -- Primitive isomorphisms data _⟷_ : B → B → Set where -- (+,0) commutative monoid unite₊ : { b : B } → PLUS ZERO b ⟷ b uniti₊ : { b : B } → b ⟷ PLUS ZERO b swap₊ : { b₁ b₂ : B } → PLUS b₁ b₂ ⟷ PLUS b₂ b₁ assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃ assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃) -- (*,1) commutative monoid unite⋆ : { b : B } → TIMES ONE b ⟷ b uniti⋆ : { b : B } → b ⟷ TIMES ONE b swap⋆ : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷ TIMES b₂ b₁ assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃ assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃) -- * distributes over + dist : { b₁ b₂ b₃ : B } → TIMES (PLUS b₁ b₂) b₃ ⟷ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) factor : { b₁ b₂ b₃ : B } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷ TIMES (PLUS b₁ b₂) b₃ -- id id⟷ : { b : B } → b ⟷ b adjointP : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁) adjointP unite₊ = uniti₊ adjointP uniti₊ = unite₊ adjointP swap₊ = swap₊ adjointP assocl₊ = assocr₊ adjointP assocr₊ = assocl₊ adjointP unite⋆ = uniti⋆ adjointP uniti⋆ = unite⋆ adjointP swap⋆ = swap⋆ adjointP assocl⋆ = assocr⋆ adjointP assocr⋆ = assocl⋆ adjointP dist = factor adjointP factor = dist adjointP id⟷ = id⟷ evalP : { b₁ b₂ : B } → (b₁ ⟷ b₂) → ⟦ b₁ ⟧ → ⟦ b₂ ⟧ evalP unite₊ (inj₁ ()) evalP unite₊ (inj₂ v) = v evalP uniti₊ v = inj₂ v evalP swap₊ (inj₁ v) = inj₂ v evalP swap₊ (inj₂ v) = inj₁ v evalP assocl₊ (inj₁ v) = inj₁ (inj₁ v) evalP assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v) evalP assocl₊ (inj₂ (inj₂ v)) = inj₂ v evalP assocr₊ (inj₁ (inj₁ v)) = inj₁ v evalP assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v) evalP assocr₊ (inj₂ v) = inj₂ (inj₂ v) evalP unite⋆ (tt , v) = v evalP uniti⋆ v = (tt , v) evalP swap⋆ (v₁ , v₂) = (v₂ , v₁) evalP assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃) evalP assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃)) evalP dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃) evalP dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃) evalP factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃) evalP factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃) evalP id⟷ v = v -- Backwards evaluator bevalP : { b₁ b₂ : B } → (b₁ ⟷ b₂) → ⟦ b₂ ⟧ → ⟦ b₁ ⟧ bevalP c v = evalP (adjointP c) v ------------------------------------------------------------------------------ -- Closure combinators data _⟺_ : B → B → Set where iso : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₁ ⟺ b₂) sym : { b₁ b₂ : B } → (b₁ ⟺ b₂) → (b₂ ⟺ b₁) _◎_ : { b₁ b₂ b₃ : B } → (b₁ ⟺ b₂) → (b₂ ⟺ b₃) → (b₁ ⟺ b₃) _⊕_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟺ b₃) → (b₂ ⟺ b₄) → (PLUS b₁ b₂ ⟺ PLUS b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟺ b₃) → (b₂ ⟺ b₄) → (TIMES b₁ b₂ ⟺ TIMES b₃ b₄) -- adjoint : { b₁ b₂ : B } → (b₁ ⟺ b₂) → (b₂ ⟺ b₁) adjoint (iso c) = iso (adjointP c) adjoint (sym c) = c adjoint (c₁ ◎ c₂) = adjoint c₂ ◎ adjoint c₁ adjoint (c₁ ⊕ c₂) = adjoint c₁ ⊕ adjoint c₂ adjoint (c₁ ⊗ c₂) = adjoint c₁ ⊗ adjoint c₂ -- -- (Context a b c d) represents a combinator (c <-> d) with a hole -- requiring something of type (a <-> b). When we use these contexts, -- it is always the case that the (c <-> a) part of the computation -- has ALREADY been done and that we are about to evaluate (a <-> b) -- using a given 'a'. The continuation takes the output 'b' and -- produces a 'd'. data Context : B → B → B → B → Set where emptyC : {a b : B} → Context a b a b seqC₁ : {a b c i o : B} → (b ⟺ c) → Context a c i o → Context a b i o seqC₂ : {a b c i o : B} → (a ⟺ b) → Context a c i o → Context b c i o leftC : {a b c d i o : B} → (c ⟺ d) → Context (PLUS a c) (PLUS b d) i o → Context a b i o rightC : {a b c d i o : B} → (a ⟺ b) → Context (PLUS a c) (PLUS b d) i o → Context c d i o -- the (i <-> a) part of the computation is completely done; so we must store -- the value of type [[ c ]] as part of the context fstC : {a b c d i o : B} → ⟦ c ⟧ → (c ⟺ d) → Context (TIMES a c) (TIMES b d) i o → Context a b i o -- the (i <-> c) part of the computation and the (a <-> b) part of -- the computation are completely done; so we must store the value -- of type [[ b ]] as part of the context sndC : {a b c d i o : B} → (a ⟺ b) → ⟦ b ⟧ → Context (TIMES a c) (TIMES b d) i o → Context c d i o -- Evaluation mutual -- The (c <-> a) part of the computation has been done. -- We have an 'a' and we are about to do the (a <-> b) computation. -- We get a 'b' and examine the context to get the 'd' eval_c : { a b c d : B } → (a ⟺ b) → ⟦ a ⟧ → Context a b c d → ⟦ d ⟧ eval_c (iso f) v C = eval_k (iso f) (evalP f v) C eval_c (sym c) v C = eval_c (adjoint c) v C eval_c (f ◎ g) v C = eval_c f v (seqC₁ g C) eval_c (f ⊕ g) (inj₁ v) C = eval_c f v (leftC g C) eval_c (f ⊕ g) (inj₂ v) C = eval_c g v (rightC f C) eval_c (f ⊗ g) (v₁ , v₂) C = eval_c f v₁ (fstC v₂ g C) -- The (c <-> a) part of the computation has been done. -- The (a <-> b) part of the computation has been done. -- We need to examine the context to get the 'd'. -- We rebuild the combinator on the way out. eval_k : { a b c d : B } → (a ⟺ b) → ⟦ b ⟧ → Context a b c d → ⟦ d ⟧ eval_k f v emptyC = v eval_k f v (seqC₁ g C) = eval_c g v (seqC₂ f C) eval_k g v (seqC₂ f C) = eval_k (f ◎ g) v C eval_k f v (leftC g C) = eval_k (f ⊕ g) (inj₁ v) C eval_k g v (rightC f C) = eval_k (f ⊕ g) (inj₂ v) C eval_k f v₁ (fstC v₂ g C) = eval_c g v₂ (sndC f v₁ C) eval_k g v₂ (sndC f v₁ C) = eval_k (f ⊗ g) (v₁ , v₂) C -- Backwards evaluator mutual -- The (d <-> b) part of the computation has been done. -- We have a 'b' and we are about to do the (a <-> b) computation backwards. -- We get an 'a' and examine the context to get the 'c' beval_c : { a b c d : B } → (a ⟺ b) → ⟦ b ⟧ → Context a b c d → ⟦ c ⟧ beval_c (iso f) v C = beval_k (iso f) (bevalP f v) C beval_c (sym c) v C = beval_c (adjoint c) v C beval_c (f ◎ g) v C = beval_c g v (seqC₂ f C) beval_c (f ⊕ g) (inj₁ v) C = beval_c f v (leftC g C) beval_c (f ⊕ g) (inj₂ v) C = beval_c g v (rightC f C) beval_c (f ⊗ g) (v₁ , v₂) C = beval_c g v₂ (sndC f v₁ C) -- The (d <-> b) part of the computation has been done. -- The (a <-> b) backwards computation has been done. -- We have an 'a' and examine the context to get the 'c' beval_k : { a b c d : B } → (a ⟺ b) → ⟦ a ⟧ → Context a b c d → ⟦ c ⟧ beval_k f v emptyC = v beval_k g v (seqC₂ f C) = beval_c f v (seqC₁ g C) beval_k f v (seqC₁ g C) = beval_k (f ◎ g) v C beval_k f v (leftC g C) = beval_k (f ⊕ g) (inj₁ v) C beval_k g v (rightC f C) = beval_k (f ⊕ g) (inj₂ v) C beval_k g v₂ (sndC f v₁ C) = beval_c f v₁ (fstC v₂ g C) beval_k f v₁ (fstC v₂ g C) = beval_k (f ⊗ g) (v₁ , v₂) C ------------------------------------------------------------------------------ -- Proposition 'Reversible' -- eval_c : { a b c d : B } → (a ⟺ b) → ⟦ a ⟧ → Context a b c d → ⟦ d ⟧ -- eval_k : { a b c d : B } → (a ⟺ b) → ⟦ b ⟧ → Context a b c d → ⟦ d ⟧ -- beval_c : { a b c d : B } → (a ⟺ b) → ⟦ b ⟧ → Context a b c d → ⟦ c ⟧ -- beval_k : { a b c d : B } → (a ⟺ b) → ⟦ a ⟧ → Context a b c d → ⟦ c ⟧ -- Prop. 2.2 {- logical-reversibility : {a b : B} {f : a ⟺ b} {va : ⟦ a ⟧} {vb : ⟦ b ⟧} → eval_c f va emptyC ≡ eval_k f vb emptyC → eval_c (adjoint f) vb emptyC ≡ eval_k (adjoint f) va emptyC logical-reversibility = λ fwd≡bwd → {!!} -} ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.520321246, "avg_line_length": 37.6972477064, "ext": "agda", "hexsha": "643f05a3bb85f0ca6989d2be0c6c24fa37ad843b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "agda/Pi.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "agda/Pi.agda", "max_line_length": 80, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "agda/Pi.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 3607, "size": 8218 }
-- {-# OPTIONS -v scope:20 #-} module _ (X : Set) where postulate X₁ X₂ : Set data D : Set where d : D module Q (x : D) where module M1 (z : X₁) where g = x module M2 (y : D) (z : X₂) where h = y open M1 public -- module Qd = Q d -- This fails to apply g to d! module QM2d = Q.M2 d d module QM2p (x : D) = Q.M2 x x test-h : X₂ → D test-h = QM2d.h test-g₁ : X₁ → D test-g₁ = QM2d.g test-g₂ : D → X₁ → D test-g₂ = QM2p.g data Nat : Set where zero : Nat suc : Nat → Nat postulate Lift : Nat → Set mkLift : ∀ n → Lift n module TS (T : Nat) where module Lifted (lift : Lift T) where postulate f : Nat record Bla (T : Nat) : Set₁ where module TST = TS T module LT = TST.Lifted (mkLift T) Z : Nat Z = LT.f postulate A : Set module C (X : Set) where postulate cA : X module C′ = C module C′A = C′ A dA' : A → A dA' x = C′A.cA postulate B : Set module TermSubst (X : Set) where module Lifted (Y : Set) where f : Set f = Y record TermLemmas (Z : Set) : Set₁ where module TZ = TermSubst A module TZL = TZ.Lifted B foo : Set foo = TZL.f field Y : Set module NatCore where module NatT (X Y : Set) where Z : Set Z = X → Y module NatTrans (Y : Set) where open NatCore public module NT = NatTrans foo : Set → Set foo X = Eta.Z module Local where module Eta = NT.NatT X X
{ "alphanum_fraction": 0.5814627082, "avg_line_length": 14.5368421053, "ext": "agda", "hexsha": "20a60b2e57aea4ad74acca023799635586da693b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/Issue892b.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/Issue892b.agda", "max_line_length": 40, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue892b.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 548, "size": 1381 }
{-# OPTIONS --no-exact-split --safe #-} module Cubical.Data.Nat.Base where open import Cubical.Core.Primitives open import Agda.Builtin.Nat public using (zero; suc; _+_) renaming (Nat to ℕ; _-_ to _∸_; _*_ to _·_) open import Cubical.Data.Nat.Literals public open import Cubical.Data.Bool.Base open import Cubical.Data.Sum.Base hiding (elim) open import Cubical.Data.Empty.Base hiding (elim) open import Cubical.Data.Unit.Base predℕ : ℕ → ℕ predℕ zero = zero predℕ (suc n) = n caseNat : ∀ {ℓ} → {A : Type ℓ} → (a0 aS : A) → ℕ → A caseNat a0 aS zero = a0 caseNat a0 aS (suc n) = aS doubleℕ : ℕ → ℕ doubleℕ zero = zero doubleℕ (suc x) = suc (suc (doubleℕ x)) -- doublesℕ n m = 2^n · m doublesℕ : ℕ → ℕ → ℕ doublesℕ zero m = m doublesℕ (suc n) m = doublesℕ n (doubleℕ m) -- iterate iter : ∀ {ℓ} {A : Type ℓ} → ℕ → (A → A) → A → A iter zero f z = z iter (suc n) f z = f (iter n f z) elim : ∀ {ℓ} {A : ℕ → Type ℓ} → A zero → ((n : ℕ) → A n → A (suc n)) → (n : ℕ) → A n elim a₀ _ zero = a₀ elim a₀ f (suc n) = f n (elim a₀ f n) isEven isOdd : ℕ → Bool isEven zero = true isEven (suc n) = isOdd n isOdd zero = false isOdd (suc n) = isEven n --Typed version private toType : Bool → Type toType false = ⊥ toType true = Unit isEvenT : ℕ → Type isEvenT n = toType (isEven n) isOddT : ℕ → Type isOddT n = isEvenT (suc n) isZero : ℕ → Bool isZero zero = true isZero (suc n) = false -- exponential _^_ : ℕ → ℕ → ℕ m ^ 0 = 1 m ^ (suc n) = m · m ^ n
{ "alphanum_fraction": 0.6168478261, "avg_line_length": 20.4444444444, "ext": "agda", "hexsha": "427cdb8a2ebf676e931124bc70302c05497da6e7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Data/Nat/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Data/Nat/Base.agda", "max_line_length": 52, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Data/Nat/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 591, "size": 1472 }
{-# OPTIONS --no-auto-inline #-} module DefaultMethods where open import Agda.Builtin.Equality open import Agda.Builtin.Bool open import Agda.Builtin.Nat using (Nat) import Agda.Builtin.Nat as Nat open import Agda.Builtin.List open import Agda.Builtin.String renaming (primStringAppend to _++_) open import Agda.Builtin.Char open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Haskell.Prim open import Haskell.Prim.Bool open import Haskell.Prim.Maybe open import Haskell.Prim.Foldable {-# FOREIGN AGDA2HS {-# LANGUAGE TypeSynonymInstances #-} import Prelude hiding (Show, ShowS, show, showList, showString, showParen, Ord, (<), (>)) #-} -- ** Ord record Ord (a : Set) : Set where field _<_ _>_ : a → a → Bool record Ord₁ (a : Set) : Set where field _<_ : a → a → Bool _>_ : a → a → Bool x > y = y < x record Ord₂ (a : Set) : Set where field _>_ : a → a → Bool _<_ : a → a → Bool _<_ = flip _>_ open Ord ⦃ ... ⦄ {-# COMPILE AGDA2HS Ord class Ord₁ Ord₂ #-} OB : Ord₁ Bool OB .Ord₁._<_ false b = b OB .Ord₁._<_ true _ = false instance OrdBool₀ : Ord Bool OrdBool₀ ._<_ = Ord₁._<_ OB OrdBool₀ ._>_ = Ord₁._>_ OB {-# COMPILE AGDA2HS OrdBool₀ #-} data Bool1 : Set where Mk1 : Bool -> Bool1 {-# COMPILE AGDA2HS Bool1 #-} instance OrdBool₁ : Ord Bool1 OrdBool₁ = record {Ord₁ ord₁} where ord₁ : Ord₁ Bool1 ord₁ .Ord₁._<_ (Mk1 false) (Mk1 b) = b ord₁ .Ord₁._<_ (Mk1 true) _ = false {-# COMPILE AGDA2HS OrdBool₁ #-} data Bool2 : Set where Mk2 : Bool -> Bool2 {-# COMPILE AGDA2HS Bool2 #-} instance OrdBool₂ : Ord Bool2 OrdBool₂ = record {_<_ = _<:_; _>_ = flip _<:_} where _<:_ : Bool2 → Bool2 → Bool (Mk2 false) <: (Mk2 b) = b (Mk2 true) <: _ = false {-# COMPILE AGDA2HS OrdBool₂ #-} data Bool3 : Set where Mk3 : Bool -> Bool3 {-# COMPILE AGDA2HS Bool3 #-} instance OrdBool₃ : Ord Bool3 OrdBool₃ = record {Ord₁ (λ where .Ord₁._<_ → _<:_)} where _<:_ : Bool3 → Bool3 → Bool (Mk3 false) <: (Mk3 b) = b (Mk3 true) <: _ = false {-# COMPILE AGDA2HS OrdBool₃ #-} data Bool4 : Set where Mk4 : Bool -> Bool4 {-# COMPILE AGDA2HS Bool4 #-} lift4 : (Bool → Bool → a) → (Bool4 → Bool4 → a) lift4 f (Mk4 x) (Mk4 y) = f x y {-# COMPILE AGDA2HS lift4 #-} instance OrdBool₄ : Ord Bool4 OrdBool₄ = record {Ord₁ (λ where .Ord₁._<_ → lift4 (λ x y → not x && y))} {-# COMPILE AGDA2HS OrdBool₄ #-} data Bool5 : Set where Mk5 : Bool -> Bool5 {-# COMPILE AGDA2HS Bool5 #-} instance OrdBool₅ : Ord Bool5 OrdBool₅ = record {Ord₂ (λ where .Ord₂._>_ → _>:_)} where _>:_ : Bool5 → Bool5 → Bool (Mk5 false) >: _ = false (Mk5 true) >: (Mk5 b) = not b {-# COMPILE AGDA2HS OrdBool₅ #-} data Bool6 : Set where Mk6 : Bool -> Bool6 {-# COMPILE AGDA2HS Bool6 #-} instance OrdBool₆ : Ord Bool6 OrdBool₆ = record {Ord₂ (λ where .Ord₂._>_ → _>:_); _<_ = flip _>:_} where _>:_ : Bool6 → Bool6 → Bool (Mk6 false) >: _ = false (Mk6 true) >: (Mk6 b) = not b {-# COMPILE AGDA2HS OrdBool₆ #-} instance Ordℕ : Ord Nat Ordℕ = record {Ord₁ (λ where .Ord₁._<_ → Nat._<_)} -- {-# COMPILE AGDA2HS Ordℕ #-} ShowS : Set ShowS = String → String {-# COMPILE AGDA2HS ShowS #-} showString : String → ShowS showString = _++_ {-# COMPILE AGDA2HS showString #-} showParen : Bool → ShowS → ShowS showParen false s = s showParen true s = showString "(" ∘ s ∘ showString ")" {-# COMPILE AGDA2HS showParen #-} defaultShowList : (a → ShowS) → List a → ShowS defaultShowList _ [] = showString "[]" defaultShowList shows (x ∷ xs) = showString "[" ∘ foldl (λ s x → s ∘ showString "," ∘ shows x) (shows x) xs ∘ showString "]" {-# COMPILE AGDA2HS defaultShowList #-} record Show (a : Set) : Set where field show : a → String showPrec : Nat → a → ShowS showList : List a → ShowS record Show₁ (a : Set) : Set where field showPrec : Nat → a → ShowS show : a → String show x = showPrec 0 x "" showList : List a → ShowS showList = defaultShowList (showPrec 0) record Show₂ (a : Set) : Set where field show : a → String showPrec : Nat → a → ShowS showPrec _ x s = show x ++ s showList : List a → ShowS showList = defaultShowList (showPrec 0) open Show ⦃ ... ⦄ {-# COMPILE AGDA2HS Show class Show₁ Show₂ #-} SB : Show₂ Bool SB .Show₂.show true = "true" SB .Show₂.show false = "false" instance ShowBool : Show Bool ShowBool .show = Show₂.show SB ShowBool .showPrec = Show₂.showPrec SB ShowBool .showList [] = showString "" ShowBool .showList (true ∷ bs) = showString "1" ∘ showList bs ShowBool .showList (false ∷ bs) = showString "0" ∘ showList bs {-# COMPILE AGDA2HS ShowBool #-} instance ShowMaybe : ⦃ Show a ⦄ → Show (Maybe a) ShowMaybe {a = a} = record {Show₁ s₁} where s₁ : Show₁ (Maybe a) s₁ .Show₁.showPrec n Nothing = showString "nothing" s₁ .Show₁.showPrec n (Just x) = showParen true {-(9 < n)-} (showString "just " ∘ showPrec 10 x) {-# COMPILE AGDA2HS ShowMaybe #-} instance ShowList : ⦃ Show a ⦄ → Show (List a) ShowList = record {Show₁ (λ where .Show₁.showPrec _ → showList)} {-# COMPILE AGDA2HS ShowList #-}
{ "alphanum_fraction": 0.6200421537, "avg_line_length": 25.2125603865, "ext": "agda", "hexsha": "553052c94cdcb9f217320867b7a253b53e8f1ea8", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "test/DefaultMethods.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "test/DefaultMethods.agda", "max_line_length": 124, "max_stars_count": 55, "max_stars_repo_head_hexsha": "703c66db29023f5538eaa841f38dc34e89473a3e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jespercockx/agda2hs", "max_stars_repo_path": "test/DefaultMethods.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 1841, "size": 5219 }
{-# OPTIONS --safe #-} module Cubical.Algebra.OrderedCommMonoid.Base where {- Definition of an ordered monoid. -} open import Cubical.Foundations.Prelude open import Cubical.Foundations.SIP using (TypeWithStr) open import Cubical.Foundations.Structure using (⟨_⟩) open import Cubical.Algebra.CommMonoid.Base open import Cubical.Relation.Binary.Poset private variable ℓ ℓ' : Level record IsOrderedCommMonoid {M : Type ℓ} (_·_ : M → M → M) (1m : M) (_≤_ : M → M → Type ℓ') : Type (ℓ-max ℓ ℓ') where field isPoset : IsPoset _≤_ isCommMonoid : IsCommMonoid 1m _·_ MonotoneR : {x y z : M} → x ≤ y → (x · z) ≤ (y · z) -- both versions, just for convenience MonotoneL : {x y z : M} → x ≤ y → (z · x) ≤ (z · y) record OrderedCommMonoidStr (ℓ' : Level) (M : Type ℓ) : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field _≤_ : M → M → Type ℓ' _·_ : M → M → M ε : M isOrderedCommMonoid : IsOrderedCommMonoid _·_ ε _≤_ open IsOrderedCommMonoid isOrderedCommMonoid public open IsPoset isPoset public open IsCommMonoid isCommMonoid public infixl 4 _≤_ OrderedCommMonoid : (ℓ ℓ' : Level) → Type (ℓ-suc (ℓ-max ℓ ℓ')) OrderedCommMonoid ℓ ℓ' = TypeWithStr ℓ (OrderedCommMonoidStr ℓ') module _ {M : Type ℓ} {1m : M} {_·_ : M → M → M} {_≤_ : M → M → Type ℓ'} (is-setM : isSet M) (assoc : (x y z : M) → x · (y · z) ≡ (x · y) · z) (rid : (x : M) → x · 1m ≡ x) (lid : (x : M) → 1m · x ≡ x) (comm : (x y : M) → x · y ≡ y · x) (isProp≤ : (x y : M) → isProp (x ≤ y)) (isRefl : (x : M) → x ≤ x) (isTrans : (x y z : M) → x ≤ y → y ≤ z → x ≤ z) (isAntisym : (x y : M) → x ≤ y → y ≤ x → x ≡ y) (rmonotone : (x y z : M) → x ≤ y → (x · z) ≤ (y · z)) (lmonotone : (x y z : M) → x ≤ y → (z · x) ≤ (z · y)) where open IsOrderedCommMonoid makeIsOrderedCommMonoid : IsOrderedCommMonoid _·_ 1m _≤_ isCommMonoid makeIsOrderedCommMonoid = makeIsCommMonoid is-setM assoc rid comm isPoset makeIsOrderedCommMonoid = isposet is-setM isProp≤ isRefl isTrans isAntisym MonotoneR makeIsOrderedCommMonoid = rmonotone _ _ _ MonotoneL makeIsOrderedCommMonoid = lmonotone _ _ _ module _ {M : Type ℓ} {1m : M} {_·_ : M → M → M} {_≤_ : M → M → Type ℓ'} (isCommMonoid : IsCommMonoid 1m _·_) (isProp≤ : (x y : M) → isProp (x ≤ y)) (isRefl : (x : M) → x ≤ x) (isTrans : (x y z : M) → x ≤ y → y ≤ z → x ≤ z) (isAntisym : (x y : M) → x ≤ y → y ≤ x → x ≡ y) (rmonotone : (x y z : M) → x ≤ y → (x · z) ≤ (y · z)) (lmonotone : (x y z : M) → x ≤ y → (z · x) ≤ (z · y)) where module CM = IsOrderedCommMonoid IsOrderedCommMonoidFromIsCommMonoid : IsOrderedCommMonoid _·_ 1m _≤_ CM.isPoset IsOrderedCommMonoidFromIsCommMonoid = isposet (isSetFromIsCommMonoid isCommMonoid) isProp≤ isRefl isTrans isAntisym CM.isCommMonoid IsOrderedCommMonoidFromIsCommMonoid = isCommMonoid CM.MonotoneR IsOrderedCommMonoidFromIsCommMonoid = rmonotone _ _ _ CM.MonotoneL IsOrderedCommMonoidFromIsCommMonoid = lmonotone _ _ _ OrderedCommMonoid→CommMonoid : OrderedCommMonoid ℓ ℓ' → CommMonoid ℓ OrderedCommMonoid→CommMonoid M .fst = M .fst OrderedCommMonoid→CommMonoid M .snd = let open OrderedCommMonoidStr (M .snd) in commmonoidstr _ _ isCommMonoid isSetOrderedCommMonoid : (M : OrderedCommMonoid ℓ ℓ') → isSet ⟨ M ⟩ isSetOrderedCommMonoid M = isSetCommMonoid (OrderedCommMonoid→CommMonoid M)
{ "alphanum_fraction": 0.6270539906, "avg_line_length": 36.2553191489, "ext": "agda", "hexsha": "538d01612bd881b41f11b5695885cecfd9399a0d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/OrderedCommMonoid/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/OrderedCommMonoid/Base.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/OrderedCommMonoid/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1360, "size": 3408 }
open import Auto.Prelude mutual data Even : ℕ → Set where even-0 : Even zero even-s : {n : ℕ} → Odd n → Even (succ n) data Odd : ℕ → Set where odd-1 : Odd (succ zero) odd-s : {n : ℕ} → Even n → Odd (succ n) double : ℕ → ℕ double zero = zero double (succ n) = succ (succ (double n)) h0 : ∀ {n} → Even (double n) h0 {n} = {!-c!} --h0 {zero} = even-0 --h0 {succ x} = even-s (odd-s h0) -- ---------------------------- module VecMap where map : {X Y : Set} → {n : ℕ} → (X → Y) → Vec X n → Vec Y n map f xs = {!-c!} -- h1 {- map f [] = [] map f (x ∷ x₁) = f x ∷ map f x₁ -} -- ---------------------------- data Type : Set₁ where <_> : Set → Type _⇒_ : Type → Type → Type ∥_∥ : Type → Set ∥ < X > ∥ = X ∥ a ⇒ b ∥ = ∥ a ∥ → ∥ b ∥ data Ctx : Set₁ where [] : Ctx _,_ : Ctx → Type → Ctx data _∈_ (a : Type) : Ctx → Set₁ where zero : ∀ {Γ} → a ∈ (Γ , a) succ : ∀ {b Γ} → a ∈ Γ → a ∈ (Γ , b) data Exp (Γ : Ctx) : Type → Set₁ where app : ∀ {α β} → Exp Γ (α ⇒ β) → Exp Γ α → Exp Γ β var : ∀ {α} → α ∈ Γ → Exp Γ α lam : ∀ {a b} → Exp (Γ , a) b → Exp Γ (a ⇒ b) data Env : Ctx → Set₁ where nil : Env [] cons : ∀ {Γ a} → ∥ a ∥ → Env Γ → Env (Γ , a) lookup : ∀ {Γ a} → a ∈ Γ → Env Γ → ∥ a ∥ lookup x σ = {!-c!} -- h2 {- lookup {._} {< x >} zero (cons x₁ x₂) = x₁ lookup {._} {< x >} (succ x₁) (cons x₂ x₃) = lookup x₁ x₃ lookup {._} {x ⇒ x₁} zero (cons x₂ x₃) = x₂ lookup {._} {x ⇒ x₁} (succ x₂) (cons x₃ x₄) = lookup x₂ x₄ -} lookup' : ∀ {Γ a} → a ∈ Γ → Env Γ → ∥ a ∥ lookup' zero (cons x σ) = x lookup' (succ v) (cons x σ) = lookup' v σ eval : ∀ {Γ a} → Env Γ → Exp Γ a → ∥ a ∥ --eval σ e = {!-c lookup!} -- no solution found eval σ (app e e₁) = {!!} -- h3 eval σ (var x) = {!lookup'!} -- h4, -c also works, repeats the solution for lookup eval σ (lam e) x = {!!} -- h5 {- eval σ (app e e₁) = eval σ e (eval σ e₁) eval σ (var x) = lookup x σ eval σ (lam e) x = eval (cons x σ) e -}
{ "alphanum_fraction": 0.4749216301, "avg_line_length": 22.7857142857, "ext": "agda", "hexsha": "4069e9e043b72575c92f3b750b21ddb199b24afc", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Auto-IndexedDatatypes.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Auto-IndexedDatatypes.agda", "max_line_length": 83, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Auto-IndexedDatatypes.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 845, "size": 1914 }
module Selective.Examples.TestSelectiveReceive-calc where open import Selective.ActorMonad open import Prelude open import Debug open import Data.Nat.Show using (show) UniqueTag = ℕ TagField = ValueType UniqueTag ℕ-ReplyMessage : MessageType ℕ-ReplyMessage = ValueType UniqueTag ∷ [ ValueType ℕ ]ˡ ℕ-Reply : InboxShape ℕ-Reply = [ ℕ-ReplyMessage ]ˡ ℕ×ℕ→ℕ-Message : MessageType ℕ×ℕ→ℕ-Message = ValueType UniqueTag ∷ ReferenceType ℕ-Reply ∷ ValueType ℕ ∷ [ ValueType ℕ ]ˡ Calculate : InboxShape Calculate = [ ℕ×ℕ→ℕ-Message ]ˡ Calculator : InboxShape Calculator = ℕ×ℕ→ℕ-Message ∷ [ ℕ×ℕ→ℕ-Message ]ˡ calculator-actor : ∀ {i} → ∞ActorM (↑ i) Calculator (Lift (lsuc lzero) ⊤) [] (λ _ → []) calculator-actor .force = receive ∞>>= λ { (Msg Z (tag ∷ _ ∷ n ∷ m ∷ [])) .force → Z ![t: Z ] (lift tag ∷ [ lift (n + m) ]ᵃ) ∞>> (do strengthen [] calculator-actor) ; (Msg (S Z) (tag ∷ _ ∷ n ∷ m ∷ [])) .force → (Z ![t: Z ] (lift tag ∷ ([ lift (n * m) ]ᵃ))) ∞>> (do (strengthen []) calculator-actor) ; (Msg (S (S ())) _) } TestBox : InboxShape TestBox = ℕ-Reply accept-tagged-ℕ : UniqueTag → MessageFilter TestBox accept-tagged-ℕ tag (Msg Z (tag' ∷ _)) = ⌊ tag ≟ tag' ⌋ accept-tagged-ℕ tag (Msg (S ()) _) calculator-test-actor : ∀{i} → ∞ActorM i TestBox (Lift (lsuc lzero) ℕ) [] (λ _ → []) calculator-test-actor = do spawn∞ calculator-actor self (S Z ![t: Z ] ((lift 0) ∷ (([ Z ]>: ⊆-refl) ∷ lift 32 ∷ [ lift 10 ]ᵃ))) (strengthen (⊆-suc ⊆-refl)) sm: Msg Z (_ ∷ n ∷ []) [ _ ] ← (selective-receive (accept-tagged-ℕ 0)) where sm: Msg (S ()) _ [ _ ] self (S Z ![t: S Z ] ((lift 0) ∷ (([ Z ]>: ⊆-refl) ∷ lift 32 ∷ [ lift 10 ]ᵃ))) strengthen (⊆-suc ⊆-refl) sm: Msg Z (_ ∷ m ∷ []) [ _ ] ← (selective-receive (accept-tagged-ℕ 0)) where sm: Msg (S ()) _ [ _ ] strengthen [] return m
{ "alphanum_fraction": 0.593054802, "avg_line_length": 28.796875, "ext": "agda", "hexsha": "380ceea4c5be725383345e7440b04c32b0878f3d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "src/Selective/Examples/TestSelectiveReceive-calc.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "src/Selective/Examples/TestSelectiveReceive-calc.agda", "max_line_length": 92, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/singly-typed-actors", "max_stars_repo_path": "src/Selective/Examples/TestSelectiveReceive-calc.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-29T09:30:26.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:30:26.000Z", "num_tokens": 732, "size": 1843 }
module Issue535 where data Nat : Set where zero : Nat suc : Nat → Nat data Vec A : Nat → Set where [] : Vec A zero _∷_ : ∀ {n} → A → Vec A n → Vec A (suc n) replicate : ∀ {A n} → A → Vec A n replicate {n = n} x = {!n!} replicate′ : ∀ {n A} → A → Vec A n replicate′ {n} x = {!n!} extlam : Nat → {n m : Nat} → Vec Nat n extlam = λ { x {m = m} → {!m!} }
{ "alphanum_fraction": 0.5054644809, "avg_line_length": 18.3, "ext": "agda", "hexsha": "50d81505f942f8d033657f1f1f5fdc6aebd78c4e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/interaction/Issue535.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/interaction/Issue535.agda", "max_line_length": 43, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/interaction/Issue535.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 154, "size": 366 }
open import Agda.Builtin.Nat open import Agda.Builtin.Equality data Vec (A : Set) : Nat → Set where variable A : Set x : A n : Nat xs : Vec A n postulate IsHead : A → Vec A (suc n) → Set -- Should also work if there is pruning solve_==_by_ : (m n : Nat) → m ≡ n → Set solve_==_by_ _ _ _ = Nat mutual-block : Set meta : Nat meta = _ -- `n` gets pruned due to the meta == suc n constraint, so we can't generalize over it module _ (X : Set) where tricky : let n = _ _ = solve meta == suc n by refl in IsHead {n = n} x xs → Nat tricky h = 0 mutual-block = Nat
{ "alphanum_fraction": 0.6003289474, "avg_line_length": 18.4242424242, "ext": "agda", "hexsha": "46ab25dd92b6b8701aacb750f2897595d1ce4f7b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3274.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3274.agda", "max_line_length": 86, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3274.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 211, "size": 608 }
-- This is not valid with magic mutual blocks that guess how far down the -- file the mutual block extends constructor zero : Nat suc : Nat → Nat
{ "alphanum_fraction": 0.7266666667, "avg_line_length": 25, "ext": "agda", "hexsha": "d29fcde70858fdb2c978f8c76ad478e10da85eb5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue2858-invalid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2858-invalid.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2858-invalid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 37, "size": 150 }
{-# OPTIONS --cubical --safe --no-import-sorts #-} module Cubical.Data.FinSet.Binary.Small where open import Cubical.Data.FinSet.Binary.Small.Base public open import Cubical.Data.FinSet.Binary.Small.Properties public
{ "alphanum_fraction": 0.7853881279, "avg_line_length": 31.2857142857, "ext": "agda", "hexsha": "0897a9e080d76c8cc6cf78b8efe98599d13a5ee0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/FinSet/Binary/Small.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/FinSet/Binary/Small.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/FinSet/Binary/Small.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 51, "size": 219 }
module YonedaLemma where open import Library open import Categories open import Categories.Sets open import Functors open import Naturals open import FunctorCat HomF[-,_] : ∀{l m}{C : Cat {l}{m}}(X : Cat.Obj C) -> Fun (C Op) (Sets {m}) HomF[-,_] {C = C} B = functor (\ X -> Hom X B) (\ f g -> comp g f) (ext \ _ -> idr) (ext \ _ -> sym ass) where open Cat C HomN[-,_] : ∀{l m}{C : Cat {l}{m}}{X Y : Cat.Obj C}(f : Cat.Hom C X Y) -> NatT (HomF[-,_] {C = C} X) HomF[-, Y ] HomN[-,_] {C = C} f = natural (comp f) (ext \ _ -> ass) where open Cat C y : ∀{l m}(C : Cat {l}{m}) -> Fun C (FunctorCat (C Op) (Sets {m})) y C = functor HomF[-,_] HomN[-,_] (NatTEq (iext \ _ -> ext \ _ -> idl)) (NatTEq (iext \ _ -> ext \ _ -> ass)) where open Cat C yleminv : ∀{l m}(C : Cat {l}{m})(F : Fun (C Op) (Sets {m}))(X : Cat.Obj C) -> NatT (Fun.OMap (y C) X) F -> Fun.OMap F X yleminv C F X α = NatT.cmp α {X} (Cat.iden C) ylem : ∀{l m}(C : Cat {l}{m})(F : Fun (C Op) (Sets {m}))(X : Cat.Obj C) -> Fun.OMap F X -> NatT (Fun.OMap (y C) X) F ylem C F X FX = natural (\ {X'} f -> HMap f FX) (\{X'}{Y}{f} -> ext \ g -> sym (fcong FX (fcomp {f = f}{g = g})) ) where open Cat C; open Fun F
{ "alphanum_fraction": 0.5133819951, "avg_line_length": 28.6744186047, "ext": "agda", "hexsha": "ad16acde6034b7e80652154c6d74d87d631b9d7c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "YonedaLemma.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "YonedaLemma.agda", "max_line_length": 77, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "YonedaLemma.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 516, "size": 1233 }
{-# OPTIONS --without-K #-} {- This module serves to develop some basic theory about pointed types. After defining the usual notions of pointed types, pointed equivalences, and loop spaces, we derive a version of univalence for pointed equivalences and observe that univalence between identical types is a pointed equivalence. We define pointed versions of dependent sums and products using the usual notion of pointed families and observe that they commute in a certain sense with taking loop spaces. -} module Pointed where open import lib.Basics hiding (_⊔_) open import lib.NType2 open import lib.types.Nat hiding (_+_) open import lib.types.Pi open import lib.types.Sigma open import lib.types.TLevel open import Preliminaries open import UniverseOfNTypes {- This file contains 2.2.15: Fam• and 2.2.17: has-level-equiv-contr-loops (see end of file) -} {- Pointed types. A pointed type is a type (base) together with a chosen element (pt). The loop space construction Ω takes a pointed type and returns the type of all loops at the given basepoint. The trivial loop is taken as canonical element, thus forming a new pointed type. -} Type• : (i : ULevel) → Type (lsucc i) Type• i = Σ (Type i) (idf _) module _ {i} (X : Type• i) where base = fst X pt = snd X -- Definition 2.2.15 {- Pointed families. A pointed family over a pointed type is a family over the base together with a inhabitant of the family at the point. Note that pointed types are equivalent to pointed families over the pointed unit type (not shown here). -} Fam• : ∀ {i} (X : Type• i) (j : ULevel) → Type (i ⊔ lsucc j) Fam• X j = Σ (base X → Type j) (λ P → P (pt X)) -- Alternate definition: Σ (n -Type i) ⟦_⟧ _-Type•_ : (n : ℕ₋₂) (i : ULevel) → Type (lsucc i) n -Type• i = Σ (Type• i) (has-level n ∘ base) -- For alternate definition: Σ-≤ (n -Type-≤ i) raise _-Type•-≤_ : (n : ℕ₋₂) (i : ULevel) → S n -Type lsucc i n -Type•-≤ i = ((n -Type• i) , equiv-preserves-level Σ-comm-snd (snd (Σ-≤ (n -Type-≤ i) raise))) {- Pointed equivalences. An equivalence of pointed types is an equivalences of the bases that preserves the points -} _≃•_ : ∀ {i j} → Type• i → Type• j → Set (i ⊔ j) A ≃• B = Σ (base A ≃ base B) (λ f → –> f (pt A) == pt B) ide• : ∀ {i} (X : Type• i) → X ≃• X ide• _ = ide _ , idp _∘e•_ : ∀ {i j k} {X : Type• i} {Y : Type• j} {Z : Type• k} → Y ≃• Z → X ≃• Y → X ≃• Z (u , p) ∘e• (v , q) = (u ∘e v , ap (–> u) q ∙ p) _⁻¹• : ∀ {i j} {X : Type• i} {Y : Type• j} → X ≃• Y → Y ≃• X (u , p) ⁻¹• = u ⁻¹ , ap (<– u) (! p) ∙ <–-inv-l u _ -- Equational reasoning for pointed equivalences. infix 2 _≃•∎ infixr 2 _≃•⟨_⟩_ _≃•⟨_⟩_ : ∀ {i j k} (X : Type• i) {Y : Type• j} {Z : Type• k} → X ≃• Y → Y ≃• Z → X ≃• Z _ ≃•⟨ u ⟩ v = v ∘e• u _≃•∎ : ∀ {i} (X : Type• i) → X ≃• X _≃•∎ = ide• -- The loop space construction. Ω : ∀ {i} → Type• i → Type• i Ω (A , a) = ((a == a) , idp) Ω-≤ : ∀ {i} {n : ℕ₋₂} → (S n) -Type• i → n -Type• i Ω-≤ ((A , a) , t) = (Ω (A , a) , t a a) -- Loop spaces are preserved by pointed equivalences. equiv-Ω : ∀ {i j} {X : Type• i} {Y : Type• j} → X ≃• Y → Ω X ≃• Ω Y equiv-Ω (u , p) = split u p where split : ∀ u {a} {b} → –> u a == b → Ω (_ , a) ≃• Ω (_ , b) split u idp = (equiv-ap u _ _ , idp) equiv-Ω^ : ∀ {i j} {X : Type• i} {Y : Type• j} (n : ℕ) → X ≃• Y → (Ω ^ n) X ≃• (Ω ^ n) Y equiv-Ω^ 0 e = e equiv-Ω^ (S n) e = equiv-Ω^ n (equiv-Ω e) {- We call a pointed type n-truncated if its base is. Constructing the loop space decrements the truncation level. -} has-level• : ∀ {i} → ℕ₋₂ → Type• i → Type i has-level• n = has-level n ∘ base trunc-many : ∀ {i} {X : Type• i} {k : ℕ} (n : ℕ) → has-level• ((k + n) -2) X → has-level• (k -2) ((Ω ^ n) X) trunc-many 0 t = t trunc-many (S n) t = trunc-many n (t _ _) --Ω^-≤ : ∀ {i} {k : ℕ} (n : ℕ) → (k + n -2) -Type• i → (k -2) -Type• i --Ω^-≤ O X = X --Ω^-≤ (S n) X = Ω^-≤ n (Ω-≤ X) Ω^-≤ : ∀ {i} {k : ℕ} (n : ℕ) → ((k + n) -2) -Type• i → (k -2) -Type• i Ω^-≤ n (X , t) = ((Ω ^ n) X , trunc-many n t) Ω^-≤' : ∀ {i} {k : ℕ} (n : ℕ) → ((n + k) -2) -Type• i → (k -2) -Type• i Ω^-≤' n (X , t) = ((Ω ^ n) X , trunc-many n (transport (λ z → has-level• (z -2) X) (+-comm _ n) t)) {- Pointedness allows for a more direct notion of contractibility. Beware that is-contr• will be equivalent --- not definitionally equal --- to has-level∙ ⟨-2⟩. -} module _ {i} (X : Type• i) where is-contr• : Type i is-contr• = ∀ a → pt X == a {- Since pointed types are always inhabited, being contractible and propositional is equivalent. -} module _ {i} {X : Type• i} where contr•-equiv-contr : is-contr• X ≃ is-contr (base X) contr•-equiv-contr = prop-equiv' (λ c → Π-level (λ a → raise-level-<T (ltSR ltS) c _ _)) (cst is-contr-is-prop) (λ x → (pt X , x)) (λ y _ → prop-has-all-paths (contr-is-prop y) _ _) is-contr•-is-prop : is-prop (is-contr• X) is-contr•-is-prop = equiv-preserves-level (contr•-equiv-contr ⁻¹) is-contr-is-prop prop-equiv-contr : is-prop (base X) ≃ is-contr (base X) prop-equiv-contr = prop-equiv is-prop-is-prop is-contr-is-prop (inhab-prop-is-contr (pt X)) contr-is-prop contr•-equiv-prop : is-contr• X ≃ is-prop (base X) contr•-equiv-prop = prop-equiv-contr ⁻¹ ∘e contr•-equiv-contr -- Pointed equivalences preserve (pointed) contractibility. equiv-is-contr• : ∀ {i j} {X : Type• i} {Y : Type• j} → X ≃• Y → is-contr• X ≃ is-contr• Y equiv-is-contr• (u , p) = contr•-equiv-contr ⁻¹ ∘e equiv-level u ∘e contr•-equiv-contr -- Univalence for pointed equivalences. module _ {i} {A B : Type• i} where ua•-equiv : (A ≃• B) ≃ (A == B) ua•-equiv = A ≃• B ≃⟨ ide _ ⟩ Σ (base A ≃ base B) (λ f → –> f (pt A) == pt B) ≃⟨ equiv-Σ-fst _ (snd (ua-equiv ⁻¹)) ⁻¹ ⟩ Σ (base A == base B) (λ q → coe q (pt A) == pt B) ≃⟨ equiv-Σ-snd (λ q → coe-equiv (ap (λ f → coe f (pt A) == pt B) (! (ap-idf q)))) ⟩ Σ (base A == base B) (λ q → coe (ap (idf _) q) (pt A) == pt B) ≃⟨ equiv-Σ-snd (λ q → to-transp-equiv _ q ⁻¹) ⟩ Σ (base A == base B) (λ q → pt A == pt B [ idf _ ↓ q ]) ≃⟨ =Σ-eqv _ _ ⟩ A == B ≃∎ ua• : A ≃• B → A == B ua• = –> ua•-equiv coe•-equiv : A == B → A ≃• B coe•-equiv = <– ua•-equiv -- Normal univalence can be made pointed in the endo-setting. module _ {i} {A : Type i} where ua-equiv• : ((A ≃ A) , ide _) ≃• ((A == A) , idp) ua-equiv• = ((ua-equiv ⁻¹) , idp) ⁻¹• -- Lemma 2.2.17 {- The induction step for Lemma 7.2.9 in the HoTT Book is more complicated than necesarry. Associating iterated loop spaces in the reverse order, we can do it with the prerequisites 7.2.7 and 7.2.8 (of the book) as well as further auxiliary steps. -} has-level-equiv-contr-loops : ∀ {i} {n : ℕ} {A : Type i} → has-level (n -1) A ≃ ((a : A) → is-contr• ((Ω ^ n) (A , a))) has-level-equiv-contr-loops {n = O} {A} = is-prop A ≃⟨ prop-equiv-inhab-to-contr ⟩ (A → is-contr A) ≃⟨ equiv-Π-r (λ _ → contr•-equiv-contr ⁻¹) ⟩ ((a : A) → is-contr• (A , a)) ≃∎ has-level-equiv-contr-loops {n = S n} {A} = equiv-Π-r lem where lem = λ a → (((b : A) → has-level (n -1) (a == b))) ≃⟨ equiv-Π-r (λ _ → has-level-equiv-contr-loops) ⟩ (((b : A) (p : a == b) → is-contr• ((Ω ^ n) ((a == b) , p)))) ≃⟨ Π₁-contr (pathfrom-is-contr _) ∘e curry-equiv ⁻¹ ⟩ is-contr• ((Ω ^ n) ((a == a) , idp)) ≃∎
{ "alphanum_fraction": 0.5196189044, "avg_line_length": 35.4533333333, "ext": "agda", "hexsha": "38fef0777b93adc285a90c4fdba5fdc9b7305c74", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/thesis/Pointed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/thesis/Pointed.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/thesis/Pointed.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 3038, "size": 7977 }
module StateSized.GUI.SpaceShipExtendedExample where open import SizedIO.Base open import StateSizedIO.GUI.BaseStateDependent open import Data.Bool.Base open import Data.List.Base open import Data.Integer open import Data.Product hiding (map) open import SizedIO.Object open import SizedIO.IOObject open import NativeIO open import Size open import StateSizedIO.GUI.WxBindingsFFI open import StateSizedIO.GUI.VariableList open import StateSizedIO.GUI.WxGraphicsLib open import StateSized.GUI.BitMaps spaceShipMove = 10 data RockMethod : Set where move : RockMethod getPoint : RockMethod draw : DC → Rect → RockMethod RockResult : RockMethod → Set RockResult getPoint = Point RockResult _ = Unit RockInterface : Interface Method RockInterface = RockMethod Result RockInterface = RockResult RockObject : ∀{i} → Set RockObject {i} = IOObject GuiLev1Interface RockInterface i rockObject : ∀{i} → Point → RockObject {i} method (rockObject (x , y)) move = return ( _ , rockObject (x , (y + (+ 2)))) method (rockObject p) (draw dc rect) = exec (drawBitmap dc rock p true) λ _ → return (_ , rockObject p) method (rockObject p) getPoint = return (p , rockObject p) data SpaceshipMethod : Set where move : Point → SpaceshipMethod draw : DC → Rect → SpaceshipMethod collide : RockObject → SpaceshipMethod SpaceshipResult : SpaceshipMethod → Set SpaceshipResult _ = Unit SpaceshipInterface : Interface Method SpaceshipInterface = SpaceshipMethod Result SpaceshipInterface = SpaceshipResult SpaceshipObject : ∀{i} → Set SpaceshipObject {i} = IOObject GuiLev1Interface SpaceshipInterface i spaceshipObject : ∀{i} → Point → SpaceshipObject {i} method (spaceshipObject (x , y)) (move (deltaX , deltaY)) = return ( _ , spaceshipObject ((x + deltaX) , (y + deltaY))) method (spaceshipObject p) (draw dc rect) = exec (drawBitmap dc ship p true) λ _ → return (_ , spaceshipObject p) method (spaceshipObject p) (collide rock) = return (_ , spaceshipObject p) data GraphicServerMethod : Set where onPaintM : DC → Rect → GraphicServerMethod repaintM : Frame → GraphicServerMethod moveSpaceShipM : Point → GraphicServerMethod moveWorldM : GraphicServerMethod GraphicServerResult : GraphicServerMethod → Set GraphicServerResult _ = Unit GraphicServerInterface : Interface Method GraphicServerInterface = GraphicServerMethod Result GraphicServerInterface = GraphicServerResult GraphicServerObject : ∀{i} → Set GraphicServerObject {i} = IOObject GuiLev1Interface GraphicServerInterface i graphicServerObject : ∀{i} → SpaceshipObject → RockObject → GraphicServerObject {i} method (graphicServerObject ship rock) (onPaintM dc rect) = method ship (draw dc rect) >>= λ { (_ , ship') → method rock (draw dc rect) >>= λ { (_ , rock') → return (_ , graphicServerObject ship' rock') }} method (graphicServerObject ship rock) (repaintM fra) = exec (repaint fra) λ _ → return (_ , graphicServerObject ship rock) method (graphicServerObject ship rock) (moveSpaceShipM (deltaX , deltaY)) = method ship (move (deltaX , deltaY)) >>= λ { (_ , ship') → return (_ , graphicServerObject ship' rock) } method (graphicServerObject ship rock) moveWorldM = method rock move >>= λ { (_ , rock') → return (_ , graphicServerObject ship rock') } VarType : Set VarType = GraphicServerObject {∞} varInit : VarType varInit = graphicServerObject (spaceshipObject (+ 150 , + 150)) (rockObject (+ 20 , + 10)) onPaint : ∀{i} → VarType → DC → Rect → IO GuiLev1Interface i VarType onPaint obj dc rect = mapIO proj₂ (method obj (onPaintM dc rect)) moveSpaceShip : ∀{i} → Point → VarType → IO GuiLev1Interface i VarType moveSpaceShip p obj = mapIO proj₂ (method obj (moveSpaceShipM p)) moveWorld : ∀{i} → VarType → IO GuiLev1Interface i VarType moveWorld obj = mapIO proj₂ (method obj moveWorldM) callRepaint : ∀{i} → Frame → VarType → IO GuiLev1Interface i VarType callRepaint fra obj = mapIO proj₂ (method obj (repaintM fra)) program : ∀{i} → IOˢ GuiLev2Interface i (λ _ → Unit) [] program = execˢ (level1C makeFrame) λ fra → execˢ (level1C (makeButton fra)) λ bt → execˢ (level1C (addButton fra bt)) λ _ → execˢ (createVar varInit) λ _ → execˢ (setButtonHandler bt (moveSpaceShip (+ 20 , + 0) ∷ [ callRepaint fra ])) λ _ → execˢ (setKeyHandler bt (moveSpaceShip (+ spaceShipMove , + 0) ∷ [ callRepaint fra ]) (moveSpaceShip (-[1+ spaceShipMove ] , + 0) ∷ [ callRepaint fra ]) (moveSpaceShip (+ 0 , -[1+ spaceShipMove ]) ∷ [ callRepaint fra ]) (moveSpaceShip (+ 0 , + spaceShipMove) ∷ [ callRepaint fra ])) λ _ → execˢ (setOnPaint fra ([ onPaint ])) λ _ → execˢ (setTimer fra (+ 50) (moveWorld ∷ [ callRepaint fra ])) λ _ → returnˢ unit main : NativeIO Unit main = (start (translateLev2 program)) native>>= (λ _ → nativePutStrLn "stephan test2")
{ "alphanum_fraction": 0.6600604002, "avg_line_length": 32.3048780488, "ext": "agda", "hexsha": "d1ab7974e81697b395f9c20eb8b036f4ee6497e8", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/StateSized/GUI/SpaceShipExtendedExample.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/StateSized/GUI/SpaceShipExtendedExample.agda", "max_line_length": 87, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/StateSized/GUI/SpaceShipExtendedExample.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 1441, "size": 5298 }
record R (A : Set) : Set where field f : A → A open R {{...}} test : {A : Set} → R A f {{test}} = {!!}
{ "alphanum_fraction": 0.4234234234, "avg_line_length": 12.3333333333, "ext": "agda", "hexsha": "2d90741a2da2b24c437e736f828ecca2a30855db", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/SplitPreserveInstanceProjection.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/SplitPreserveInstanceProjection.agda", "max_line_length": 30, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/SplitPreserveInstanceProjection.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 44, "size": 111 }
------------------------------------------------------------------------------ -- Twice funcion ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Twice where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base ------------------------------------------------------------------------------ module HigherOrder where -- We cannot translate this function as a definition because it is -- higher-order. twice : (D → D) → D → D twice f x = f (f x) -- {-# ATP definition twice #-} postulate twice-succ : ∀ n → twice succ₁ n ≡ succ₁ (succ₁ n) -- {-# ATP prove twice-succ #-} module FirstOrderAxiom where postulate twice : D → D → D twice-eq : ∀ f x → twice f x ≡ f · (f · x) {-# ATP axiom twice-eq #-} twice-succI : ∀ n → twice succ n ≡ succ · (succ · n) twice-succI n = twice succ n ≡⟨ twice-eq succ n ⟩ succ · (succ · n) ∎ postulate twice-succATP : ∀ n → twice succ n ≡ succ · (succ · n) {-# ATP prove twice-succATP #-} module FirstOrderDefinition where twice : D → D → D twice f x = f · (f · x) {-# ATP definition twice #-} twice-succI : ∀ n → twice succ n ≡ succ · (succ · n) twice-succI n = refl postulate twice-succATP : ∀ n → twice succ n ≡ succ · (succ · n) {-# ATP prove twice-succATP #-}
{ "alphanum_fraction": 0.4874504624, "avg_line_length": 28.037037037, "ext": "agda", "hexsha": "297e660fc4e9728c57ad6f0cf16ccb9d77cd66d9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/thesis/report/FOTC/Twice.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/thesis/report/FOTC/Twice.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/thesis/report/FOTC/Twice.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 400, "size": 1514 }
------------------------------------------------------------------------ -- From the Agda standard library -- -- Sizes for Agda's sized types ------------------------------------------------------------------------ module Common.Size where {-# BUILTIN SIZEUNIV SizeU #-} {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZELT Size<_ #-} {-# BUILTIN SIZESUC ↑_ #-} {-# BUILTIN SIZEINF ∞ #-} {-# BUILTIN SIZEMAX _⊔ˢ_ #-} {-# FOREIGN OCaml let up _ = ();; let inf = ();; let union _ _ = ();; #-} {-# COMPILE OCaml ↑_ = up #-} {-# COMPILE OCaml ∞ = inf #-} {-# COMPILE OCaml _⊔ˢ_ = union #-}
{ "alphanum_fraction": 0.4041533546, "avg_line_length": 25.04, "ext": "agda", "hexsha": "93a57779a2bcb4e182b24332a95aa14c554eab1e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "xekoukou/agda-ocaml", "max_forks_repo_path": "test/Common/Size.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "xekoukou/agda-ocaml", "max_issues_repo_path": "test/Common/Size.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "xekoukou/agda-ocaml", "max_stars_repo_path": "test/Common/Size.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 162, "size": 626 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Groups.Abelian.Definition open import Groups.FiniteGroups.Definition open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas open import Setoids.Setoids open import Sets.FinSet.Definition open import Sets.FinSet.Lemmas open import Functions.Definition open import Functions.Lemmas open import Semirings.Definition open import Numbers.Modulo.Definition open import Numbers.Modulo.Addition open import Orders.Total.Definition open import Numbers.Modulo.ModuloFunction module Numbers.Modulo.Group where open TotalOrder ℕTotalOrder open Semiring ℕSemiring private 0<s : {n : ℕ} → 0 <N succ n 0<s {n} = le n (applyEquality succ (Semiring.sumZeroRight ℕSemiring n)) inverseN : {n : ℕ} → .(0<n : 0 <N n) → (x : ℤn n 0<n) → ℤn n 0<n inverseN 0<n record { x = 0 ; xLess = _ } = record { x = 0 ; xLess = 0<n } inverseN 0<n record { x = succ x ; xLess = xLess } with <NProp xLess ... | le subtr pr = record { x = succ subtr ; xLess = le x (transitivity (commutative (succ x) (succ subtr)) pr) } invLeft : {n : ℕ} → .(0<n : 0 <N n) → (x : ℤn n 0<n) → _+n_ 0<n (inverseN 0<n x) x ≡ record { x = 0 ; xLess = 0<n } invLeft {n} 0<n record { x = 0 ; xLess = xLess } = plusZnIdentityLeft 0<n (record { x = 0 ; xLess = 0<n }) invLeft {n} 0<n record { x = (succ x) ; xLess = xLess } with <NProp xLess ... | le subtr pr rewrite pr = equalityZn (modN 0<n) ℤnGroup : (n : ℕ) → .(pr : 0 <N n) → Group (reflSetoid (ℤn n pr)) (_+n_ pr) Group.+WellDefined (ℤnGroup n 0<n) refl refl = refl Group.0G (ℤnGroup n 0<n) = record { x = 0 ; xLess = 0<n } Group.inverse (ℤnGroup n 0<n) = inverseN 0<n Group.+Associative (ℤnGroup n 0<n) {a} {b} {c} = equalityCommutative (plusZnAssociative 0<n a b c) Group.identRight (ℤnGroup n 0<n) {a} = plusZnIdentityRight 0<n a Group.identLeft (ℤnGroup n 0<n) {a} = plusZnIdentityLeft 0<n a Group.invLeft (ℤnGroup n 0<n) {a} = invLeft 0<n a Group.invRight (ℤnGroup n 0<n) {a} = transitivity (plusZnCommutative 0<n a (inverseN 0<n a)) (invLeft 0<n a) ℤnAbGroup : (n : ℕ) → (pr : 0 <N n) → AbelianGroup (ℤnGroup n pr) AbelianGroup.commutative (ℤnAbGroup n pr) {a} {b} = plusZnCommutative pr a b ℤnFinite : (n : ℕ) → (pr : 0 <N n) → FiniteGroup (ℤnGroup n pr) (FinSet n) SetoidToSet.project (FiniteGroup.toSet (ℤnFinite (succ n) 0<n)) record { x = x ; xLess = xLess } = ofNat x xLess SetoidToSet.wellDefined (FiniteGroup.toSet (ℤnFinite (succ n) 0<n)) x y x=y rewrite x=y = refl SetoidToSet.surj (FiniteGroup.toSet (ℤnFinite (succ n) 0<n)) b = record { x = toNat b ; xLess = toNatSmaller b } , ofNatToNat b SetoidToSet.inj (FiniteGroup.toSet (ℤnFinite (succ n) 0<n)) record { x = x ; xLess = xLess } record { x = y ; xLess = yLess } eq = equalityZn (ofNatInjective x y xLess yLess eq) FiniteGroup.finite (ℤnFinite n pr) = record { size = n ; mapping = id ; bij = idIsBijective }
{ "alphanum_fraction": 0.6855324849, "avg_line_length": 50.6101694915, "ext": "agda", "hexsha": "e37a277c80dda38f6e7d69540afda12742bd22f0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Modulo/Group.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Modulo/Group.agda", "max_line_length": 177, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Modulo/Group.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1118, "size": 2986 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Convenient syntax for equational reasoning ------------------------------------------------------------------------ -- Example use: -- n*0≡0 : ∀ n → n * 0 ≡ 0 -- n*0≡0 zero = refl -- n*0≡0 (suc n) = -- begin -- suc n * 0 -- ≈⟨ refl ⟩ -- n * 0 + 0 -- ≈⟨ ... ⟩ -- n * 0 -- ≈⟨ n*0≡0 n ⟩ -- 0 -- ∎ -- Note that some modules contain generalised versions of specific -- instantiations of this module. For instance, the module ≡-Reasoning -- in Relation.Binary.PropositionalEquality is recommended for -- equational reasoning when the underlying equality is -- Relation.Binary.PropositionalEquality._≡_. open import Relation.Binary module Relation.Binary.EqReasoning {s₁ s₂} (S : Setoid s₁ s₂) where open Setoid S import Relation.Binary.PreorderReasoning as PreR open PreR preorder public renaming ( _∼⟨_⟩_ to _≈⟨_⟩_ ; _≈⟨_⟩_ to _≡⟨_⟩_ ; _≈⟨⟩_ to _≡⟨⟩_ )
{ "alphanum_fraction": 0.5204957102, "avg_line_length": 26.8974358974, "ext": "agda", "hexsha": "cee1043cbe5f7e64766f33d7ffa91bdb89adc9ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/EqReasoning.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/EqReasoning.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/EqReasoning.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 321, "size": 1049 }
module FixityOutOfScopeInRecord where record R : Set where infixl 30 _+_
{ "alphanum_fraction": 0.7792207792, "avg_line_length": 12.8333333333, "ext": "agda", "hexsha": "4768826daefc5a4773c53bad5685a97f6602e59c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/FixityOutOfScopeInRecord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/FixityOutOfScopeInRecord.agda", "max_line_length": 37, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/FixityOutOfScopeInRecord.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 23, "size": 77 }
------------------------------------------------------------------------------ -- Testing the use of ATP axioms with data constructors ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module DataConstructorsAxioms where postulate D : Set zero : D succ : D → D data N : D → Set where zN : N zero sN : ∀ {n} → N n → N (succ n) {-# ATP axioms zN sN #-} postulate 0-N : N zero {-# ATP prove 0-N #-} postulate 1-N : N (succ zero) {-# ATP prove 1-N #-}
{ "alphanum_fraction": 0.4221556886, "avg_line_length": 24.7407407407, "ext": "agda", "hexsha": "cdffcfddd8f35391e1f4c911c5be46a19d547c28", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/DataConstructorsAxioms.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/DataConstructorsAxioms.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/DataConstructorsAxioms.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 153, "size": 668 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module CombiningProofs.CommAddGlobalHints where open import PA.Axiomatic.Standard.Base +-leftIdentity : ∀ n → zero + n ≡ n +-leftIdentity = PA₃ +-rightIdentity : ∀ n → n + zero ≡ n +-rightIdentity = ℕ-ind A A0 is where A : ℕ → Set A i = i + zero ≡ i {-# ATP definition A #-} A0 : A zero A0 = +-leftIdentity zero postulate is : ∀ i → A i → A (succ i) {-# ATP prove is #-} x+Sy≡S[x+y] : ∀ m n → m + succ n ≡ succ (m + n) x+Sy≡S[x+y] m n = ℕ-ind A A0 is m where A : ℕ → Set A i = i + succ n ≡ succ (i + n) {-# ATP definition A #-} postulate A0 : A zero {-# ATP prove A0 #-} postulate is : ∀ i → A i → A (succ i) {-# ATP prove is #-} -- Global hints {-# ATP hints x+Sy≡S[x+y] +-rightIdentity #-} +-comm : ∀ m n → m + n ≡ n + m +-comm m n = ℕ-ind A A0 is m where A : ℕ → Set A i = i + n ≡ n + i {-# ATP definition A #-} postulate A0 : A zero {-# ATP prove A0 #-} postulate is : ∀ i → A i → A (succ i) {-# ATP prove is #-}
{ "alphanum_fraction": 0.5234782609, "avg_line_length": 21.2962962963, "ext": "agda", "hexsha": "e26b9a0013042fdde5e1a9ec60dcd49cacb07903", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/thesis/report/CombiningProofs/CommAddGlobalHints.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/thesis/report/CombiningProofs/CommAddGlobalHints.agda", "max_line_length": 47, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/thesis/report/CombiningProofs/CommAddGlobalHints.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 404, "size": 1150 }
open import OutsideIn.Prelude module OutsideIn.X where open import Data.Product public hiding (map) open import Relation.Nullary record Types : Set₁ where field Type : Set → Set type-is-monad : Monad Type funType : ∀ {n} → Type n → Type n → Type n appType : ∀ {n} → Type n → Type n → Type n type-is-functor = Monad.is-functor type-is-monad record QConstraints ⦃ types : Types ⦄ : Set₁ where open Types(types) field QConstraint : Set → Set qconstraint-is-functor : Functor QConstraint _∼_ : ∀ {n} → Type n → Type n → QConstraint n _∧_ : ∀ {n} → QConstraint n → QConstraint n → QConstraint n ε : ∀ {n} → QConstraint n constraint-types : ∀ {a b} → (Type a → Type b) → QConstraint a → QConstraint b is-ε : ∀ {n} (x : QConstraint n) → Dec (x ≡ ε) open Monad (type-is-monad) open Functor (is-functor) qc-substitute : ∀{a b} → (a → Type b) → (QConstraint a → QConstraint b) qc-substitute f = constraint-types (join ∘ map f) record AxiomSchemes ⦃ types : Types ⦄ : Set₁ where open Types(types) field AxiomScheme : Set → Set axiomscheme-is-functor : Functor AxiomScheme axiomscheme-types : ∀ {a b} → (Type a → Type b) → AxiomScheme a → AxiomScheme b open Monad (type-is-monad) open Functor (is-functor) ax-substitute : ∀{a b} → (a → Type b) → (AxiomScheme a → AxiomScheme b) ax-substitute f = axiomscheme-types (join ∘ map f) record Entailment ⦃ types : Types ⦄ ⦃ axiomschemes : AxiomSchemes ⦄ ⦃ qconstraints : QConstraints ⦄ : Set₁ where open Types(types) open AxiomSchemes(axiomschemes) open QConstraints(qconstraints) open Monad(type-is-monad) open Functor(type-is-functor) field _,_⊩_ : ∀ {n} → AxiomScheme n → QConstraint n → QConstraint n → Set ent-refl : ∀ {n}{Q : AxiomScheme n}{q q′ : QConstraint n} → Q , (q ∧ q′) ⊩ q′ ent-trans : ∀ {n}{Q : AxiomScheme n}{q q₁ q₂ q₃ : QConstraint n} → Q , (q ∧ q₁) ⊩ q₂ → Q , (q ∧ q₂) ⊩ q₃ → Q , (q ∧ q₁) ⊩ q₃ ent-subst : ∀ {a b}{θ : a → Type b}{Q : AxiomScheme a}{q q₁ q₂ : QConstraint a} → Q , (q ∧ q₁) ⊩ q₂ → axiomscheme-types (join ∘ map θ) Q , constraint-types (join ∘ map θ) (q ∧ q₁) ⊩ constraint-types (join ∘ map θ) q₂ ent-typeq-refl : ∀ {n}{Q : AxiomScheme n}{q : QConstraint n}{τ : Type n} → Q , q ⊩ (τ ∼ τ) ent-typeq-sym : ∀ {n}{Q : AxiomScheme n}{q : QConstraint n}{τ₁ τ₂ : Type n} → Q , q ⊩ (τ₁ ∼ τ₂) → Q , q ⊩ (τ₂ ∼ τ₁) ent-typeq-trans : ∀ {n}{Q : AxiomScheme n}{q : QConstraint n}{τ₁ τ₂ τ₃ : Type n} → Q , q ⊩ (τ₁ ∼ τ₂) → Q , q ⊩ (τ₂ ∼ τ₃) → Q , q ⊩ (τ₁ ∼ τ₃) ent-typeq-subst : ∀ {a b}{Q : AxiomScheme a}{q : QConstraint a}{τ₁ τ₂ : Type a}{θ : a → Type b} → Q , q ⊩ (τ₁ ∼ τ₂) → axiomscheme-types (join ∘ map θ) Q , constraint-types (join ∘ map θ) q ⊩ ((join ∘ map θ) τ₁ ∼ (join ∘ map θ) τ₂) ent-conj : ∀ {n}{Q : AxiomScheme n}{q q₁ q₂ : QConstraint n} → Q , q ⊩ q₁ → Q , q ⊩ q₂ → Q , q ⊩ (q₁ ∧ q₂) module SimplificationPrelude ⦃ types : Types ⦄ ⦃ axiomschemes : AxiomSchemes ⦄ ⦃ qconstraints : QConstraints ⦄ ⦃ entailment : Entailment ⦄ where open Types(types) open AxiomSchemes(axiomschemes) open QConstraints(qconstraints) open Entailment(entailment) data SimplifierResult′ (x : Set)( n m : ℕ ) : QConstraint (x ⨁ m) → Set where solved : (q : QConstraint (x ⨁ m)) → (x ⨁ n → Type (x ⨁ m)) → SimplifierResult′ x n m q SimplifierResult : Set → ℕ → Set SimplifierResult x n = ∃ (λ m → ∃ (SimplifierResult′ x n m)) SimplifierResultNoResidual : Set → ℕ → Set SimplifierResultNoResidual x n = ∃ (λ m → SimplifierResult′ x n m ε) IsSound′ : ∀ {x : Set}{n m : ℕ}{Qr : QConstraint (x ⨁ m)} (Q : AxiomScheme (x ⨁ m))(Qg : QConstraint (x ⨁ m)) (Qw : QConstraint (x ⨁ n))(s : SimplifierResult′ x n m Qr) → Set IsSound′ Q Qg Qw (solved Qr θ) = Q , Qg ∧ Qr ⊩ qc-substitute θ Qw IsSound : ∀ {x : Set}{n : ℕ} (Q : AxiomScheme x)(Qg : QConstraint x) (Qw : QConstraint (x ⨁ n))(s : SimplifierResult x n) → Set IsSound {x}{n} Q Qg Qw (m , .Qr , solved Qr θ) = IsSound′ {n = n}{m = m} (Ax-f.map pm-m.unit Q) (Qc-f.map pm-m.unit Qg) Qw (solved Qr θ) where module Ax-f = Functor(axiomscheme-is-functor) module Qc-f = Functor(qconstraint-is-functor) module pm-m = Monad(PlusN-is-monad {m}) record Simplification ⦃ types : Types ⦄ ⦃ axiomschemes : AxiomSchemes ⦄ ⦃ qconstraints : QConstraints ⦄ ⦃ entailment : Entailment ⦄ : Set₁ where open Types(types) open AxiomSchemes(axiomschemes) open QConstraints(qconstraints) open Entailment(entailment) open SimplificationPrelude field simplifier : ∀ {x : Set} → Eq x → (n : ℕ) → AxiomScheme x → QConstraint x → QConstraint (x ⨁ n) → SimplifierResult x n field simplifier-sound : ∀ {x : Set}{n : ℕ}{eq : Eq x} (Q : AxiomScheme x)(Qg : QConstraint x) (Qw : QConstraint (x ⨁ n)) → IsSound Q Qg Qw (simplifier eq n Q Qg Qw) simplifier′ : ∀ {x : Set} → Eq x → (n : ℕ) → AxiomScheme x → QConstraint x → QConstraint (x ⨁ n) → Ⓢ (SimplifierResultNoResidual x n) simplifier′ eq n ax g e with simplifier eq n ax g e simplifier′ eq n ax g e | m , Qr , result with is-ε Qr simplifier′ eq n ax g e | m , .ε , result | yes refl = suc (m , result) simplifier′ eq n ax g e | m , Qr , result | no p = zero record X : Set₂ where field dc : ℕ → Set field types : Types field axiom-schemes : AxiomSchemes field qconstraints : QConstraints field entailment : Entailment field simplification : Simplification open Types(types) public open AxiomSchemes(axiom-schemes) public open QConstraints(qconstraints) public open Entailment(entailment) public open Simplification(simplification) public open SimplificationPrelude public
{ "alphanum_fraction": 0.5398912058, "avg_line_length": 49.0222222222, "ext": "agda", "hexsha": "15ba3c57d71edf11fbff7896b4705c021d2f0314", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "liamoc/outside-in", "max_forks_repo_path": "OutsideIn/X.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "liamoc/outside-in", "max_issues_repo_path": "OutsideIn/X.agda", "max_line_length": 141, "max_stars_count": 2, "max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "liamoc/outside-in", "max_stars_repo_path": "OutsideIn/X.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z", "num_tokens": 2172, "size": 6618 }
module PatternSynonymOverloaded where data Nat : Set where zero : Nat suc : Nat -> Nat pattern ss x = suc (suc x) pattern ss x = suc x
{ "alphanum_fraction": 0.6830985915, "avg_line_length": 15.7777777778, "ext": "agda", "hexsha": "2997b43603b9db67aabedc18f5e7d64e5735278a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/PatternSynonymOverloaded.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/PatternSynonymOverloaded.agda", "max_line_length": 37, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/PatternSynonymOverloaded.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 44, "size": 142 }
{-# OPTIONS --safe #-} -- --without-K #-} open import Relation.Binary.PropositionalEquality using (_≢_; _≡_; refl; sym; subst; cong; trans) open import Function using (_∘_) open import Relation.Nullary using (yes; no) import Data.Empty as Empty import Data.Product as Product import Data.Product.Properties as Productₚ import Data.Nat as Nat import Data.Vec as Vec import Data.Vec.Properties as Vecₚ import Data.Fin as Fin import Data.Fin.Properties as Finₚ import Data.Vec.Relation.Unary.All as All open Empty using (⊥-elim) open Nat using (ℕ; zero; suc) open Vec using (Vec; []; _∷_) open All using (All; []; _∷_) open Fin using (Fin ; zero ; suc) open Product using (Σ-syntax; _×_; _,_; proj₁; proj₂) import PiCalculus.Syntax open PiCalculus.Syntax.Scoped open import PiCalculus.Semantics open import PiCalculus.Semantics.Properties open import PiCalculus.LinearTypeSystem.Algebras module PiCalculus.LinearTypeSystem.Exchange (Ω : Algebras) where open Algebras Ω open import PiCalculus.LinearTypeSystem Ω open import PiCalculus.LinearTypeSystem.ContextLemmas Ω private variable n : ℕ i j : Fin n idx : Idx idxs : Idxs n P Q : Scoped n ⊢-unused : {γ : PreCtx n} {Γ Θ : Ctx idxs} → (i : Fin n) → Unused i P → γ ; Γ ⊢ P ▹ Θ → All.lookup i Γ ≡ All.lookup i Θ ⊢-unused i uP 𝟘 = refl ⊢-unused i uP (ν t m μ ⊢P) = ⊢-unused (suc i) uP ⊢P ⊢-unused i (i≢x , uP) ((_ , x) ⦅⦆ ⊢P) = trans (∋-lookup-≢ x i i≢x) (⊢-unused (suc i) uP ⊢P) ⊢-unused i (i≢x , i≢y , uP) ((_ , x) ⟨ _ , y ⟩ ⊢P) = trans (trans (∋-lookup-≢ x i i≢x) (∋-lookup-≢ y i i≢y)) (⊢-unused i uP ⊢P) ⊢-unused i (uP , uQ) (⊢P ∥ ⊢Q) = trans (⊢-unused i uP ⊢P) (⊢-unused i uQ ⊢Q) module _ {a} {A : Set a} where exchangeᵥ : (i : Fin n) → Vec A (suc n) → Vec A (suc n) exchangeᵥ zero (xs -, y -, x) = xs -, x -, y exchangeᵥ (suc i) (xs -, y -, x) = exchangeᵥ i (xs -, y) -, x exchangeₐ : ∀ {b} {P : A → Set b} (i : Fin n) {xs : Vec A (suc n)} → All P xs → All P (exchangeᵥ i xs) exchangeₐ zero (xs -, y -, x) = xs -, x -, y exchangeₐ (suc i) (xs -, y -, x) = exchangeₐ i (xs -, y) -, x -- TODO: rewrite this crap ∋-exchange : {γ : PreCtx (suc n)} {idxs : Idxs (suc n)} {Γ Θ : Ctx idxs} {t : Type} {x : Usage idx ²} → (i : Fin n) → γ ; Γ ∋[ j ] t ; x ▹ Θ → exchangeᵥ i γ ; exchangeₐ i Γ ∋[ exchangeFin i j ] t ; x ▹ exchangeₐ i Θ ∋-exchange {γ = _ -, _ -, _} {idxs = _ -, _ -, _} {Γ = _ -, _ -, _} zero (zero , zero xyz) = (suc zero , suc (zero xyz)) ∋-exchange {γ = _ -, _ -, _} zero (suc zero , suc (zero xyz)) = zero , zero xyz ∋-exchange {γ = _ -, _ -, _} zero (suc (suc t) , suc (suc x)) = suc (suc t) , suc (suc x) ∋-exchange {γ = _ -, _ -, _ -, _} {Γ = _ -, _ -, _ -, _} (suc i) (zero , zero xyz) = zero , zero xyz ∋-exchange {γ = _ -, _ -, _ -, _} {Γ = _ -, _ -, _ -, _} (suc zero) (suc zero , suc (zero xyz)) = suc (suc zero) , suc (suc (zero xyz)) ∋-exchange {γ = _ -, _ -, _ -, _} {Γ = _ -, _ -, _ -, _} (suc (suc i)) (suc zero , suc (zero xyz)) = suc zero , suc (zero xyz) ∋-exchange {j = suc (suc j)} {γ = γ -, _} {Γ = Γ -, _} (suc i) (suc (suc t) , suc (suc x)) with Fin.inject₁ i Finₚ.≟ suc j ∋-exchange {j = suc (suc j)} {γ = γ -, _} {Γ = Γ -, _} (suc zero) (suc (suc t) , suc (suc x)) | yes () ∋-exchange {j = suc (suc ._)} {γ = γ -, _} {Γ = Γ -, _} {Θ = Θ -, _} (suc (suc i)) (suc st@(suc t) , suc sx@(suc x)) | yes refl = let s' = subst (λ ● → exchangeᵥ (suc i) γ ; exchangeₐ (suc i) Γ ∋[ ● ] _ ; _ ▹ exchangeₐ (suc i) Θ) (sym (trans (cong suc (sym (trans (exchangeFin-injectˡ i) (cong suc (sym (Finₚ.lower₁-inject₁′ i _)))))) (exchangeFin-suc i (Fin.inject₁ i)))) (∋-exchange (suc i) (st , sx)) in there s' ∋-exchange {j = suc (suc j)} {γ = _ -, _ -, _ -, _} {Γ = _ -, _ -, _ -, _} (suc i) (suc st@(suc t) , suc sx@(suc x)) | no ¬p with i Finₚ.≟ j ∋-exchange {j = suc (suc j)} {γ = _ -, _ -, _ -, _} {Γ = _ -, _ -, _ -, _} (suc i) (suc st@(suc t) , suc sx@(suc x)) | no ¬p | yes refl rewrite sym (exchangeFin-injectʳ i) = there (∋-exchange i (st , sx)) ∋-exchange {j = suc (suc j)} {γ = _ -, _ -, _ -, _} {Γ = _ -, _ -, _ -, _} (suc i) (suc st@(suc t) , suc sx@(suc x)) | no ¬p | no ¬q rewrite sym (exchangeFin-neq i j ¬q ¬p) = there (∋-exchange i (st , sx)) ⊢-exchange : {γ : PreCtx (suc n)} {Γ Θ : Ctx idxs} → (i : Fin n) → γ ; Γ ⊢ P ▹ Θ → exchangeᵥ i γ ; exchangeₐ i Γ ⊢ exchange i P ▹ exchangeₐ i Θ ⊢-exchange {γ = _ -, _ -, _} {Γ = _ -, _ -, _} {Θ = _ -, _ -, _} i 𝟘 = 𝟘 ⊢-exchange {γ = _ -, _ -, _} {Γ = _ -, _ -, _} {Θ = _ -, _ -, _} i (ν t m μ ⊢P) = ν t m μ (⊢-exchange (suc i) ⊢P) ⊢-exchange {γ = _ -, _ -, _} {Γ = _ -, _ -, _} {Θ = _ -, _ -, _} i (_⦅⦆_ {Ξ = _ -, _ -, _} x ⊢P) = ∋-exchange i x ⦅⦆ ⊢-exchange (suc i) ⊢P ⊢-exchange {γ = _ -, _ -, _} {Γ = _ -, _ -, _} {Θ = _ -, _ -, _} i (x ⟨ y ⟩ ⊢P) = ∋-exchange i x ⟨ ∋-exchange i y ⟩ (⊢-exchange i ⊢P) ⊢-exchange {γ = _ -, _ -, _} {Γ = _ -, _ -, _} {Θ = _ -, _ -, _} i (⊢P ∥ ⊢Q) = ⊢-exchange i ⊢P ∥ ⊢-exchange i ⊢Q
{ "alphanum_fraction": 0.5318852132, "avg_line_length": 49.6831683168, "ext": "agda", "hexsha": "ff5ad60071d47add8d7f9943f595a6be7037dc2d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z", "max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/typing-linear-pi", "max_forks_repo_path": "src/PiCalculus/LinearTypeSystem/Exchange.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/typing-linear-pi", "max_issues_repo_path": "src/PiCalculus/LinearTypeSystem/Exchange.agda", "max_line_length": 205, "max_stars_count": 26, "max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/typing-linear-pi", "max_stars_repo_path": "src/PiCalculus/LinearTypeSystem/Exchange.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z", "num_tokens": 2210, "size": 5018 }
{- Part 4: Higher inductive types - Quotients via HITs - Propositional truncation for logic? - CS example using quotients (maybe finite multisets or queues) - Synthetic homotopy theory (probably Torus = S^1 * S^1, pi_1(S^1) = Z, pi_1(Torus) = Z * Z) -} {-# OPTIONS --cubical #-} module Part4 where open import Cubical.Foundations.Prelude hiding (refl ; cong ; subst ; sym) open import Cubical.Foundations.Isomorphism open import Cubical.Data.Int open import Cubical.Data.Prod open import Part3 ----------------------------------------------------------------------------- -- Higher inductive types -- The following definition of finite multisets is due to Vikraman -- Choudhury and Marcelo Fiore. infixr 5 _∷_ data FMSet (A : Type ℓ) : Type ℓ where [] : FMSet A _∷_ : (x : A) → (xs : FMSet A) → FMSet A comm : (x y : A) (xs : FMSet A) → x ∷ y ∷ xs ≡ y ∷ x ∷ xs -- trunc : (xs ys : FMSet A) (p q : xs ≡ ys) → p ≡ q -- We need to add the trunc constructor for FMSets to be sets, omitted -- here for simplicity. _++_ : ∀ {A : Type ℓ} (xs ys : FMSet A) → FMSet A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ xs ++ ys comm x y xs i ++ ys = comm x y (xs ++ ys) i -- trunc xs zs p q i j ++ ys = -- trunc (xs ++ ys) (zs ++ ys) (cong (_++ ys) p) (cong (_++ ys) q) i j unitr-++ : {A : Type ℓ} (xs : FMSet A) → xs ++ [] ≡ xs unitr-++ [] = refl unitr-++ (x ∷ xs) = cong (x ∷_) (unitr-++ xs) unitr-++ (comm x y xs i) j = comm x y (unitr-++ xs j) i -- unitr-++ (trunc xs ys x y i j) = {!!} -- This is a special case of set quotients! Very useful for -- programming and set level mathematics data _/_ (A : Type ℓ) (R : A → A → Type ℓ') : Type (ℓ-max ℓ ℓ') where [_] : A → A / R eq/ : (a b : A) → R a b → [ a ] ≡ [ b ] trunc : (a b : A / R) (p q : a ≡ b) → p ≡ q -- Proving that they are effective ((a b : A) → [ a ] ≡ [ b ] → R a b) -- requires univalence for propositions. ------------------------------------------------------------------------- -- Topological examples of things that are not sets -- We can define the circle as the following simple data declaration: data S¹ : Type₀ where base : S¹ loop : base ≡ base -- We can write functions on S¹ using pattern-matching equations: double : S¹ → S¹ double base = base double (loop i) = (loop ∙ loop) i helix : S¹ → Type₀ helix base = Int helix (loop i) = sucPathInt i ΩS¹ : Type₀ ΩS¹ = base ≡ base winding : ΩS¹ → Int winding p = subst helix p (pos 0) _ : winding (λ i → double ((loop ∙ loop) i)) ≡ pos 4 _ = refl -- We can define the Torus as: data Torus : Type₀ where point : Torus line1 : point ≡ point line2 : point ≡ point square : PathP (λ i → line1 i ≡ line1 i) line2 line2 -- And prove that it is equivalent to two circle: t2c : Torus → S¹ × S¹ t2c point = (base , base) t2c (line1 i) = (loop i , base) t2c (line2 j) = (base , loop j) t2c (square i j) = (loop i , loop j) c2t : S¹ × S¹ → Torus c2t (base , base) = point c2t (loop i , base) = line1 i c2t (base , loop j) = line2 j c2t (loop i , loop j) = square i j c2t-t2c : (t : Torus) → c2t (t2c t) ≡ t c2t-t2c point = refl c2t-t2c (line1 _) = refl c2t-t2c (line2 _) = refl c2t-t2c (square _ _) = refl t2c-c2t : (p : S¹ × S¹) → t2c (c2t p) ≡ p t2c-c2t (base , base) = refl t2c-c2t (base , loop _) = refl t2c-c2t (loop _ , base) = refl t2c-c2t (loop _ , loop _) = refl -- Using univalence we get the following equality: Torus≡S¹×S¹ : Torus ≡ S¹ × S¹ Torus≡S¹×S¹ = isoToPath' (iso t2c c2t t2c-c2t c2t-t2c) windingTorus : point ≡ point → Int × Int windingTorus l = ( winding (λ i → proj₁ (t2c (l i))) , winding (λ i → proj₂ (t2c (l i)))) _ : windingTorus (line1 ∙ sym line2) ≡ (pos 1 , negsuc 0) _ = refl -- We have many more topological examples, including Klein bottle, RP^n, -- higher spheres, suspensions, join, wedges, smash product: open import Cubical.HITs.KleinBottle open import Cubical.HITs.RPn open import Cubical.HITs.S2 open import Cubical.HITs.S3 open import Cubical.HITs.Susp open import Cubical.HITs.Join -- open import Cubical.HITs.Wedge open import Cubical.HITs.SmashProduct -- There's also a proof of the "3x3 lemma" for pushouts in less than -- 200LOC. In HoTT-Agda this took about 3000LOC. For details see: -- https://github.com/HoTT/HoTT-Agda/tree/master/theorems/homotopy/3x3 open import Cubical.HITs.Pushout -- We also defined the Hopf fibration and proved that its total space -- is S³ in about 300LOC: open import Cubical.HITs.Hopf -- There is also some integer cohomology: open import Cubical.ZCohomology.Everything -- To compute cohomology groups of various spaces we need a bunch of -- interesting theorems: Freudenthal suspension theorem, -- Mayer-Vietoris sequence... open import Cubical.Homotopy.Freudenthal -- open import Cubical.ZCohomology.MayerVietorisUnreduced
{ "alphanum_fraction": 0.6250778493, "avg_line_length": 29.1939393939, "ext": "agda", "hexsha": "5735375786a40032d8bf170b2e33fab1c2179425", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tomdjong/EPIT-2020", "max_forks_repo_path": "04-cubical-type-theory/material/Part4.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tomdjong/EPIT-2020", "max_issues_repo_path": "04-cubical-type-theory/material/Part4.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "54b18e4adf890b3533bbefda373912423be7f490", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tomdjong/EPIT-2020", "max_stars_repo_path": "04-cubical-type-theory/material/Part4.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1727, "size": 4817 }
-------------------------------------------------------------------- -- This file contains the definition of and facts about functors. -- -------------------------------------------------------------------- module Category.Funct where open import Level open import Relation.Relation open import Relation.Binary.PropositionalEquality public renaming (_≡_ to _P≡_; sym to prop-sym ; trans to prop-trans; refl to prop-refl) open import Setoid.Total open import Category.Category record Functor {l₁ l₂ : Level} (ℂ₁ : Cat {l₁}) (ℂ₂ : Cat {l₂}) : Set (l₁ ⊔ l₂) where constructor Funct_,_,_,_ field -- The object map. omap : Obj ℂ₁ → Obj ℂ₂ -- The morphism map. fmap : {A B : Obj ℂ₁} → SetoidFun (Hom ℂ₁ A B) (Hom ℂ₂ (omap A) (omap B)) -- The morphism map must send identities to identities. idPF : ∀{A} → ⟨ Hom ℂ₂ (omap A) (omap A) ⟩[ appT fmap (id ℂ₁) ≡ id ℂ₂ ] -- The morphism map must respect composition. compPF : ∀{A B C}{f : el (Hom ℂ₁ A B)}{g : el (Hom ℂ₁ B C)} → ⟨ Hom ℂ₂ (omap A) (omap C) ⟩[ appT fmap (f ○[ comp ℂ₁ ] g) ≡ (appT fmap f) ○[ comp ℂ₂ ] (appT fmap g) ] open Functor public
{ "alphanum_fraction": 0.5575757576, "avg_line_length": 35, "ext": "agda", "hexsha": "493af1af717ad117d3487de0512c8cc0b0c4f44d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "setoid-cats/Category/Funct.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "setoid-cats/Category/Funct.agda", "max_line_length": 137, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "setoid-cats/Category/Funct.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 361, "size": 1155 }
------------------------------------------------------------------------------ -- The alternating bit protocol (ABP) is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of the ABP by simplifing the -- formalization in Dybjer and Sander (1989) using a stronger (maybe -- invalid) co-induction principle. module FOT.FOTC.Program.ABP.StrongerInductionPrinciple.CorrectnessProofATP where open import FOT.FOTC.Relation.Binary.Bisimilarity.Type open import FOT.FOTC.Program.ABP.StrongerInductionPrinciple.LemmaATP open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Stream.Type open import FOTC.Data.Stream.Equality.PropertiesATP open import FOTC.Program.ABP.ABP hiding ( B ) open import FOTC.Program.ABP.Fair.Type open import FOTC.Program.ABP.Terms open import FOTC.Relation.Binary.Bisimilarity.Type ------------------------------------------------------------------------------ postulate helper : ∀ b i' is' os₁ os₂ → S b (i' ∷ is') os₁ os₂ (has (send b) (ack b) (out b) (corrupt os₁) (corrupt os₂) (i' ∷ is')) (hbs (send b) (ack b) (out b) (corrupt os₁) (corrupt os₂) (i' ∷ is')) (hcs (send b) (ack b) (out b) (corrupt os₁) (corrupt os₂) (i' ∷ is')) (hds (send b) (ack b) (out b) (corrupt os₁) (corrupt os₂) (i' ∷ is')) (abpTransfer b os₁ os₂ (i' ∷ is')) {-# ATP prove helper #-} -- Main theorem. -- See Issue https://github.com/asr/apia/issues/81 . abpCorrectB : D → D → Set abpCorrectB xs ys = xs ≡ xs {-# ATP definition abpCorrectB #-} abpCorrect : ∀ {b is os₁ os₂} → Bit b → Stream is → Fair os₁ → Fair os₂ → is ≈ abpTransfer b os₁ os₂ is abpCorrect {b} {is} {os₁} {os₂} Bb Sis Fos₁ Fos₂ = ≈-stronger-coind abpCorrectB h refl where postulate h : abpCorrectB is (abpTransfer b os₁ os₂ is) → ∃[ i' ] ∃[ is' ] ∃[ js' ] is ≡ i' ∷ is' ∧ abpTransfer b os₁ os₂ is ≡ i' ∷ js' ∧ abpCorrectB is' js' {-# ATP prove h helper lemma #-} ------------------------------------------------------------------------------ -- abpTransfer produces a Stream. postulate abpTransfer-Stream : ∀ {b is os₁ os₂} → Bit b → Stream is → Fair os₁ → Fair os₂ → Stream (abpTransfer b os₁ os₂ is) {-# ATP prove abpTransfer-Stream ≈→Stream₂ abpCorrect #-} ------------------------------------------------------------------------------ -- References -- -- Dybjer, Peter and Sander, Herbert P. (1989). A Functional -- Programming Approach to the Specification and Verification of -- Concurrent Systems. Formal Aspects of Computing 1, pp. 303–319.
{ "alphanum_fraction": 0.5444790585, "avg_line_length": 38.0131578947, "ext": "agda", "hexsha": "ac127576061b40e84fec8875df67635bee0e4e39", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Program/ABP/StrongerInductionPrinciple/CorrectnessProofATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Program/ABP/StrongerInductionPrinciple/CorrectnessProofATP.agda", "max_line_length": 86, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Program/ABP/StrongerInductionPrinciple/CorrectnessProofATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 809, "size": 2889 }
module Syntax where open import Stack public -- Abstract symbols, or atoms. abstract Atom : Set Atom = Nat -- Types, or propositions in constructive modal logic S4. infixl 9 _⩕_ infixl 8 _⩖_ infixr 7 _⇒_ data Type : Set where α_ : Atom → Type _⇒_ : Type → Type → Type □_ : Type → Type _⩕_ : Type → Type → Type ⫪ : Type ⫫ : Type _⩖_ : Type → Type → Type ⫬_ : Type → Type ⫬ A = A ⇒ ⫫ -- Contexts, or stack pairs of types. Context : Set Context = Stack² Type Type -- Derivations, or syntactic entailment. infix 3 _⊢_ data _⊢_ : Context → Type → Set where var : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ A mvar : ∀ {A Γ Δ} → A ∈ Δ → Γ ⁏ Δ ⊢ A lam : ∀ {A B Γ Δ} → Γ , A ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ⇒ B app : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ⇒ B → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B box : ∀ {A Γ Δ} → ∅ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ □ A unbox : ∀ {A C Γ Δ} → Γ ⁏ Δ ⊢ □ A → Γ ⁏ Δ , A ⊢ C → Γ ⁏ Δ ⊢ C pair : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ⩕ B fst : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ⩕ B → Γ ⁏ Δ ⊢ A snd : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A ⩕ B → Γ ⁏ Δ ⊢ B unit : ∀ {Γ Δ} → Γ ⁏ Δ ⊢ ⫪ boom : ∀ {C Γ Δ} → Γ ⁏ Δ ⊢ ⫫ → Γ ⁏ Δ ⊢ C left : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ A ⩖ B right : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ B → Γ ⁏ Δ ⊢ A ⩖ B case : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ A ⩖ B → Γ , A ⁏ Δ ⊢ C → Γ , B ⁏ Δ ⊢ C → Γ ⁏ Δ ⊢ C -- Shorthand for variables. v₀ : ∀ {Γ Δ A} → Γ , A ⁏ Δ ⊢ A v₀ = var i₀ v₁ : ∀ {Γ Δ A B} → Γ , A , B ⁏ Δ ⊢ A v₁ = var i₁ v₂ : ∀ {Γ Δ A B C} → Γ , A , B , C ⁏ Δ ⊢ A v₂ = var i₂ mv₀ : ∀ {Γ Δ A} → Γ ⁏ Δ , A ⊢ A mv₀ = mvar i₀ mv₁ : ∀ {Γ Δ A B} → Γ ⁏ Δ , A , B ⊢ A mv₁ = mvar i₁ mv₂ : ∀ {Γ Δ A B C} → Γ ⁏ Δ , A , B , C ⊢ A mv₂ = mvar i₂ -- Stacks of derivations, or simultaneous syntactic entailment. infix 3 _⊢⋆_ _⊢⋆_ : Context → Stack Type → Set Γ ⁏ Δ ⊢⋆ ∅ = ⊤ Γ ⁏ Δ ⊢⋆ Ξ , A = Γ ⁏ Δ ⊢⋆ Ξ ∧ Γ ⁏ Δ ⊢ A -- Monotonicity of syntactic entailment with respect to context inclusion. mono⊢ : ∀ {Γ Γ′ Δ Δ′ A} → Γ ⁏ Δ ⊆² Γ′ ⁏ Δ′ → Γ ⁏ Δ ⊢ A → Γ′ ⁏ Δ′ ⊢ A mono⊢ (η , ρ) (var i) = var (mono∈ η i) mono⊢ (η , ρ) (mvar i) = mvar (mono∈ ρ i) mono⊢ (η , ρ) (lam d) = lam (mono⊢ (keep η , ρ) d) mono⊢ ψ (app d e) = app (mono⊢ ψ d) (mono⊢ ψ e) mono⊢ (η , ρ) (box d) = box (mono⊢ (bot , ρ) d) mono⊢ (η , ρ) (unbox d e) = unbox (mono⊢ (η , ρ) d) (mono⊢ (η , keep ρ) e) mono⊢ ψ (pair d e) = pair (mono⊢ ψ d) (mono⊢ ψ e) mono⊢ ψ (fst d) = fst (mono⊢ ψ d) mono⊢ ψ (snd d) = snd (mono⊢ ψ d) mono⊢ ψ unit = unit mono⊢ ψ (boom d) = boom (mono⊢ ψ d) mono⊢ ψ (left d) = left (mono⊢ ψ d) mono⊢ ψ (right d) = right (mono⊢ ψ d) mono⊢ (η , ρ) (case d e f) = case (mono⊢ (η , ρ) d) (mono⊢ (keep η , ρ) e) (mono⊢ (keep η , ρ) f) mono⊢⋆ : ∀ {Ξ Γ Γ′ Δ Δ′} → Γ ⁏ Δ ⊆² Γ′ ⁏ Δ′ → Γ ⁏ Δ ⊢⋆ Ξ → Γ′ ⁏ Δ′ ⊢⋆ Ξ mono⊢⋆ {∅} ψ ∙ = ∙ mono⊢⋆ {Ξ , A} ψ (ξ , d) = mono⊢⋆ ψ ξ , mono⊢ ψ d -- Reflexivity of simultaneous syntactic entailment. refl⊢⋆ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢⋆ Γ refl⊢⋆ {∅} = ∙ refl⊢⋆ {Γ , A} = mono⊢⋆ (weak⊆ , refl⊆) refl⊢⋆ , v₀ mrefl⊢⋆ : ∀ {Δ Γ} → Γ ⁏ Δ ⊢⋆ Δ mrefl⊢⋆ {∅} = ∙ mrefl⊢⋆ {Δ , A} = mono⊢⋆ (refl⊆ , weak⊆) mrefl⊢⋆ , mv₀ -- Grafting of derivation trees, or simultaneous substitution, or cut. graft∈ : ∀ {Ξ Γ Δ C} → Γ ⁏ Δ ⊢⋆ Ξ → C ∈ Ξ → Γ ⁏ Δ ⊢ C graft∈ (ξ , d) top = d graft∈ (ξ , d) (pop i) = graft∈ ξ i graft⊢ : ∀ {Γ Γ′ Δ Δ′ C} → Γ′ ⁏ Δ′ ⊢⋆ Γ → ∅ ⁏ Δ′ ⊢⋆ Δ → Γ ⁏ Δ ⊢ C → Γ′ ⁏ Δ′ ⊢ C graft⊢ σ τ (var i) = graft∈ σ i graft⊢ σ τ (mvar i) = mono⊢ (bot , refl⊆) (graft∈ τ i) graft⊢ σ τ (lam d) = lam (graft⊢ (mono⊢⋆ (weak⊆ , refl⊆) σ , v₀) τ d) graft⊢ σ τ (app d e) = app (graft⊢ σ τ d) (graft⊢ σ τ e) graft⊢ σ τ (box d) = box (graft⊢ ∙ τ d) graft⊢ σ τ (unbox d e) = unbox (graft⊢ σ τ d) (graft⊢ (mono⊢⋆ (refl⊆ , weak⊆) σ) (mono⊢⋆ (refl⊆ , weak⊆) τ , mv₀) e) graft⊢ σ τ (pair d e) = pair (graft⊢ σ τ d) (graft⊢ σ τ e) graft⊢ σ τ (fst d) = fst (graft⊢ σ τ d) graft⊢ σ τ (snd d) = snd (graft⊢ σ τ d) graft⊢ σ τ unit = unit graft⊢ σ τ (boom d) = boom (graft⊢ σ τ d) graft⊢ σ τ (left d) = left (graft⊢ σ τ d) graft⊢ σ τ (right d) = right (graft⊢ σ τ d) graft⊢ σ τ (case d e f) = case (graft⊢ σ τ d) (graft⊢ (mono⊢⋆ (weak⊆ , refl⊆) σ , v₀) τ e) (graft⊢ (mono⊢⋆ (weak⊆ , refl⊆) σ , v₀) τ f) -- Derivations, or syntactic entailment, in normal form. mutual infix 3 _⊢ⁿᶠ_ data _⊢ⁿᶠ_ : Context → Type → Set where lamⁿᶠ : ∀ {A B Γ Δ} → Γ , A ⁏ Δ ⊢ⁿᶠ B → Γ ⁏ Δ ⊢ⁿᶠ A ⇒ B boxⁿᶠ : ∀ {A Γ Δ} → ∅ ⁏ Δ ⊢ A → Γ ⁏ Δ ⊢ⁿᶠ □ A pairⁿᶠ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᶠ B → Γ ⁏ Δ ⊢ⁿᶠ A ⩕ B unitⁿᶠ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ ⫪ leftⁿᶠ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᶠ A ⩖ B rightⁿᶠ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᶠ B → Γ ⁏ Δ ⊢ⁿᶠ A ⩖ B neⁿᶠ : ∀ {A Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A → Γ ⁏ Δ ⊢ⁿᶠ A infix 3 _⊢ⁿᵉ_ data _⊢ⁿᵉ_ : Context → Type → Set where varⁿᵉ : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ ⊢ⁿᵉ A mvarⁿᵉ : ∀ {A Γ Δ} → A ∈ Δ → Γ ⁏ Δ ⊢ⁿᵉ A appⁿᵉ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A ⇒ B → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ⁿᵉ B unboxⁿᵉ : ∀ {A C Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ □ A → Γ ⁏ Δ , A ⊢ⁿᶠ C → Γ ⁏ Δ ⊢ⁿᵉ C fstⁿᵉ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A ⩕ B → Γ ⁏ Δ ⊢ⁿᵉ A sndⁿᵉ : ∀ {A B Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A ⩕ B → Γ ⁏ Δ ⊢ⁿᵉ B boomⁿᵉ : ∀ {C Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ ⫫ → Γ ⁏ Δ ⊢ⁿᵉ C caseⁿᵉ : ∀ {A B C Γ Δ} → Γ ⁏ Δ ⊢ⁿᵉ A ⩖ B → Γ , A ⁏ Δ ⊢ⁿᶠ C → Γ , B ⁏ Δ ⊢ⁿᶠ C → Γ ⁏ Δ ⊢ⁿᵉ C -- Shorthand for variables. v₀ⁿᵉ : ∀ {Γ Δ A} → Γ , A ⁏ Δ ⊢ⁿᵉ A v₀ⁿᵉ = varⁿᵉ top mv₀ⁿᵉ : ∀ {Γ Δ A} → Γ ⁏ Δ , A ⊢ⁿᵉ A mv₀ⁿᵉ = mvarⁿᵉ top -- Stacks of derivations, or simultaneous syntactic entailment, in normal form. infix 3 _⊢⋆ⁿᵉ_ _⊢⋆ⁿᵉ_ : Context → Stack Type → Set Γ ⁏ Δ ⊢⋆ⁿᵉ ∅ = ⊤ Γ ⁏ Δ ⊢⋆ⁿᵉ Ξ , A = Γ ⁏ Δ ⊢⋆ⁿᵉ Ξ ∧ Γ ⁏ Δ ⊢ⁿᵉ A -- Translation from normal form to arbitrary form. mutual nf→af : ∀ {Γ Δ A} → Γ ⁏ Δ ⊢ⁿᶠ A → Γ ⁏ Δ ⊢ A nf→af (neⁿᶠ d) = ne→af d nf→af (lamⁿᶠ d) = lam (nf→af d) nf→af (boxⁿᶠ d) = box d nf→af (pairⁿᶠ d e) = pair (nf→af d) (nf→af e) nf→af unitⁿᶠ = unit nf→af (leftⁿᶠ d) = left (nf→af d) nf→af (rightⁿᶠ d) = right (nf→af d) ne→af : ∀ {Γ Δ A} → Γ ⁏ Δ ⊢ⁿᵉ A → Γ ⁏ Δ ⊢ A ne→af (varⁿᵉ i) = var i ne→af (mvarⁿᵉ i) = mvar i ne→af (appⁿᵉ d e) = app (ne→af d) (nf→af e) ne→af (unboxⁿᵉ d e) = unbox (ne→af d) (nf→af e) ne→af (fstⁿᵉ d) = fst (ne→af d) ne→af (sndⁿᵉ d) = snd (ne→af d) ne→af (boomⁿᵉ d) = boom (ne→af d) ne→af (caseⁿᵉ d e f) = case (ne→af d) (nf→af e) (nf→af f) -- Monotonicity of syntactic entailment with respect to context inclusion, in normal form. mutual mono⊢ⁿᶠ : ∀ {Γ Γ′ Δ Δ′ A} → Γ ⁏ Δ ⊆² Γ′ ⁏ Δ′ → Γ ⁏ Δ ⊢ⁿᶠ A → Γ′ ⁏ Δ′ ⊢ⁿᶠ A mono⊢ⁿᶠ (η , ρ) (lamⁿᶠ d) = lamⁿᶠ (mono⊢ⁿᶠ (keep η , ρ) d) mono⊢ⁿᶠ (η , ρ) (boxⁿᶠ d) = boxⁿᶠ (mono⊢ (bot , ρ) d) mono⊢ⁿᶠ ψ (pairⁿᶠ d e) = pairⁿᶠ (mono⊢ⁿᶠ ψ d) (mono⊢ⁿᶠ ψ e) mono⊢ⁿᶠ ψ unitⁿᶠ = unitⁿᶠ mono⊢ⁿᶠ ψ (leftⁿᶠ d) = leftⁿᶠ (mono⊢ⁿᶠ ψ d) mono⊢ⁿᶠ ψ (rightⁿᶠ d) = rightⁿᶠ (mono⊢ⁿᶠ ψ d) mono⊢ⁿᶠ ψ (neⁿᶠ d) = neⁿᶠ (mono⊢ⁿᵉ ψ d) mono⊢ⁿᵉ : ∀ {Γ Γ′ Δ Δ′ A} → Γ ⁏ Δ ⊆² Γ′ ⁏ Δ′ → Γ ⁏ Δ ⊢ⁿᵉ A → Γ′ ⁏ Δ′ ⊢ⁿᵉ A mono⊢ⁿᵉ (η , ρ) (varⁿᵉ i) = varⁿᵉ (mono∈ η i) mono⊢ⁿᵉ (η , ρ) (mvarⁿᵉ i) = mvarⁿᵉ (mono∈ ρ i) mono⊢ⁿᵉ ψ (appⁿᵉ d e) = appⁿᵉ (mono⊢ⁿᵉ ψ d) (mono⊢ⁿᶠ ψ e) mono⊢ⁿᵉ (η , ρ) (unboxⁿᵉ d e) = unboxⁿᵉ (mono⊢ⁿᵉ (η , ρ) d) (mono⊢ⁿᶠ (η , keep ρ) e) mono⊢ⁿᵉ ψ (fstⁿᵉ d) = fstⁿᵉ (mono⊢ⁿᵉ ψ d) mono⊢ⁿᵉ ψ (sndⁿᵉ d) = sndⁿᵉ (mono⊢ⁿᵉ ψ d) mono⊢ⁿᵉ ψ (boomⁿᵉ d) = boomⁿᵉ (mono⊢ⁿᵉ ψ d) mono⊢ⁿᵉ (η , ρ) (caseⁿᵉ d e f) = caseⁿᵉ (mono⊢ⁿᵉ (η , ρ) d) (mono⊢ⁿᶠ (keep η , ρ) e) (mono⊢ⁿᶠ (keep η , ρ) f) mono⊢⋆ⁿᵉ : ∀ {Ξ Γ Γ′ Δ Δ′} → Γ ⁏ Δ ⊆² Γ′ ⁏ Δ′ → Γ ⁏ Δ ⊢⋆ⁿᵉ Ξ → Γ′ ⁏ Δ′ ⊢⋆ⁿᵉ Ξ mono⊢⋆ⁿᵉ {∅} ψ ∙ = ∙ mono⊢⋆ⁿᵉ {Ξ , A} ψ (ξ , d) = mono⊢⋆ⁿᵉ ψ ξ , mono⊢ⁿᵉ ψ d -- Reflexivity of simultaneous syntactic entailment, in normal form. refl⊢⋆ⁿᵉ : ∀ {Γ Δ} → Γ ⁏ Δ ⊢⋆ⁿᵉ Γ refl⊢⋆ⁿᵉ {∅} = ∙ refl⊢⋆ⁿᵉ {Γ , A} = mono⊢⋆ⁿᵉ (weak⊆ , refl⊆) refl⊢⋆ⁿᵉ , v₀ⁿᵉ mrefl⊢⋆ⁿᵉ : ∀ {Δ Γ} → Γ ⁏ Δ ⊢⋆ⁿᵉ Δ mrefl⊢⋆ⁿᵉ {∅} = ∙ mrefl⊢⋆ⁿᵉ {Δ , A} = mono⊢⋆ⁿᵉ (refl⊆ , weak⊆) mrefl⊢⋆ⁿᵉ , mv₀ⁿᵉ
{ "alphanum_fraction": 0.44749021, "avg_line_length": 33.9798387097, "ext": "agda", "hexsha": "792b7758ae757ab9b79b99ee58dfa5e015cdee24", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/imla2017", "max_forks_repo_path": "src/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/imla2017", "max_issues_repo_path": "src/Syntax.agda", "max_line_length": 95, "max_stars_count": 17, "max_stars_repo_head_hexsha": "accc6c57390c435728d568ae590a02b2776b8891", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/imla2017", "max_stars_repo_path": "src/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-17T13:02:58.000Z", "max_stars_repo_stars_event_min_datetime": "2017-02-27T05:04:55.000Z", "num_tokens": 5242, "size": 8427 }