max_stars_repo_path
stringlengths 3
269
| max_stars_repo_name
stringlengths 4
119
| max_stars_count
int64 0
191k
| id
stringlengths 1
7
| content
stringlengths 6
1.05M
| score
float64 0.23
5.13
| int_score
int64 0
5
|
---|---|---|---|---|---|---|
ui_mant_libros.py | edzzn/Manejo_Liberia | 0 | 3100 | from PyQt4 import QtGui
from ui_mant_libros_new import NewLibrosWindow
from ui_mant_libros_edit import EditLibrosWindow
from ui_mant_libros_id_edit import GetIdEditWindow
# Debug only
import inspect
class MenuLibros(QtGui.QWidget):
"""
Ventana-menu para editar Libros
"""
def __init__(self):
super(MenuLibros, self).__init__()
self.createButtons()
self.setWindowTitle('Mantenimiento Libros')
self.setWindowIcon(QtGui.QIcon('images/user-plus.png'))
self.setWindowTitle("Mantenimiento Libros")
self.setGeometry(650, 300, 150, 100)
def createButtons(self):
btn_new_libros = QtGui.QPushButton('Nuevo')
btn_new_libros.clicked.connect(self.open_new_libros_window)
btn_edit_libros = QtGui.QPushButton('Editar')
btn_edit_libros.clicked.connect(self.open_edit_libros_window)
btn_list_libros = QtGui.QPushButton('Listar')
btn_list_libros.clicked.connect(self.close)
btn_delete_libros = QtGui.QPushButton('Eliminar')
btn_delete_libros.clicked.connect(self.close)
hbox = QtGui.QHBoxLayout()
hbox.addWidget(btn_new_libros)
hbox.addWidget(btn_edit_libros)
hbox.addWidget(btn_list_libros)
hbox.addWidget(btn_delete_libros)
vbox = QtGui.QVBoxLayout()
vbox.addLayout(hbox)
self.setLayout(vbox)
def open_new_libros_window(self):
self.new_libros_view = NewLibrosWindow()
self.new_libros_view.show()
print(inspect.stack()[0][3])
self.close()
def open_edit_libros_window(self):
self.edit_libros_view = GetIdEditWindow()
self.edit_libros_view.show()
print(inspect.stack()[0][3])
self.close()
def open_list_reserva_window(self):
# self.new_reserva_view = NewReserva()
# self.new_reserva_view.show()
print(inspect.stack()[0][3])
self.close()
def open_delete_reserva_window(self):
# self.new_reserva_view = NewReserva()
# self.new_reserva_view.show()
print(inspect.stack()[0][3])
self.close()
if __name__ == '__main__':
import sys
app = QtGui.QApplication(sys.argv)
mainWin = MenuLibros()
mainWin.show()
sys.exit(app.exec_())
| 2.28125 | 2 |
env/gym_poker_ai/envs/tests/holdem_calc/holdem_argparser.py | MrStonkus/PokerAi | 0 | 3101 | <reponame>MrStonkus/PokerAi<gh_stars>0
import argparse
import re
import holdem_calc.holdem_functions as holdem_functions
# Wrapper class which holds the arguments for library calls
# Mocks actual argparse object
class LibArgs:
def __init__(self, board, exact, num, input_file, hole_cards):
self.board = board
self.cards = hole_cards
self.n = num
self.input = input_file
self.exact = exact
# Parses arguments passed to holdem_calc as a library call
def parse_lib_args(args):
error_check_arguments(args)
# Parse hole cards and board
hole_cards, board = None, None
if not args.input:
hole_cards, board = parse_cards(args.cards, args.board)
return hole_cards, args.n, args.exact, board, args.input
# Parses command line arguments to holdem_calc
def parse_args():
# Define possible command line arguments
parser = argparse.ArgumentParser(
description="Find the odds that a Texas Hold'em hand will win. Note "
"that cards must be given in the following format: As, Jc, Td, 3h.")
parser.add_argument("cards", nargs="*", type=str, metavar="hole card",
help="Hole cards you want to find the odds for.")
parser.add_argument("-b", "--board", nargs="*", type=str, metavar="card",
help="Add board cards")
parser.add_argument("-e", "--exact", action="store_true",
help="Find exact odds by enumerating every possible "
"board")
parser.add_argument("-n", type=int, default=100000,
help="Run N Monte Carlo simulations")
parser.add_argument("-i", "--input", type=str,
help="Read hole cards and boards from an input file. "
"Commandline arguments for hole cards and board will "
"be ignored")
# Parse command line arguments and check for errors
args = parser.parse_args()
error_check_arguments(args)
# Parse hole cards and board
hole_cards, board = None, None
if not args.input:
hole_cards, board = parse_cards(args.cards, args.board)
return hole_cards, args.n, args.exact, board, args.input
# Parses a line taken from the input file and returns the hole cards and board
def parse_file_args(line):
if line is None or len(line) == 0:
print(line)
print("Invalid format")
exit()
values = line.split("|")
if len(values) > 2 or len(values) < 1:
print(line)
print("Invalid format")
exit()
hole_cards = values[0].split()
all_cards = list(hole_cards)
board = None
if len(values) == 2:
board = values[1].split()
all_cards.extend(board)
error_check_cards(all_cards)
return parse_cards(hole_cards, board)
# Parses hole cards and board
def parse_cards(cards, board):
hole_cards = create_hole_cards(cards)
if board:
board = parse_board(board)
return hole_cards, board
# Error check the command line arguments
def error_check_arguments(args):
# Check that the number of Monte Carlo simulations is a positive number
if args.n <= 0:
print("Number of Monte Carlo simulations must be positive.")
exit()
# Check that we can open the specified input file
if args.input:
file_name = args.input
try:
input_file = open(file_name, 'r')
input_file.close()
except IOError:
print("Error opening file " + file_name)
exit()
# Check to make sure all cards are of a valid format
all_cards = list(args.cards)
if args.board:
all_cards.extend(args.board)
error_check_cards(all_cards)
# Error check the command line arguments
def error_check_arguments(args):
# Check that the number of Monte Carlo simulations is a positive number
if args.n <= 0:
print("Number of Monte Carlo simulations must be positive.")
exit()
# Check that we can open the specified input file
if args.input:
file_name = args.input
try:
input_file = open(file_name, 'r')
input_file.close()
except IOError:
print("Error opening file " + file_name)
exit()
# Check to make sure all cards are of a valid format
all_cards = list(args.cards)
if args.board:
all_cards.extend(args.board)
error_check_cards(all_cards)
# Checking that the hole cards + board are formatted properly and unique
def error_check_cards(all_cards):
card_re = re.compile('[AKQJT98765432][scdh]')
for card in all_cards:
if card != "?" and not card_re.match(card):
print("Invalid card given.")
exit()
else:
if all_cards.count(card) != 1 and card != "?":
print("The cards given must be unique.")
exit()
# Returns tuple of two-tuple hole_cards: e.g. ((As, Ks), (Ad, Kd), (Jh, Th))
def create_hole_cards(raw_hole_cards):
# Checking that there are an even number of hole cards
if (raw_hole_cards is None or len(raw_hole_cards) < 2 or
len(raw_hole_cards) % 2):
print("You must provide a non-zero even number of hole cards")
exit()
# Create two-tuples out of hole cards
hole_cards, current_hole_cards = [], []
for hole_card in raw_hole_cards:
if hole_card != "?":
current_card = holdem_functions.Card(hole_card)
current_hole_cards.append(current_card)
else:
current_hole_cards.append(None)
if len(current_hole_cards) == 2:
if None in current_hole_cards:
if (current_hole_cards[0] is not None or
current_hole_cards[1] is not None):
print("Unknown hole cards must come in pairs")
exit()
hole_cards.append((current_hole_cards[0], current_hole_cards[1]))
current_hole_cards = []
if hole_cards.count((None, None)) > 1:
print("Can only have one set of unknown hole cards")
return tuple(hole_cards)
# Returns list of board cards: e.g. [As Ks Ad Kd]
def parse_board(board):
if len(board) > 5 or len(board) < 3:
print("Board must have a length of 3, 4, or 5.")
exit()
if "?" in board:
print("Board cannot have unknown cards")
exit()
return create_cards(board)
# Instantiates new cards from the arguments and returns them in a tuple
def create_cards(card_strings):
return [holdem_functions.Card(arg) for arg in card_strings]
| 3.296875 | 3 |
qbay/controllers.py | KarlDorogy/Cisc-327-Course-Project-Group-20 | 0 | 3102 | from flask import render_template, request, session, redirect
from qbay.models import *
from datetime import date
from qbay import app
def authenticate(inner_function):
"""
:param inner_function: any python function that accepts a user object
Wrap any python function and check the current session to see if
the user has logged in. If login, it will call the inner_function
with the logged in user object.
To wrap a function, we can put a decoration on that function.
Example:
@authenticate
def home_page(user):
pass
"""
def wrapped_inner():
# check did we store the key in the session
if 'logged_in' in session:
email = session['logged_in']
try:
user = User.query.filter_by(email=email).one_or_none()
if user:
# if the user exists, call the inner_function
# with user as parameter
return inner_function(user)
except Exception:
return redirect('/login')
else:
# else, redirect to the login page
return redirect('/login')
# return the wrapped version of the inner_function:
return wrapped_inner
@app.route('/login', methods=['GET'])
def login_get():
return render_template('login.html', message='Please login')
@app.route('/login', methods=['POST'])
def login_post():
email = request.form.get('email')
password = request.form.get('password')
user = login(email, password)
if user:
session['logged_in'] = user.email
"""
Session is an object that contains sharing information
between a user's browser and the end server.
Typically it is packed and stored in the browser cookies.
They will be past along between every request the browser made
to this services. Here we store the user object into the
session, so we can tell if the client has already login
in the following sessions.
"""
# success! go back to the home page
# code 303 is to force a 'GET' request
return redirect('/', code=303)
else:
return render_template('login.html', message='login failed')
@app.route('/')
@authenticate
def home(user):
# gets a list of products that the logged in user owns
user_products = get_products(user.email)
# gets list of user purchased products
products = get_transaction(user.email)
return render_template('index.html', user=user,
owned_products=user_products, orders=products)
@app.route('/register', methods=['GET'])
def register_get():
# templates are stored in the templates folder
return render_template('register.html', message='')
@app.route('/register', methods=['POST'])
def register_post():
email = request.form.get('email')
name = request.form.get('name')
password = request.form.get('password')
password2 = request.form.get('password2')
error_message = None
if password != <PASSWORD>:
error_message = "The passwords do not match"
else:
# use backend api to register the user
success = register(name, email, password)
if not success:
error_message = "Registration Failed."
# if there is any error messages when registering new user
# at the backend, go back to the register page.
if error_message:
return render_template('register.html', message=error_message)
else:
return redirect('/login')
@app.route('/updateuser', methods=['Get'])
def update_user_get():
return render_template('updateuser.html',
message='Please enter new info below:')
@app.route('/updateuser', methods=['POST'])
def update_user_post():
# retrieves current logged in user's email
user_email = session['logged_in']
name = request.form.get('name')
shipping_address = request.form.get('shippingaddress')
postal_code = request.form.get('postalcode')
error_message = None
# use backend api to update the user attributes
success = update_user(user_email, name, shipping_address, postal_code)
if not success:
error_message = "Updating of User Profile Failed."
# if there is any error messages when updateing user profile
# at the backend, go back to the update page.
if error_message:
return render_template('updateuser.html', message=error_message)
else:
return redirect('/', code=303)
@app.route('/updateproduct', methods=['Get'])
def update_product_get():
return render_template('updateproduct.html',
message="Please enter new product info below:",
pName=request.args.get('pName'))
@app.route('/updateproduct', methods=['POST'])
def update_product_post():
new_price = int(request.form.get('new_price'))
new_title = request.form.get('new_title')
new_description = request.form.get('new_description')
title = request.form.get('title')
# use backend api to update the user attributes
success = update_product(new_price, new_title, new_description, title)
error_message = None
if not success:
error_message = "Product Update Failed"
# if there is any error messages when creating a product
# at the backend, go back to the create product page.
if error_message:
return render_template('updateproduct.html', message=error_message,
pName=request.args.get('pName'))
else:
return redirect('/', code=303)
@app.route('/createproduct', methods=['Get'])
def create_product_get():
return render_template('createproduct.html',
message='Please enter product info below:')
@app.route('/createproduct', methods=['POST'])
def create_product_post():
# retrieves current logged in user's email
owner_email = session['logged_in']
today = date.today()
current_date = today.strftime("%d/%m/%Y")
last_modified_date = (current_date[6:10] +
"-" + current_date[3:5] + "-" + current_date[0:2])
price = int(request.form.get('price'))
title = request.form.get('title')
description = request.form.get('description')
error_message = None
# use backend api to update the user attributes
success = create_product(price, title, description,
last_modified_date, owner_email)
if not success:
error_message = "Product Creation Failed."
# if there is any error messages when creating a product
# at the backend, go back to the create product page.
if error_message:
return render_template('createproduct.html', message=error_message)
else:
return redirect('/', code=303)
@app.route('/listings', methods=['GET'])
def available_products_get():
# retrieves current logged in user's email
user_email = session['logged_in']
# gets other user products that are available to purchase
products = get_listings(user_email)
return render_template('available_products.html',
available_products=products)
@app.route('/placeorder', methods=['GET'])
def place_order_get():
return render_template('placeorder.html',
message="Please confirm the purchase below:",
pTitle=request.args.get('pTitle'),
pPrice=request.args.get('pPrice'))
@app.route('/placeorder', methods=['POST'])
def place_order_post():
new_owner = session['logged_in']
product_title = request.args.get('pTitle')
# use backend api to place the product order
success = place_order(new_owner, product_title)
error_message = None
if not success:
error_message = "Placing Order Failed"
# if there is any error messages when ordering product
# at the backend, go back to the available product listings page.
if error_message:
return render_template('available_products.html',
message=error_message)
else:
return redirect('/', code=303)
@app.route('/logout')
def logout():
if 'logged_in' in session:
session.pop('logged_in', None)
return redirect('/')
| 3.484375 | 3 |
gbfs/serializers.py | stadtulm/cykel | 80 | 3103 | <gh_stars>10-100
from datetime import timedelta
from django.utils.timezone import now
from preferences import preferences
from rest_framework import fields, serializers
from bikesharing.models import Bike, Station, VehicleType
from cykel.serializers import EnumFieldSerializer
class TimestampSerializer(fields.CharField):
def to_representation(self, value):
return value.timestamp()
class GbfsFreeBikeStatusSerializer(serializers.HyperlinkedModelSerializer):
bike_id = serializers.CharField(source="non_static_bike_uuid", read_only=True)
vehicle_type_id = serializers.CharField(read_only=True)
last_reported = TimestampSerializer(read_only=True)
class Meta:
model = Bike
fields = (
"bike_id",
"vehicle_type_id",
"current_range_meters",
"last_reported",
)
def to_representation(self, instance):
representation = super().to_representation(instance)
# defined by GBFS 2.1: Only if the vehicle has a motor the field is required
if (
instance.vehicle_type is not None
and instance.vehicle_type.propulsion_type
== VehicleType.PropulsionType.HUMAN
):
representation.pop("current_range_meters")
# Default to False TODO: maybe configuration later
representation["is_reserved"] = False
# Default to False TODO: maybe configuration later
representation["is_disabled"] = False
public_geolocation = instance.public_geolocation()
if public_geolocation is not None:
pos = public_geolocation.geo
if pos and pos.x and pos.y:
representation["lat"] = pos.y
representation["lon"] = pos.x
return representation # only return bikes with public geolocation
class GbfsVehicleOnStationSerializer(GbfsFreeBikeStatusSerializer):
def to_representation(self, instance):
representation = super().to_representation(instance)
if representation is None:
return None
representation.pop("lat")
representation.pop("lon")
return representation
class GbfsStationInformationSerializer(serializers.HyperlinkedModelSerializer):
name = serializers.CharField(source="station_name", read_only=True)
capacity = serializers.IntegerField(source="max_bikes", read_only=True)
station_id = serializers.CharField(source="id", read_only=True)
class Meta:
model = Station
fields = (
"name",
"capacity",
"station_id",
)
def to_representation(self, instance):
representation = super().to_representation(instance)
if (
instance.location is not None
and instance.location.x
and instance.location.y
):
representation["lat"] = instance.location.y
representation["lon"] = instance.location.x
return representation
class GbfsStationStatusSerializer(serializers.HyperlinkedModelSerializer):
station_id = serializers.CharField(source="id", read_only=True)
vehicles = serializers.SerializerMethodField()
def get_vehicles(self, obj):
# if configured filter vehicles, where time report
# is older than configure allowed silent timeperiod
bsp = preferences.BikeSharePreferences
if bsp.gbfs_hide_bikes_after_location_report_silence:
available_bikes = obj.bike_set.filter(
availability_status=Bike.Availability.AVAILABLE,
last_reported__gte=now()
- timedelta(hours=bsp.gbfs_hide_bikes_after_location_report_hours),
)
else:
available_bikes = obj.bike_set.filter(
availability_status=Bike.Availability.AVAILABLE
)
vehicles = GbfsVehicleOnStationSerializer(available_bikes, many=True).data
return list(filter(lambda val: val is not None, vehicles))
class Meta:
model = Station
fields = (
"station_id",
"vehicles",
)
def to_representation(self, instance):
representation = super().to_representation(instance)
representation["num_bikes_available"] = len(representation["vehicles"])
representation["num_docks_available"] = (
instance.max_bikes - representation["num_bikes_available"]
)
if representation["num_bikes_available"] > 0:
representation["last_reported"] = max(
(
vehicle["last_reported"]
if vehicle["last_reported"] is not None
else 0
)
for vehicle in representation["vehicles"]
)
else:
# if no bike is at the station, last_report is the current time
# not sure if this is the intended behavior of the field
# or it should be the timestamp of the last bike removed
# but it is not so easy to implement
representation["last_reported"] = int(now().timestamp())
def drop_last_reported(obj):
obj.pop("last_reported")
return obj
representation["vehicles"] = list(
map(drop_last_reported, representation["vehicles"])
)
status = (instance.status == Station.Status.ACTIVE) or False
representation["is_installed"] = status
representation["is_renting"] = status
representation["is_returning"] = status
return representation
class GbfsVehicleTypeSerializer(serializers.HyperlinkedModelSerializer):
vehicle_type_id = serializers.CharField(source="id", read_only=True)
form_factor = EnumFieldSerializer(
read_only=True,
mapping={
VehicleType.FormFactor.BIKE: "bicycle",
VehicleType.FormFactor.ESCOOTER: "scooter",
VehicleType.FormFactor.CAR: "car",
VehicleType.FormFactor.MOPED: "moped",
VehicleType.FormFactor.OTHER: "other",
},
)
propulsion_type = EnumFieldSerializer(
read_only=True,
mapping={
VehicleType.PropulsionType.HUMAN: "human",
VehicleType.PropulsionType.ELECTRIC_ASSIST: "electric_assist",
VehicleType.PropulsionType.ELECTRIC: "electric",
VehicleType.PropulsionType.COMBUSTION: "combustion",
},
)
def to_representation(self, instance):
data = super(GbfsVehicleTypeSerializer, self).to_representation(instance)
# defined by GBFS 2.1: Only if the vehicle has a motor the field is required
if instance.propulsion_type == VehicleType.PropulsionType.HUMAN:
data.pop("max_range_meters")
return data
class Meta:
model = VehicleType
fields = (
"vehicle_type_id",
"form_factor",
"propulsion_type",
"max_range_meters",
"name",
)
| 2.140625 | 2 |
anime_downloader/extractors/vidstream.py | ngomile/anime-downloader | 2 | 3104 | import logging
import re
from anime_downloader.extractors.base_extractor import BaseExtractor
from anime_downloader.sites import helpers
logger = logging.getLogger(__name__)
class VidStream(BaseExtractor):
def _get_data(self):
QUALITIES = {
"360":[],
"480":[],
"720":[],
"1080":[],
}
url = self.url.replace('https:////','https://')
soup = helpers.get(url).text
regex = r'https://vidstreaming\.io/download\?[^"]*'
download = re.search(regex,soup).group()
soup = helpers.soupify(helpers.get(download))
links = soup.select('div.mirror_link')[0].select('div.dowload > a')
for a in QUALITIES:
for b in links:
if a in b.text:
QUALITIES[a].append(b.get('href'))
stream_url = QUALITIES[self.quality[:-1]][0] if QUALITIES != {"360":[],"480":[],"720":[],"1080":[],} else links[0].get('href') #In case nothing is found
return {
'stream_url': stream_url,
'referer': download
}
| 2.71875 | 3 |
gui/sum_v1/views.py | time-crunched/nlp-toolbox | 0 | 3105 | <filename>gui/sum_v1/views.py
import time
import os
from django.shortcuts import render, redirect
from django.http import JsonResponse
from django.views import View
from django.conf import settings
from .forms import File_uploadForm
from .models import File_upload, SummaryRes
from sim_v1.textsummary import TEXTSummary
summary_document_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)),'media','sum_v1','upload')
#summary_document_dir = r'C:\Users\ERDIG\Dropbox\Python\nlp_v1\media\sum_v1\upload'
summary_extraction_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)),'media','sum_v1','temp')
#summary_extraction_dir = r'C:\Users\ERDIG\Dropbox\Python\nlp_v1\media\sum_v1\temp'
summary_ratio = 0.01
class Upload(View):
def post(self, request):
time.sleep(1) # You don't need this line. This is just to delay the process so you can see the progress bar testing locally.
form = File_uploadForm(self.request.POST, self.request.FILES)
print(form.errors)
if form.is_valid():
document = form.save()
data = {'is_valid': True, 'name': document.file.name, 'url': document.file.url}
else:
data = {'is_valid': False}
return JsonResponse(data)
def get(self, request):
for document in File_upload.objects.all():
document.file.delete()
document.delete()
doc_list = File_upload.objects.all()
form = File_uploadForm()
return render(self.request, 'upload.html', {'documents': doc_list, 'form': form,})
def sum_words(request):
if request.method == 'POST':
form = File_uploadForm(request.POST)
if form.is_valid():
form.save()
sum_words = form.cleaned_data['sum_words']
request.session['sum_words'] = sum_words
else:
pass
else:
pass
return redirect('sum_v1:summarize')
def clear_database(request):
for document in File_upload.objects.all():
document.file.delete()
document.delete()
return redirect(request.POST.get('next'))
def Summarize(request):
SummaryRes.objects.all().delete()
summary_word_count = request.session['sum_words']
for document in os.listdir(summary_document_dir):
for filename in os.listdir(summary_extraction_dir):
os.remove(os.path.join(summary_extraction_dir, filename))
text_dir = os.path.join(summary_document_dir, document)
summary = TEXTSummary(text_dir, summary_extraction_dir, summary_ratio, summary_word_count)
summary.textextraction()
summary.summary()
SummaryRes.objects.create(doc = document, summary = summary.summary)
results = SummaryRes.objects.all()
return render(request, 'summarize.html', {'results': results})
| 2.171875 | 2 |
homeassistant/components/websocket_api/__init__.py | dannyqwertz/home-assistant | 4 | 3106 | <reponame>dannyqwertz/home-assistant
"""
Websocket based API for Home Assistant.
For more details about this component, please refer to the documentation at
https://developers.home-assistant.io/docs/external_api_websocket.html
"""
from homeassistant.core import callback
from homeassistant.loader import bind_hass
from . import commands, connection, const, decorators, http, messages
DOMAIN = const.DOMAIN
DEPENDENCIES = ('http',)
# Backwards compat / Make it easier to integrate
# pylint: disable=invalid-name
ActiveConnection = connection.ActiveConnection
BASE_COMMAND_MESSAGE_SCHEMA = messages.BASE_COMMAND_MESSAGE_SCHEMA
error_message = messages.error_message
result_message = messages.result_message
async_response = decorators.async_response
require_admin = decorators.require_admin
ws_require_user = decorators.ws_require_user
# pylint: enable=invalid-name
@bind_hass
@callback
def async_register_command(hass, command, handler, schema):
"""Register a websocket command."""
handlers = hass.data.get(DOMAIN)
if handlers is None:
handlers = hass.data[DOMAIN] = {}
handlers[command] = (handler, schema)
async def async_setup(hass, config):
"""Initialize the websocket API."""
hass.http.register_view(http.WebsocketAPIView)
commands.async_register_commands(hass)
return True
| 2.203125 | 2 |
test_app/settings.py | Lenders-Cooperative/Django-DocuSign | 0 | 3107 | <reponame>Lenders-Cooperative/Django-DocuSign<filename>test_app/settings.py
#
# Created on Tue Dec 21 2021
#
# Copyright (c) 2021 Lenders Cooperative, a division of Summit Technology Group, Inc.
#
"""
Django settings for test_app project.
Generated by 'django-admin startproject' using Django 3.1.7.
For more information on this file, see
https://docs.djangoproject.com/en/3.1/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/3.1/ref/settings/
"""
from pathlib import Path
import environ
env = environ.Env()
# Build paths inside the project like this: BASE_DIR / 'subdir'.
BASE_DIR = Path(__file__).resolve().parent.parent
# Quick-start development settings - unsuitable for production
# See https://docs.djangoproject.com/en/3.1/howto/deployment/checklist/
# SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = "<KEY>"
# SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True
ALLOWED_HOSTS = []
# Application definition
INSTALLED_APPS = [
"django.contrib.admin",
"django.contrib.auth",
"django.contrib.contenttypes",
"django.contrib.sessions",
"django.contrib.messages",
"django.contrib.staticfiles",
"los_docusign.apps.LosDocusignConfig",
"test_app.test_organization.apps.TestOrganizationConfig",
"django_lc_utils",
]
MIDDLEWARE = [
"django.middleware.security.SecurityMiddleware",
"django.contrib.sessions.middleware.SessionMiddleware",
"django.middleware.common.CommonMiddleware",
"django.middleware.csrf.CsrfViewMiddleware",
"django.contrib.auth.middleware.AuthenticationMiddleware",
"django.contrib.messages.middleware.MessageMiddleware",
"django.middleware.clickjacking.XFrameOptionsMiddleware",
]
ROOT_URLCONF = "test_app.urls"
TEMPLATES = [
{
"BACKEND": "django.template.backends.django.DjangoTemplates",
"DIRS": [],
"APP_DIRS": True,
"OPTIONS": {
"context_processors": [
"django.template.context_processors.debug",
"django.template.context_processors.request",
"django.contrib.auth.context_processors.auth",
"django.contrib.messages.context_processors.messages",
],
},
},
]
WSGI_APPLICATION = "test_app.wsgi.application"
# Database
# https://docs.djangoproject.com/en/3.1/ref/settings/#databases
DATABASES = {
"default": {
"ENGINE": "django.db.backends.postgresql_psycopg2",
"NAME": "docusign_new_poc",
"USER": "postgres",
"PASSWORD": "admin",
"HOST": "localhost",
"PORT": "5432",
}
}
# Password validation
# https://docs.djangoproject.com/en/3.1/ref/settings/#auth-password-validators
AUTH_PASSWORD_VALIDATORS = [
{
"NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator",
},
{
"NAME": "django.contrib.auth.password_validation.MinimumLengthValidator",
},
{
"NAME": "django.contrib.auth.password_validation.CommonPasswordValidator",
},
{
"NAME": "django.contrib.auth.password_validation.NumericPasswordValidator",
},
]
# Internationalization
# https://docs.djangoproject.com/en/3.1/topics/i18n/
LANGUAGE_CODE = "en-us"
TIME_ZONE = "UTC"
USE_I18N = True
USE_L10N = True
USE_TZ = True
# Static files (CSS, JavaScript, Images)
# https://docs.djangoproject.com/en/3.1/howto/static-files/
STATIC_URL = "/static/"
BASE_DIR = Path(__file__).resolve().parent
DOCUSIGN_API_ACCOUNT_ID = env(
"DOCUSIGN_API_ACCOUNT_ID", default="<Docusign API Account Id >"
)
DOCUSIGN_CLIENT_ID = env("DOCUSIGN_CLIENT_ID", default="<Docusign Client Id>")
DOCUSIGN_API_ENDPOINT = env(
"DOCUSIGN_API_ENDPOINT", default="https://demo.docusign.net/restapi/v2.1/accounts/"
)
DOCUSIGN_TOKEN_EXPIRY_IN_SECONDS = env("DOCUSIGN_TOKEN_EXPIRY_IN_SECONDS", default=3600)
DOCUSIGN_AUTHORIZATION_SERVER = env(
"DOCUSIGN_AUTHORIZATION_SERVER", default="account-d.docusign.com"
)
DOCUSIGN_PRIVATE_KEY_FILE = env(
"DOCUSIGN_PRIVATE_KEY_FILE",
default="<Private Key file data>",
)
DOCUSIGN_ENABLE_KBA = env("DOCUSIGN_ENABLE_KBA", default=False)
| 1.710938 | 2 |
tests/unit/ppr/test_search_query.py | doug-lovett/test-schemas-dl | 0 | 3108 | # Copyright © 2020 Province of British Columbia
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test Suite to ensure the PPR Search Query schema is valid.
"""
import copy
from registry_schemas import validate
from registry_schemas.example_data.ppr import SEARCH_QUERY
def test_valid_search_query_ind_debtor():
"""Assert that the schema is performing as expected for a search by individual debtor."""
query = copy.deepcopy(SEARCH_QUERY)
query['type'] = 'INDIVIDUAL_DEBTOR'
del query['criteria']['debtorName']['business']
del query['criteria']['value']
del query['clientReferenceId']
del query['startDateTime']
del query['endDateTime']
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert is_valid
def test_valid_search_query_bus_debtor():
"""Assert that the schema is performing as expected for a search by business debtor."""
query = copy.deepcopy(SEARCH_QUERY)
query['type'] = 'BUSINESS_DEBTOR'
del query['criteria']['debtorName']['first']
del query['criteria']['debtorName']['second']
del query['criteria']['debtorName']['last']
del query['criteria']['value']
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert is_valid
def test_valid_search_query_airdot():
"""Assert that the schema is performing as expected for a search by aircraft DOT."""
query = copy.deepcopy(SEARCH_QUERY)
query['type'] = 'AIRCRAFT_DOT'
del query['criteria']['debtorName']
query['criteria']['value'] = 'CFYXW'
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert is_valid
def test_valid_search_query_regnum():
"""Assert that the schema is performing as expected for a search by registration number."""
query = copy.deepcopy(SEARCH_QUERY)
query['type'] = 'REGISTRATION_NUMBER'
del query['criteria']['debtorName']
query['criteria']['value'] = '023001B'
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert is_valid
def test_valid_search_query_mhrnum():
"""Assert that the schema is performing as expected for a search by MHR number."""
query = copy.deepcopy(SEARCH_QUERY)
query['type'] = 'MHR_NUMBER'
del query['criteria']['debtorName']
query['criteria']['value'] = '21324'
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert is_valid
def test_valid_search_query_serialnum():
"""Assert that the schema is performing as expected for a search by serial number."""
query = copy.deepcopy(SEARCH_QUERY)
query['type'] = 'SERIAL_NUMBER'
del query['criteria']['debtorName']
query['criteria']['value'] = 'KM8J3CA46JU622994'
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert is_valid
def test_invalid_search_query_missing_type():
"""Assert that an invalid search query fails - type is missing."""
query = copy.deepcopy(SEARCH_QUERY)
del query['type']
del query['criteria']['debtorName']['business']
del query['criteria']['value']
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert not is_valid
def test_invalid_search_query_missing_criteria():
"""Assert that an invalid search query fails - criteria is missing."""
query = copy.deepcopy(SEARCH_QUERY)
del query['criteria']
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert not is_valid
def test_invalid_search_query_type():
"""Assert that an invalid search query fails - type is invalid."""
query = copy.deepcopy(SEARCH_QUERY)
query['type'] = 'XXXXXXXX'
del query['criteria']['debtorName']['business']
del query['criteria']['value']
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert not is_valid
def test_invalid_search_query_criteria():
"""Assert that an invalid search query fails - criteria is invalid."""
query = copy.deepcopy(SEARCH_QUERY)
del query['criteria']['debtorName']['business']
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert not is_valid
def test_invalid_search_query_busname():
"""Assert that an invalid search query fails - business name is too short."""
query = copy.deepcopy(SEARCH_QUERY)
del query['criteria']['debtorName']['first']
del query['criteria']['debtorName']['second']
del query['criteria']['debtorName']['last']
del query['criteria']['value']
query['criteria']['debtorName']['business'] = 'XXXX'
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert not is_valid
def test_invalid_search_query_value():
"""Assert that an invalid search query fails - value is too long."""
query = copy.deepcopy(SEARCH_QUERY)
del query['criteria']['debtorName']
query['criteria']['value'] = 'XxxxxxxxxxxxxxxxxxxxXxxxxxxxxxxxxxxxxxxxXxxxxxxxxxx'
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert not is_valid
def test_invalid_search_query_debtor():
"""Assert that an invalid search query fails - debtor name is invalid."""
query = copy.deepcopy(SEARCH_QUERY)
del query['criteria']['value']
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert not is_valid
def test_invalid_search_query_firstname():
"""Assert that an invalid search query fails - debtor first name is too long."""
query = copy.deepcopy(SEARCH_QUERY)
del query['criteria']['value']
del query['criteria']['debtorName']['business']
query['criteria']['debtorName']['first'] = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert not is_valid
def test_invalid_search_query_secondname():
"""Assert that an invalid search query fails - debtor second name is too long."""
query = copy.deepcopy(SEARCH_QUERY)
del query['criteria']['value']
del query['criteria']['debtorName']['business']
query['criteria']['debtorName']['second'] = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert not is_valid
def test_invalid_search_query_lastname():
"""Assert that an invalid search query fails - debtor last name is too long."""
query = copy.deepcopy(SEARCH_QUERY)
del query['criteria']['value']
del query['criteria']['debtorName']['business']
query['criteria']['debtorName']['last'] = 'XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX'
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert not is_valid
def test_invalid_search_query_clientref():
"""Assert that an invalid search query fails - client reference id is too long."""
query = copy.deepcopy(SEARCH_QUERY)
del query['criteria']['value']
del query['criteria']['debtorName']['business']
query['clientReferenceId'] = 'XxxxxxxxxxXxxxxxxxxxX'
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert not is_valid
def test_invalid_search_query_startts():
"""Assert that an invalid search query fails - start date time format is invalid."""
query = copy.deepcopy(SEARCH_QUERY)
del query['criteria']['value']
del query['criteria']['debtorName']['business']
query['startDateTime'] = 'Xxxxxxxxxx'
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert not is_valid
def test_invalid_search_query_endts():
"""Assert that an invalid search query fails - end date time format is invalid."""
query = copy.deepcopy(SEARCH_QUERY)
del query['criteria']['value']
del query['criteria']['debtorName']['business']
query['endDateTime'] = 'Xxxxxxxxxx'
is_valid, errors = validate(query, 'searchQuery', 'ppr')
if errors:
for err in errors:
print(err.message)
print(errors)
assert not is_valid
| 2.03125 | 2 |
devopsipy/decorators.py | kharnam/devopsipy | 0 | 3109 | """
Module to contain Pywork decorators
"""
__author__ = '<NAME>'
import re
import time
import itertools
import logging
log = logging.getLogger(__name__)
| 2.375 | 2 |
tests/test_decorators.py | stephenfin/django-rest-framework | 1 | 3110 | from __future__ import unicode_literals
import pytest
from django.test import TestCase
from rest_framework import status
from rest_framework.authentication import BasicAuthentication
from rest_framework.decorators import (
action, api_view, authentication_classes, detail_route, list_route,
parser_classes, permission_classes, renderer_classes, schema,
throttle_classes
)
from rest_framework.parsers import JSONParser
from rest_framework.permissions import IsAuthenticated
from rest_framework.renderers import JSONRenderer
from rest_framework.response import Response
from rest_framework.schemas import AutoSchema
from rest_framework.test import APIRequestFactory
from rest_framework.throttling import UserRateThrottle
from rest_framework.views import APIView
class DecoratorTestCase(TestCase):
def setUp(self):
self.factory = APIRequestFactory()
def _finalize_response(self, request, response, *args, **kwargs):
response.request = request
return APIView.finalize_response(self, request, response, *args, **kwargs)
def test_api_view_incorrect(self):
"""
If @api_view is not applied correct, we should raise an assertion.
"""
@api_view
def view(request):
return Response()
request = self.factory.get('/')
self.assertRaises(AssertionError, view, request)
def test_api_view_incorrect_arguments(self):
"""
If @api_view is missing arguments, we should raise an assertion.
"""
with self.assertRaises(AssertionError):
@api_view('GET')
def view(request):
return Response()
def test_calling_method(self):
@api_view(['GET'])
def view(request):
return Response({})
request = self.factory.get('/')
response = view(request)
assert response.status_code == status.HTTP_200_OK
request = self.factory.post('/')
response = view(request)
assert response.status_code == status.HTTP_405_METHOD_NOT_ALLOWED
def test_calling_put_method(self):
@api_view(['GET', 'PUT'])
def view(request):
return Response({})
request = self.factory.put('/')
response = view(request)
assert response.status_code == status.HTTP_200_OK
request = self.factory.post('/')
response = view(request)
assert response.status_code == status.HTTP_405_METHOD_NOT_ALLOWED
def test_calling_patch_method(self):
@api_view(['GET', 'PATCH'])
def view(request):
return Response({})
request = self.factory.patch('/')
response = view(request)
assert response.status_code == status.HTTP_200_OK
request = self.factory.post('/')
response = view(request)
assert response.status_code == status.HTTP_405_METHOD_NOT_ALLOWED
def test_renderer_classes(self):
@api_view(['GET'])
@renderer_classes([JSONRenderer])
def view(request):
return Response({})
request = self.factory.get('/')
response = view(request)
assert isinstance(response.accepted_renderer, JSONRenderer)
def test_parser_classes(self):
@api_view(['GET'])
@parser_classes([JSONParser])
def view(request):
assert len(request.parsers) == 1
assert isinstance(request.parsers[0], JSONParser)
return Response({})
request = self.factory.get('/')
view(request)
def test_authentication_classes(self):
@api_view(['GET'])
@authentication_classes([BasicAuthentication])
def view(request):
assert len(request.authenticators) == 1
assert isinstance(request.authenticators[0], BasicAuthentication)
return Response({})
request = self.factory.get('/')
view(request)
def test_permission_classes(self):
@api_view(['GET'])
@permission_classes([IsAuthenticated])
def view(request):
return Response({})
request = self.factory.get('/')
response = view(request)
assert response.status_code == status.HTTP_403_FORBIDDEN
def test_throttle_classes(self):
class OncePerDayUserThrottle(UserRateThrottle):
rate = '1/day'
@api_view(['GET'])
@throttle_classes([OncePerDayUserThrottle])
def view(request):
return Response({})
request = self.factory.get('/')
response = view(request)
assert response.status_code == status.HTTP_200_OK
response = view(request)
assert response.status_code == status.HTTP_429_TOO_MANY_REQUESTS
def test_schema(self):
"""
Checks CustomSchema class is set on view
"""
class CustomSchema(AutoSchema):
pass
@api_view(['GET'])
@schema(CustomSchema())
def view(request):
return Response({})
assert isinstance(view.cls.schema, CustomSchema)
class ActionDecoratorTestCase(TestCase):
def test_defaults(self):
@action(detail=True)
def test_action(request):
"""Description"""
assert test_action.mapping == {'get': 'test_action'}
assert test_action.detail is True
assert test_action.url_path == 'test_action'
assert test_action.url_name == 'test-action'
assert test_action.kwargs == {
'name': 'Test action',
'description': 'Description',
}
def test_detail_required(self):
with pytest.raises(AssertionError) as excinfo:
@action()
def test_action(request):
raise NotImplementedError
assert str(excinfo.value) == "@action() missing required argument: 'detail'"
def test_method_mapping_http_methods(self):
# All HTTP methods should be mappable
@action(detail=False, methods=[])
def test_action():
raise NotImplementedError
for name in APIView.http_method_names:
def method():
raise NotImplementedError
# Python 2.x compatibility - cast __name__ to str
method.__name__ = str(name)
getattr(test_action.mapping, name)(method)
# ensure the mapping returns the correct method name
for name in APIView.http_method_names:
assert test_action.mapping[name] == name
def test_view_name_kwargs(self):
"""
'name' and 'suffix' are mutually exclusive kwargs used for generating
a view's display name.
"""
# by default, generate name from method
@action(detail=True)
def test_action(request):
raise NotImplementedError
assert test_action.kwargs == {
'description': None,
'name': '<NAME>',
}
# name kwarg supersedes name generation
@action(detail=True, name='<NAME>')
def test_action(request):
raise NotImplementedError
assert test_action.kwargs == {
'description': None,
'name': '<NAME>',
}
# suffix kwarg supersedes name generation
@action(detail=True, suffix='Suffix')
def test_action(request):
raise NotImplementedError
assert test_action.kwargs == {
'description': None,
'suffix': 'Suffix',
}
# name + suffix is a conflict.
with pytest.raises(TypeError) as excinfo:
action(detail=True, name='test name', suffix='Suffix')
assert str(excinfo.value) == "`name` and `suffix` are mutually exclusive arguments."
def test_method_mapping(self):
@action(detail=False)
def test_action(request):
raise NotImplementedError
@test_action.mapping.post
def test_action_post(request):
raise NotImplementedError
# The secondary handler methods should not have the action attributes
for name in ['mapping', 'detail', 'url_path', 'url_name', 'kwargs']:
assert hasattr(test_action, name) and not hasattr(test_action_post, name)
def test_method_mapping_already_mapped(self):
@action(detail=True)
def test_action(request):
raise NotImplementedError
msg = "Method 'get' has already been mapped to '.test_action'."
with self.assertRaisesMessage(AssertionError, msg):
@test_action.mapping.get
def test_action_get(request):
raise NotImplementedError
def test_method_mapping_overwrite(self):
@action(detail=True)
def test_action():
raise NotImplementedError
msg = ("Method mapping does not behave like the property decorator. You "
"cannot use the same method name for each mapping declaration.")
with self.assertRaisesMessage(AssertionError, msg):
@test_action.mapping.post
def test_action():
raise NotImplementedError
def test_detail_route_deprecation(self):
with pytest.warns(DeprecationWarning) as record:
@detail_route()
def view(request):
raise NotImplementedError
assert len(record) == 1
assert str(record[0].message) == (
"`detail_route` is deprecated and will be removed in "
"3.10 in favor of `action`, which accepts a `detail` bool. Use "
"`@action(detail=True)` instead."
)
def test_list_route_deprecation(self):
with pytest.warns(DeprecationWarning) as record:
@list_route()
def view(request):
raise NotImplementedError
assert len(record) == 1
assert str(record[0].message) == (
"`list_route` is deprecated and will be removed in "
"3.10 in favor of `action`, which accepts a `detail` bool. Use "
"`@action(detail=False)` instead."
)
def test_route_url_name_from_path(self):
# pre-3.8 behavior was to base the `url_name` off of the `url_path`
with pytest.warns(DeprecationWarning):
@list_route(url_path='foo_bar')
def view(request):
raise NotImplementedError
assert view.url_path == 'foo_bar'
assert view.url_name == 'foo-bar'
| 2.1875 | 2 |
tamilmorse/morse_encode.py | CRE2525/open-tamil | 1 | 3111 | <reponame>CRE2525/open-tamil<filename>tamilmorse/morse_encode.py
## -*- coding: utf-8 -*-
#(C) 2018 <NAME>
# This file is part of Open-Tamil project
# You may use or distribute this file under terms of MIT license
import codecs
import json
import tamil
import sys
import os
#e.g. python morse_encode.py கலைஞர்
CURRDIR = os.path.dirname(os.path.realpath(__file__))
def encode(text):
with codecs.open(os.path.join(CURRDIR,"data","madurai_tamilmorse.json"),"r","utf-8") as fp:
codebook = json.loads(fp.read())
output = [codebook.get(l,l) for l in tamil.utf8.get_letters(text)]
return u" ".join(output)
if __name__ == u"__main__":
encode(u" ".join([i.decode("utf-8") for i in sys.argv[1:]]))
| 2.703125 | 3 |
Leetcode/Python/_1721.py | Xrenya/algorithms | 0 | 3112 | <filename>Leetcode/Python/_1721.py<gh_stars>0
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def swapNodes(self, head: Optional[ListNode], k: int) -> Optional[ListNode]:
temp = head
array = []
while temp:
array.append(temp.val)
temp = temp.next
array[k - 1], array[len(array) - k] = array[len(array) - k], array[k - 1]
head = ListNode(0)
dummy = head
for num in array:
dummy.next = ListNode(num)
dummy = dummy.next
return head.next
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def swapNodes(self, head: Optional[ListNode], k: int) -> Optional[ListNode]:
if head is None or head.next is None:
return head
slow = fast = cnt = head
counter = 0
while cnt:
counter += 1
cnt = cnt.next
for _ in range(k - 1):
slow = slow.next
for _ in range(counter - k):
fast = fast.next
slow.val, fast.val = fast.val, slow.val
return head
| 3.75 | 4 |
contrib/functional_tests/functional/test_reorg.py | electrumsv/electrumsv | 136 | 3113 | <reponame>electrumsv/electrumsv<filename>contrib/functional_tests/functional/test_reorg.py
"""
Warning - this will reset all components back to a blank state before running the simulation
Runs node1, electrumx1 and electrumsv1 and loads the default wallet on the daemon (so that newly
submitted blocks will be synchronized by ElectrumSV
reorged txid: 'a1fa9460ca105c1396cd338f7fa202bf79a9d244d730e91e19f6302a05b2f07a'
"""
import asyncio
import os
from pathlib import Path
import pytest
import pytest_asyncio
from electrumsv_node import electrumsv_node
from electrumsv_sdk import utils
import logging
import requests
from contrib.functional_tests.websocket_client import TxStateWSClient
MODULE_DIR = os.path.dirname(os.path.abspath(__file__))
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("simulate-fresh-reorg")
async def wait_for_reog_transaction_update(reorged_txids, reorg_height):
MAX_WAIT_TIME = 10 # seconds
async with TxStateWSClient() as ws_client:
try:
await asyncio.wait_for(ws_client.block_until_confirmed_and_height_updated(
reorged_txids, reorg_height), MAX_WAIT_TIME)
except asyncio.TimeoutError:
logger.exception(f"timed out after {MAX_WAIT_TIME} seconds")
raise
class TestReorg:
@classmethod
def setup_class(cls):
pass
@classmethod
def teardown_class(cls):
pass
@pytest.mark.asyncio
def test_reorg(self, event_loop):
async def test_reorg():
payload = {
"password": "<PASSWORD>"
}
REORGED_TXIDS = "a1fa9460ca105c1396cd338f7fa202bf79a9d244d730e91e19f6302a05b2f07a"
# Load the default wallet on ElectrumSV daemon
url = f"http://127.0.0.1:9999/v1/regtest/dapp/wallets/worker1.sqlite/load_wallet"
result = requests.post(url, json=payload)
result.raise_for_status()
# Submit node1 blocks to node
if electrumsv_node.is_node_running():
utils.submit_blocks_from_file(node_id='node1',
filepath=Path(MODULE_DIR).joinpath('../reorg_blocks/node1_blocks.dat'))
else:
logger.exception("node unavailable")
try:
await wait_for_reog_transaction_update([REORGED_TXIDS], 201)
# Todo check state of get_balance; get_coin_state; get_transaction_history
# Submit node2 blocks to node
if electrumsv_node.is_node_running():
utils.submit_blocks_from_file(node_id='node1',
filepath=Path(MODULE_DIR).joinpath('../reorg_blocks/node2_blocks.dat'))
else:
logger.exception("node unavailable")
await wait_for_reog_transaction_update([REORGED_TXIDS], 202)
except asyncio.TimeoutError:
pytest.xfail("work in progress alongside refactoring changes...")
# Todo check state of get_balance; get_coin_state; get_transaction_history
event_loop.run_until_complete(test_reorg())
| 2.078125 | 2 |
Pyrado/pyrado/environments/mujoco/wam_bic.py | KhanhThiVo/SimuRLacra | 0 | 3114 | # Copyright (c) 2020, <NAME>, Honda Research Institute Europe GmbH, and
# Technical University of Darmstadt.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# 3. Neither the name of <NAME>, Honda Research Institute Europe GmbH,
# or Technical University of Darmstadt, nor the names of its contributors may
# be used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL <NAME>, HONDA RESEARCH INSTITUTE EUROPE GMBH,
# OR TECHNICAL UNIVERSITY OF DARMSTADT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
# OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
# IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
import mujoco_py
import numpy as np
import os.path as osp
from init_args_serializer import Serializable
from typing import Optional
import pyrado
from pyrado.environments.barrett_wam import (
goal_pos_init_sim_4dof,
goal_pos_init_sim_7dof,
init_qpos_des_4dof,
init_qpos_des_7dof,
act_space_bic_4dof,
act_space_bic_7dof,
wam_q_limits_up_7dof,
wam_q_limits_lo_7dof,
torque_space_wam_4dof,
torque_space_wam_7dof,
wam_pgains_7dof,
wam_dgains_7dof,
wam_pgains_4dof,
wam_dgains_4dof,
)
from pyrado.environments.mujoco.base import MujocoSimEnv
from pyrado.spaces.base import Space
from pyrado.spaces.box import BoxSpace
from pyrado.spaces.singular import SingularStateSpace
from pyrado.tasks.base import Task
from pyrado.tasks.condition_only import ConditionOnlyTask
from pyrado.tasks.desired_state import DesStateTask
from pyrado.tasks.final_reward import BestStateFinalRewTask, FinalRewTask, FinalRewMode
from pyrado.tasks.goalless import GoallessTask
from pyrado.tasks.masked import MaskedTask
from pyrado.tasks.parallel import ParallelTasks
from pyrado.tasks.reward_functions import ZeroPerStepRewFcn, ExpQuadrErrRewFcn, QuadrErrRewFcn
from pyrado.tasks.sequential import SequentialTasks
from pyrado.utils.data_types import EnvSpec
from pyrado.utils.input_output import print_cbt
class WAMBallInCupSim(MujocoSimEnv, Serializable):
"""
WAM robotic arm from Barrett technologies for the ball-in-the-cup task, controlled by a PD controller.
.. note::
When using the `reset()` function, always pass a meaningful `init_state`
.. seealso::
[1] https://github.com/psclklnk/self-paced-rl/tree/master/sprl/envs/ball_in_a_cup.py
"""
name: str = "wam-bic"
def __init__(
self,
num_dof: int,
frame_skip: int = 4,
dt: Optional[float] = None,
max_steps: int = pyrado.inf,
fixed_init_state: bool = True,
stop_on_collision: bool = True,
observe_ball: bool = False,
observe_cup: bool = False,
task_args: Optional[dict] = None,
):
"""
Constructor
:param num_dof: number of degrees of freedom (4 or 7), depending on which Barrett WAM setup being used
:param frame_skip: number of simulation frames for which the same action is held, results in a multiplier of
the time step size `dt`
:param dt: by default the time step size is the one from the mujoco config file multiplied by the number of
frame skips (legacy from OpenAI environments). By passing an explicit `dt` value, this can be
overwritten. Possible use case if if you know that you recorded a trajectory with a specific `dt`.
:param max_steps: max number of simulation time steps
:param fixed_init_state: enables/disables deterministic, fixed initial state
:param stop_on_collision: set the `failed` flag in the `dict` returned by `_mujoco_step()` to true, if the ball
collides with something else than the desired parts of the cup. This causes the
episode to end. Keep in mind that in case of a negative step reward and no final
cost on failing, this might result in undesired behavior.
:param observe_ball: if `True`, include the 2-dim (x-z plane) cartesian ball position into the observation
:param observe_cup: if `True`, include the 2-dim (x-z plane) cartesian cup position into the observation
:param task_args: arguments for the task construction
"""
Serializable._init(self, locals())
self.fixed_init_state = fixed_init_state
self.observe_ball = observe_ball
self.observe_cup = observe_cup
# Initialize num DoF specific variables
self._num_dof = num_dof
if num_dof == 4:
graph_file_name = "wam_4dof_bic.xml"
self.qpos_des_init = init_qpos_des_4dof
self.p_gains = wam_pgains_4dof
self.d_gains = wam_dgains_4dof
init_ball_pos = np.array([0.723, 0.0, 1.168])
init_cup_goal = goal_pos_init_sim_4dof
elif num_dof == 7:
graph_file_name = "wam_7dof_bic.xml"
self.qpos_des_init = init_qpos_des_7dof
self.p_gains = wam_pgains_7dof
self.d_gains = wam_dgains_7dof
init_ball_pos = np.array([0.828, 0.0, 1.131])
init_cup_goal = goal_pos_init_sim_7dof
else:
raise pyrado.ValueErr(given=num_dof, eq_constraint="4 or 7")
model_path = osp.join(pyrado.MUJOCO_ASSETS_DIR, graph_file_name)
super().__init__(model_path, frame_skip, dt, max_steps, task_args)
# Actual initial joint position (when the WAM moved to the home position)
if num_dof == 4:
self.init_qpos[:4] = np.array([0.0, 0.63, 0.0, 1.27])
self.init_qpos[4] = -0.34 # angle of the first rope segment relative to the cup bottom plate
else:
self.init_qpos[:7] = np.array([0.0, 0.65, 0.0, 1.41, 0.0, -0.28, -1.57])
self.init_qpos[7] = -0.21 # angle of the first rope segment relative to the cup bottom plate
# Set the actual stable initial position. This position would be reached after some time using the internal
# PD controller to stabilize at self._qpos_des_init.
# The initial position of the ball in cartesian coordinates
self._init_state = np.concatenate([self.init_qpos, self.init_qvel, init_ball_pos, init_cup_goal])
if self.fixed_init_state:
self._init_space = SingularStateSpace(self._init_state)
else:
# Add plus/minus one degree to each motor joint and the first rope segment joint
init_state_up = self._init_state.copy()
init_state_up[: self._num_dof] += np.pi / 180 * np.array([0.1, 1, 0.5, 1.0, 0.1, 1.0, 1.0])[: self._num_dof]
init_state_lo = self._init_state.copy()
init_state_lo[: self._num_dof] -= np.pi / 180 * np.array([0.1, 1, 0.5, 1.0, 0.1, 1.0, 1.0])[: self._num_dof]
self._init_space = BoxSpace(init_state_lo, init_state_up)
# Bodies to check fo collision
self._collision_bodies = [
"wam/base_link",
"wam/shoulder_yaw_link",
"wam/shoulder_pitch_link",
"wam/upper_arm_link",
"wam/forearm_link",
"wrist_palm_link",
"wam/wrist_pitch_link",
"wam/wrist_yaw_link",
]
if self._num_dof == 4:
self._collision_bodies = self._collision_bodies[:6]
# We access a private attribute since a method like 'model.geom_names[geom_id]' cannot be used because
# not every geom has a name
self._collision_geom_ids = [self.model._geom_name2id[name] for name in ["cup_geom1", "cup_geom2"]]
self.stop_on_collision = stop_on_collision
self.camera_config = dict(
distance=2.7,
trackbodyid=0, # id of the body to track
elevation=-30, # camera rotation around the axis in the plane
azimuth=-90, # camera rotation around the camera's vertical axis
)
@property
def num_dof(self) -> int:
""" Get the number of degrees of freedom. """
return self._num_dof
@property
def torque_space(self) -> Space:
""" Get the space of joint torques. """
return torque_space_wam_7dof if self._num_dof == 7 else torque_space_wam_4dof
@property
def state_space(self) -> Space:
# The state space has the same shape as the init space (including ball and cup)
state_shape = np.concatenate([self.init_qpos, self.init_qvel, np.empty(3), np.empty(3)]).shape
state_lo, state_up = np.full(state_shape, -pyrado.inf), np.full(state_shape, pyrado.inf)
# Ensure that joint limits of the arm are not reached (5 deg safety margin)
state_lo[: self._num_dof] = wam_q_limits_lo_7dof[: self._num_dof]
state_up[: self._num_dof] = wam_q_limits_up_7dof[: self._num_dof]
return BoxSpace(state_lo, state_up)
@property
def obs_space(self) -> Space:
# Observing the normalized time and optionally the cup and ball position
obs_lo, obs_up, labels = [0.0], [1.0], ["t"]
if self.observe_ball:
obs_lo.extend([-3.0, -3.0])
obs_up.extend([3.0, 3.0])
labels.extend(["ball_x", "ball_z"])
if self.observe_cup:
obs_lo.extend([-3.0, -3.0])
obs_up.extend([3.0, 3.0])
labels.extend(["cup_x", "cup_z"])
return BoxSpace(obs_lo, obs_up, labels=labels)
@property
def act_space(self) -> Space:
# Running a PD controller on joint positions and velocities
return act_space_bic_7dof if self._num_dof == 7 else act_space_bic_4dof
@classmethod
def get_nominal_domain_param(cls, num_dof: int = 7) -> dict:
if num_dof == 7:
return dict(
cup_scale=1.0, # scaling factor for the radius of the cup [-] (should be >0.65)
rope_length=0.41, # length of the rope [m]
ball_mass=0.024, # mass of the ball [kg]
joint_1_damping=0.05, # damping of motor joints [N/s] (default value is small)
joint_2_damping=0.05, # damping of motor joints [N/s] (default value is small)
joint_3_damping=0.05, # damping of motor joints [N/s] (default value is small)
joint_4_damping=0.05, # damping of motor joints [N/s] (default value is small)
joint_5_damping=0.05, # damping of motor joints [N/s] (default value is small)
joint_6_damping=0.05, # damping of motor joints [N/s] (default value is small)
joint_7_damping=0.05, # damping of motor joints [N/s] (default value is small)
joint_1_dryfriction=0.4, # dry friction coefficient of motor joint 1 [-]
joint_2_dryfriction=0.4, # dry friction coefficient of motor joint 2 [-]
joint_3_dryfriction=0.4, # dry friction coefficient of motor joint 3 [-]
joint_4_dryfriction=0.4, # dry friction coefficient of motor joint 4 [-]
joint_5_dryfriction=0.4, # dry friction coefficient of motor joint 5 [-]
joint_6_dryfriction=0.4, # dry friction coefficient of motor joint 6 [-]
joint_7_dryfriction=0.4, # dry friction coefficient of motor joint 7 [-]
rope_damping=1e-4, # damping of rope joints [N/s] (reasonable values are 6e-4 to 1e-6)
)
elif num_dof == 4:
return dict(
cup_scale=1.0, # scaling factor for the radius of the cup [-] (should be >0.65)
rope_length=0.41, # length of the rope [m]
ball_mass=0.024, # mass of the ball [kg]
joint_1_damping=0.05, # damping of motor joints [N/s] (default value is small)
joint_2_damping=0.05, # damping of motor joints [N/s] (default value is small)
joint_3_damping=0.05, # damping of motor joints [N/s] (default value is small)
joint_4_damping=0.05, # damping of motor joints [N/s] (default value is small)
joint_1_dryfriction=0.4, # dry friction coefficient of motor joint 1 [-]
joint_2_dryfriction=0.4, # dry friction coefficient of motor joint 2 [-]
joint_3_dryfriction=0.4, # dry friction coefficient of motor joint 3 [-]
joint_4_dryfriction=0.4, # dry friction coefficient of motor joint 4 [-]
rope_damping=1e-4, # damping of rope joints [N/s] (reasonable values are 6e-4 to 1e-6)
)
else:
raise pyrado.ValueErr(given=num_dof, eq_constraint="4 or 7")
def _create_task(self, task_args: dict) -> Task:
if task_args.get("sparse_rew_fcn", False):
# Create a task with binary reward
return self._create_main_task(task_args)
else:
# Create two (or three) parallel running task.
# 1.) Main task: Desired state task for the cartesian ball distance
# 2.) Deviation task: Desired state task for the cartesian- and joint deviation from the init position
# 3.) Binary Bonus: Adds a binary bonus when ball is catched [inactive by default]
return ParallelTasks(
[
self._create_main_task(task_args),
self._create_deviation_task(task_args),
self._create_main_task(
dict(
sparse_rew_fcn=True,
success_bonus=task_args.get("success_bonus", 0),
)
),
]
)
def _create_main_task(self, task_args: dict) -> Task:
# Create a DesStateTask that masks everything but the ball position
idcs = list(range(self.state_space.flat_dim - 6, self.state_space.flat_dim - 3)) # Cartesian ball position
spec = EnvSpec(
self.spec.obs_space,
self.spec.act_space,
self.spec.state_space.subspace(self.spec.state_space.create_mask(idcs)),
)
# If we do not use copy(), state_des coming from MuJoCo is a reference and updates automatically at each step.
# Note: sim.forward() + get_body_xpos() results in wrong output for state_des, as sim has not been updated to
# init_space.sample(), which is first called in reset()
if task_args.get("sparse_rew_fcn", False):
factor = task_args.get("success_bonus", 1)
# Binary final reward task
main_task = FinalRewTask(
ConditionOnlyTask(
spec,
condition_fcn=self.check_ball_in_cup,
is_success_condition=True,
),
mode=FinalRewMode(always_positive=True),
factor=factor,
)
# Yield -1 on fail after the main task ist done (successfully or not)
dont_fail_after_succ_task = FinalRewTask(
GoallessTask(spec, ZeroPerStepRewFcn()),
mode=FinalRewMode(always_negative=True),
factor=factor,
)
# Augment the binary task with an endless dummy task, to avoid early stopping
task = SequentialTasks((main_task, dont_fail_after_succ_task))
return MaskedTask(self.spec, task, idcs)
else:
state_des = self.sim.data.get_site_xpos("cup_goal") # this is a reference
# state_des_ball = self.sim.data.get_site_xpos("cup_goal") # this is a reference
# state_des_cup = np.array([0.82521, 0, 1.4469]) if self._num_dof == 7 else np.array([0.758, 0, 1.5])
# state_des = np.concatenate([state_des_ball, state_des_cup])
R_default = np.diag([0, 0, 1, 1e-2, 1e-2, 1e-1]) if self._num_dof == 7 else np.diag([0, 0, 1e-2, 1e-2])
rew_fcn = ExpQuadrErrRewFcn(
Q=task_args.get("Q", np.diag([2e1, 1e-4, 2e1])), # distance ball - cup; shouldn't move in y-direction
R=task_args.get("R", R_default), # last joint is really unreliable for 7 dof, thus punish more
)
task = DesStateTask(spec, state_des, rew_fcn)
# Wrap the masked DesStateTask to add a bonus for the best state in the rollout
return BestStateFinalRewTask(
MaskedTask(self.spec, task, idcs),
factor=task_args.get("final_factor", 0.05 * self.max_steps),
)
def _create_deviation_task(self, task_args: dict) -> Task:
idcs = list(range(self.state_space.flat_dim - 3, self.state_space.flat_dim)) # Cartesian cup goal position
spec = EnvSpec(
self.spec.obs_space,
self.spec.act_space,
self.spec.state_space.subspace(self.spec.state_space.create_mask(idcs)),
)
# init cup goal position
state_des = goal_pos_init_sim_7dof if self._num_dof == 7 else goal_pos_init_sim_4dof
rew_fcn = QuadrErrRewFcn(
Q=task_args.get("Q_dev", np.diag([2e-1, 1e-6, 5e0])), # Cartesian distance from init cup position
R=task_args.get(
"R_dev", np.zeros((self.act_space.shape[0], self.act_space.shape[0]))
), # joint space distance from init pose, interferes with R_default from _create_main_task
)
task = DesStateTask(spec, state_des, rew_fcn)
return MaskedTask(self.spec, task, idcs)
def _adapt_model_file(self, xml_model: str, domain_param: dict) -> str:
# First replace special domain parameters
cup_scale = domain_param.pop("cup_scale", None)
rope_length = domain_param.pop("rope_length", None)
if cup_scale is not None:
# See [1, l.93-96]
xml_model = xml_model.replace("[scale_mesh]", str(cup_scale * 0.001))
xml_model = xml_model.replace("[pos_mesh]", str(0.055 - (cup_scale - 1.0) * 0.023))
xml_model = xml_model.replace("[pos_goal]", str(0.1165 + (cup_scale - 1.0) * 0.0385))
xml_model = xml_model.replace("[size_cup]", str(cup_scale * 0.038))
xml_model = xml_model.replace("[size_cup_inner]", str(cup_scale * 0.03))
if rope_length is not None:
# The rope consists of 30 capsules
xml_model = xml_model.replace("[pos_capsule]", str(rope_length / 30))
# Each joint is at the top of each capsule (therefore negative direction from center)
xml_model = xml_model.replace("[pos_capsule_joint]", str(-rope_length / 60))
# Pure visualization component
xml_model = xml_model.replace("[size_capsule_geom]", str(rope_length / 72))
# Resolve mesh directory and replace the remaining domain parameters
return super()._adapt_model_file(xml_model, domain_param)
def _mujoco_step(self, act: np.ndarray) -> dict:
assert self.act_space.contains(act, verbose=True)
# Get the desired positions and velocities for the selected joints
qpos_des = self.qpos_des_init.copy() # the desired trajectory is relative to self._qpos_des_init
qvel_des = np.zeros_like(qpos_des)
if self._num_dof == 4:
np.add.at(qpos_des, [1, 3], act[:2])
np.add.at(qvel_des, [1, 3], act[2:])
elif self._num_dof == 7:
np.add.at(qpos_des, [1, 3, 5], act[:3])
np.add.at(qvel_des, [1, 3, 5], act[3:])
# Compute the position and velocity errors
err_pos = qpos_des - self.state[: self._num_dof]
err_vel = qvel_des - self.state[self.model.nq : self.model.nq + self._num_dof]
# Compute the torques for the PD controller and clip them to their max values
torque = self.p_gains * err_pos + self.d_gains * err_vel
torque = self.torque_space.project_to(torque)
# Apply the torques to the robot
self.sim.data.qfrc_applied[: self._num_dof] = torque
# Call MuJoCo
try:
self.sim.step()
mjsim_crashed = False
except mujoco_py.builder.MujocoException:
# When MuJoCo recognized instabilities in the simulation, it simply kills it.
# Instead, we want the episode to end with a failure.
mjsim_crashed = True
qpos, qvel = self.sim.data.qpos.copy(), self.sim.data.qvel.copy()
ball_pos = self.sim.data.get_body_xpos("ball").copy()
cup_goal = self.sim.data.get_site_xpos("cup_goal").copy()
self.state = np.concatenate([qpos, qvel, ball_pos, cup_goal])
# If desired, check for collisions of the ball with the robot
ball_collided = self.check_ball_collisions() if self.stop_on_collision else False
# If state is out of bounds (this is normally checked by the task, but does not work because of the mask)
state_oob = False if self.state_space.contains(self.state) else True
return dict(
qpos_des=qpos_des,
qvel_des=qvel_des,
qpos=qpos[: self._num_dof],
qvel=qvel[: self._num_dof],
ball_pos=ball_pos,
cup_pos=cup_goal,
failed=mjsim_crashed or ball_collided or state_oob,
)
def check_ball_collisions(self, verbose: bool = False) -> bool:
"""
Check if an undesired collision with the ball occurs.
:param verbose: print messages on collision
:return: `True` if the ball collides with something else than the central parts of the cup
"""
for i in range(self.sim.data.ncon):
# Get current contact object
contact = self.sim.data.contact[i]
# Extract body-id and body-name of both contact geoms
body1 = self.model.geom_bodyid[contact.geom1]
body1_name = self.model.body_names[body1]
body2 = self.model.geom_bodyid[contact.geom2]
body2_name = self.model.body_names[body2]
# Evaluate if the ball collides with part of the WAM (collision bodies)
# or the connection of WAM and cup (geom_ids)
c1 = body1_name == "ball" and (
body2_name in self._collision_bodies or contact.geom2 in self._collision_geom_ids
)
c2 = body2_name == "ball" and (
body1_name in self._collision_bodies or contact.geom1 in self._collision_geom_ids
)
if c1 or c2:
if verbose:
print_cbt(
f"Undesired collision of {body1_name} and {body2_name} detected!",
"y",
)
return True
return False
def check_ball_in_cup(self, *args, verbose: bool = False):
"""
Check if the ball is in the cup.
:param verbose: print messages when ball is in the cup
:return: `True` if the ball is in the cup
"""
for i in range(self.sim.data.ncon):
# Get current contact object
contact = self.sim.data.contact[i]
# Extract body-id and body-name of both contact geoms
body1 = self.model.geom_bodyid[contact.geom1]
body1_name = self.model.body_names[body1]
body2 = self.model.geom_bodyid[contact.geom2]
body2_name = self.model.body_names[body2]
# Evaluate if the ball collides with part of the WAM (collision bodies)
# or the connection of WAM and cup (geom_ids)
cup_inner_id = self.model._geom_name2id["cup_inner"]
c1 = body1_name == "ball" and contact.geom2 == cup_inner_id
c2 = body2_name == "ball" and contact.geom1 == cup_inner_id
if c1 or c2:
if verbose:
print_cbt(f"The ball is in the cup at time step {self.curr_step}.", "y")
return True
return False
def observe(self, state: np.ndarray) -> np.ndarray:
# TODO: Debug print-outs, should be removed in future...
# if self._curr_step == 0:
# print_cbt(f'cup xpos: {self.sim.data.get_body_xpos("cup").copy()}', 'b') # center of frame
# print_cbt(f'cup xipos: {self.sim.data.get_body_xipos("cup").copy()}', 'b') # center of mass
# Observe the normalized time
obs = [self._curr_step / self.max_steps]
# Extract the (x, z) cartesian position of cup and ball (the robot operates in the x-z plane).
# Note: the cup_goal is the mujoco site object marking the goal position for the ball. It is not identical
# to the coordinate system origin of the rigid body object 'cup'
if self.observe_ball:
obs.extend([state[-3], state[-1]])
if self.observe_cup:
obs.extend([state[-6], state[-4]])
return np.array(obs)
| 1.101563 | 1 |
pyRasp.py | ToninoTarsi/pyRasp | 0 | 3115 | # pyRasp
# Copyright (c) <NAME> 2020. Licensed under MIT.
# requirement :
# Python 3
# pip install pyyaml
# pip install request
# pip install f90nml
from downloadGFSA import downloadGFSA
from prepare_wps import prepare_wps
from ungrib import ungrib
from metgrid import metgrid
from prepare_wrf import prepare_wrf
from real import real
from wrf import wrf
result = downloadGFSA(True)
prepare_wps(result)
ungrib()
metgrid()
prepare_wrf(result)
real()
wrf()
| 1.617188 | 2 |
app/strategies/ema_bb_alligator_strategy.py | namuan/crypto-rider | 1 | 3116 | import pandas as pd
import ta
from app.common import reshape_data
from app.strategies.base_strategy import BaseStrategy
pd.set_option("display.max_columns", None)
pd.set_option("display.width", None)
class EMABBAlligatorStrategy(BaseStrategy):
BUY_SIGNAL = "buy_signal"
SELL_SIGNAL = "sell_signal"
def calculate_indicators(self):
df = self.load_df(limit=1000)
_ = df["close_3_ema"]
_ = df["boll"]
ao = ta.momentum.AwesomeOscillatorIndicator(high=df["high"], low=df["low"])
df["AO"] = ao.ao()
return df
def can_sell(self, df):
prev_candle = self.candle(df)
last_ema = prev_candle["close_3_ema"]
last_bb = prev_candle["boll"]
return [
last_ema < last_bb,
(self.candle(df, rewind=-2)["AO"] > 0)
& (self.candle(df, rewind=-1)["AO"] < 0),
prev_candle["volume"] > 0,
]
def can_buy(self, df):
prev_candle = self.candle(df)
last_ema = prev_candle["close_3_ema"]
last_bb = prev_candle["boll"]
return [
last_ema > last_bb,
(self.candle(df, rewind=-2)["AO"] < 0)
& (self.candle(df, rewind=-1)["AO"] > 0),
prev_candle["volume"] > 0,
]
def alert_message(self, df):
prev_candle = self.candle(df)
last_close = prev_candle["close"]
last_ao = prev_candle["AO"]
return (
"Close: {:.2f}, Awesome Oscillator value: {:.2f}".format(
last_close, last_ao
),
)
| 2.46875 | 2 |
BasicScripts/basics.py | TomasBelskis/PythonAutomation | 0 | 3117 | # Python Basics
# String concatenaton
added_strings = str(32) + "_342"
# Getting input
input_from_user = input()
# Basic print function
print(input_from_user)
# Mixing boolean and comparison operations
if (4 < 5) and (5 < 6):
print("True")
# Basic if & if else flow
if name == 'Alice':
print('Hi, Alice.')
elif age < 12:
print("You are not Alice, kiddo.")
elif age > 2000:
print('Unlike you, Alice is not an undead, immortal vampire.')
elif age > 100:
print('You are not Alice, grannie.')
# Loops in Python 3
spam = 0
while spam < 5:
print('Spam, spam!')
spam = spam + 1
# Access loop
while True:
print('Who are you?')
name = input()
if name != 'Joe':
continue
print('Hello, Joe. What is the password? (It is a fish.)')
password = input()
if password = '<PASSWORD>':
break
print('Access granted.')
# For loops using range function
print("My name is")
for i in range(5):
print('<NAME> (' + str(i) + ')')
# Using starting range
for i in range(12, 16):
print(i)
# Importing modules
import random
for i in range(5):
print(random.randint(1, 10))
# Exiting a python program
import sys
while True:
print('Type exit to exit.')
response = input()
if response == 'exit':
sys.exit()
print('You typed ' + response + '.')
| 4 | 4 |
env.example.py | wilcoln/klazor | 8 | 3118 | <filename>env.example.py
DATABASE_OPTIONS = {
'database': 'klazor',
'user': 'root',
'password': '',
'charset': 'utf8mb4',
}
HOSTS = ['127.0.0.1', '172.16.58.3']
| 1.34375 | 1 |
misc/_local_settings.py | lzantal/djskell | 4 | 3119 | <gh_stars>1-10
"""
Django settings.
Generated by 'django-admin startproject' using Django 2.2.4.
For more information on this file, see
https://docs.djangoproject.com/en/2.2/topics/settings/
For the full list of settings and their values, see
https://docs.djangoproject.com/en/2.2/ref/settings/
"""
#DEBUG = False
DEBUG = True
SERVE_STATIC = DEBUG
ALLOWED_HOSTS = []
# Database
# https://docs.djangoproject.com/en/1.11/ref/settings/#databases
DATABASES = {
'default': {
#'ENGINE': 'django.db.backends.oracle'
#'ENGINE': 'django.db.backends.mysql',
#'ENGINE': 'django.db.backends.sqlite3',
'ENGINE': 'django.db.backends.postgresql',
'NAME': 'mydatabase',
'USER': 'mydatabaseuser',
'PASSWORD': '<PASSWORD>',
'HOST': '127.0.0.1',
'PORT': '5432',
}
}
| 1.328125 | 1 |
contacts/forms.py | pedrohd21/Agenda-Django | 1 | 3120 | <gh_stars>1-10
from django import forms
from .models import Contact
class ContactForm(forms.ModelForm):
class Meta:
model = Contact
fields = ('name', 'number', 'email', 'category', 'description')
| 2.140625 | 2 |
awx/api/urls/ad_hoc_command.py | ziegenberg/awx | 0 | 3121 | <reponame>ziegenberg/awx<filename>awx/api/urls/ad_hoc_command.py
# Copyright (c) 2017 Ansible, Inc.
# All Rights Reserved.
from django.urls import re_path
from awx.api.views import (
AdHocCommandList,
AdHocCommandDetail,
AdHocCommandCancel,
AdHocCommandRelaunch,
AdHocCommandAdHocCommandEventsList,
AdHocCommandActivityStreamList,
AdHocCommandNotificationsList,
AdHocCommandStdout,
)
urls = [
re_path(r'^$', AdHocCommandList.as_view(), name='ad_hoc_command_list'),
re_path(r'^(?P<pk>[0-9]+)/$', AdHocCommandDetail.as_view(), name='ad_hoc_command_detail'),
re_path(r'^(?P<pk>[0-9]+)/cancel/$', AdHocCommandCancel.as_view(), name='ad_hoc_command_cancel'),
re_path(r'^(?P<pk>[0-9]+)/relaunch/$', AdHocCommandRelaunch.as_view(), name='ad_hoc_command_relaunch'),
re_path(r'^(?P<pk>[0-9]+)/events/$', AdHocCommandAdHocCommandEventsList.as_view(), name='ad_hoc_command_ad_hoc_command_events_list'),
re_path(r'^(?P<pk>[0-9]+)/activity_stream/$', AdHocCommandActivityStreamList.as_view(), name='ad_hoc_command_activity_stream_list'),
re_path(r'^(?P<pk>[0-9]+)/notifications/$', AdHocCommandNotificationsList.as_view(), name='ad_hoc_command_notifications_list'),
re_path(r'^(?P<pk>[0-9]+)/stdout/$', AdHocCommandStdout.as_view(), name='ad_hoc_command_stdout'),
]
__all__ = ['urls']
| 1.929688 | 2 |
note5/package_test5.py | icexmoon/python-learning-notes | 0 | 3122 | #test.py
from time_tools import *
# print(compareTimestamp(111,222))
time.showNowTime()
# now time is XX:XX:XX | 2.5 | 2 |
fgarcade/sprites.py | fabiommendes/fgarcade | 2 | 3123 | <gh_stars>1-10
import arcade
from arcade import FACE_RIGHT, FACE_DOWN, FACE_UP, FACE_LEFT
class AnimatedWalkingSprite(arcade.Sprite):
def __init__(self, scale: float = 1,
image_x: float = 0, image_y: float = 0,
center_x: float = 0, center_y: float = 0, *,
stand_left, stand_right, left, right, up, down, step=20):
super().__init__(scale=scale, image_x=image_x, image_y=image_y,
center_x=center_x, center_y=center_y)
self.state = FACE_RIGHT
self.stand_right_texture = stand_right
self.stand_left_texture = stand_left
self.walk_left_textures = left
self.walk_right_textures = right
self.walk_up_textures = up
self.walk_down_textures = down
self.cur_texture_index = 0
self.texture_change_distance = step
self.last_texture_change_center_x = 0
self.last_texture_change_center_y = 0
self._update_direction(FACE_RIGHT, self.stand_right_texture)
self.textures = [self._texture]
def _update_direction(self, state, texture):
self.last_texture_change_center_x = self.center_x
self.last_texture_change_center_y = self.center_y
self.state = state
self.cur_texture_index = 0
self._texture = texture
def _rotate(self, delta, list):
if abs(delta) >= self.texture_change_distance:
self.cur_texture_index += 1
self.last_texture_change_center_x = self.center_x
self.last_texture_change_center_y = self.center_y
self._texture = list[self.cur_texture_index % len(list)]
def update_animation(self):
tol = 1.
# Falling
if self.change_y <= -tol:
if self.state != FACE_DOWN:
self._update_direction(FACE_DOWN, self.walk_down_textures[0])
else:
self._rotate(self.center_y - self.last_texture_change_center_y,
self.walk_down_textures)
# Jumping
elif self.change_y >= tol:
if self.state != FACE_UP:
self._update_direction(FACE_UP, self.walk_up_textures[0])
else:
self._rotate(self.center_y - self.last_texture_change_center_y,
self.walk_up_textures)
# Going left
elif self.change_x <= -tol:
if self.state != FACE_LEFT:
self._update_direction(FACE_LEFT, self.stand_left_texture)
else:
self._rotate(self.center_x - self.last_texture_change_center_x,
self.walk_left_textures)
# Going right
elif self.change_x >= tol:
if self.state != FACE_RIGHT:
self._update_direction(FACE_RIGHT, self.stand_right_texture)
else:
self._rotate(self.center_x - self.last_texture_change_center_x,
self.walk_right_textures)
elif abs(self.change_x) < tol and self.state == FACE_DOWN:
self._update_direction(FACE_RIGHT, self.stand_right_texture)
self.textures[0] = self._texture
self.width = self._texture.width * self.scale
self.height = self._texture.height * self.scale | 2.578125 | 3 |
src/mafUtility.py | gh-schen/SiriusEpiClassifier | 1 | 3124 | <filename>src/mafUtility.py<gh_stars>1-10
from numpy.core.fromnumeric import transpose
from sklearn import linear_model
from scipy.special import logit
from scipy import stats
from copy import deepcopy
from numpy import random, concatenate, quantile, matmul, transpose
import logging
class singleRegModel():
"""
data struct for running a single regression test
"""
def __init__(self, regressor):
self.regressor = regressor
self.mmodel = None
# params
self.quantile_limit_ = 0.95
def train_binary(self, x_train, y_train):
self.mmodel = deepcopy(self.regressor)
self.mmodel.fit(x_train, y_train)
def train_quant(self, init_x, follow_x, init_y, follow_iter):
self.train_binary(init_x, init_y)
if follow_x is None:
logging.warning("No samples have missing MAF - no follow up training")
return
for i in range(follow_iter):
init_preds = self.mmodel.predict(init_x)
upper_limit = quantile(init_preds, self.quantile_limit_)
follow_y = self.mmodel.predict(follow_x)
follow_y[follow_y > upper_limit] = upper_limit
x_merge = concatenate((init_x, follow_x))
y_merge = concatenate((init_y, follow_y))
self.mmodel = deepcopy(self.regressor)
self.mmodel.fit(x_merge, y_merge)
def predict_prob(self, input_x):
preds = matmul(input_x, transpose(self.mmodel.coef_)) + self.mmodel.intercept_
probs = preds[:,0]
return probs
def predict_quant(self, input_x):
#preds = matmul(input_x, transpose(self.mmodel.coef_)) + self.mmodel.intercept_
#print(preds, self.mmodel.predict(input_x))
#probs = preds[:,0]
#return probs
return self.mmodel.predict(input_x)
class predOutcome():
"""
store output for prediction
"""
def __init__(self):
self.true_y = None
self.test_y = None
self.train_ys = [] # with CV training can have multiple results
self.cancer_status = None # binary: 0 for normal and 1 for cance | 2.515625 | 3 |
examples/linreg.py | hanyas/sds | 12 | 3125 | import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from sklearn.linear_model import ARDRegression, LinearRegression
# Parameters of the example
np.random.seed(0)
n_samples, n_features = 100, 100
# Create Gaussian data
X = np.random.randn(n_samples, n_features)
# Create weights with a precision lambda_ of 4.
lambda_ = 4.
w = np.zeros(n_features)
# Only keep 10 weights of interest
relevant_features = np.random.randint(0, n_features, 10)
for i in relevant_features:
w[i] = stats.norm.rvs(loc=0, scale=1. / np.sqrt(lambda_))
# Create noise with a precision alpha of 50.
alpha_ = 50.
noise = stats.norm.rvs(loc=0, scale=1. / np.sqrt(alpha_), size=n_samples)
# Create the target<
y = np.dot(X, w) + noise
clf = ARDRegression(fit_intercept=False, n_iter=1000)
clf.fit(X, y)
ols = LinearRegression(fit_intercept=False)
ols.fit(X, y)
from copy import deepcopy
from sds.distributions.lingauss import SingleOutputLinearGaussianWithKnownPrecision
from sds.distributions.lingauss import SingleOutputLinearGaussianWithKnownMean
from sds.distributions.gaussian import GaussianWithPrecision
from sds.distributions.gaussian import GaussianWithKnownMeanAndDiagonalPrecision
from sds.distributions.gamma import Gamma
likelihood_precision_prior = Gamma(dim=1, alphas=np.ones((1, )),
betas=1e-6 * np.ones((1, )))
parameter_precision_prior = Gamma(dim=n_features, alphas=np.ones((n_features, )),
betas=1e-6 * np.ones((n_features, )))
likelihood_precision_posterior = deepcopy(likelihood_precision_prior)
parameter_precision_posterior = deepcopy(parameter_precision_prior)
parameter_posterior = None
for i in range(100):
# parameter posterior
alphas = parameter_precision_posterior.mean()
parameter_prior = GaussianWithPrecision(dim=n_features,
mu=np.zeros((n_features, )),
lmbda=np.diag(alphas))
parameter_posterior = deepcopy(parameter_prior)
beta = likelihood_precision_posterior.mean()
likelihood_known_precision = SingleOutputLinearGaussianWithKnownPrecision(column_dim=n_features,
lmbda=beta,
affine=False)
stats = likelihood_known_precision.statistics(X, y)
parameter_posterior.nat_param = parameter_prior.nat_param + stats
# likelihood precision posterior
param = parameter_posterior.mean()
likelihood_known_mean = SingleOutputLinearGaussianWithKnownMean(column_dim=n_features,
W=param, affine=False)
stats = likelihood_known_mean.statistics(X, y)
likelihood_precision_posterior.nat_param = likelihood_precision_prior.nat_param + stats
# parameter precision posterior
parameter_likelihood = GaussianWithKnownMeanAndDiagonalPrecision(dim=n_features)
param = parameter_posterior.mean()
stats = parameter_likelihood.statistics(param)
parameter_precision_posterior.nat_param = parameter_precision_prior.nat_param + stats
our_ard = parameter_posterior.mode()
from sds.distributions.composite import MatrixNormalGamma
from sds.distributions.lingauss import LinearGaussianWithDiagonalPrecision
M = np.zeros((1, n_features))
K = 1e-16 * np.eye(n_features)
alphas = 1e-16 * np.ones((1, ))
betas = 1e-16 * np.ones((1, ))
prior = MatrixNormalGamma(column_dim=n_features, row_dim=1,
M=M, K=K, alphas=alphas, betas=betas)
posterior = deepcopy(prior)
likelihood = LinearGaussianWithDiagonalPrecision(column_dim=n_features,
row_dim=1,
affine=False)
stats = likelihood.statistics(X, np.atleast_2d(y).T)
posterior.nat_param = prior.nat_param + stats
our_ols = posterior.mode()[0]
plt.figure(figsize=(6, 5))
plt.title("Weights of the model")
plt.plot(w, color='orange', linestyle='-', linewidth=2, label="Ground truth")
plt.plot(clf.coef_, color='darkblue', linestyle='-', linewidth=2, label="Sklearn ARD")
plt.plot(our_ard, color='red', linestyle='-', linewidth=2, label="Our ARD")
# plt.plot(ols.coef_, color='yellowgreen', linestyle=':', linewidth=2, label="Sklearn OLS")
# plt.plot(our_ols.flatten(), color='cyan', linestyle='-', linewidth=2, label="Our OLS")
plt.xlabel("Features")
plt.ylabel("Values of the weights")
plt.legend(loc=1)
plt.show()
| 2.875 | 3 |
optimal/tompkins/examples/dask_scheduling_problem_nonetcontention.py | KarizCache/serverless | 0 | 3126 | #!/usr/bin/python3
import os
import json
import re
import ast
import json
from graphviz import Digraph
import pandas as pd
# color the graph
import graph_tool.all as gt
import copy
import matplotlib.colors as mcolors
import sys
import utils
from tompkins.ilp import schedule, jobs_when_where
from collections import defaultdict
from pulp import value
import re
import ast
import json
from graphviz import Digraph
import pandas as pd
# color the graph
import graph_tool.all as gt
import copy
import matplotlib.colors as mcolors
import sys
import seaborn as sns
def get_benchmarks():
benchmarks = {}
for _file in os.listdir(stats_dir):
try:
bnch = _file.rsplit('.', 1)[0]
assert os.path.isfile(os.path.join(stats_dir, f'{bnch}.iopt'))
app = bnch #, scheduler = bnch.rsplit(':', 1)
scheduler = 'vanilla'
benchmarks[bnch] = {'app': app, 'scheduler': scheduler, 'benchmark': bnch}
except AssertionError:
pass
return benchmarks
def build_graph(benchmark):
css_colors = list(mcolors.CSS4_COLORS.keys())
gfile = os.path.join(stats_dir, f'{benchmark}.iopt')
with open(gfile, 'r') as fd:
raw = fd.read().split('\n')
g = gt.Graph(directed=True)
vid_to_vx = {}
name_to_vid = {}
g.vertex_properties['name'] = g.new_vertex_property("string")
g.vertex_properties['worker'] = g.new_vertex_property("string")
g.vertex_properties['color'] = g.new_vertex_property("string", '#e0e0e0')
g.vertex_properties['icolor'] = g.new_vertex_property("int")
g.vertex_properties['output_size'] = g.new_vertex_property("int")
g.vertex_properties['runtime'] = g.new_vertex_property("float")
for ln in raw:
if ln.startswith('v'):
_, vid, name, runtime, output_size = ln.split(',', 4)
v = g.add_vertex()
vid_to_vx[vid] = v
name_to_vid[name] = vid
g.vp.name[v] = name
g.vp.runtime[v] = float(runtime) # 1 second
g.vp.output_size[v] = float(output_size) # 1GB
g.vp.color[v] = '#e0e0e0'
for ln in raw:
if ln.startswith('e'):
_, vsrc, vdst = ln.split(',')
g.add_edge(vid_to_vx[vsrc], vid_to_vx[vdst])
return g
def get_runtime_statistics(benchmark):
tasks = []
statistics = {}
jfile = os.path.join(stats_dir, f'{benchmark}.json')
with open(jfile, 'r') as fd:
stats = ast.literal_eval(fd.read())
for ts in stats:
ops = 'ts'; #ts.replace("(", '').replace(')', '').split("'")[1].split('-')[0]
statistics[ts] = {'key': ts, 'op': ops,
'output_size': stats[ts]['msg']['nbytes'], 'worker': stats[ts]['worker'].split(':')[1].replace('/', '')}
startsstops = stats[ts]['msg']['startstops']
for ss in startsstops:
if ss['action'] == 'compute':
statistics[ts]['compute_end'] = ss['stop']
statistics[ts]['compute_start'] = ss['start']
statistics[ts]['runtime'] = ss['stop'] - ss['start']
cfile = os.path.join(stats_dir, f'{benchmark}.colors')
with open(cfile, 'r') as cfd:
raw = cfd.read().split('\n')
for ln in raw:
if not ln:
continue
ts, color = ln.split(',')
#ts += ')'
statistics[ts]['color'] = int(color)
return statistics
def plot_graph(g, benchmark, optimal=False):
print(benchmark["benchmark"])
post = ".optimal" if optimal else ""
dg = Digraph('G', filename=f'{benchmark["benchmark"]}{post}.gv', format='png')
for v in g.vertices():
dg.attr('node', shape='ellipse', style="filled,solid",
penwidth="3",
fillcolor=g.vp.color[v],
color=worker_color[g.vp.statistics[v]['worker']])
#if benchmark['scheduler'] == "vanilla":
# dg.node(f'{v}')
#else:
dg.node(f'{v}, color({g.vp.icolor[v]})')
for e in g.edges():
#if benchmark['scheduler'] == "vanilla":
# dg.edge(f'{e.source()}', f'{e.target()}')
#else:
dg.edge(f'{e.source()}, color({g.vp.icolor[e.source()]})',
f'{e.target()}, color({g.vp.icolor[e.target()]})')
dg.view(os.path.join(f'{results_dir}',f'{benchmark["benchmark"]}{post}'), quiet=False)
import pulp as pl
import time
def find_optimal(g, bw):
n_workers = 4
workers = [f'w{i}' for i in range(n_workers)]
# Job Release Times - Additional constraints on availablility of Jobs
# R = np.zeros(n)
R = defaultdict(lambda:0)
# Maximum makespan
M = 100
B = defaultdict(lambda:1)
agents = workers
jobs = []
for v in g.vertices():
jobs.append(f't{v}')
n = len(jobs)
m = len(agents)
P = defaultdict(lambda:0)
for e in g.edges():
P[f't{e.source()}',f't{e.target()}'] = 1
# computation
D = defaultdict(lambda:0)
for v in g.vertices():
for a in agents:
D[f't{v}', a] = g.vp.runtime[v] # statistics[g.vp.name[v]]['runtime']
# Communication Delay matrix - Cost of sending results of job from
# agent to agent
#bw = 10*(1<<30)/(1<<3)
bw = bw*(1<<20)/(1<<3)
C = defaultdict(lambda:0)
for v in g.vertices():
for a in agents:
for b in agents:
C[f't{v}', a, b] = 0 if a == b else g.vp.output_size[v]/bw # 0 --> cost_serialization
start = time.time()
# Set up the Mixed Integer Linear Program
prob, X, S, Cmax = schedule(jobs, agents, D, C, R, B, P, M)
solver = pl.GUROBI_CMD()
prob.solve(solver)
latency = time.time() - start
print('-----------------------------------------------> constraints', len(prob.constraints.keys()))
print('----------------------------------------------> # of variables', prob.numVariables())
print('---------------------------------------------->', latency)
print("Makespan: ", value(Cmax))
sched = jobs_when_where(prob, X, S, Cmax)
print("Schedule: ", sched)
sched2 = []
for j in sched:
new = j + (j[1] + D[j[0], j[2]], g.vp.name[int(j[0].replace('t', ''))])
sched2.append(new)
print("Schedule: ", sched2)
return sched2, {'makespan': value(Cmax),
'constraints': len(prob.constraints.keys()),
'variables': prob.numVariables(),
'time': float(latency)}
results_dir = './benchmarks'
stats_dir='./benchmarks'
benchmarks = get_benchmarks()
#benchmarks = ['dom4x61GB1B', 'dom2x41GB1B', 'tree4x61GB1B']
for bnch in benchmarks:
for bw in [1*1024, 16*1024, 512, 32*1024, 8*1024, 4*1024, 2*1024, 256, 128, 64, 32]:
print(f'process {bnch}')
g = build_graph(bnch)
sched2, stats = find_optimal(g, bw)
with open(f'{results_dir}/optimal_compuation_stats.csv', 'a') as fd:
fd.write(f'{bnch},{stats["makespan"]},{stats["constraints"]},{stats["variables"]},{stats["time"]},no,{bw}\n')
with open(f'{results_dir}/{bnch}.nonetworkcontention.{bw}mbps.optimal', 'w') as fd:
for s in sched2:
fd.write(f'v,{s[0]},{s[1]},{s[2]}\n')
#fd.write(f'{s[4]},{s[3]},{s[0]},{s[1]},{s[2]}\n')
#v = int(s[0].replace('t', ''))
#g.vp.worker[v] = s[2]
break
#break
| 2.109375 | 2 |
tests/apitests/python/test_robot_account.py | gerhardgossen/harbor | 1 | 3127 | from __future__ import absolute_import
import unittest
from testutils import ADMIN_CLIENT
from testutils import TEARDOWN
from library.user import User
from library.project import Project
from library.repository import Repository
from library.repository import pull_harbor_image
from library.repository import push_image_to_project
from testutils import harbor_server
from library.base import _assert_status_code
class TestProjects(unittest.TestCase):
@classmethod
def setUp(self):
self.project = Project()
self.user = User()
self.repo = Repository()
@classmethod
def tearDown(self):
print "Case completed"
@unittest.skipIf(TEARDOWN == False, "Test data won't be erased.")
def test_ClearData(self):
#1. Delete repository(RA) by user(UA);
self.repo.delete_repoitory(TestProjects.project_ra_name_a, TestProjects.repo_name_in_project_a.split('/')[1], **TestProjects.USER_RA_CLIENT)
self.repo.delete_repoitory(TestProjects.project_ra_name_b, TestProjects.repo_name_in_project_b.split('/')[1], **TestProjects.USER_RA_CLIENT)
self.repo.delete_repoitory(TestProjects.project_ra_name_c, TestProjects.repo_name_in_project_c.split('/')[1], **TestProjects.USER_RA_CLIENT)
self.repo.delete_repoitory(TestProjects.project_ra_name_a, TestProjects.repo_name_pa.split('/')[1], **TestProjects.USER_RA_CLIENT)
#2. Delete project(PA);
self.project.delete_project(TestProjects.project_ra_id_a, **TestProjects.USER_RA_CLIENT)
self.project.delete_project(TestProjects.project_ra_id_b, **TestProjects.USER_RA_CLIENT)
self.project.delete_project(TestProjects.project_ra_id_c, **TestProjects.USER_RA_CLIENT)
#3. Delete user(UA).
self.user.delete_user(TestProjects.user_ra_id, **ADMIN_CLIENT)
def testRobotAccount(self):
"""
Test case:
Robot Account
Test step and expected result:
1. Create user(UA);
2. Create private project(PA), private project(PB) and public project(PC) by user(UA);
3. Push image(ImagePA) to project(PA), image(ImagePB) to project(PB) and image(ImagePC) to project(PC) by user(UA);
4. Create a new robot account(RA) with pull and push privilige in project(PA) by user(UA);
5. Check robot account info, it should has both pull and push priviliges;
6. Pull image(ImagePA) from project(PA) by robot account(RA), it must be successful;
7. Push image(ImageRA) to project(PA) by robot account(RA), it must be successful;
8. Push image(ImageRA) to project(PB) by robot account(RA), it must be not successful;
9. Pull image(ImagePB) from project(PB) by robot account(RA), it must be not successful;
10. Pull image from project(PC), it must be successful;
11. Push image(ImageRA) to project(PC) by robot account(RA), it must be not successful;
12. Update action property of robot account(RA);
13. Pull image(ImagePA) from project(PA) by robot account(RA), it must be not successful;
14. Push image(ImageRA) to project(PA) by robot account(RA), it must be not successful;
15. Delete robot account(RA), it must be not successful.
Tear down:
1. Delete repository(RA) by user(UA);
2. Delete project(PA);
3. Delete user(UA).
"""
url = ADMIN_CLIENT["endpoint"]
admin_name = ADMIN_CLIENT["username"]
admin_password = ADMIN_CLIENT["password"]
user_ra_password = "<PASSWORD>"
image_project_a = "haproxy"
image_project_b = "hello-world"
image_project_c = "httpd"
image_robot_account = "alpine"
tag = "latest"
print "#1. Create user(UA);"
TestProjects.user_ra_id, user_ra_name = self.user.create_user(user_password = <PASSWORD>, **ADMIN_CLIENT)
TestProjects.USER_RA_CLIENT=dict(endpoint = url, username = user_ra_name, password = <PASSWORD>)
print "#2. Create private project(PA), private project(PB) and public project(PC) by user(UA);"
TestProjects.project_ra_id_a, TestProjects.project_ra_name_a = self.project.create_project(metadata = {"public": "false"}, **TestProjects.USER_RA_CLIENT)
TestProjects.project_ra_id_b, TestProjects.project_ra_name_b = self.project.create_project(metadata = {"public": "false"}, **TestProjects.USER_RA_CLIENT)
TestProjects.project_ra_id_c, TestProjects.project_ra_name_c = self.project.create_project(metadata = {"public": "true"}, **TestProjects.USER_RA_CLIENT)
print "#3. Push image(ImagePA) to project(PA), image(ImagePB) to project(PB) and image(ImagePC) to project(PC) by user(UA);"
TestProjects.repo_name_in_project_a, tag_a = push_image_to_project(TestProjects.project_ra_name_a, harbor_server, user_ra_name, user_ra_password, image_project_a, tag)
TestProjects.repo_name_in_project_b, tag_b = push_image_to_project(TestProjects.project_ra_name_b, harbor_server, user_ra_name, user_ra_password, image_project_b, tag)
TestProjects.repo_name_in_project_c, tag_c = push_image_to_project(TestProjects.project_ra_name_c, harbor_server, user_ra_name, user_ra_password, image_project_c, tag)
print "#4. Create a new robot account(RA) with pull and push privilige in project(PA) by user(UA);"
robot_id, robot_account = self.project.add_project_robot_account(TestProjects.project_ra_id_a, TestProjects.project_ra_name_a,
2441000531 ,**TestProjects.USER_RA_CLIENT)
print robot_account.name
print robot_account.token
print "#5. Check robot account info, it should has both pull and push priviliges;"
data = self.project.get_project_robot_account_by_id(TestProjects.project_ra_id_a, robot_id, **TestProjects.USER_RA_CLIENT)
_assert_status_code(robot_account.name, data.name)
print "#6. Pull image(ImagePA) from project(PA) by robot account(RA), it must be successful;"
pull_harbor_image(harbor_server, robot_account.name, robot_account.token, TestProjects.repo_name_in_project_a, tag_a)
print "#7. Push image(ImageRA) to project(PA) by robot account(RA), it must be successful;"
TestProjects.repo_name_pa, _ = push_image_to_project(TestProjects.project_ra_name_a, harbor_server, robot_account.name, robot_account.token, image_robot_account, tag)
print "#8. Push image(ImageRA) to project(PB) by robot account(RA), it must be not successful;"
push_image_to_project(TestProjects.project_ra_name_b, harbor_server, robot_account.name, robot_account.token, image_robot_account, tag, expected_error_message = "unauthorized to access repository")
print "#9. Pull image(ImagePB) from project(PB) by robot account(RA), it must be not successful;"
pull_harbor_image(harbor_server, robot_account.name, robot_account.token, TestProjects.repo_name_in_project_b, tag_b, expected_error_message = "unauthorized to access repository")
print "#10. Pull image from project(PC), it must be successful;"
pull_harbor_image(harbor_server, robot_account.name, robot_account.token, TestProjects.repo_name_in_project_c, tag_c)
print "#11. Push image(ImageRA) to project(PC) by robot account(RA), it must be not successful;"
push_image_to_project(TestProjects.project_ra_name_c, harbor_server, robot_account.name, robot_account.token, image_robot_account, tag, expected_error_message = "unauthorized to access repository")
print "#12. Update action property of robot account(RA);"
self.project.disable_project_robot_account(TestProjects.project_ra_id_a, robot_id, True, **TestProjects.USER_RA_CLIENT)
print "#13. Pull image(ImagePA) from project(PA) by robot account(RA), it must be not successful;"
pull_harbor_image(harbor_server, robot_account.name, robot_account.token, TestProjects.repo_name_in_project_a, tag_a, expected_login_error_message = "unauthorized: authentication required")
print "#14. Push image(ImageRA) to project(PA) by robot account(RA), it must be not successful;"
push_image_to_project(TestProjects.project_ra_name_a, harbor_server, robot_account.name, robot_account.token, image_robot_account, tag, expected_login_error_message = "unauthorized: authentication required")
print "#15. Delete robot account(RA), it must be not successful."
self.project.delete_project_robot_account(TestProjects.project_ra_id_a, robot_id, **TestProjects.USER_RA_CLIENT)
if __name__ == '__main__':
unittest.main() | 2.25 | 2 |
slackchannel2pdf/locales.py | ErikKalkoken/slackchannel2pdf | 52 | 3128 | import datetime as dt
import logging
from babel import Locale, UnknownLocaleError
from babel.dates import format_datetime, format_time, format_date
import pytz
from tzlocal import get_localzone
from . import settings
logger = logging.getLogger(__name__)
class LocaleHelper:
"""Helpers for converting date & time according to current locale and timezone"""
def __init__(
self,
my_locale: Locale = None,
my_tz: pytz.BaseTzInfo = None,
author_info: dict = None,
) -> None:
"""
Args:
- my_locale: Primary locale to use
- my_tz: Primary timezone to use
- author_info: locale and timezone to use from this Slack response
if my_locale and/or my_tz are not given
"""
self._locale = self._determine_locale(my_locale, author_info)
self._timezone = self._determine_timezone(my_tz, author_info)
@staticmethod
def _determine_locale(my_locale: Locale = None, author_info: dict = None) -> Locale:
if my_locale:
if not isinstance(my_locale, Locale):
raise TypeError("my_locale must be a babel Locale object")
else:
if author_info:
try:
my_locale = Locale.parse(author_info["locale"], sep="-")
except UnknownLocaleError:
logger.warning("Could not use locale info from Slack")
my_locale = Locale.default()
else:
my_locale = Locale.default()
if not my_locale:
my_locale = Locale.parse(settings.FALLBACK_LOCALE)
return my_locale
@staticmethod
def _determine_timezone(
my_tz: pytz.BaseTzInfo = None, author_info: dict = None
) -> pytz.BaseTzInfo:
if my_tz:
if not isinstance(my_tz, pytz.BaseTzInfo):
raise TypeError("my_tz must be of type pytz")
else:
if author_info:
try:
my_tz = pytz.timezone(author_info["tz"])
except pytz.exceptions.UnknownTimeZoneError:
logger.warning("Could not use timezone info from Slack")
my_tz = get_localzone()
else:
my_tz = get_localzone()
if not my_tz:
my_tz = pytz.UTC
return my_tz
@property
def locale(self) -> Locale:
return self._locale
@property
def timezone(self) -> pytz.BaseTzInfo:
return self._timezone
def format_date_full_str(self, my_datetime: dt.datetime) -> str:
return format_date(my_datetime, format="full", locale=self.locale)
def format_datetime_str(self, my_datetime: dt.datetime) -> str:
"""returns formated datetime string for given dt using locale"""
return format_datetime(my_datetime, format="short", locale=self.locale)
def get_datetime_formatted_str(self, ts: int) -> str:
"""return given timestamp as formated datetime string using locale"""
my_datetime = self.get_datetime_from_ts(ts)
return format_datetime(my_datetime, format="short", locale=self.locale)
def get_time_formatted_str(self, ts: int) -> str:
"""return given timestamp as formated datetime string using locale"""
my_datetime = self.get_datetime_from_ts(ts)
return format_time(my_datetime, format="short", locale=self.locale)
def get_datetime_from_ts(self, ts: int) -> dt.datetime:
"""returns datetime object of a unix timestamp with local timezone"""
my_datetime = dt.datetime.fromtimestamp(float(ts), pytz.UTC)
return my_datetime.astimezone(self.timezone)
| 2.71875 | 3 |
databoard/databoard/default_config.py | glemaitre/ramp-board-1 | 0 | 3129 | <reponame>glemaitre/ramp-board-1<gh_stars>0
import os
class Config(object):
# FLASK GENERAL CONFIG PARAMETERS
SECRET_KEY = os.getenv('DATABOARD_SECRET_KEY', '<KEY>')
# abs max upload file size, to throw 413, before saving it
WTF_CSRF_ENABLED = True
LOG_FILENAME = None # if None, output to screen
MAX_CONTENT_LENGTH = 1024 * 1024 * 1024
DEBUG = False
TESTING = False
# FLASK MAIL CONFIG PARAMETERS
MAIL_SERVER = os.getenv('DATABOARD_MAIL_SERVER', 'smtp.gmail.com')
MAIL_PORT = os.getenv('DATABOARD_MAIL_PORT', 587)
MAIL_USERNAME = os.getenv('DATABOARD_MAIL_USERNAME', 'user')
MAIL_PASSWORD = os.getenv('DATABOARD_MAIL_PASSWORD', 'password')
MAIL_DEFAULT_SENDER = (
os.getenv('DATABOARD_MAIL_SENDER_ALIAS', 'RAMP admin'),
os.getenv('DATABOARD_MAIL_SENDER', '<EMAIL>')
)
MAIL_RECIPIENTS = []
MAIL_USE_TLS = False
MAIL_USE_SSL = True
MAIL_DEBUG = False
SQLALCHEMY_TRACK_MODIFICATIONS = True
SQLALCHEMY_DATABASE_URI = os.getenv('DATABOARD_DB_URL')
SQLALCHEMY_MIGRATE_REPO = os.getenv('DATABOARD_DB_MIGRATE_REPO')
SQLALCHEMY_RECORD_QUERIES = (
True if os.getenv('DATABOARD_DB_PERF', 0) else False
)
class RampConfig(object):
RAMP_ADMIN_MAILS = os.getenv('DATABOARD_ADMIN_MAILS', [])
RAMP_KITS_DIR = 'ramp-kits'
RAMP_DATA_DIR = 'ramp-data'
RAMP_SUBMISSIONS_DIR = 'submissions'
RAMP_SANDBOX_DIR = 'starting_kit'
RAMP_SERVER_PORT = 8080
# make it False if parallel training is not working
# is_parallelize
RAMP_PARALLELIZE = bool(os.getenv('DATABOARD_PARALLELIZE', 1))
######################################################################
class ProductionConfig(Config):
DEPLOYMENT_PATH = os.getenv(
'DATABOARD_DEPLOYMENT_PATH', '/tmp/databoard')
class DevelopmentConfig(Config):
DEBUG = True
MAIL_DEBUG = True
SQLALCHEMY_DATABASE_URI = os.getenv(
'DATABOARD_DB_URL_TEST',
'postgresql://mrramp:mrramp@localhost/databoard_test'
)
DEPLOYMENT_PATH = os.getenv(
'DATABOARD_DEPLOYMENT_PATH_TEST', '/tmp/databoard_test')
class TestingConfig(Config):
TESTING = True
SQLALCHEMY_DATABASE_URI = os.getenv(
'DATABOARD_DB_URL_TEST',
'postgresql://mrramp:mrramp@localhost/databoard_test'
)
DEPLOYMENT_PATH = os.getenv(
'DATABOARD_DEPLOYMENT_PATH_TEST',
'/tmp/databoard_test',
)
| 1.90625 | 2 |
python_developer_tools/cv/bases/pool/AvgPool2d.py | carlsummer/python_developer_tools | 32 | 3130 | <filename>python_developer_tools/cv/bases/pool/AvgPool2d.py
# !/usr/bin/env python
# -- coding: utf-8 --
# @Author zengxiaohui
# Datatime:8/31/2021 1:37 PM
# @File:GlobalAvgPool2d
import torch.nn as nn
from python_developer_tools.cv.bases.activates.swish import h_swish
class GlobalAvgPool2d(nn.Module):
""" Fast implementation of global average pooling from
TResNet: High Performance GPU-Dedicated Architecture
https://arxiv.org/pdf/2003.13630.pdf
Args:
flatten (bool, optional): whether spatial dimensions should be squeezed
"""
def __init__(self, flatten: bool = False) -> None:
super().__init__()
self.flatten = flatten
def forward(self, x):
if self.flatten:
in_size = x.size()
return x.view((in_size[0], in_size[1], -1)).mean(dim=2)
else:
return x.view(x.size(0), x.size(1), -1).mean(-1).view(x.size(0), x.size(1), 1, 1)
class SwishAdaptiveAvgPool2d(nn.Module):
def __init__(self,inplace=True):
super().__init__()
self.avgpool=nn.Sequential(
nn.ReLU6(inplace=inplace),
nn.AdaptiveAvgPool2d((1, 1)),
h_swish()
)
def forward(self, x):
return self.avgpool(x) | 2.453125 | 2 |
expyfun/_utils.py | nordme/expyfun | 2 | 3131 | <filename>expyfun/_utils.py
"""Some utility functions"""
# Authors: <NAME> <<EMAIL>>
#
# License: BSD (3-clause)
import warnings
import operator
from copy import deepcopy
import subprocess
import importlib
import os
import os.path as op
import inspect
import sys
import tempfile
import ssl
from shutil import rmtree
import atexit
import json
from functools import partial
from distutils.version import LooseVersion
from numpy import sqrt, convolve, ones
import logging
import datetime
from timeit import default_timer as clock
from threading import Timer
import numpy as np
import scipy as sp
from ._externals import decorator
# set this first thing to make sure it "takes"
try:
import pyglet
pyglet.options['debug_gl'] = False
del pyglet
except Exception:
pass
# for py3k (eventually)
if sys.version.startswith('2'):
string_types = basestring # noqa
input = raw_input # noqa, input is raw_input in py3k
text_type = unicode # noqa
from __builtin__ import reload
from urllib2 import urlopen # noqa
from cStringIO import StringIO # noqa
else:
string_types = str
text_type = str
from urllib.request import urlopen
input = input
from io import StringIO # noqa, analysis:ignore
from importlib import reload # noqa, analysis:ignore
###############################################################################
# LOGGING
EXP = 25
logging.addLevelName(EXP, 'EXP')
def exp(self, message, *args, **kwargs):
"""Experiment-level logging."""
self.log(EXP, message, *args, **kwargs)
logging.Logger.exp = exp
logger = logging.getLogger('expyfun')
def flush_logger():
"""Flush expyfun logger"""
for handler in logger.handlers:
handler.flush()
def set_log_level(verbose=None, return_old_level=False):
"""Convenience function for setting the logging level
Parameters
----------
verbose : bool, str, int, or None
The verbosity of messages to print. If a str, it can be either DEBUG,
INFO, WARNING, ERROR, or CRITICAL. Note that these are for
convenience and are equivalent to passing in logging.DEBUG, etc.
For bool, True is the same as 'INFO', False is the same as 'WARNING'.
If None, the environment variable EXPYFUN_LOGGING_LEVEL is read, and if
it doesn't exist, defaults to INFO.
return_old_level : bool
If True, return the old verbosity level.
"""
if verbose is None:
verbose = get_config('EXPYFUN_LOGGING_LEVEL', 'INFO')
elif isinstance(verbose, bool):
verbose = 'INFO' if verbose is True else 'WARNING'
if isinstance(verbose, string_types):
verbose = verbose.upper()
logging_types = dict(DEBUG=logging.DEBUG, INFO=logging.INFO,
WARNING=logging.WARNING, ERROR=logging.ERROR,
CRITICAL=logging.CRITICAL)
if verbose not in logging_types:
raise ValueError('verbose must be of a valid type')
verbose = logging_types[verbose]
old_verbose = logger.level
logger.setLevel(verbose)
return (old_verbose if return_old_level else None)
def set_log_file(fname=None,
output_format='%(asctime)s - %(levelname)-7s - %(message)s',
overwrite=None):
"""Convenience function for setting the log to print to a file
Parameters
----------
fname : str, or None
Filename of the log to print to. If None, stdout is used.
To suppress log outputs, use set_log_level('WARN').
output_format : str
Format of the output messages. See the following for examples:
http://docs.python.org/dev/howto/logging.html
e.g., "%(asctime)s - %(levelname)s - %(message)s".
overwrite : bool, or None
Overwrite the log file (if it exists). Otherwise, statements
will be appended to the log (default). None is the same as False,
but additionally raises a warning to notify the user that log
entries will be appended.
"""
handlers = logger.handlers
for h in handlers:
if isinstance(h, logging.FileHandler):
h.close()
logger.removeHandler(h)
if fname is not None:
if op.isfile(fname) and overwrite is None:
warnings.warn('Log entries will be appended to the file. Use '
'overwrite=False to avoid this message in the '
'future.')
mode = 'w' if overwrite is True else 'a'
lh = logging.FileHandler(fname, mode=mode)
else:
""" we should just be able to do:
lh = logging.StreamHandler(sys.stdout)
but because doctests uses some magic on stdout, we have to do this:
"""
lh = logging.StreamHandler(WrapStdOut())
lh.setFormatter(logging.Formatter(output_format))
# actually add the stream handler
logger.addHandler(lh)
###############################################################################
# RANDOM UTILITIES
building_doc = any('sphinx-build' in ((''.join(i[4]).lower() + i[1])
if i[4] is not None else '')
for i in inspect.stack())
def run_subprocess(command, **kwargs):
"""Run command using subprocess.Popen
Run command and wait for command to complete. If the return code was zero
then return, otherwise raise CalledProcessError.
By default, this will also add stdout= and stderr=subproces.PIPE
to the call to Popen to suppress printing to the terminal.
Parameters
----------
command : list of str
Command to run as subprocess (see subprocess.Popen documentation).
**kwargs : objects
Keywoard arguments to pass to ``subprocess.Popen``.
Returns
-------
stdout : str
Stdout returned by the process.
stderr : str
Stderr returned by the process.
"""
# code adapted with permission from mne-python
kw = dict(stderr=subprocess.PIPE, stdout=subprocess.PIPE)
kw.update(kwargs)
p = subprocess.Popen(command, **kw)
stdout_, stderr = p.communicate()
output = (stdout_.decode(), stderr.decode())
if p.returncode:
err_fun = subprocess.CalledProcessError.__init__
if 'output' in _get_args(err_fun):
raise subprocess.CalledProcessError(p.returncode, command, output)
else:
raise subprocess.CalledProcessError(p.returncode, command)
return output
class ZeroClock(object):
"""Clock that uses "clock" function but starts at zero on init."""
def __init__(self):
self._start_time = clock()
def get_time(self):
"""Get time."""
return clock() - self._start_time
def date_str():
"""Produce a date string for the current date and time
Returns
-------
datestr : str
The date string.
"""
return str(datetime.datetime.today()).replace(':', '_')
class WrapStdOut(object):
"""Ridiculous class to work around how doctest captures stdout."""
def __getattr__(self, name):
# Even more ridiculous than this class, this must be sys.stdout (not
# just stdout) in order for this to work (tested on OSX and Linux)
return getattr(sys.stdout, name)
class _TempDir(str):
"""Class for creating and auto-destroying temp dir
This is designed to be used with testing modules.
We cannot simply use __del__() method for cleanup here because the rmtree
function may be cleaned up before this object, so we use the atexit module
instead. Passing del_after and print_del kwargs to the constructor are
helpful primarily for debugging purposes.
"""
def __new__(self, del_after=True, print_del=False):
new = str.__new__(self, tempfile.mkdtemp())
self._del_after = del_after
self._print_del = print_del
return new
def __init__(self):
self._path = self.__str__()
atexit.register(self.cleanup)
def cleanup(self):
if self._del_after is True:
if self._print_del is True:
print('Deleting {} ...'.format(self._path))
rmtree(self._path, ignore_errors=True)
def check_units(units):
"""Ensure user passed valid units type
Parameters
----------
units : str
Must be ``'norm'``, ``'deg'``, or ``'pix'``.
"""
good_units = ['norm', 'pix', 'deg']
if units not in good_units:
raise ValueError('"units" must be one of {}, not {}'
''.format(good_units, units))
###############################################################################
# DECORATORS
# Following deprecated class copied from scikit-learn
class deprecated(object):
"""Decorator to mark a function or class as deprecated.
Issue a warning when the function is called/the class is instantiated and
adds a warning to the docstring.
The optional extra argument will be appended to the deprecation message
and the docstring. Note: to use this with the default value for extra, put
in an empty of parentheses:
>>> from expyfun._utils import deprecated
>>> deprecated() # doctest: +ELLIPSIS
<expyfun._utils.deprecated object at ...>
>>> @deprecated()
... def some_function(): pass
"""
# Adapted from http://wiki.python.org/moin/PythonDecoratorLibrary,
# but with many changes.
# scikit-learn will not import on all platforms b/c it can be
# sklearn or scikits.learn, so a self-contained example is used above
def __init__(self, extra=''):
"""
Parameters
----------
extra: string
to be added to the deprecation messages
"""
self.extra = extra
def __call__(self, obj):
"""Call."""
if isinstance(obj, type):
return self._decorate_class(obj)
else:
return self._decorate_fun(obj)
def _decorate_class(self, cls):
msg = "Class %s is deprecated" % cls.__name__
if self.extra:
msg += "; %s" % self.extra
# FIXME: we should probably reset __new__ for full generality
init = cls.__init__
def wrapped(*args, **kwargs):
warnings.warn(msg, category=DeprecationWarning)
return init(*args, **kwargs)
cls.__init__ = wrapped
wrapped.__name__ = '__init__'
wrapped.__doc__ = self._update_doc(init.__doc__)
wrapped.deprecated_original = init
return cls
def _decorate_fun(self, fun):
"""Decorate function fun"""
msg = "Function %s is deprecated" % fun.__name__
if self.extra:
msg += "; %s" % self.extra
def wrapped(*args, **kwargs):
warnings.warn(msg, category=DeprecationWarning)
return fun(*args, **kwargs)
wrapped.__name__ = fun.__name__
wrapped.__dict__ = fun.__dict__
wrapped.__doc__ = self._update_doc(fun.__doc__)
return wrapped
def _update_doc(self, olddoc):
newdoc = "DEPRECATED"
if self.extra:
newdoc = "%s: %s" % (newdoc, self.extra)
if olddoc:
newdoc = "%s\n\n%s" % (newdoc, olddoc)
return newdoc
if hasattr(inspect, 'signature'): # py35
def _get_args(function, varargs=False):
params = inspect.signature(function).parameters
args = [key for key, param in params.items()
if param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)]
if varargs:
varargs = [param.name for param in params.values()
if param.kind == param.VAR_POSITIONAL]
if len(varargs) == 0:
varargs = None
return args, varargs
else:
return args
else:
def _get_args(function, varargs=False):
out = inspect.getargspec(function) # args, varargs, keywords, defaults
if varargs:
return out[:2]
else:
return out[0]
@decorator
def verbose_dec(function, *args, **kwargs):
"""Improved verbose decorator to allow functions to override log-level
Do not call this directly to set global verbosrity level, instead use
set_log_level().
Parameters
----------
function : callable
Function to be decorated by setting the verbosity level.
Returns
-------
dec - function
The decorated function
"""
arg_names = _get_args(function)
if len(arg_names) > 0 and arg_names[0] == 'self':
default_level = getattr(args[0], 'verbose', None)
else:
default_level = None
if('verbose' in arg_names):
verbose_level = args[arg_names.index('verbose')]
else:
verbose_level = default_level
if verbose_level is not None:
old_level = set_log_level(verbose_level, True)
# set it back if we get an exception
try:
ret = function(*args, **kwargs)
except Exception:
set_log_level(old_level)
raise
set_log_level(old_level)
return ret
else:
ret = function(*args, **kwargs)
return ret
def _new_pyglet():
import pyglet
return LooseVersion(pyglet.version) >= LooseVersion('1.4')
def _has_video():
if _new_pyglet():
try:
from pyglet.media.codecs.ffmpeg import FFmpegSource # noqa
except ImportError:
return False
else:
try:
from pyglet.media.avbin import AVbinSource # noqa
except ImportError:
try:
from pyglet.media.sources.avbin import AVbinSource # noqa
except ImportError:
return False
return True
def requires_video():
"""Requires FFmpeg/AVbin decorator."""
import pytest
return pytest.mark.skipif(not _has_video(), reason='Requires FFmpeg/AVbin')
def requires_opengl21(func):
"""Requires OpenGL decorator."""
import pytest
import pyglet.gl
vendor = pyglet.gl.gl_info.get_vendor()
version = pyglet.gl.gl_info.get_version()
sufficient = pyglet.gl.gl_info.have_version(2, 0)
return pytest.mark.skipif(not sufficient,
reason='OpenGL too old: %s %s'
% (vendor, version,))(func)
def requires_lib(lib):
"""Requires lib decorator."""
import pytest
try:
importlib.import_module(lib)
except Exception as exp:
val = True
reason = 'Needs %s (%s)' % (lib, exp)
else:
val = False
reason = ''
return pytest.mark.skipif(val, reason=reason)
def _has_scipy_version(version):
return (LooseVersion(sp.__version__) >= LooseVersion(version))
def _get_user_home_path():
"""Return standard preferences path"""
# this has been checked on OSX64, Linux64, and Win32
val = os.getenv('APPDATA' if 'nt' == os.name.lower() else 'HOME', None)
if val is None:
raise ValueError('expyfun config file path could '
'not be determined, please report this '
'error to expyfun developers')
return val
def fetch_data_file(fname):
"""Fetch example remote file
Parameters
----------
fname : str
The remote filename to get. If the filename already exists
on the local system, the file will not be fetched again.
Returns
-------
fname : str
The filename on the local system where the file was downloaded.
"""
path = get_config('EXPYFUN_DATA_PATH', op.join(_get_user_home_path(),
'.expyfun', 'data'))
fname_out = op.join(path, fname)
if not op.isdir(op.dirname(fname_out)):
os.makedirs(op.dirname(fname_out))
fname_url = ('https://github.com/LABSN/expyfun-data/raw/master/{0}'
''.format(fname))
try:
# until we get proper certificates
context = ssl._create_unverified_context()
this_urlopen = partial(urlopen, context=context)
except AttributeError:
context = None
this_urlopen = urlopen
if not op.isfile(fname_out):
try:
with open(fname_out, 'wb') as fid:
www = this_urlopen(fname_url, timeout=30.0)
try:
fid.write(www.read())
finally:
www.close()
except Exception:
os.remove(fname_out)
raise
return fname_out
def get_config_path():
r"""Get path to standard expyfun config file.
Returns
-------
config_path : str
The path to the expyfun configuration file. On windows, this
will be '%APPDATA%\.expyfun\expyfun.json'. On every other
system, this will be $HOME/.expyfun/expyfun.json.
"""
val = op.join(_get_user_home_path(), '.expyfun', 'expyfun.json')
return val
# List the known configuration values
known_config_types = ('RESPONSE_DEVICE',
'AUDIO_CONTROLLER',
'DB_OF_SINE_AT_1KHZ_1RMS',
'EXPYFUN_EYELINK',
'SOUND_CARD_API',
'SOUND_CARD_BACKEND',
'SOUND_CARD_FS',
'SOUND_CARD_NAME',
'SOUND_CARD_FIXED_DELAY',
'TDT_CIRCUIT_PATH',
'TDT_DELAY',
'TDT_INTERFACE',
'TDT_MODEL',
'TDT_TRIG_DELAY',
'TRIGGER_CONTROLLER',
'TRIGGER_ADDRESS',
'WINDOW_SIZE',
'SCREEN_NUM',
'SCREEN_WIDTH',
'SCREEN_DISTANCE',
'SCREEN_SIZE_PIX',
'EXPYFUN_LOGGING_LEVEL',
)
# These allow for partial matches: 'NAME_1' is okay key if 'NAME' is listed
known_config_wildcards = ()
def get_config(key=None, default=None, raise_error=False):
"""Read expyfun preference from env, then expyfun config
Parameters
----------
key : str
The preference key to look for. The os environment is searched first,
then the expyfun config file is parsed.
default : str | None
Value to return if the key is not found.
raise_error : bool
If True, raise an error if the key is not found (instead of returning
default).
Returns
-------
value : str | None
The preference key value.
"""
if key is not None and not isinstance(key, string_types):
raise ValueError('key must be a string')
# first, check to see if key is in env
if key is not None and key in os.environ:
return os.environ[key]
# second, look for it in expyfun config file
config_path = get_config_path()
if not op.isfile(config_path):
key_found = False
val = default
else:
with open(config_path, 'r') as fid:
config = json.load(fid)
if key is None:
return config
key_found = True if key in config else False
val = config.get(key, default)
if not key_found and raise_error is True:
meth_1 = 'os.environ["%s"] = VALUE' % key
meth_2 = 'expyfun.utils.set_config("%s", VALUE)' % key
raise KeyError('Key "%s" not found in environment or in the '
'expyfun config file:\n%s\nTry either:\n'
' %s\nfor a temporary solution, or:\n'
' %s\nfor a permanent one. You can also '
'set the environment variable before '
'running python.'
% (key, config_path, meth_1, meth_2))
return val
def set_config(key, value):
"""Set expyfun preference in config
Parameters
----------
key : str | None
The preference key to set. If None, a tuple of the valid
keys is returned, and ``value`` is ignored.
value : str | None
The value to assign to the preference key. If None, the key is
deleted.
"""
if key is None:
return sorted(known_config_types)
if not isinstance(key, string_types):
raise ValueError('key must be a string')
# While JSON allow non-string types, we allow users to override config
# settings using env, which are strings, so we enforce that here
if not isinstance(value, string_types) and value is not None:
raise ValueError('value must be a string or None')
if key not in known_config_types and not \
any(k in key for k in known_config_wildcards):
warnings.warn('Setting non-standard config type: "%s"' % key)
# Read all previous values
config_path = get_config_path()
if op.isfile(config_path):
with open(config_path, 'r') as fid:
config = json.load(fid)
else:
config = dict()
logger.info('Attempting to create new expyfun configuration '
'file:\n%s' % config_path)
if value is None:
config.pop(key, None)
else:
config[key] = value
# Write all values
directory = op.split(config_path)[0]
if not op.isdir(directory):
os.mkdir(directory)
with open(config_path, 'w') as fid:
json.dump(config, fid, sort_keys=True, indent=0)
###############################################################################
# MISC
def fake_button_press(ec, button='1', delay=0.):
"""Fake a button press after a delay
Notes
-----
This function only works with the keyboard controller (not TDT)!
It uses threads to ensure that control is passed back, so other commands
can be called (like wait_for_presses).
"""
def send():
ec._response_handler._on_pyglet_keypress(button, [], True)
Timer(delay, send).start() if delay > 0. else send()
def fake_mouse_click(ec, pos, button='left', delay=0.):
"""Fake a mouse click after a delay"""
button = dict(left=1, middle=2, right=4)[button] # trans to pyglet
def send():
ec._mouse_handler._on_pyglet_mouse_click(pos[0], pos[1], button, [])
Timer(delay, send).start() if delay > 0. else send()
def _check_pyglet_version(raise_error=False):
"""Check pyglet version, return True if usable.
"""
import pyglet
is_usable = LooseVersion(pyglet.version) >= LooseVersion('1.2')
if raise_error is True and is_usable is False:
raise ImportError('On Linux, you must run at least Pyglet '
'version 1.2, and you are running '
'{0}'.format(pyglet.version))
return is_usable
def _wait_secs(secs, ec=None):
"""Wait a specified number of seconds.
Parameters
----------
secs : float
Number of seconds to wait.
ec : None | expyfun.ExperimentController instance
The ExperimentController.
Notes
-----
This function uses a while loop. Although this slams the CPU, it will
guarantee that events (keypresses, etc.) are processed.
"""
# hog the cpu, checking time
t0 = clock()
if ec is not None:
while (clock() - t0) < secs:
ec._dispatch_events()
ec.check_force_quit()
else:
wins = _get_display().get_windows()
for win in wins:
win.dispatch_events()
def running_rms(signal, win_length):
"""RMS of ``signal`` with rectangular window ``win_length`` samples long.
Parameters
----------
signal : array_like
The (1-dimesional) signal of interest.
win_length : int
Length (in samples) of the rectangular window
"""
return sqrt(convolve(signal ** 2, ones(win_length) / win_length, 'valid'))
def _fix_audio_dims(signal, n_channels):
"""Make it so a valid audio buffer is in the standard dimensions
Parameters
----------
signal : array_like
The signal whose dimensions should be checked and fixed.
n_channels : int
The number of channels that the output should have.
If the input is mono and n_channels=2, it will be tiled to be
shape (2, n_samples). Otherwise, the number of channels in signal
must match n_channels.
Returns
-------
signal_fixed : array
The signal with standard dimensions (n_channels, N).
"""
# Check requested channel output
n_channels = int(operator.index(n_channels))
signal = np.asarray(np.atleast_2d(signal), dtype=np.float32)
# Check dimensionality
if signal.ndim != 2:
raise ValueError('Sound data must have one or two dimensions, got %s.'
% (signal.ndim,))
# Return data with correct dimensions
if n_channels == 2 and signal.shape[0] == 1:
signal = np.tile(signal, (n_channels, 1))
if signal.shape[0] != n_channels:
raise ValueError('signal channel count %d did not match required '
'channel count %d' % (signal.shape[0], n_channels))
return signal
def _sanitize(text_like):
"""Cast as string, encode as UTF-8 and sanitize any escape characters.
"""
return text_type(text_like).encode('unicode_escape').decode('utf-8')
def _sort_keys(x):
"""Sort and return keys of dict"""
keys = list(x.keys()) # note: not thread-safe
idx = np.argsort([str(k) for k in keys])
keys = [keys[ii] for ii in idx]
return keys
def object_diff(a, b, pre=''):
"""Compute all differences between two python variables
Parameters
----------
a : object
Currently supported: dict, list, tuple, ndarray, int, str, bytes,
float, StringIO, BytesIO.
b : object
Must be same type as ``a``.
pre : str
String to prepend to each line.
Returns
-------
diffs : str
A string representation of the differences.
Notes
-----
Taken from mne-python with permission.
"""
out = ''
if type(a) != type(b):
out += pre + ' type mismatch (%s, %s)\n' % (type(a), type(b))
elif isinstance(a, dict):
k1s = _sort_keys(a)
k2s = _sort_keys(b)
m1 = set(k2s) - set(k1s)
if len(m1):
out += pre + ' x1 missing keys %s\n' % (m1)
for key in k1s:
if key not in k2s:
out += pre + ' x2 missing key %s\n' % key
else:
out += object_diff(a[key], b[key], pre + 'd1[%s]' % repr(key))
elif isinstance(a, (list, tuple)):
if len(a) != len(b):
out += pre + ' length mismatch (%s, %s)\n' % (len(a), len(b))
else:
for xx1, xx2 in zip(a, b):
out += object_diff(xx1, xx2, pre='')
elif isinstance(a, (string_types, int, float, bytes)):
if a != b:
out += pre + ' value mismatch (%s, %s)\n' % (a, b)
elif a is None:
if b is not None:
out += pre + ' a is None, b is not (%s)\n' % (b)
elif isinstance(a, np.ndarray):
if not np.array_equal(a, b):
out += pre + ' array mismatch\n'
else:
raise RuntimeError(pre + ': unsupported type %s (%s)' % (type(a), a))
return out
def _check_skip_backend(backend):
from expyfun._sound_controllers import _import_backend
import pytest
if isinstance(backend, dict): # actually an AC
backend = backend['SOUND_CARD_BACKEND']
try:
_import_backend(backend)
except Exception as exc:
pytest.skip('Skipping test for backend %s: %s' % (backend, exc))
def _check_params(params, keys, defaults, name):
if not isinstance(params, dict):
raise TypeError('{0} must be a dict, got type {1}'
.format(name, type(params)))
params = deepcopy(params)
if not isinstance(params, dict):
raise TypeError('{0} must be a dict, got {1}'
.format(name, type(params)))
# Set sensible defaults for values that are not passed
for k in keys:
params[k] = params.get(k, get_config(k, defaults.get(k, None)))
# Check keys
for k in params.keys():
if k not in keys:
raise KeyError('Unrecognized key in {0}["{1}"], must be '
'one of {2}'.format(name, k, ', '.join(keys)))
return params
def _get_display():
import pyglet
try:
display = pyglet.canvas.get_display()
except AttributeError: # < 1.4
display = pyglet.window.get_platform().get_default_display()
return display
| 2.03125 | 2 |
mixin.py | delimatorres/foodbasket | 0 | 3132 | import signal
class KillableProcess(object):
def __init__(self):
self.interrupt = False
signal.signal(signal.SIGTERM, self._signal_handler)
signal.signal(signal.SIGINT, self._signal_handler)
def _signal_handler(self, sign, frame):
self.interrupt = True | 2.34375 | 2 |
test5.py | liubaishuo-github/peening-post-processor | 0 | 3133 | def HAHA():
return 1,2,3
a = HAHA()
print(a)
print(a[0])
| 2.734375 | 3 |
torch/_fx/graph_module.py | jsun94/nimble | 206 | 3134 | <gh_stars>100-1000
import torch
import torch.overrides
import linecache
from typing import Type, Dict, List, Any, Union
from .graph import Graph
import copy
# normal exec loses the source code, however we can patch
# the linecache module to still recover it.
# using exec_with_source will add it to our local cache
# and then tools like TorchScript will be able to get source info.
_next_id = 0
def exec_with_source(src: str, globals: Dict[str, Any]):
global _next_id
key = f'<eval_with_key_{_next_id}>'
_next_id += 1
_eval_cache[key] = [line + '\n' for line in src.splitlines()]
exec(compile(src, key, 'exec'), globals)
# patch linecache so that any code we exec using exec_with_source
# works with inspect
_eval_cache : Dict[str, List[str]] = {}
_orig_getlines = linecache.getlines
def patched_getline(*args, **kwargs):
if args[0] in _eval_cache:
return _eval_cache[args[0]]
return _orig_getlines(*args, **kwargs)
linecache.getlines = patched_getline
def _forward_from_src(src : str):
gbls: Dict[str, Any] = {
'torch': torch
}
exec_with_source(src, gbls)
return gbls['forward']
def deserialize_graphmodule(body : dict) -> torch.nn.Module:
"""
Deserialize a GraphModule given the dictionary of the original module,
using the code to reconstruct the graph. We delete the actual graph before
saving the dictionary so that changes to the in-memory graph format do not
get serialized.
"""
# We create a dummy class here because symbolic_trace pulls the forward()
# function off of the class, rather than the instance
class CodeOnlyModule(torch.nn.Module):
def __init__(self, body):
super().__init__()
self.__dict__ = body
CodeOnlyModule.forward = _forward_from_src(body['code'])
from .symbolic_trace import Tracer
# we shouldn't trace into any of the submodules, they were not
# because they were not traced in the original GraphModule
class KeepModules(Tracer):
def is_leaf_module(self, _: torch.nn.Module, __: str) -> bool:
return True
return KeepModules().trace(CodeOnlyModule(body))
# copy an attribute value with qualified name 'target' from 'from_module' to 'to_module'
# This installs empty Modules where none exist yet if they are subpaths of target
def _copy_attr(from_module: torch.nn.Module, to_module: torch.nn.Module, target: str):
*prefix, field = target.split('.')
for item in prefix:
f = getattr(from_module, item)
t = getattr(to_module, item, None)
if f is t:
# we have already installed one of its parents
# (e.g. target = root.linear.weight, but we have already installed root.linear)
# once we install a parent, we no longer need to copy the children
# since all the needed properties will already be present
return
if t is None:
t = torch.nn.Module()
setattr(to_module, item, t)
from_module, to_module = f, t
setattr(to_module, field, getattr(from_module, field))
# Assign attribute 'from_obj' to the qualified name 'target' on 'to_module
# This installs empty Modules where none exist yet if they are subpaths of target
def _assign_attr(from_obj: Any, to_module: torch.nn.Module, target: str):
*prefix, field = target.split('.')
for item in prefix:
t = getattr(to_module, item, None)
if t is None:
t = torch.nn.Module()
setattr(to_module, item, t)
to_module = t
setattr(to_module, field, from_obj)
class GraphModule(torch.nn.Module):
"""
GraphModule is an nn.Module generated from an fx.Graph. GraphModule has
important attributes:
graph : The graph from which this GraphModule was generated
code : The Python source code for the function generated from `graph`
forward : The Python method generated from `graph`
Note that when `graph` is reassigned, `code` and `forward` will be automatically
regenerated.
"""
def __new__(cls: 'Type[GraphModule]', *args, **kwargs):
# each instance of a graph module needs its own forward method
# so create a new singleton class for each instance.
# it is a subclass of the user-defined class, the only difference
# is an extra layer to install the forward method
class GraphModuleImpl(cls): # type: ignore
pass
return super().__new__(GraphModuleImpl)
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph):
"""
Construct a GraphModule.
root - `root` can either be an nn.Module instance or a Dict mapping strings to any attribute type.
- In the case that `root` is a Module, any references to Module-based objects (via qualified
name) in the Graph's Nodes' `target` field will be copied over from the respective place
within `root`'s Module hierarchy into the GraphModule's module hierarchy.
- In the case that `root` is a dict, the qualified name found in a Node's `target` will be
looked up directly in the dict's keys. The object mapped to by the Dict will be copied
over into the appropriate place within the GraphModule's module hierarchy.
graph - `graph` contains the nodes this GraphModule should use for code generation
"""
super().__init__()
if isinstance(root, torch.nn.Module):
if hasattr(root, 'training'):
self.training = root.training
for node in graph.nodes:
if node.op in ['get_attr', 'call_module']:
assert isinstance(node.target, str)
_copy_attr(root, self, node.target)
elif isinstance(root, dict):
targets_to_copy = []
for node in graph.nodes:
if node.op in ['get_attr', 'call_module']:
assert isinstance(node.target, str)
if node.target not in root:
raise RuntimeError('Node ' + str(node) + ' referenced target ' + node.target +
' but that target was not provided in `root`!')
targets_to_copy.append(node.target)
# Sort targets in ascending order of the # of atoms.
# This will ensure that less deeply nested attributes are assigned
# before more deeply nested attributes. For example, foo.bar
# will be assigned before foo.bar.baz. Otherwise, we might assign
# the user-provided `foo.bar` and wipe out the previously-assigned
# `foo.bar.baz`
targets_to_copy.sort(key=lambda t: t.count('.'))
for target_to_copy in targets_to_copy:
_assign_attr(root[target_to_copy], self, target_to_copy)
else:
raise RuntimeError('Unsupported type ' + str(root) + ' passed for root!')
self.graph = graph
# TorchScript breaks trying to compile the graph setter because of the
# continued string literal. Issue here: https://github.com/pytorch/pytorch/issues/44842
#
# Shouldn't be an issue since these methods shouldn't be used in TorchScript anyway
__jit_unused_properties__ = ['graph']
@property
def graph(self):
return self._graph
@graph.setter
def graph(self, val) -> None:
self._graph = val
body, result, free_variables = self._graph.python_code(root_module='self')
body = '\n'.join(' ' + line for line in body.split('\n')) + '\n'
self.code = f"""\
def forward(self, {', '.join(free_variables)}):
{body}
return {result}
"""
cls = type(self)
cls.forward = _forward_from_src(self.code)
def __reduce__(self):
dict_without_graph = self.__dict__.copy()
del dict_without_graph['_graph']
return (deserialize_graphmodule, (dict_without_graph,))
# because __reduce__ is defined for serialization,
# we need to define deepcopy otherwise it will call __reduce__
# and cause symbolic tracing to occur every time we try to copy the object
def __deepcopy__(self, memo):
fake_mod = torch.nn.Module()
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
return GraphModule(fake_mod, self.graph)
def __copy__(self):
return GraphModule(self, self.graph)
def __str__(self) -> str:
orig_str = super().__str__()
return '\n'.join([orig_str, self.code])
# workarounds for issues in __torch_function__
# WAR for __torch_function__ not handling tensor lists,
# fix is in https://github.com/pytorch/pytorch/pull/34725
# orig_cat = torch.cat
# def patched_cat(*args, **kwargs):
# tensors = args[0]
# for t in tensors:
# if isinstance(t, Proxy):
# return t.__torch_function__(patched_cat, (), args, kwargs)
# return orig_cat(*args, **kwargs)
# patched_cat.__module__ = 'torch'
# patched_cat.__name__ = 'cat'
# torch.cat = patched_cat
| 2.34375 | 2 |
RequestHandler.py | robot0nfire/behem0th | 2 | 3135 | #
# Copyright (c) 2016 <NAME> <<EMAIL>>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
import os
import json
import struct
import threading
import socket
import queue
import tempfile
import base64
import select
from behem0th import utils, log
BLOCK_SIZE = 4096
class Route:
def handle(self, data, request):
raise NotImplementedError
def send(self, data):
self.handler.send(self.route_name, data)
class FilelistRoute(Route):
def handle(self, data, request):
if request.is_client:
request.client._filelist = data
request.client._rlock.release()
else:
files, events = request.client._merge_filelist(data)
with request.client._rlock:
self.send(request.client._filelist)
for e in events:
request.queue_event(e)
for f in files:
request.queue_file(f[0], f[1])
"""
{
"action": "<action>",
"path": "<relpath-to-file>"
}
<action> can be either 'receive' or 'send'
Payload are base64 encoded chunks (BLOCK_SIZE bytes)
"""
class FileRoute(Route):
def handle(self, data, request):
action = data['action']
path = data['path']
if action == 'receive':
tmpf = tempfile.NamedTemporaryFile(delete=False)
buffer = b''
for chunk in request.recv():
buffer += chunk
if len(buffer) >= BLOCK_SIZE:
tmpf.write(base64.b64decode(buffer[:BLOCK_SIZE]))
buffer = buffer[:BLOCK_SIZE]
tmpf.write(base64.b64decode(buffer))
tmpf.close()
# watchdog reports a file-deleted and a file-created event, so ignore both.
request.client._ignore_next_fsevent(path)
request.client._ignore_next_fsevent(path)
os.rename(tmpf.name, request.client._abspath(path))
request.client._update_metadata(path)
request.client._event_handler._dispatch(
'received', request.client, path, 'file'
)
elif action == 'send':
request.queue_file('send', path)
else:
log.warn('FileRoute: Unknown action \'{0}\', igoring.', action)
# If we are the 'server', we also need to distribute all file request
# to all other clients.
if not request.is_client:
action = 'send' if action == 'receive' else 'request'
request.client._run_on_peers('queue_file', request, action, path)
"""
{
"type": "<type>",
"path": "<relpath-to-file>"
}
<type> can be one of 'file-created', 'file-deleted', 'file-moved'
"""
class EventRoute(Route):
def handle(self, data, request):
f_type, event = data['type'].split('-')
path = data['path']
abspath = request.client._abspath(path)
request.client._ignore_next_fsevent(path)
# TODO: factor out common code with Client._handle_fsevent() and Client._merge_filelist()
if event == 'created':
# create the file/directory
if f_type == 'file':
open(abspath, 'a').close()
else:
os.mkdir(abspath, 0o755)
request.client._add_to_filelist(path, f_type)
elif event == 'deleted':
request.client._remove_from_filelist(path)
os.remove(abspath)
elif event == 'moved':
request.client._remove_from_filelist(path)
os.rename(abspath, data['dest'])
request.client._add_to_filelist(data['dest'], f_type)
else:
log.warn('EventRoute: Unknown event {0}', data)
# For rationale, see FileRoute.handle()
if not request.is_client:
request.client._run_on_peers('queue_event', request, data)
ROUTES = {
'filelist': FilelistRoute(),
'file': FileRoute(),
'event': EventRoute()
}
"""
behem0th's protocol is completely text-based, using utf-8 encoding and
encoded in JSON for easy parsing.
A request usually looks like this:
{ "route": "<route-name>", "data": "<data>" }
'data' holds additional data which is then passed to the route.
There is no special format designed for 'data' and is specific to each route.
After each request there is a newline to separate them. (think of HTTP)
If a route needs to transfer additional data (a 'payload'), it has to send them
in a text-based format, e.g. base-64 encoding for binary data.
After the payload, if any, there has to be another newline to separate it from
the next request.
"""
class RequestHandler(threading.Thread):
req_handler_num = 0
def __init__(self, **kwargs):
super().__init__()
self.daemon = True
self.sync_queue = queue.Queue()
self.routes = {}
self.recvbuf = b''
RequestHandler.req_handler_num += 1
self.name = "request-handler-{0}".format(RequestHandler.req_handler_num)
for key, value in kwargs.items():
setattr(self, key, value)
with self.client._rlock:
self.client._peers.append(self)
self.sock.setblocking(0)
self.is_client = bool(self.client._sock)
for name, route in ROUTES.items():
route.route_name = name
route.handler = self
self.routes[name] = route
def setup(self):
log.info('Connected to {0}:{1}', self.address[0], self.address[1])
# If self.client has a (active) socket, it is a client and
# thus needs to starts syncing up with the server.
if self.is_client:
# Lock the client until the filelist has been sent back by the server.
self.client._rlock.acquire()
self.send('filelist', self.client._filelist)
def close(self):
self.sync_queue.put({'action': 'exit'})
try:
self.sock.shutdown(socket.SHUT_RDWR)
except OSError:
pass
def handle(self, data):
try:
data = json.loads(data)
except ValueError:
log.error('Received invalid data: {0}', data)
return
route = data['route']
data = data['data']
log.info_v('Handling {0}, data:\n{1}', route, data)
if route in self.routes:
self.routes[route].handle(data, self)
else:
log.error("Data received on unknown route '{0}'!", route)
def send(self, route, data):
request = json.dumps({'route': route, 'data': data}) + '\n'
self.sock.sendall(request.encode())
def recv(self):
if self.recvbuf:
# This needs special handling because there could be multiple
# request in recvbuf. If this is the case, we can only yield the first
# one and have to leave to others in recvbuf.
index = self.recvbuf.find(b'\n')
if index == -1:
yield self.recvbuf
self.recvbuf = None
else:
yield self.recvbuf[:index]
self.recvbuf = self.recvbuf[index+1:]
return
while 1:
select.select([self.sock], [], [])
chunk = self.sock.recv(1024)
if not len(chunk):
# If select has signaled the socket is readable, yet .recv()
# returns zero bytes, the other end probably performed
# a close() or shutdown() on the socket.
break
index = chunk.find(b'\n')
if index == -1:
yield chunk
else:
yield chunk[:index]
self.recvbuf = chunk[index+1:]
break
def queue_file(self, action, path):
self.sync_queue.put({
'action': action + '-file',
'path': path
})
def queue_event(self, event):
self.sync_queue.put({
'action': 'send-event',
'event': event
})
def sync_worker(self):
while 1:
entry = self.sync_queue.get()
log.info_v('Processing {0}', entry)
if entry['action'] == 'exit':
break
elif entry['action'] == 'send-file':
path = entry['path']
abspath = self.client._abspath(path)
self.send('file', {
'path': path,
'action': 'receive'
})
for buf in utils.read_file_seq(abspath, BLOCK_SIZE):
self.sock.sendall(base64.b64encode(buf))
self.sock.sendall(b'\n')
self.client._event_handler._dispatch(
'sent', self.client, path, 'file'
)
elif entry['action'] == 'request-file':
self.send('file', {
'path': entry['path'],
'action': 'send'
})
elif entry['action'] == 'send-event':
self.send('event', entry['event'])
self.sync_queue.task_done()
def run(self):
self.setup()
utils.create_thread(self.sync_worker,
name=self.name.replace('request-handler', 'sync-worker'))
while 1:
buffer = b''
for chunk in self.recv():
buffer += chunk
if not len(buffer):
break
self.handle(buffer.decode())
log.info('Disconnected from {0}:{1}', self.address[0], self.address[1])
self.close()
| 1.976563 | 2 |
tests/utils/test_metrics.py | haochuanwei/hover | 251 | 3136 | <filename>tests/utils/test_metrics.py<gh_stars>100-1000
from hover.utils.metrics import classification_accuracy
import numpy as np
def test_classification_accuracy():
true = np.array([1, 2, 3, 4, 5, 6, 7, 7])
pred = np.array([1, 2, 3, 4, 5, 6, 7, 8])
accl = classification_accuracy(true, pred)
accr = classification_accuracy(pred, true)
assert np.allclose(accl, 7/8)
assert np.allclose(accr, 7/8)
| 1.976563 | 2 |
scripts/blenderseed.package.py | rgirish28/blenderseed | 0 | 3137 | <filename>scripts/blenderseed.package.py
#!/usr/bin/python
#
# This source file is part of appleseed.
# Visit https://appleseedhq.net/ for additional information and resources.
#
# This software is released under the MIT license.
#
# Copyright (c) 2017-2018 <NAME>, The appleseedhq Organization
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the 'Software'), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#
from __future__ import print_function
from distutils import archive_util, dir_util
from xml.etree.ElementTree import ElementTree
import argparse
import colorama
import datetime
import glob
import os
import platform
import re
import shutil
import stat
import subprocess
import sys
import time
import traceback
import urllib
#--------------------------------------------------------------------------------------------------
# Constants.
#--------------------------------------------------------------------------------------------------
VERSION = "1.1.0"
SETTINGS_FILENAME = "blenderseed.package.configuration.xml"
#--------------------------------------------------------------------------------------------------
# Utility functions.
#--------------------------------------------------------------------------------------------------
GREEN_CHECKMARK = u"{0}\u2713{1}".format(colorama.Style.BRIGHT + colorama.Fore.GREEN, colorama.Style.RESET_ALL)
RED_CROSSMARK = u"{0}\u2717{1}".format(colorama.Style.BRIGHT + colorama.Fore.RED, colorama.Style.RESET_ALL)
def trace(message):
# encode('utf-8') is required to support output redirection to files or pipes.
print(u" {0}{1}{2}".format(colorama.Style.DIM + colorama.Fore.WHITE, message, colorama.Style.RESET_ALL).encode('utf-8'))
def info(message):
print(u" {0}".format(message).encode('utf-8'))
def progress(message):
print(u" {0}...".format(message).encode('utf-8'))
def warning(message):
print(u" {0}Warning: {1}.{2}".format(colorama.Style.BRIGHT + colorama.Fore.MAGENTA, message, colorama.Style.RESET_ALL).encode('utf-8'))
def fatal(message):
print(u"{0}Fatal: {1}. Aborting.{2}".format(colorama.Style.BRIGHT + colorama.Fore.RED, message, colorama.Style.RESET_ALL).encode('utf-8'))
if sys.exc_info()[0]:
print(traceback.format_exc())
sys.exit(1)
def exe(filepath):
return filepath + ".exe" if os.name == "nt" else filepath
def safe_delete_file(path):
try:
if os.path.exists(path):
os.remove(path)
except OSError:
fatal("Failed to delete file '" + path + "'")
def on_rmtree_error(func, path, exc_info):
# path contains the path of the file that couldn't be removed.
# Let's just assume that it's read-only and unlink it.
os.chmod(path, stat.S_IWRITE)
os.unlink(path)
def safe_delete_directory(path):
Attempts = 10
for attempt in range(Attempts):
try:
if os.path.exists(path):
shutil.rmtree(path, onerror=on_rmtree_error)
return
except OSError:
if attempt < Attempts - 1:
time.sleep(0.5)
else:
fatal("Failed to delete directory '" + path + "'")
def safe_delete_directory_recursively(root_path, directory_name):
safe_delete_directory(os.path.join(root_path, directory_name))
for entry in os.listdir(root_path):
subdirectory = os.path.join(root_path, entry)
if os.path.isdir(subdirectory):
safe_delete_directory_recursively(subdirectory, directory_name)
def safe_make_directory(path):
if not os.path.isdir(path):
os.makedirs(path)
def pushd(path):
old_path = os.getcwd()
os.chdir(path)
return old_path
def copy_glob(input_pattern, output_path):
for input_file in glob.glob(input_pattern):
shutil.copy(input_file, output_path)
#--------------------------------------------------------------------------------------------------
# Settings.
#--------------------------------------------------------------------------------------------------
class Settings:
def load(self):
self.this_dir = os.path.dirname(os.path.realpath(__file__))
self.root_dir = os.path.join(self.this_dir, "..")
print("Loading settings from " + SETTINGS_FILENAME + "...")
tree = ElementTree()
try:
tree.parse(SETTINGS_FILENAME)
except IOError:
fatal("Failed to load configuration file '" + SETTINGS_FILENAME + "'")
self.__load_values(tree)
def print_summary(self):
print("")
print(" Platform: " + self.platform)
print(" Path to appleseed release: " + self.appleseed_release_path)
print(" Path to appleseed binaries: " + self.appleseed_bin_path)
print(" Path to appleseed libraries: " + self.appleseed_lib_path)
print(" Path to appleseed shaders: " + self.appleseed_shaders_path)
print(" Path to appleseed schemas: " + self.appleseed_schemas_path)
print(" Path to appleseed settings: " + self.appleseed_settings_path)
print(" Path to appleseed.python: " + self.appleseed_python_path)
print(" Path to maketx: " + self.maketx_path)
print(" Output directory: " + self.output_dir)
print("")
def __load_values(self, tree):
self.platform = self.__get_required(tree, "platform")
self.appleseed_release_path = self.__get_required(tree, "appleseed_release_path")
os.environ['APPLESEED'] = self.appleseed_release_path
self.appleseed_bin_path = os.path.expandvars(self.__get_required(tree, "appleseed_bin_path"))
self.appleseed_lib_path = os.path.expandvars(self.__get_required(tree, "appleseed_lib_path"))
self.appleseed_shaders_path = os.path.expandvars(self.__get_required(tree, "appleseed_shaders_path"))
self.appleseed_schemas_path = os.path.expandvars(self.__get_required(tree, "appleseed_schemas_path"))
self.appleseed_settings_path = os.path.expandvars(self.__get_required(tree, "appleseed_settings_path"))
self.appleseed_python_path = os.path.expandvars(self.__get_required(tree, "appleseed_python_path"))
self.maketx_path = os.path.expandvars(self.__get_required(tree, "maketx_path"))
self.output_dir = os.path.expandvars(self.__get_required(tree, "output_dir"))
def __get_required(self, tree, key):
value = tree.findtext(key)
if value is None:
fatal("Missing value \"{0}\" in configuration file".format(key))
return value
#--------------------------------------------------------------------------------------------------
# Base package builder.
#--------------------------------------------------------------------------------------------------
class PackageBuilder(object):
def __init__(self, settings, package_version, build_date, no_release=False):
self.settings = settings
self.package_version = package_version
self.build_date = build_date
self.no_release = no_release
def build_package(self):
print("Building package:")
print("")
self.orchestrate()
print("")
print("The package was successfully built.")
def orchestrate(self):
self.remove_leftovers()
self.copy_appleseed_python()
self.copy_binaries()
self.copy_dependencies()
self.copy_schemas()
self.copy_shaders()
self.download_settings_files()
self.remove_pyc_files()
self.post_process_package()
if not self.no_release:
self.deploy_blenderseed_to_stage()
self.clean_stage()
self.build_final_zip_file()
self.remove_stage()
def remove_leftovers(self):
progress("Removing leftovers from previous invocations")
safe_delete_directory(os.path.join(self.settings.root_dir, "appleseed"))
safe_delete_directory("blenderseed")
def copy_appleseed_python(self):
progress("Copying appleseed.python to root directory")
# Create destination directory.
lib_dir = os.path.join(self.settings.root_dir, "appleseed", "lib")
safe_make_directory(lib_dir)
# Copy appleseed.python.
dir_util.copy_tree(self.settings.appleseed_python_path, lib_dir)
# Remove _appleseedpython.so (Python 2) since blenderseed only needs _appleseedpython3.so (Python 3).
# TODO: implement properly.
safe_delete_file(os.path.join(lib_dir, "appleseed", "_appleseedpython.so"))
safe_delete_file(os.path.join(lib_dir, "appleseed", "_appleseedpython.pyd"))
def copy_binaries(self):
progress("Copying binaries to root directory")
# Create destination directory.
bin_dir = os.path.join(self.settings.root_dir, "appleseed", "bin")
safe_make_directory(bin_dir)
# Copy appleseed binaries.
for bin in [exe("appleseed.cli")]:
shutil.copy(os.path.join(self.settings.appleseed_bin_path, bin), bin_dir)
# Copy maketx.
shutil.copy(exe(self.settings.maketx_path), bin_dir)
def copy_schemas(self):
progress("Copying schemas to root directory")
dir_util.copy_tree(self.settings.appleseed_schemas_path, os.path.join(self.settings.root_dir, "appleseed", "schemas"))
safe_delete_file(os.path.join(self.settings.root_dir, "appleseed", "schemas", ".gitignore"))
def copy_shaders(self):
progress("Copying shaders to root directory")
# Create destination directory.
shaders_dir = os.path.join(self.settings.root_dir, "appleseed", "shaders")
safe_make_directory(shaders_dir)
self.__do_copy_shaders(os.path.join(self.settings.appleseed_shaders_path, "appleseed"), shaders_dir)
self.__do_copy_shaders(os.path.join(self.settings.appleseed_shaders_path, "blenderseed"), shaders_dir)
def __do_copy_shaders(self, source_dir, target_dir):
for root, dirs, files in os.walk(source_dir):
for f in files:
if f.endswith(".oso"):
shutil.copy(os.path.join(root, f), target_dir)
def download_settings_files(self):
progress("Downloading settings files to root directory")
# Create destination directory.
settings_dir = os.path.join(self.settings.root_dir, "appleseed", "settings")
safe_make_directory(settings_dir)
for file in ["appleseed.cli.xml"]:
urllib.urlretrieve(
"https://raw.githubusercontent.com/appleseedhq/appleseed/master/sandbox/settings/{0}".format(file),
os.path.join(settings_dir, file))
def remove_pyc_files(self):
progress("Removing pyc files from root directory")
for root, dirs, files in os.walk(os.path.join(self.settings.root_dir, "appleseed", "lib")):
for f in files:
if f.endswith(".pyc"):
safe_delete_file(os.path.join(root, f))
def deploy_blenderseed_to_stage(self):
progress("Deploying blenderseed to staging directory")
shutil.copytree(self.settings.root_dir, "blenderseed", ignore=shutil.ignore_patterns("scripts"))
def clean_stage(self):
progress("Cleaning staging directory")
safe_delete_directory_recursively("blenderseed", "__pycache__")
for subdirectory in [".git", ".idea", "archives", "docs", "scripts", "tests"]:
safe_delete_directory(os.path.join("blenderseed", subdirectory))
for file in [".gitignore", "README.md"]:
safe_delete_file(os.path.join("blenderseed", file))
def build_final_zip_file(self):
progress("Building final zip file from staging directory")
package_name = "blenderseed-{0}-{1}-{2}".format(self.package_version, self.settings.platform, self.build_date)
package_path = os.path.join(self.settings.output_dir, package_name)
archive_util.make_zipfile(package_path, "blenderseed")
info("Package path: {0}".format(package_path + ".zip"))
def remove_stage(self):
progress("Deleting staging directory")
safe_delete_directory("blenderseed")
def run(self, cmdline):
trace("Running command line: {0}".format(cmdline))
os.system(cmdline)
def run_subprocess(self, cmdline):
p = subprocess.Popen(cmdline, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = p.communicate()
return p.returncode, out, err
#--------------------------------------------------------------------------------------------------
# Windows package builder.
#--------------------------------------------------------------------------------------------------
class WindowsPackageBuilder(PackageBuilder):
def copy_dependencies(self):
progress("Windows-specific: Copying dependencies")
bin_dir = self.settings.appleseed_bin_path
for dll in ["appleseed.dll", "appleseed.shared.dll"]:
shutil.copy(os.path.join(bin_dir, dll), os.path.join(self.settings.root_dir, "appleseed", "bin"))
def post_process_package(self):
pass
#--------------------------------------------------------------------------------------------------
# Mac package builder.
#--------------------------------------------------------------------------------------------------
class MacPackageBuilder(PackageBuilder):
SYSTEM_LIBS_PREFIXES = [
"/System/Library/",
"/usr/lib/libcurl",
"/usr/lib/libc++",
"/usr/lib/libbz2",
"/usr/lib/libSystem",
#"/usr/lib/libz",
"/usr/lib/libncurses",
"/usr/lib/libobjc.A.dylib"
]
def copy_dependencies(self):
progress("Mac-specific: Copying dependencies")
# Create destination directory.
lib_dir = os.path.join(self.settings.root_dir, "appleseed", "lib")
safe_make_directory(lib_dir)
# Copy appleseed libraries.
for lib in ["libappleseed.dylib", "libappleseed.shared.dylib"]:
shutil.copy(os.path.join(self.settings.appleseed_lib_path, lib), lib_dir)
# Get shared libs needed by binaries.
all_libs = set()
for bin in glob.glob(os.path.join(self.settings.root_dir, "appleseed", "bin", "*")):
libs = self.__get_dependencies_for_file(bin)
all_libs = all_libs.union(libs)
# Get shared libs needed by appleseed.python.
appleseedpython_libs = self.__get_dependencies_for_file(
os.path.join(self.settings.root_dir, "appleseed", "lib", "appleseed", "_appleseedpython3.so"))
all_libs = all_libs.union(appleseedpython_libs)
# Get shared libs needed by libraries.
# TODO: we're not computing the full transitive closure here!
lib_libs = set()
for lib in all_libs:
libs = self.__get_dependencies_for_file(lib)
lib_libs = lib_libs.union(libs)
all_libs = all_libs.union(lib_libs)
if True:
# Print dependencies.
trace(" Dependencies:")
for lib in all_libs:
trace(" {0}".format(lib))
# Copy needed libs to lib directory.
for lib in all_libs:
if True:
trace(" Copying {0} to {1}...".format(lib, lib_dir))
shutil.copy(lib, lib_dir)
def post_process_package(self):
progress("Mac-specific: Post-processing package")
self.__fixup_binaries()
def __fixup_binaries(self):
progress("Mac-specific: Fixing up binaries")
self.set_libraries_ids()
self.__change_library_paths_in_libraries()
self.__change_library_paths_in_executables()
def set_libraries_ids(self):
lib_dir = os.path.join(self.settings.root_dir, "appleseed", "lib")
for dirpath, dirnames, filenames in os.walk(lib_dir):
for filename in filenames:
ext = os.path.splitext(filename)[1]
if ext == ".dylib" or ext == ".so":
lib_path = os.path.join(dirpath, filename)
self.__set_library_id(lib_path, filename)
def __change_library_paths_in_libraries(self):
lib_dir = os.path.join(self.settings.root_dir, "appleseed", "lib")
for dirpath, dirnames, filenames in os.walk(lib_dir):
for filename in filenames:
ext = os.path.splitext(filename)[1]
if ext == ".dylib" or ext == ".so":
lib_path = os.path.join(dirpath, filename)
self.__change_library_paths_in_binary(lib_path)
def __change_library_paths_in_executables(self):
bin_dir = os.path.join(self.settings.root_dir, "appleseed", "bin")
for dirpath, dirnames, filenames in os.walk(bin_dir):
for filename in filenames:
ext = os.path.splitext(filename)[1]
if ext != ".py" and ext != ".conf":
exe_path = os.path.join(dirpath, filename)
self.__change_library_paths_in_binary(exe_path)
# Can be used on executables and dynamic libraries.
def __change_library_paths_in_binary(self, bin_path):
progress("Patching {0}".format(bin_path))
bin_dir = os.path.dirname(bin_path)
lib_dir = os.path.join(self.settings.root_dir, "appleseed", "lib")
path_to_appleseed_lib = os.path.relpath(lib_dir, bin_dir)
# fix_paths set to False because we must retrieve the unmodified dependency in order to replace it by the correct one.
for lib_path in self.__get_dependencies_for_file(bin_path, fix_paths=False):
lib_name = os.path.basename(lib_path)
if path_to_appleseed_lib == ".":
self.__change_library_path(bin_path, lib_path, "@loader_path/{0}".format(lib_name))
else:
self.__change_library_path(bin_path, lib_path, "@loader_path/{0}/{1}".format(path_to_appleseed_lib, lib_name))
def __set_library_id(self, target, name):
self.run('install_name_tool -id "{0}" {1}'.format(name, target))
def __change_library_path(self, target, old, new):
self.run('install_name_tool -change "{0}" "{1}" {2}'.format(old, new, target))
def __get_dependencies_for_file(self, filepath, fix_paths=True):
filename = os.path.basename(filepath)
loader_path = os.path.dirname(filepath)
rpath = "/usr/local/lib/" # TODO: a great simplification
if True:
trace("Gathering dependencies for file")
trace(" {0}".format(filepath))
trace("with @loader_path set to")
trace(" {0}".format(loader_path))
trace("and @rpath hardcoded to")
trace(" {0}".format(rpath))
returncode, out, err = self.run_subprocess(["otool", "-L", filepath])
if returncode != 0:
fatal("Failed to invoke otool(1) to get dependencies for {0}: {1}".format(filepath, err))
libs = set()
for line in out.split("\n")[1:]: # skip the first line
line = line.strip()
# Ignore empty lines.
if len(line) == 0:
continue
# Parse the line.
m = re.match(r"(.*) \(compatibility version .*, current version .*\)", line)
if not m:
fatal("Failed to parse line from otool(1) output: " + line)
lib = m.group(1)
# Ignore self-references (why do these happen?).
if lib == filename:
continue
# Ignore system libs.
if self.__is_system_lib(lib):
continue
# Ignore Qt frameworks.
if re.search(r"Qt.*\.framework", lib):
continue
if fix_paths:
# Handle libs relative to @loader_path.
lib = lib.replace("@loader_path", loader_path)
# Handle libs relative to @rpath.
lib = lib.replace("@rpath", rpath)
# Try to handle other relative libs.
if not os.path.isabs(lib):
# TODO: generalize to a collection of user-specified search paths.
candidate = os.path.join(loader_path, lib)
if not os.path.exists(candidate):
candidate = os.path.join("/usr/local/lib/", lib)
if os.path.exists(candidate):
info("Resolved relative dependency {0} as {1}".format(lib, candidate))
lib = candidate
libs.add(lib)
if True:
trace("Dependencies for file {0}:".format(filepath))
for lib in libs:
if os.path.isfile(lib):
trace(u" {0} {1}".format(GREEN_CHECKMARK, lib))
else:
trace(u" {0} {1}".format(RED_CROSSMARK, lib))
# Don't check for missing dependencies if we didn't attempt to fix them.
if fix_paths:
for lib in libs:
if not os.path.isfile(lib):
fatal("Dependency {0} could not be found on disk".format(lib))
return libs
def __is_system_lib(self, lib):
for prefix in self.SYSTEM_LIBS_PREFIXES:
if lib.startswith(prefix):
return True
return False
#--------------------------------------------------------------------------------------------------
# Linux package builder.
#--------------------------------------------------------------------------------------------------
class LinuxPackageBuilder(PackageBuilder):
SYSTEM_LIBS_PREFIXES = [
"linux",
"librt",
"libpthread",
"libGL",
"libX",
"libselinux",
"libICE",
"libSM",
"libdl",
"libm.so",
"libgcc",
"libc.so",
"/lib64/ld-linux-",
"libstdc++",
"libxcb",
"libdrm",
"libnsl",
"libuuid",
"libgthread",
"libglib",
"libgobject",
"libglapi",
"libffi",
"libfontconfig",
"libutil",
"libpython",
"libxshmfence.so"
]
def plugin_extension(self):
return ".so"
def copy_dependencies(self):
progress("Linux-specific: Copying dependencies")
# Create destination directory.
lib_dir = os.path.join(self.settings.root_dir, "appleseed", "lib")
safe_make_directory(lib_dir)
# Copy appleseed libraries.
for lib in ["libappleseed.so", "libappleseed.shared.so"]:
shutil.copy(os.path.join(self.settings.appleseed_lib_path, lib), lib_dir)
# Get shared libs needed by binaries.
all_libs = set()
for bin in glob.glob(os.path.join(self.settings.root_dir, "appleseed", "bin", "*")):
libs = self.__get_dependencies_for_file(bin)
all_libs = all_libs.union(libs)
# Get shared libs needed by appleseed.python.
appleseedpython_libs = self.__get_dependencies_for_file(
os.path.join(self.settings.root_dir, "appleseed", "lib", "appleseed", "_appleseedpython3.so"))
all_libs = all_libs.union(appleseedpython_libs)
# Get shared libs needed by libraries.
lib_libs = set()
for lib in all_libs:
libs = self.__get_dependencies_for_file(lib)
lib_libs = lib_libs.union(libs)
all_libs = all_libs.union(lib_libs)
# Copy all shared libraries.
for lib in all_libs:
shutil.copy(lib, lib_dir)
def post_process_package(self):
progress("Linux-specific: Post-processing package")
for bin in glob.glob(os.path.join(self.settings.root_dir, "appleseed", "bin", "*")):
self.run("chrpath -r \$ORIGIN/../lib " + bin)
for lib in glob.glob(os.path.join(self.settings.root_dir, "appleseed", "lib", "*.so")):
self.run("chrpath -d " + lib)
appleseed_python_dir = os.path.join(self.settings.root_dir, "appleseed", "lib", "appleseed")
for py_cpp_module in glob.glob(os.path.join(appleseed_python_dir, "*.so")):
self.run("chrpath -r \$ORIGIN/../ " + py_cpp_module)
def __is_system_lib(self, lib):
for prefix in self.SYSTEM_LIBS_PREFIXES:
if lib.startswith(prefix):
return True
return False
def __get_dependencies_for_file(self, filepath):
returncode, out, err = self.run_subprocess(["ldd", filepath])
if returncode != 0:
fatal("Failed to invoke ldd(1) to get dependencies for {0}: {1}".format(filepath, err))
libs = set()
for line in out.split("\n"):
line = line.strip()
# Ignore empty lines.
if len(line) == 0:
continue
# Ignore system libs.
if self.__is_system_lib(line):
continue
# Ignore appleseed libs.
if "libappleseed" in line:
continue
libs.add(line.split()[2])
return libs
#--------------------------------------------------------------------------------------------------
# Entry point.
#--------------------------------------------------------------------------------------------------
def main():
colorama.init()
parser = argparse.ArgumentParser(description="build a blenderseed package from sources")
parser.add_argument("--nozip", action="store_true", help="copies appleseed binaries to blenderseed folder but does not build a release package")
args = parser.parse_args()
no_release = args.nozip
package_version = subprocess.Popen("git describe --long", stdout=subprocess.PIPE, shell=True).stdout.read().strip()
build_date = datetime.date.today().isoformat()
print("blenderseed.package version " + VERSION)
print("")
settings = Settings()
settings.load()
settings.print_summary()
if os.name == "nt":
package_builder = WindowsPackageBuilder(settings, package_version, build_date, no_release)
elif os.name == "posix" and platform.mac_ver()[0] != "":
package_builder = MacPackageBuilder(settings, package_version, build_date, no_release)
elif os.name == "posix" and platform.mac_ver()[0] == "":
package_builder = LinuxPackageBuilder(settings, package_version, build_date, no_release)
else:
fatal("Unsupported platform: " + os.name)
package_builder.build_package()
if __name__ == "__main__":
main()
| 1.179688 | 1 |
uts/uts_17_aut_py/2/A.py | viad00/code_olymp | 0 | 3138 | <filename>uts/uts_17_aut_py/2/A.py
ser = int(input())
mas = list(map(int, input().split()))
mas.sort()
print(*mas)
| 2.3125 | 2 |
wagtailkatex/wagtail_hooks.py | ongchi/wagtail-katex | 0 | 3139 | from django.utils.translation import gettext
from wagtail.admin.rich_text.editors.draftail import features as draftail_features
from wagtail.core import hooks
from .richtext import KaTeXEntityElementHandler, katex_entity_decorator
@hooks.register('register_rich_text_features')
def register_katex_features(features):
features.default_features.append('katex')
"""
Registering the `katex` feature, which uses the `KATEX` Draft.js entity type,
and is stored as HTML with a `<div data-katex-embed="c = \\pm\\sqrt{a^2 + b^2}">` tag.
"""
feature_name = 'katex-embed'
type_ = 'KATEX-EMBED'
features.register_editor_plugin(
'draftail',
feature_name,
draftail_features.EntityFeature(
{
'type': type_,
'icon': 'square-root-alt',
'description': gettext('Equation'),
},
js=[
'wagtailkatex/katex/katex.min.js',
'wagtailkatex/wagtailkatex.js',
],
css={
'all': [
'wagtailkatex/katex/katex.min.css',
]
}
)
)
features.register_converter_rule('contentstate', feature_name, {
'from_database_format': {'div[data-katex-embed]': KaTeXEntityElementHandler()},
'to_database_format': {'entity_decorators': {type_: katex_entity_decorator}},
})
| 1.96875 | 2 |
esque_wire/protocol/serializers/api/elect_preferred_leaders_request.py | real-digital/esque-wire | 0 | 3140 | ###############################################################
# Autogenerated module. Please don't modify. #
# Edit according file in protocol_generator/templates instead #
###############################################################
from typing import Dict
from ...structs.api.elect_preferred_leaders_request import ElectPreferredLeadersRequestData, TopicPartition
from ._main_serializers import ArraySerializer, ClassSerializer, Schema, int32Serializer, stringSerializer
topicPartitionSchemas: Dict[int, Schema] = {
0: [("topic", stringSerializer), ("partition_id", ArraySerializer(int32Serializer))]
}
topicPartitionSerializers: Dict[int, ClassSerializer[TopicPartition]] = {
version: ClassSerializer(TopicPartition, schema) for version, schema in topicPartitionSchemas.items()
}
topicPartitionSerializers[-1] = topicPartitionSerializers[0]
electPreferredLeadersRequestDataSchemas: Dict[int, Schema] = {
0: [("topic_partitions", ArraySerializer(topicPartitionSerializers[0])), ("timeout_ms", int32Serializer)]
}
electPreferredLeadersRequestDataSerializers: Dict[int, ClassSerializer[ElectPreferredLeadersRequestData]] = {
version: ClassSerializer(ElectPreferredLeadersRequestData, schema)
for version, schema in electPreferredLeadersRequestDataSchemas.items()
}
electPreferredLeadersRequestDataSerializers[-1] = electPreferredLeadersRequestDataSerializers[0]
| 1.601563 | 2 |
test/tests/bootstrap/test_api20_windows_bootstrap.py | arunrordell/RackHD | 451 | 3141 | '''
Copyright 2017 Dell Inc. or its subsidiaries. All Rights Reserved.
This script tests arbitrary payload of the RackHD API 2.0 OS bootstrap workflows.
The default case is running a minimum payload Windows OS install.
Other Windows-type OS install cases can be specified by creating a payload file and specifiying it using the '-extra' argument.
This test takes 30-45 minutes to run.
Example payload file (installed in configuration dir):
{"bootstrap-payload":
{"name": "Graph.InstallWindowsServer",
"options": {"defaults": {"version": "2012",
"repo": "http://172.31.128.1:8080/repo/winpe",
"smbRepo": "\\\\172.31.128.1\\windowsServer2012",
"productkey": "<KEY>",
"username": "rackhduser",
"password": "<PASSWORD>",
"smbUser": "vagrant",
"smbPassword": "<PASSWORD>"}}}
}
Example command line using external payload file:
python run_tests.py -stack 4 -test tests/bootstrap/test_api20_windows_bootstrap.py -extra base_windows_2012_install.json
RackHD Windows installation workflow requires special configuration of the RackHD server:
- A customized WinPE environment installed on RackHD server as documented here:
https://github.com/RackHD/on-tools/tree/master/winpe
- Samba installed on the RackHD server and configured as documented here:
http://rackhd.readthedocs.io/en/latest/rackhd/install_os.html?highlight=os%20install
- Windows 2012 installation distro installed on RackHD server or equivalent NFS mount.
- Windows 2012 activation key in the installation payload file.
'''
import fit_path # NOQA: unused import
from nose.plugins.attrib import attr
import fit_common
import flogging
import random
import json
import time
from nosedep import depends
from datetime import datetime
log = flogging.get_loggers()
# sample default base payload
PAYLOAD = {"name": "Graph.InstallWindowsServer",
"options": {"defaults": {"version": "2012",
"repo": "http://172.31.128.1:8080/repo/winpe",
"smbRepo": "\\\\172.31.128.1\\windowsServer2012",
"productkey": "<KEY>",
"username": "rackhduser",
"password": "<PASSWORD>",
"smbUser": "vagrant",
"smbPassword": "<PASSWORD>"}}}
# if an external payload file is specified, use that
config = fit_common.fitcfg().get('bootstrap-payload', None)
if config:
PAYLOAD = config
# function to return the value of a field from the workflow response
def findall(obj, key):
if isinstance(obj, dict):
for k, v in obj.items():
if k == key:
log.error(" workflow error: %s", v)
findall(v, key)
elif isinstance(obj, list):
for item in obj:
findall(item, key)
else:
pass
# this routine polls a workflow task ID for completion
def wait_for_workflow_complete(instanceid, start_time, waittime=3200, cycle=30):
log.info_1(" Workflow started at time: " + str(datetime.fromtimestamp(start_time)))
while time.time() - start_time < waittime: # limit test to waittime seconds
result = fit_common.rackhdapi("/api/2.0/workflows/" + instanceid)
if result['status'] != 200:
log.error(" HTTP error: " + result['text'])
return False
if result['json']['status'] in ['running', 'pending']:
log.info_5("{} workflow status: {}".format(result['json']['injectableName'], result['json']['status']))
fit_common.time.sleep(cycle)
elif result['json']['status'] == 'succeeded':
log.info_1("{} workflow status: {}".format(result['json']['injectableName'], result['json']['status']))
end_time = time.time()
log.info_1(" Workflow completed at time: " + str(datetime.fromtimestamp(end_time)))
log.info_1(" Workflow duration: " + str(end_time - start_time))
return True
else:
end_time = time.time()
log.info_1(" Workflow failed at time: " + str(datetime.fromtimestamp(end_time)))
log.info_1(" Workflow duration: " + str(end_time - start_time))
try:
res = json.loads(result['text'])
findall(res, "error")
except:
res = result['text']
log.error(" Workflow failed: status: %s", result['json']['status'])
log.error(" Data: %s", json.dumps(res, indent=4, separators=(',', ':')))
return False
try:
res = json.loads(result['text'])
except:
res = result['text']
log.error(" Workflow Timeout: " + json.dumps(res, indent=4, separators=(',', ':')))
return False
# ------------------------ Tests -------------------------------------
@attr(all=False)
class api20_bootstrap_windows(fit_common.unittest.TestCase):
@classmethod
def setUpClass(cls):
# Get the list of nodes
NODECATALOG = fit_common.node_select()
assert (len(NODECATALOG) != 0), "There are no nodes currently discovered"
# Select one node at random
cls.__NODE = NODECATALOG[random.randint(0, len(NODECATALOG) - 1)]
# Print node Id, node BMC mac ,node type
nodeinfo = fit_common.rackhdapi('/api/2.0/nodes/' + cls.__NODE)['json']
nodesku = fit_common.rackhdapi(nodeinfo.get('sku'))['json']['name']
monurl = "/api/2.0/nodes/" + cls.__NODE + "/catalogs/bmc"
mondata = fit_common.rackhdapi(monurl, action="get")
catalog = mondata['json']
bmcresult = mondata['status']
if bmcresult != 200:
log.info_1(" Node ID: " + cls.__NODE)
log.info_1(" Error on catalog/bmc command")
else:
log.info_1(" Node ID: " + cls.__NODE)
log.info_1(" Node SKU: " + nodesku)
log.info_1(" Node BMC Mac: %s", catalog.get('data')['MAC Address'])
log.info_1(" Node BMC IP Addr: %s", catalog.get('data')['IP Address'])
log.info_1(" Node BMC IP Addr Src: %s", catalog.get('data')['IP Address Source'])
# delete active workflows for specified node
result = fit_common.cancel_active_workflows(cls.__NODE)
assert (result is True), "There are still some active workflows running against the node"
def test01_node_check(self):
# Log node data
nodeinfo = fit_common.rackhdapi('/api/2.0/nodes/' + self.__class__.__NODE)['json']
nodesku = fit_common.rackhdapi(nodeinfo.get('sku'))['json']['name']
log.info_1(" Node ID: %s ", self.__class__.__NODE)
log.info_1(" Node SKU: %s ", nodesku)
log.info_1(" Graph Name: Graph.PowerOn.Node")
# Ensure the compute node is powered on and reachable
result = fit_common.rackhdapi('/api/2.0/nodes/' +
self.__class__.__NODE +
'/workflows',
action='post', payload={"name": "Graph.PowerOn.Node"})
self.assertEqual(result['status'], 201, "Node Power on workflow API failed, see logs.")
self.assertTrue(wait_for_workflow_complete(result['json']['instanceId'], time.time(), 50, 5),
"Node Power on workflow failed, see logs.")
@depends(after=test01_node_check)
def test02_os_install(self):
# Log node data
nodeinfo = fit_common.rackhdapi('/api/2.0/nodes/' + self.__class__.__NODE)['json']
nodesku = fit_common.rackhdapi(nodeinfo.get('sku'))['json']['name']
log.info_1(" Node ID: " + self.__class__.__NODE)
log.info_1(" Node SKU: " + nodesku)
log.info_1(" Graph Name: Graph.InstallWindowsServer")
log.info_1(" Payload: " + fit_common.json.dumps(PAYLOAD))
# launch workflow
workflowid = None
result = fit_common.rackhdapi('/api/2.0/nodes/' +
self.__class__.__NODE +
'/workflows',
action='post', payload=PAYLOAD)
if result['status'] == 201:
# workflow running
log.info_1(" InstanceID: " + result['json']['instanceId'])
workflowid = result['json']['instanceId']
else:
# workflow failed with response code
log.error(" InstanceID: " + result['text'])
self.fail("Workflow failed with response code: " + result['status'])
self.assertTrue(wait_for_workflow_complete(workflowid, time.time()), "OS Install workflow failed, see logs.")
if __name__ == '__main__':
fit_common.unittest.main()
| 2.203125 | 2 |
random_number.py | till-h/alexa | 0 | 3142 | from flask import Flask, render_template
from flask_ask import Ask, statement
import random
app = Flask(__name__)
ask = Ask(app, '/')
@ask.intent('RandomNumber', convert={'lowerLimit': int, 'upperLimit': int})
def hello(lowerLimit, upperLimit):
if lowerLimit == None:
lowerLimit = 0
if upperLimit == None:
upperLimit = 100
number = random.randint(lowerLimit, upperLimit)
text = render_template('random_number', lowerLimit=lowerLimit, upperLimit=upperLimit, number=number)
return statement(text).simple_card('Flask-Ask Random Number', text)
if __name__ == '__main__':
app.run(debug=True) | 2.890625 | 3 |
model/losses.py | askerlee/rift | 11 | 3143 | <reponame>askerlee/rift
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
from model.laplacian import LapLoss
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class EPE(nn.Module):
def __init__(self):
super(EPE, self).__init__()
def forward(self, flow, gt, loss_mask):
loss_map = (flow - gt.detach()) ** 2
loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5
return (loss_map * loss_mask)
class Ternary(nn.Module):
def __init__(self):
super(Ternary, self).__init__()
patch_size = 7
out_channels = patch_size * patch_size
self.w = np.eye(out_channels).reshape(
(patch_size, patch_size, 1, out_channels))
self.w = np.transpose(self.w, (3, 2, 0, 1))
self.w = torch.tensor(self.w).float().to(device)
def transform(self, img):
patches = F.conv2d(img, self.w, padding=3, bias=None)
transf = patches - img
transf_norm = transf / torch.sqrt(0.81 + transf**2)
return transf_norm
def rgb2gray(self, rgb):
r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
def hamming(self, t1, t2):
dist = (t1 - t2) ** 2
dist_norm = torch.mean(dist / (0.1 + dist), 1, True)
return dist_norm
def valid_mask(self, t, padding):
n, _, h, w = t.size()
inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t)
mask = F.pad(inner, [padding] * 4)
return mask
def forward(self, img0, img1):
img0 = self.transform(self.rgb2gray(img0))
img1 = self.transform(self.rgb2gray(img1))
return self.hamming(img0, img1) * self.valid_mask(img0, 1)
class SOBEL(nn.Module):
def __init__(self):
super(SOBEL, self).__init__()
self.kernelX = torch.tensor([
[1, 0, -1],
[2, 0, -2],
[1, 0, -1],
]).float()
self.kernelY = self.kernelX.clone().T
self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device)
self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device)
def forward(self, pred, gt):
N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3]
img_stack = torch.cat(
[pred.reshape(N*C, 1, H, W), gt.reshape(N*C, 1, H, W)], 0)
sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1)
sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1)
pred_X, gt_X = sobel_stack_x[:N*C], sobel_stack_x[N*C:]
pred_Y, gt_Y = sobel_stack_y[:N*C], sobel_stack_y[N*C:]
L1X, L1Y = torch.abs(pred_X-gt_X), torch.abs(pred_Y-gt_Y)
loss = (L1X+L1Y)
return loss
class MeanShift(nn.Conv2d):
def __init__(self, data_mean, data_std, data_range=1, norm=True):
c = len(data_mean)
super(MeanShift, self).__init__(c, c, kernel_size=1)
std = torch.Tensor(data_std)
self.weight.data = torch.eye(c).view(c, c, 1, 1)
if norm:
self.weight.data.div_(std.view(c, 1, 1, 1))
self.bias.data = -1 * data_range * torch.Tensor(data_mean)
self.bias.data.div_(std)
else:
self.weight.data.mul_(std.view(c, 1, 1, 1))
self.bias.data = data_range * torch.Tensor(data_mean)
self.requires_grad = False
class VGGPerceptualLoss(torch.nn.Module):
def __init__(self, rank=0):
super(VGGPerceptualLoss, self).__init__()
blocks = []
pretrained = True
self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features
self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda()
for param in self.parameters():
param.requires_grad = False
def forward(self, X, Y, indices=None):
X = self.normalize(X)
Y = self.normalize(Y)
indices = [2, 7, 12, 21, 30]
weights = [1.0/2.6, 1.0/4.8, 1.0/3.7, 1.0/5.6, 10/1.5]
k = 0
loss = 0
for i in range(indices[-1]):
X = self.vgg_pretrained_features[i](X)
Y = self.vgg_pretrained_features[i](Y)
if (i+1) in indices:
loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1
k += 1
return loss
# flow could have any channels.
# https://github.com/coolbeam/OIFlow/blob/main/utils/tools.py
def flow_smooth_delta(flow, if_second_order=False):
def gradient(x):
D_dx = x[:, :, :, 1:] - x[:, :, :, :-1]
D_dy = x[:, :, 1:] - x[:, :, :-1]
return D_dx, D_dy
dx, dy = gradient(flow)
# dx2, dxdy = gradient(dx)
# dydx, dy2 = gradient(dy)
if if_second_order:
dx2, dxdy = gradient(dx)
dydx, dy2 = gradient(dy)
smooth_loss = dx.abs().mean() + dy.abs().mean() + dx2.abs().mean() + dxdy.abs().mean() + dydx.abs().mean() + dy2.abs().mean()
else:
smooth_loss = dx.abs().mean() + dy.abs().mean()
# smooth_loss = dx.abs().mean() + dy.abs().mean() # + dx2.abs().mean() + dxdy.abs().mean() + dydx.abs().mean() + dy2.abs().mean()
# 暂时不上二阶的平滑损失,似乎加上以后就太猛了,无法降低photo loss TODO
return smooth_loss
# flow should have 4 channels.
# https://github.com/coolbeam/OIFlow/blob/main/utils/tools.py
# weight_type='exp' seems to perform better than 'gauss'.
def edge_aware_smoothness_order1(img0, img1, flow, constant=1.0, weight_type='exp', error_type='L1'):
def weight_fn(x):
if weight_type == 'gauss':
y = x ** 2
elif weight_type == 'exp':
y = torch.abs(x)
else:
raise ValueError('')
return y
def gradient_xy(img):
gx = img[:, :, :, :-1] - img[:, :, :, 1:]
gy = img[:, :, :-1, :] - img[:, :, 1:, :]
return gx, gy
def gradweight_xy(img0, img1):
img0_gx, img0_gy = gradient_xy(img0)
img1_gx, img1_gy = gradient_xy(img1)
img0_wx = torch.exp(-torch.mean(weight_fn(constant * img0_gx), 1, keepdim=True))
img0_wy = torch.exp(-torch.mean(weight_fn(constant * img0_gy), 1, keepdim=True))
img1_wx = torch.exp(-torch.mean(weight_fn(constant * img1_gx), 1, keepdim=True))
img1_wy = torch.exp(-torch.mean(weight_fn(constant * img1_gy), 1, keepdim=True))
# First two flow channels: 1->0 flow. So use img1 weights.
# Second two flow channels: 0->1 flow. So use img0 weights.
# weights_x and weights_y are for x and y's spatial gradients, respectively.
weights_x = torch.cat([img1_wx, img1_wx, img0_wx, img0_wx], dim=1)
weights_y = torch.cat([img1_wy, img0_wy, img0_wy, img1_wy], dim=1)
return weights_x, weights_y
def error_fn(x):
if error_type == 'L1':
y = torch.abs(x)
elif error_type == 'abs_robust':
y = (torch.abs(x) + 0.01).pow(0.4)
else:
raise ValueError('')
return y
# The flow gradients along x, y axes, respectively.
# flow_gx, flow_gy have the same number of channels as flow.
# No matter the flow is x- or y-flow, it should be smooth along both x and y axes.
# I.e., a y-flow should also be smooth along x-axis, and x-flow should also be smooth along y-axis.
flow_gx, flow_gy = gradient_xy(flow)
# weights_x, weights_y both have 4 channels, same as flow_gx and flow_gy (if the input flow has 4 channels).
weights_x, weights_y = gradweight_xy(img0, img1)
smoothness_x = error_fn(flow_gx) * weights_x
smoothness_y = error_fn(flow_gy) * weights_y
return torch.mean(smoothness_x) + torch.mean(smoothness_y)
# Dual teaching helps slightly.
def dual_teaching_loss(mid_gt, img_stu, flow_stu, img_tea, flow_tea):
loss_distill = 0
# Ws[0]: weight of teacher -> student.
# Ws[1]: weight of student -> teacher.
# Two directions could take different weights.
# Set Ws[1] to 0 to disable student -> teacher.
Ws = [1, 0.5]
use_lap_loss = False
# Laplacian loss performs better in earlier epochs, but worse in later epochs.
# Moreover, Laplacian loss is significantly slower.
if use_lap_loss:
loss_fun = LapLoss(max_levels=3, reduction='none')
else:
loss_fun = nn.L1Loss(reduction='none')
for i in range(2):
student_error = loss_fun(img_stu, mid_gt).mean(1, True)
teacher_error = loss_fun(img_tea, mid_gt).mean(1, True)
# distill_mask indicates where the warped images according to student's prediction
# is worse than that of the teacher.
# If at some points, the warped image of the teacher is better than the student,
# then regard the flow at these points are more accurate, and use them to teach the student.
distill_mask = (student_error > teacher_error + 0.01).float().detach()
# loss_distill is the sum of the distillation losses at 2 directions.
loss_distill += Ws[i] * ((flow_tea.detach() - flow_stu).abs() * distill_mask).mean()
# Swap student and teacher, and calculate the distillation loss again.
img_stu, flow_stu, img_tea, flow_tea = \
img_tea, flow_tea, img_stu, flow_stu
# The distillation loss from the student to the teacher is given a smaller weight.
# loss_distill = loss_distill / 2
return loss_distill
if __name__ == '__main__':
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
img1 = torch.tensor(np.random.normal(
0, 1, (3, 3, 256, 256))).float().to(device)
ternary_loss = Ternary()
print(ternary_loss(img0, img1).shape)
| 2.296875 | 2 |
project/python/swarm_simulation.py | righetti/swarmrobotics | 8 | 3144 | import numpy as np
import pybullet as p
import itertools
from robot import Robot
class World():
def __init__(self):
# create the physics simulator
self.physicsClient = p.connect(p.GUI)
p.setGravity(0,0,-9.81)
self.max_communication_distance = 2.0
# We will integrate every 4ms (250Hz update)
self.dt = 1./250.
p.setPhysicsEngineParameter(self.dt, numSubSteps=1)
# Create the plane.
self.planeId = p.loadURDF("../models/plane.urdf")
p.changeDynamics(self.planeId, -1, lateralFriction=5., rollingFriction=0)
self.goalId = p.loadURDF("../models/goal.urdf")
self.goalId = p.loadURDF("../models/goal2.urdf")
# the balls
self.ball1 = p.loadURDF("../models/ball1.urdf")
p.resetBasePositionAndOrientation(self.ball1, [2., 4., 0.5], (0., 0., 0.5, 0.5))
self.ball2 = p.loadURDF("../models/ball2.urdf")
p.resetBasePositionAndOrientation(self.ball2, [4., 2., 0.5], (0., 0., 0.5, 0.5))
p.resetDebugVisualizerCamera(7.0,90.0, -43.0, (1., 1., 0.0))
# Add objects
wallId = p.loadSDF("../models/walls.sdf")[0]
p.resetBasePositionAndOrientation(wallId, [0., -1., 0], (0., 0., 0.5, 0.5))
wallId = p.loadSDF("../models/walls.sdf")[0]
p.resetBasePositionAndOrientation(wallId, [0., 1., 0], (0., 0., 0.5, 0.5))
wallId = p.loadSDF("../models/walls.sdf")[0]
p.resetBasePositionAndOrientation(wallId, [3., -1., 0], (0., 0., 0.5, 0.5))
wallId = p.loadSDF("../models/walls.sdf")[0]
p.resetBasePositionAndOrientation(wallId, [3., 1., 0], (0., 0., 0.5, 0.5))
wallId = p.loadSDF("../models/walls.sdf")[0]
p.resetBasePositionAndOrientation(wallId, [1., 2., 0], (0., 0., 0., 1.))
wallId = p.loadSDF("../models/walls.sdf")[0]
p.resetBasePositionAndOrientation(wallId, [2., -2., 0], (0., 0., 0., 1.))
# tube
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-1., 5., 0], (0., 0., 0., 1.))
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-1., 6., 0], (0., 0., 0., 1.))
# #arena
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-2, 4., 0], (0., 0., 0.5, 0.5))
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-2., 7., 0], (0., 0., 0.5, 0.5))
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-2., 9., 0], (0., 0., 0.5, 0.5))
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-2., 11., 0], (0., 0., 0.5, 0.5))
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-2., 13., 0], (0., 0., 0.5, 0.5))
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-3., 3., 0], (0., 0., 0., 1.))
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-5., 3., 0], (0., 0., 0., 1.))
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-7., 3., 0], (0., 0., 0., 1.))
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-8, 4., 0], (0., 0., 0.5, 0.5))
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-8., 6., 0], (0., 0., 0.5, 0.5))
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-8., 8., 0], (0., 0., 0.5, 0.5))
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-8., 10., 0], (0., 0., 0.5, 0.5))
# wallId = p.loadSDF("../models/walls.sdf")[0]
# p.resetBasePositionAndOrientation(wallId, [-8., 12., 0], (0., 0., 0.5, 0.5))
# create 6 robots
self.robots = []
for (i,j) in itertools.product(range(3), range(2)):
self.robots.append(Robot([1. * i + 0.5, 1. * j - 0.5, 0.3], 2*i+j, self.dt))
p.stepSimulation()
self.time = 0.0
self.stepSimulation()
self.stepSimulation()
def reset(self):
"""
Resets the position of all the robots
"""
for r in self.robots:
r.reset()
p.stepSimulation()
def stepSimulation(self):
"""
Simulates one step simulation
"""
# for each robot construct list of neighbors
for r in self.robots:
r.neighbors = [] #reset neighbors
r.messages_received = [] #reset message received
pos1, or1 = r.get_pos_and_orientation()
for j,r2 in enumerate(self.robots):
if(r.id != r2.id):
pos2, or2 = r2.get_pos_and_orientation()
if(np.linalg.norm(pos1-pos2) < self.max_communication_distance):
r.neighbors.append(j)
# for each robot send and receive messages
for i,r in enumerate(self.robots):
for msg in r.messages_to_send:
if msg[0] in r.neighbors: #then we can send the message
self.robots[msg[0]].messages_received.append([i, msg[1]]) #add the sender id
r.messages_to_send = []
# update the controllers
if self.time > 1.0:
for r in self.robots:
r.compute_controller()
# do one simulation step
p.stepSimulation()
self.time += self.dt
| 2.5 | 2 |
boto/ec2/elb/__init__.py | wt/boto | 15 | 3145 | <gh_stars>10-100
# Copyright (c) 2006-2012 <NAME> http://garnaat.org/
# Copyright (c) 2012 Amazon.com, Inc. or its affiliates.
# All Rights Reserved
#
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the
# "Software"), to deal in the Software without restriction, including
# without limitation the rights to use, copy, modify, merge, publish, dis-
# tribute, sublicense, and/or sell copies of the Software, and to permit
# persons to whom the Software is furnished to do so, subject to the fol-
# lowing conditions:
#
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
# ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
# SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
# IN THE SOFTWARE.
#
"""
This module provides an interface to the Elastic Compute Cloud (EC2)
load balancing service from AWS.
"""
from boto.connection import AWSQueryConnection
from boto.ec2.instanceinfo import InstanceInfo
from boto.ec2.elb.loadbalancer import LoadBalancer, LoadBalancerZones
from boto.ec2.elb.instancestate import InstanceState
from boto.ec2.elb.healthcheck import HealthCheck
from boto.ec2.elb.listelement import ListElement
from boto.regioninfo import RegionInfo, get_regions, load_regions
import boto
RegionData = load_regions().get('elasticloadbalancing', {})
def regions():
"""
Get all available regions for the ELB service.
:rtype: list
:return: A list of :class:`boto.RegionInfo` instances
"""
return get_regions('elasticloadbalancing', connection_cls=ELBConnection)
def connect_to_region(region_name, **kw_params):
"""
Given a valid region name, return a
:class:`boto.ec2.elb.ELBConnection`.
:param str region_name: The name of the region to connect to.
:rtype: :class:`boto.ec2.ELBConnection` or ``None``
:return: A connection to the given region, or None if an invalid region
name is given
"""
for region in regions():
if region.name == region_name:
return region.connect(**kw_params)
return None
class ELBConnection(AWSQueryConnection):
APIVersion = boto.config.get('Boto', 'elb_version', '2012-06-01')
DefaultRegionName = boto.config.get('Boto', 'elb_region_name', 'us-east-1')
DefaultRegionEndpoint = boto.config.get('Boto', 'elb_region_endpoint',
'elasticloadbalancing.us-east-1.amazonaws.com')
def __init__(self, aws_access_key_id=None, aws_secret_access_key=None,
is_secure=True, port=None, proxy=None, proxy_port=None,
proxy_user=None, proxy_pass=None, debug=0,
https_connection_factory=None, region=None, path='/',
security_token=None, validate_certs=True, profile_name=None):
"""
Init method to create a new connection to EC2 Load Balancing Service.
.. note:: The region argument is overridden by the region specified in
the boto configuration file.
"""
if not region:
region = RegionInfo(self, self.DefaultRegionName,
self.DefaultRegionEndpoint)
self.region = region
super(ELBConnection, self).__init__(aws_access_key_id,
aws_secret_access_key,
is_secure, port, proxy, proxy_port,
proxy_user, proxy_pass,
self.region.endpoint, debug,
https_connection_factory, path,
security_token,
validate_certs=validate_certs,
profile_name=profile_name)
def _required_auth_capability(self):
return ['ec2']
def build_list_params(self, params, items, label):
if isinstance(items, basestring):
items = [items]
for index, item in enumerate(items):
params[label % (index + 1)] = item
def get_all_load_balancers(self, load_balancer_names=None):
"""
Retrieve all load balancers associated with your account.
:type load_balancer_names: list
:keyword load_balancer_names: An optional list of load balancer names.
:rtype: :py:class:`boto.resultset.ResultSet`
:return: A ResultSet containing instances of
:class:`boto.ec2.elb.loadbalancer.LoadBalancer`
"""
params = {}
if load_balancer_names:
self.build_list_params(params, load_balancer_names,
'LoadBalancerNames.member.%d')
return self.get_list('DescribeLoadBalancers', params,
[('member', LoadBalancer)])
def create_load_balancer(self, name, zones, listeners=None, subnets=None,
security_groups=None, scheme='internet-facing', complex_listeners=None):
"""
Create a new load balancer for your account. By default the load
balancer will be created in EC2. To create a load balancer inside a
VPC, parameter zones must be set to None and subnets must not be None.
The load balancer will be automatically created under the VPC that
contains the subnet(s) specified.
:type name: string
:param name: The mnemonic name associated with the new load balancer
:type zones: List of strings
:param zones: The names of the availability zone(s) to add.
:type listeners: List of tuples
:param listeners: Each tuple contains three or four values,
(LoadBalancerPortNumber, InstancePortNumber, Protocol,
[SSLCertificateId]) where LoadBalancerPortNumber and
InstancePortNumber are integer values between 1 and 65535,
Protocol is a string containing either 'TCP', 'SSL', HTTP', or
'HTTPS'; SSLCertificateID is the ARN of a AWS IAM
certificate, and must be specified when doing HTTPS.
:type subnets: list of strings
:param subnets: A list of subnet IDs in your VPC to attach to
your LoadBalancer.
:type security_groups: list of strings
:param security_groups: The security groups assigned to your
LoadBalancer within your VPC.
:type scheme: string
:param scheme: The type of a LoadBalancer. By default, Elastic
Load Balancing creates an internet-facing LoadBalancer with
a publicly resolvable DNS name, which resolves to public IP
addresses.
Specify the value internal for this option to create an
internal LoadBalancer with a DNS name that resolves to
private IP addresses.
This option is only available for LoadBalancers attached
to an Amazon VPC.
:type complex_listeners: List of tuples
:param complex_listeners: Each tuple contains four or five values,
(LoadBalancerPortNumber, InstancePortNumber, Protocol, InstanceProtocol,
SSLCertificateId).
Where:
- LoadBalancerPortNumber and InstancePortNumber are integer
values between 1 and 65535
- Protocol and InstanceProtocol is a string containing either 'TCP',
'SSL', 'HTTP', or 'HTTPS'
- SSLCertificateId is the ARN of an SSL certificate loaded into
AWS IAM
:rtype: :class:`boto.ec2.elb.loadbalancer.LoadBalancer`
:return: The newly created
:class:`boto.ec2.elb.loadbalancer.LoadBalancer`
"""
if not listeners and not complex_listeners:
# Must specify one of the two options
return None
params = {'LoadBalancerName': name,
'Scheme': scheme}
# Handle legacy listeners
if listeners:
for index, listener in enumerate(listeners):
i = index + 1
protocol = listener[2].upper()
params['Listeners.member.%d.LoadBalancerPort' % i] = listener[0]
params['Listeners.member.%d.InstancePort' % i] = listener[1]
params['Listeners.member.%d.Protocol' % i] = listener[2]
if protocol == 'HTTPS' or protocol == 'SSL':
params['Listeners.member.%d.SSLCertificateId' % i] = listener[3]
# Handle the full listeners
if complex_listeners:
for index, listener in enumerate(complex_listeners):
i = index + 1
protocol = listener[2].upper()
InstanceProtocol = listener[3].upper()
params['Listeners.member.%d.LoadBalancerPort' % i] = listener[0]
params['Listeners.member.%d.InstancePort' % i] = listener[1]
params['Listeners.member.%d.Protocol' % i] = listener[2]
params['Listeners.member.%d.InstanceProtocol' % i] = listener[3]
if protocol == 'HTTPS' or protocol == 'SSL':
params['Listeners.member.%d.SSLCertificateId' % i] = listener[4]
if zones:
self.build_list_params(params, zones, 'AvailabilityZones.member.%d')
if subnets:
self.build_list_params(params, subnets, 'Subnets.member.%d')
if security_groups:
self.build_list_params(params, security_groups,
'SecurityGroups.member.%d')
load_balancer = self.get_object('CreateLoadBalancer',
params, LoadBalancer)
load_balancer.name = name
load_balancer.listeners = listeners
load_balancer.availability_zones = zones
load_balancer.subnets = subnets
load_balancer.security_groups = security_groups
return load_balancer
def create_load_balancer_listeners(self, name, listeners=None, complex_listeners=None):
"""
Creates a Listener (or group of listeners) for an existing
Load Balancer
:type name: string
:param name: The name of the load balancer to create the listeners for
:type listeners: List of tuples
:param listeners: Each tuple contains three or four values,
(LoadBalancerPortNumber, InstancePortNumber, Protocol,
[SSLCertificateId]) where LoadBalancerPortNumber and
InstancePortNumber are integer values between 1 and 65535,
Protocol is a string containing either 'TCP', 'SSL', HTTP', or
'HTTPS'; SSLCertificateID is the ARN of a AWS IAM
certificate, and must be specified when doing HTTPS.
:type complex_listeners: List of tuples
:param complex_listeners: Each tuple contains four or five values,
(LoadBalancerPortNumber, InstancePortNumber, Protocol, InstanceProtocol,
SSLCertificateId).
Where:
- LoadBalancerPortNumber and InstancePortNumber are integer
values between 1 and 65535
- Protocol and InstanceProtocol is a string containing either 'TCP',
'SSL', 'HTTP', or 'HTTPS'
- SSLCertificateId is the ARN of an SSL certificate loaded into
AWS IAM
:return: The status of the request
"""
if not listeners and not complex_listeners:
# Must specify one of the two options
return None
params = {'LoadBalancerName': name}
# Handle the simple listeners
if listeners:
for index, listener in enumerate(listeners):
i = index + 1
protocol = listener[2].upper()
params['Listeners.member.%d.LoadBalancerPort' % i] = listener[0]
params['Listeners.member.%d.InstancePort' % i] = listener[1]
params['Listeners.member.%d.Protocol' % i] = listener[2]
if protocol == 'HTTPS' or protocol == 'SSL':
params['Listeners.member.%d.SSLCertificateId' % i] = listener[3]
# Handle the full listeners
if complex_listeners:
for index, listener in enumerate(complex_listeners):
i = index + 1
protocol = listener[2].upper()
InstanceProtocol = listener[3].upper()
params['Listeners.member.%d.LoadBalancerPort' % i] = listener[0]
params['Listeners.member.%d.InstancePort' % i] = listener[1]
params['Listeners.member.%d.Protocol' % i] = listener[2]
params['Listeners.member.%d.InstanceProtocol' % i] = listener[3]
if protocol == 'HTTPS' or protocol == 'SSL':
params['Listeners.member.%d.SSLCertificateId' % i] = listener[4]
return self.get_status('CreateLoadBalancerListeners', params)
def delete_load_balancer(self, name):
"""
Delete a Load Balancer from your account.
:type name: string
:param name: The name of the Load Balancer to delete
"""
params = {'LoadBalancerName': name}
return self.get_status('DeleteLoadBalancer', params)
def delete_load_balancer_listeners(self, name, ports):
"""
Deletes a load balancer listener (or group of listeners)
:type name: string
:param name: The name of the load balancer to create the listeners for
:type ports: List int
:param ports: Each int represents the port on the ELB to be removed
:return: The status of the request
"""
params = {'LoadBalancerName': name}
for index, port in enumerate(ports):
params['LoadBalancerPorts.member.%d' % (index + 1)] = port
return self.get_status('DeleteLoadBalancerListeners', params)
def enable_availability_zones(self, load_balancer_name, zones_to_add):
"""
Add availability zones to an existing Load Balancer
All zones must be in the same region as the Load Balancer
Adding zones that are already registered with the Load Balancer
has no effect.
:type load_balancer_name: string
:param load_balancer_name: The name of the Load Balancer
:type zones: List of strings
:param zones: The name of the zone(s) to add.
:rtype: List of strings
:return: An updated list of zones for this Load Balancer.
"""
params = {'LoadBalancerName': load_balancer_name}
self.build_list_params(params, zones_to_add,
'AvailabilityZones.member.%d')
obj = self.get_object('EnableAvailabilityZonesForLoadBalancer',
params, LoadBalancerZones)
return obj.zones
def disable_availability_zones(self, load_balancer_name, zones_to_remove):
"""
Remove availability zones from an existing Load Balancer.
All zones must be in the same region as the Load Balancer.
Removing zones that are not registered with the Load Balancer
has no effect.
You cannot remove all zones from an Load Balancer.
:type load_balancer_name: string
:param load_balancer_name: The name of the Load Balancer
:type zones: List of strings
:param zones: The name of the zone(s) to remove.
:rtype: List of strings
:return: An updated list of zones for this Load Balancer.
"""
params = {'LoadBalancerName': load_balancer_name}
self.build_list_params(params, zones_to_remove,
'AvailabilityZones.member.%d')
obj = self.get_object('DisableAvailabilityZonesForLoadBalancer',
params, LoadBalancerZones)
return obj.zones
def modify_lb_attribute(self, load_balancer_name, attribute, value):
"""Changes an attribute of a Load Balancer
:type load_balancer_name: string
:param load_balancer_name: The name of the Load Balancer
:type attribute: string
:param attribute: The attribute you wish to change.
* crossZoneLoadBalancing - Boolean (true)
* accessLog - :py:class:`AccessLogAttribute` instance
* connectionDraining - :py:class:`ConnectionDrainingAttribute` instance
:type value: string
:param value: The new value for the attribute
:rtype: bool
:return: Whether the operation succeeded or not
"""
bool_reqs = ('crosszoneloadbalancing',)
if attribute.lower() in bool_reqs:
if isinstance(value, bool):
if value:
value = 'true'
else:
value = 'false'
params = {'LoadBalancerName': load_balancer_name}
if attribute.lower() == 'crosszoneloadbalancing':
params['LoadBalancerAttributes.CrossZoneLoadBalancing.Enabled'
] = value
elif attribute.lower() == 'accesslog':
params['LoadBalancerAttributes.AccessLog.Enabled'] = \
value.enabled and 'true' or 'false'
params['LoadBalancerAttributes.AccessLog.S3BucketName'] = \
value.s3_bucket_name
params['LoadBalancerAttributes.AccessLog.S3BucketPrefix'] = \
value.s3_bucket_prefix
params['LoadBalancerAttributes.AccessLog.EmitInterval'] = \
value.emit_interval
elif attribute.lower() == 'connectiondraining':
params['LoadBalancerAttributes.ConnectionDraining.Enabled'] = \
value.enabled and 'true' or 'false'
params['LoadBalancerAttributes.ConnectionDraining.Timeout'] = \
value.timeout
else:
raise ValueError('InvalidAttribute', attribute)
return self.get_status('ModifyLoadBalancerAttributes', params,
verb='GET')
def get_all_lb_attributes(self, load_balancer_name):
"""Gets all Attributes of a Load Balancer
:type load_balancer_name: string
:param load_balancer_name: The name of the Load Balancer
:rtype: boto.ec2.elb.attribute.LbAttributes
:return: The attribute object of the ELB.
"""
from boto.ec2.elb.attributes import LbAttributes
params = {'LoadBalancerName': load_balancer_name}
return self.get_object('DescribeLoadBalancerAttributes',
params, LbAttributes)
def get_lb_attribute(self, load_balancer_name, attribute):
"""Gets an attribute of a Load Balancer
This will make an EC2 call for each method call.
:type load_balancer_name: string
:param load_balancer_name: The name of the Load Balancer
:type attribute: string
:param attribute: The attribute you wish to see.
* accessLog - :py:class:`AccessLogAttribute` instance
* crossZoneLoadBalancing - Boolean
* connectionDraining - :py:class:`ConnectionDrainingAttribute` instance
:rtype: Attribute dependent
:return: The new value for the attribute
"""
attributes = self.get_all_lb_attributes(load_balancer_name)
if attribute.lower() == 'accesslog':
return attributes.access_log
if attribute.lower() == 'crosszoneloadbalancing':
return attributes.cross_zone_load_balancing.enabled
if attribute.lower() == 'connectiondraining':
return attributes.connection_draining
return None
def register_instances(self, load_balancer_name, instances):
"""
Add new Instances to an existing Load Balancer.
:type load_balancer_name: string
:param load_balancer_name: The name of the Load Balancer
:type instances: List of strings
:param instances: The instance ID's of the EC2 instances to add.
:rtype: List of strings
:return: An updated list of instances for this Load Balancer.
"""
params = {'LoadBalancerName': load_balancer_name}
self.build_list_params(params, instances,
'Instances.member.%d.InstanceId')
return self.get_list('RegisterInstancesWithLoadBalancer',
params, [('member', InstanceInfo)])
def deregister_instances(self, load_balancer_name, instances):
"""
Remove Instances from an existing Load Balancer.
:type load_balancer_name: string
:param load_balancer_name: The name of the Load Balancer
:type instances: List of strings
:param instances: The instance ID's of the EC2 instances to remove.
:rtype: List of strings
:return: An updated list of instances for this Load Balancer.
"""
params = {'LoadBalancerName': load_balancer_name}
self.build_list_params(params, instances,
'Instances.member.%d.InstanceId')
return self.get_list('DeregisterInstancesFromLoadBalancer',
params, [('member', InstanceInfo)])
def describe_instance_health(self, load_balancer_name, instances=None):
"""
Get current state of all Instances registered to an Load Balancer.
:type load_balancer_name: string
:param load_balancer_name: The name of the Load Balancer
:type instances: List of strings
:param instances: The instance ID's of the EC2 instances
to return status for. If not provided,
the state of all instances will be returned.
:rtype: List of :class:`boto.ec2.elb.instancestate.InstanceState`
:return: list of state info for instances in this Load Balancer.
"""
params = {'LoadBalancerName': load_balancer_name}
if instances:
self.build_list_params(params, instances,
'Instances.member.%d.InstanceId')
return self.get_list('DescribeInstanceHealth', params,
[('member', InstanceState)])
def configure_health_check(self, name, health_check):
"""
Define a health check for the EndPoints.
:type name: string
:param name: The mnemonic name associated with the load balancer
:type health_check: :class:`boto.ec2.elb.healthcheck.HealthCheck`
:param health_check: A HealthCheck object populated with the desired
values.
:rtype: :class:`boto.ec2.elb.healthcheck.HealthCheck`
:return: The updated :class:`boto.ec2.elb.healthcheck.HealthCheck`
"""
params = {'LoadBalancerName': name,
'HealthCheck.Timeout': health_check.timeout,
'HealthCheck.Target': health_check.target,
'HealthCheck.Interval': health_check.interval,
'HealthCheck.UnhealthyThreshold': health_check.unhealthy_threshold,
'HealthCheck.HealthyThreshold': health_check.healthy_threshold}
return self.get_object('ConfigureHealthCheck', params, HealthCheck)
def set_lb_listener_SSL_certificate(self, lb_name, lb_port,
ssl_certificate_id):
"""
Sets the certificate that terminates the specified listener's SSL
connections. The specified certificate replaces any prior certificate
that was used on the same LoadBalancer and port.
"""
params = {'LoadBalancerName': lb_name,
'LoadBalancerPort': lb_port,
'SSLCertificateId': ssl_certificate_id}
return self.get_status('SetLoadBalancerListenerSSLCertificate', params)
def create_app_cookie_stickiness_policy(self, name, lb_name, policy_name):
"""
Generates a stickiness policy with sticky session lifetimes that follow
that of an application-generated cookie. This policy can only be
associated with HTTP listeners.
This policy is similar to the policy created by
CreateLBCookieStickinessPolicy, except that the lifetime of the special
Elastic Load Balancing cookie follows the lifetime of the
application-generated cookie specified in the policy configuration. The
load balancer only inserts a new stickiness cookie when the application
response includes a new application cookie.
If the application cookie is explicitly removed or expires, the session
stops being sticky until a new application cookie is issued.
"""
params = {'CookieName': name,
'LoadBalancerName': lb_name,
'PolicyName': policy_name}
return self.get_status('CreateAppCookieStickinessPolicy', params)
def create_lb_cookie_stickiness_policy(self, cookie_expiration_period,
lb_name, policy_name):
"""
Generates a stickiness policy with sticky session lifetimes controlled
by the lifetime of the browser (user-agent) or a specified expiration
period. This policy can only be associated only with HTTP listeners.
When a load balancer implements this policy, the load balancer uses a
special cookie to track the backend server instance for each request.
When the load balancer receives a request, it first checks to see if
this cookie is present in the request. If so, the load balancer sends
the request to the application server specified in the cookie. If not,
the load balancer sends the request to a server that is chosen based on
the existing load balancing algorithm.
A cookie is inserted into the response for binding subsequent requests
from the same user to that server. The validity of the cookie is based
on the cookie expiration time, which is specified in the policy
configuration.
None may be passed for cookie_expiration_period.
"""
params = {'LoadBalancerName': lb_name,
'PolicyName': policy_name}
if cookie_expiration_period is not None:
params['CookieExpirationPeriod'] = cookie_expiration_period
return self.get_status('CreateLBCookieStickinessPolicy', params)
def create_lb_policy(self, lb_name, policy_name, policy_type, policy_attributes):
"""
Creates a new policy that contais the necessary attributes depending on
the policy type. Policies are settings that are saved for your load
balancer and that can be applied to the front-end listener, or
the back-end application server.
"""
params = {'LoadBalancerName': lb_name,
'PolicyName': policy_name,
'PolicyTypeName': policy_type}
for index, (name, value) in enumerate(policy_attributes.iteritems(), 1):
params['PolicyAttributes.member.%d.AttributeName' % index] = name
params['PolicyAttributes.member.%d.AttributeValue' % index] = value
else:
params['PolicyAttributes'] = ''
return self.get_status('CreateLoadBalancerPolicy', params)
def delete_lb_policy(self, lb_name, policy_name):
"""
Deletes a policy from the LoadBalancer. The specified policy must not
be enabled for any listeners.
"""
params = {'LoadBalancerName': lb_name,
'PolicyName': policy_name}
return self.get_status('DeleteLoadBalancerPolicy', params)
def set_lb_policies_of_listener(self, lb_name, lb_port, policies):
"""
Associates, updates, or disables a policy with a listener on the load
balancer. Currently only zero (0) or one (1) policy can be associated
with a listener.
"""
params = {'LoadBalancerName': lb_name,
'LoadBalancerPort': lb_port}
if len(policies):
self.build_list_params(params, policies, 'PolicyNames.member.%d')
else:
params['PolicyNames'] = ''
return self.get_status('SetLoadBalancerPoliciesOfListener', params)
def set_lb_policies_of_backend_server(self, lb_name, instance_port, policies):
"""
Replaces the current set of policies associated with a port on which
the back-end server is listening with a new set of policies.
"""
params = {'LoadBalancerName': lb_name,
'InstancePort': instance_port}
if policies:
self.build_list_params(params, policies, 'PolicyNames.member.%d')
else:
params['PolicyNames'] = ''
return self.get_status('SetLoadBalancerPoliciesForBackendServer', params)
def apply_security_groups_to_lb(self, name, security_groups):
"""
Applies security groups to the load balancer.
Applying security groups that are already registered with the
Load Balancer has no effect.
:type name: string
:param name: The name of the Load Balancer
:type security_groups: List of strings
:param security_groups: The name of the security group(s) to add.
:rtype: List of strings
:return: An updated list of security groups for this Load Balancer.
"""
params = {'LoadBalancerName': name}
self.build_list_params(params, security_groups,
'SecurityGroups.member.%d')
return self.get_list('ApplySecurityGroupsToLoadBalancer',
params, None)
def attach_lb_to_subnets(self, name, subnets):
"""
Attaches load balancer to one or more subnets.
Attaching subnets that are already registered with the
Load Balancer has no effect.
:type name: string
:param name: The name of the Load Balancer
:type subnets: List of strings
:param subnets: The name of the subnet(s) to add.
:rtype: List of strings
:return: An updated list of subnets for this Load Balancer.
"""
params = {'LoadBalancerName': name}
self.build_list_params(params, subnets,
'Subnets.member.%d')
return self.get_list('AttachLoadBalancerToSubnets',
params, None)
def detach_lb_from_subnets(self, name, subnets):
"""
Detaches load balancer from one or more subnets.
:type name: string
:param name: The name of the Load Balancer
:type subnets: List of strings
:param subnets: The name of the subnet(s) to detach.
:rtype: List of strings
:return: An updated list of subnets for this Load Balancer.
"""
params = {'LoadBalancerName': name}
self.build_list_params(params, subnets,
'Subnets.member.%d')
return self.get_list('DetachLoadBalancerFromSubnets',
params, None)
| 1.875 | 2 |
basis_set_exchange/cli/bse_cli.py | atomse/basis_set_exchange | 0 | 3146 | <reponame>atomse/basis_set_exchange
'''
Command line interface for the basis set exchange
'''
import argparse
import argcomplete
from .. import version
from .bse_handlers import bse_cli_handle_subcmd
from .check import cli_check_normalize_args
from .complete import (cli_case_insensitive_validator,
cli_family_completer, cli_role_completer, cli_bsname_completer,
cli_write_fmt_completer, cli_read_fmt_completer, cli_reffmt_completer)
def run_bse_cli():
################################################################################################
# NOTE: I am deliberately not using the 'choices' argument in add_argument. I could use it
# for formats, etc, however I wouldn't want to use it for basis set names. Therefore, I handle
# all of that manually so that error output is consistent and clean
################################################################################################
########################################
# Main global options
########################################
parser = argparse.ArgumentParser(description='Description of your program')
parser.add_argument('-V', action='version', version='basis_set_exchange ' + version())
parser.add_argument('-d', '--data-dir', metavar='PATH', help='Override which data directory to use')
parser.add_argument('-o', '--output', metavar='PATH', help='Output to given file rather than stdout')
subparsers = parser.add_subparsers(metavar='subcommand', dest='subcmd')
subparsers.required = True # https://bugs.python.org/issue9253#msg186387
########################################
# Listing of data-independent info
########################################
# list-formats subcommand
subp = subparsers.add_parser('list-formats', help='Output a list of basis set formats that can be used with obtaining a basis set')
subp.add_argument('-n', '--no-description', action='store_true', help='Print only the format names')
# list-writer-formats subcommand
subp = subparsers.add_parser('list-writer-formats', help='Output a list available basis set formats that can be written')
subp.add_argument('-n', '--no-description', action='store_true', help='Print only the format names')
# list-reader-formats
subp = subparsers.add_parser('list-reader-formats', help='Output a list of basis set formats that can be read')
subp.add_argument('-n', '--no-description', action='store_true', help='Print only the format names')
# list-ref-formats subcommand
subp = subparsers.add_parser('list-ref-formats', help='Output a list all available reference formats and descriptions')
subp.add_argument('-n', '--no-description', action='store_true', help='Print only the reference format names')
# list-roles subcommand
subp = subparsers.add_parser('list-roles', help='Output a list all available roles and descriptions')
subp.add_argument('-n', '--no-description', action='store_true', help='Print only the role names')
########################################
# Listing of general info and metadata
########################################
# get-data-dir
subparsers.add_parser('get-data-dir', help='Output the default data directory of this package')
# list-basis-sets subcommand
subp = subparsers.add_parser('list-basis-sets', help='Output a list all available basis sets and descriptions')
subp.add_argument('-n', '--no-description', action='store_true', help='Print only the basis set names')
subp.add_argument('-f', '--family', help='Limit the basis set list to only the specified family').completer = cli_family_completer
subp.add_argument('-r', '--role', help='Limit the basis set list to only the specified role').completer = cli_role_completer
subp.add_argument('-s', '--substr', help='Limit the basis set list to only basis sets whose name contains the specified substring')
subp.add_argument('-e', '--elements', help='Limit the basis set list to only basis sets that contain all the given elements')
# list-families subcommand
subparsers.add_parser('list-families', help='Output a list all available basis set families')
# lookup-by-role
subp = subparsers.add_parser('lookup-by-role', help='Lookup a companion/auxiliary basis by primary basis and role')
subp.add_argument('basis', help='Name of the primary basis we want the auxiliary basis for').completer = cli_bsname_completer
subp.add_argument('role', help='Role of the auxiliary basis to look for').completer = cli_role_completer
#################################
# Output of info
#################################
# get-basis subcommand
subp = subparsers.add_parser('get-basis', help='Output a formatted basis set')
subp.add_argument('basis', help='Name of the basis set to output').completer = cli_bsname_completer
subp.add_argument('fmt', help='Which format to output the basis set as').completer = cli_write_fmt_completer
subp.add_argument('--elements', help='Which elements of the basis set to output. Default is all defined in the given basis')
subp.add_argument('--version', help='Which version of the basis set to output. Default is the latest version')
subp.add_argument('--noheader', action='store_true', help='Do not output the header at the top')
subp.add_argument('--unc-gen', action='store_true', help='Remove general contractions')
subp.add_argument('--unc-spdf', action='store_true', help='Remove combined sp, spd, ... contractions')
subp.add_argument('--unc-seg', action='store_true', help='Remove general contractions')
subp.add_argument('--opt-gen', action='store_true', help='Optimize general contractions')
subp.add_argument('--make-gen', action='store_true', help='Make the basis set as generally-contracted as possible')
# get-refs subcommand
subp = subparsers.add_parser('get-refs', help='Output references for a basis set')
subp.add_argument('basis', help='Name of the basis set to output the references for').completer = cli_bsname_completer
subp.add_argument('reffmt', help='Which format to output the references as').completer = cli_reffmt_completer
subp.add_argument('--elements', help='Which elements to output the references for. Default is all defined in the given basis.')
subp.add_argument('--version', help='Which version of the basis set to get the references for')
# get-info subcommand
subp = subparsers.add_parser('get-info', help='Output general info and metadata for a basis set')
subp.add_argument('basis', help='Name of the basis set to output the info for').completer = cli_bsname_completer
# get-notes subcommand
subp = subparsers.add_parser('get-notes', help='Output the notes for a basis set')
subp.add_argument('basis', help='Name of the basis set to output the notes for').completer = cli_bsname_completer
# get-family subcommand
subp = subparsers.add_parser('get-family', help='Output the family of a basis set')
subp.add_argument('basis', help='Name of the basis set to output the family for').completer = cli_bsname_completer
# get-versions subcommand
subp = subparsers.add_parser('get-versions', help='Output a list all available versions of a basis set')
subp.add_argument('basis', help='Name of the basis set to list the versions of').completer = cli_bsname_completer
subp.add_argument('-n', '--no-description', action='store_true', help='Print only the version numbers')
# get-family-notes subcommand
subp = subparsers.add_parser('get-family-notes', help='Get the notes of a family of basis sets')
subp.add_argument('family', type=str.lower, help='The basis set family to the get the notes of').completer = cli_family_completer
#################################
# Converting basis sets
#################################
subp = subparsers.add_parser('convert-basis', help='Convert basis set files from one format to another')
subp.add_argument('input_file', type=str, help='Basis set file to convert')
subp.add_argument('output_file', type=str, help='Converted basis set file')
subp.add_argument('--in-fmt', type=str, default=None, help='Input format (default: autodetected from input filename').completer = cli_read_fmt_completer
subp.add_argument('--out-fmt', type=str, default=None, help='Output format (default: autodetected from output filename').completer = cli_write_fmt_completer
#################################
# Creating bundles
#################################
subp = subparsers.add_parser('create-bundle', help='Create a bundle of basis sets')
subp.add_argument('fmt', help='Which format to output the basis set as').completer = cli_write_fmt_completer
subp.add_argument('reffmt', help='Which format to output the references as').completer = cli_reffmt_completer
subp.add_argument('bundle_file', help='Bundle/Archive file to create')
subp.add_argument('--archive-type', help='Override the type of archive to create (zip or tbz)')
#############################
# DONE WITH SUBCOMMANDS
#############################
# setup autocomplete
argcomplete.autocomplete(parser, validator=cli_case_insensitive_validator)
# Now parse and handle the args
args = parser.parse_args()
# Check and make sure basis sets, roles, etc, are valid
args = cli_check_normalize_args(args)
# Actually generate the output
output = bse_cli_handle_subcmd(args)
if args.output:
with open(args.output, 'w', encoding='utf-8') as outfile:
outfile.write(output)
else:
print(output)
return 0
| 2.109375 | 2 |
Backjoon/1929.py | hanjungwoo1/CodingTest | 3 | 3147 | """
입력 예시
3 16
출력 예시
3
5
7
11
13
"""
import math
left, right = map(int, input().split())
array = [True for i in range(right+1)]
array[1] = 0
for i in range(2, int(math.sqrt(right)) + 1):
if array[i] == True:
j = 2
while i * j <= right:
array[i * j] = False
j += 1
for i in range(left, right+1):
if array[i]:
print(i) | 3.390625 | 3 |
tensorflow/tools/quantization/quantize_graph_test.py | tianyapiaozi/tensorflow | 374 | 3148 | # Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests the graph quantization script.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import numpy as np
from tensorflow.core.framework import graph_pb2
from tensorflow.python.client import session
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import graph_util
from tensorflow.python.framework import importer
from tensorflow.python.framework import ops as ops_lib
from tensorflow.python.platform import flags as flags_lib
from tensorflow.python.platform import test
from tensorflow.python.platform import tf_logging
from tensorflow.tools.quantization import quantize_graph
flags = flags_lib
FLAGS = flags.FLAGS
def run_graph_def(graph_def, input_map, outputs):
graph = ops_lib.Graph()
with graph.as_default():
importer.import_graph_def(graph_def, input_map={}, name="")
with session.Session(graph=graph) as sess:
results = sess.run(outputs, feed_dict=input_map)
return results
def test_mat_mul(m, n, k, a, b):
"""Tests a MatMul replacement."""
a_constant_name = "a_constant"
b_constant_name = "b_constant"
mat_mul_name = "mat_mul"
float_graph_def = graph_pb2.GraphDef()
a_constant = quantize_graph.create_constant_node(
a_constant_name, value=a, dtype=dtypes.float32, shape=[m, k])
float_graph_def.node.extend([a_constant])
b_constant = quantize_graph.create_constant_node(
b_constant_name, value=b, dtype=dtypes.float32, shape=[k, n])
float_graph_def.node.extend([b_constant])
mat_mul_node = quantize_graph.create_node("MatMul", mat_mul_name,
[a_constant_name, b_constant_name])
quantize_graph.set_attr_dtype(mat_mul_node, "T", dtypes.float32)
quantize_graph.set_attr_bool(mat_mul_node, "transpose_a", False)
quantize_graph.set_attr_bool(mat_mul_node, "transpose_b", False)
float_graph_def.node.extend([mat_mul_node])
test_graph(float_graph_def, {}, [mat_mul_name])
def test_conv(depth, image_width, image_height, image_batch_count, filter_size,
filter_count, stride, padding, input_values, filter_values):
"""Tests a Conv replacement."""
input_constant_name = "input_constant"
filter_constant_name = "filter_constant"
conv_name = "conv"
float_graph_def = graph_pb2.GraphDef()
input_constant = quantize_graph.create_constant_node(
input_constant_name,
value=input_values,
dtype=dtypes.float32,
shape=[image_batch_count, image_height, image_width, depth])
float_graph_def.node.extend([input_constant])
filter_constant = quantize_graph.create_constant_node(
filter_constant_name,
value=filter_values,
dtype=dtypes.float32,
shape=[filter_size, filter_size, depth, filter_count])
float_graph_def.node.extend([filter_constant])
conv_node = quantize_graph.create_node(
"Conv2D", conv_name, [input_constant_name, filter_constant_name])
quantize_graph.set_attr_dtype(conv_node, "T", dtypes.float32)
quantize_graph.set_attr_int_list(conv_node, "strides", [1, stride, stride, 1])
quantize_graph.set_attr_string(conv_node, "padding", padding)
float_graph_def.node.extend([conv_node])
test_graph(float_graph_def, {}, [conv_name])
def are_tensors_near(a, b, tolerance):
"""Tests whether two tensors are nearly identical.
This is a specialized comparison function designed to help debug problems with
quantization. It prints out information about the differences between tensors
on failure, paying special attention to possible biases by looking at the mean
and absolute average errors.
Args:
a: First comparison tensor.
b: Second comparison tensor.
tolerance: Float value indicating how large an error between values is ok.
Returns:
Boolean indicating whether the two inputs were close enough.
"""
flat_a = a.flatten()
flat_b = b.flatten()
if len(flat_a) != len(flat_b):
tf_logging.info("Tensors are different sizes: " + str(len(flat_a)) + " vs "
+ str(len(flat_b)))
return False
value_count = len(flat_a)
how_many_different = 0
total_difference = 0
total_abs_difference = 0
for index in range(value_count):
a_value = flat_a[index]
b_value = flat_b[index]
difference = a_value - b_value
total_difference += difference
total_abs_difference += abs(difference)
if abs(difference) > tolerance:
how_many_different += 1
mean_difference = total_difference / value_count
mean_abs_difference = total_abs_difference / value_count
proportion_different = (how_many_different * 1.0) / value_count
if how_many_different == 0:
return True
else:
tf_logging.info("Tensors have {0} different values ({1}%), with mean"
" difference {2} and mean absolute difference {3}".format(
how_many_different, proportion_different * 100,
mean_difference, mean_abs_difference))
return False
def get_top_value(input_values):
max_value = None
max_index = None
for index, value in enumerate(input_values.flatten()):
if max_value is None or value > max:
max_value = value
max_index = index
return max_index, max_value
def test_graph(float_graph_def, input_map, output_names, log_graph=False):
"""Runs the float graph through the rewriter and tests the results."""
float_results = run_graph_def(
float_graph_def, input_map,
[output_name + ":0" for output_name in output_names])
# TODO(petewarden): round test is currently failing because there is no
# RoundToSteps op available.
# round_rewriter = quantize_graph.GraphRewriter(float_graph_def, "round")
# round_graph_def = round_rewriter.rewrite(output_name)
# round_results = run_graph_def(round_graph_def, input_map,
# [output_name + ":0"])
# assert are_tensors_near(expected, round_results[0], 1.0)
#
# TODO(petewarden): Add test for "quantize" mode.
eightbit_rewriter = quantize_graph.GraphRewriter(
float_graph_def, "eightbit", quantized_input_range=None)
eightbit_graph_def = eightbit_rewriter.rewrite(output_names)
eightbit_results = run_graph_def(
eightbit_graph_def, input_map,
[output_name + ":0" for output_name in output_names])
for expected, result in zip(float_results, eightbit_results):
assert are_tensors_near(expected, result, 1.0)
if log_graph:
tf_logging.info("8bit:\n%s", str(eightbit_graph_def))
# Test the weights_rounded mode. This uses the default bit_depth.
weights_rounded_rewriter = quantize_graph.GraphRewriter(
float_graph_def, "weights_rounded", quantized_input_range=None)
weights_rounded_graph_def = weights_rounded_rewriter.rewrite(output_names)
weights_rounded_results = run_graph_def(
weights_rounded_graph_def, input_map,
[output_name + ":0" for output_name in output_names])
for expected, result in zip(float_results, weights_rounded_results):
assert are_tensors_near(expected, result, 1.0)
class QuantizeGraphTest(test.TestCase):
def test_negative_const_problem(self):
shape_constant_name = "shape_constant"
shape_constant = quantize_graph.create_constant_node(
shape_constant_name, value=-0.8, dtype=dtypes.float32, shape=[1])
quantization_result = quantize_graph.quantize_weight_eightbit(
shape_constant, b"MIN_COMBINED")
self.assertEqual(4, len(quantization_result))
def test_odd_padding_problem(self):
"""Tests one error case we ran into in a real graph."""
test_conv(1, 4, 4, 1, 3, 1, 2, b"SAME",
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],
[1, 2, 3, 4, 5, 6, 7, 8, 9])
def test_mat_mul_tiny(self):
# These tests are added to test the generate case where
# min(matrix) == max(matrix), which used to cause problems.
test_mat_mul(1, 1, 1, [2], [3])
test_mat_mul(1, 2, 1, [1], [2, 3])
test_mat_mul(1, 1, 2, [1, 1], [1, 1])
test_mat_mul(1, 1, 2, [0, 0], [1, 1])
# The general case.
test_mat_mul(1, 1, 2, [1, 2], [1, 2])
def test_mat_mul_small(self):
test_mat_mul(2, 4, 3, [1, 2, 3, 4, 5, 6],
[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18])
def test_conv(self):
test_conv(1, 4, 3, 1, 3, 1, 1, b"SAME",
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
[1, 4, 7, 2, 5, 8, 3, 6, 9])
def test_reshape(self):
"""Tests that MatMul->Reshape->MatMul avoids extra quantize/dequantize."""
def make_matmul(name, a, b):
n = quantize_graph.create_node("MatMul", name, [a.name, b.name])
quantize_graph.set_attr_dtype(n, "T", dtypes.float32)
quantize_graph.set_attr_bool(n, "transpose_a", False)
quantize_graph.set_attr_bool(n, "transpose_b", False)
return n
# matmul_1 = input*weight_1
input_node = quantize_graph.create_constant_node(
"input", value=[0, 1, 2, 3], dtype=dtypes.float32, shape=[4, 1])
weight_1_node = quantize_graph.create_constant_node(
"weight_1",
value=[.5, .6, .7, .8, .9],
dtype=dtypes.float32,
shape=[1, 5])
matmul_1_node = make_matmul("matmul_1", input_node, weight_1_node)
# Reshape 4x5 to 10x2.
new_shape_node = quantize_graph.create_constant_node(
"new_shape_node", value=[10, 2], dtype=dtypes.int32, shape=[2])
reshape_node = quantize_graph.create_node(
"Reshape", "reshape", [matmul_1_node.name, new_shape_node.name])
quantize_graph.set_attr_dtype(reshape_node, "T", dtypes.float32)
# matmul_2_node = reshape*weight_2
weight_2_node = quantize_graph.create_constant_node(
"weight_2", value=[1.5, 2.5], dtype=dtypes.float32, shape=[2, 1])
matmul_2_node = make_matmul("matmul_2", reshape_node, weight_2_node)
g = graph_pb2.GraphDef()
g.node.extend([
input_node, weight_1_node, matmul_1_node, new_shape_node, reshape_node,
weight_2_node, matmul_2_node
])
# Test the graph
test_graph(g, {}, ["matmul_2"])
# Verify there is only one Quantize and one Requantize op.
eightbit_rewriter = quantize_graph.GraphRewriter(
g, "eightbit", quantized_input_range=None)
eightbit_graph_def = eightbit_rewriter.rewrite(["matmul_2"])
ops = [node.op for node in eightbit_graph_def.node]
# No quantize since all inputs are const and can be quantized up-front.
self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize"))
self.assertEqual(1, ops.count("QuantizedReshape"))
# One dequantize at the end.
self.assertEqual(1, ops.count("Dequantize"))
def test_quantize_array(self):
# Test invalid parameters (empty array, or 0 buckets.
self.assertRaises(ValueError, quantize_graph.quantize_array, np.array([]),
2)
self.assertRaises(ValueError, quantize_graph.quantize_array,
np.array([1, 2]), 0)
# Test input array of length 1.
arr = np.array([1])
qarr = quantize_graph.quantize_array(arr, 1)
self.assertEqual(arr, qarr)
qarr = quantize_graph.quantize_array(arr, 2)
self.assertEqual(arr, qarr)
# Test input array with all elements equal.
arr = np.array([1, 1, 1])
qarr = quantize_graph.quantize_array(arr, 10)
self.assertTrue((np.array([1, 1, 1]) == qarr).all())
# Test "normal" input arrays.
arr = np.array([0, 0.3, 0.6, 1])
qarr = quantize_graph.quantize_array(arr, 1)
self.assertTrue((np.array([0.5, 0.5, 0.5, 0.5]) == qarr).all())
qarr = quantize_graph.quantize_array(arr, 2)
self.assertTrue((np.array([0.25, 0.25, 0.75, 0.75]) == qarr).all())
qarr = quantize_graph.quantize_array(arr.reshape((2, 2)), 2)
self.assertTrue((np.array([[0.25, 0.25], [0.75, 0.75]]) == qarr).all())
def test_non_float_concat(self):
concat_dim = quantize_graph.create_constant_node(
"concat_dim", value=0, dtype=dtypes.int32, shape=[])
a = quantize_graph.create_constant_node(
"a",
value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
dtype=dtypes.int32,
shape=[2, 2, 3])
b = quantize_graph.create_constant_node(
"b",
value=[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24],
dtype=dtypes.int32,
shape=[2, 2, 3])
concat = quantize_graph.create_node("Concat", "concat",
[concat_dim.name, a.name, b.name])
quantize_graph.set_attr_int(concat, "N", 2)
quantize_graph.set_attr_dtype(concat, "T", dtypes.int32)
g = graph_pb2.GraphDef()
g.node.extend([concat_dim, a, b, concat])
test_graph(g, {}, [concat.name])
def test_non_float_reshape(self):
a = quantize_graph.create_constant_node(
"a",
value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
dtype=dtypes.int32,
shape=[2, 2, 3])
shape = quantize_graph.create_constant_node(
"shape", value=[12], dtype=dtypes.int32, shape=[1])
reshape = quantize_graph.create_node("Reshape", "reshape",
[a.name, shape.name])
quantize_graph.set_attr_dtype(reshape, "T", dtypes.int32)
g = graph_pb2.GraphDef()
g.node.extend([a, shape, reshape])
test_graph(g, {}, [reshape.name])
def test_concat(self):
shape_constant_name = "shape_constant"
a_constant_name = "a_constant"
b_constant_name = "b_constant"
concat_name = "concat"
float_graph_def = graph_pb2.GraphDef()
shape_constant = quantize_graph.create_constant_node(
shape_constant_name, value=0, dtype=dtypes.int32, shape=[])
float_graph_def.node.extend([shape_constant])
a_constant = quantize_graph.create_constant_node(
a_constant_name,
value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
dtype=dtypes.float32,
shape=[2, 2, 3])
float_graph_def.node.extend([a_constant])
b_constant = quantize_graph.create_constant_node(
b_constant_name,
value=[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24],
dtype=dtypes.float32,
shape=[2, 2, 3])
float_graph_def.node.extend([b_constant])
concat_node = quantize_graph.create_node(
"Concat", concat_name,
[shape_constant_name, a_constant_name, b_constant_name])
quantize_graph.set_attr_int(concat_node, "N", 2)
quantize_graph.set_attr_dtype(concat_node, "T", dtypes.float32)
float_graph_def.node.extend([concat_node])
test_graph(float_graph_def, {}, [concat_name])
# Verify the concat is quantized.
eightbit_rewriter = quantize_graph.GraphRewriter(
float_graph_def, "eightbit", quantized_input_range=None)
eightbit_graph_def = eightbit_rewriter.rewrite([concat_name])
ops = [node.op for node in eightbit_graph_def.node]
self.assertEqual(1, ops.count("QuantizedConcat"))
def test_multiple_outputs(self):
input_constant_name = "input_constant"
split_constant_name = "split_constant"
split_name = "split"
concat_constant_name = "concat_constant"
concat_name = "concat"
float_graph_def = graph_pb2.GraphDef()
input_constant = quantize_graph.create_constant_node(
input_constant_name,
value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
dtype=dtypes.float32,
shape=[2, 6])
float_graph_def.node.extend([input_constant])
split_constant = quantize_graph.create_constant_node(
split_constant_name, value=1, dtype=dtypes.int32, shape=[])
float_graph_def.node.extend([split_constant])
split_node = quantize_graph.create_node(
"Split", split_name, [split_constant_name, input_constant_name])
quantize_graph.set_attr_int(split_node, "num_split", 2)
quantize_graph.set_attr_dtype(split_node, "T", dtypes.float32)
float_graph_def.node.extend([split_node])
concat_constant = quantize_graph.create_constant_node(
concat_constant_name, value=1, dtype=dtypes.int32, shape=[])
float_graph_def.node.extend([concat_constant])
concat_node = quantize_graph.create_node(
"Concat", concat_name,
[concat_constant_name, split_name + ":0", split_name + ":1"])
quantize_graph.set_attr_int(concat_node, "N", 2)
quantize_graph.set_attr_dtype(concat_node, "T", dtypes.float32)
float_graph_def.node.extend([concat_node])
test_graph(float_graph_def, {}, [concat_name])
def test_node_name_from_input(self):
self.assertEqual("SomeName",
quantize_graph.node_name_from_input("^SomeName:2"))
def test_unique_node_name_from_input(self):
self.assertEqual("__hat__SomeName__port__2",
quantize_graph.unique_node_name_from_input("^SomeName:2"))
def test_identity(self):
input_constant_name = "input_constant"
identity_name = "identity"
float_graph_def = graph_pb2.GraphDef()
input_constant = quantize_graph.create_constant_node(
input_constant_name,
value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
dtype=dtypes.float32,
shape=[2, 6])
float_graph_def.node.extend([input_constant])
identity_node = quantize_graph.create_node("Identity", identity_name,
[input_constant_name])
quantize_graph.set_attr_dtype(identity_node, "T", dtypes.float32)
float_graph_def.node.extend([identity_node])
mul_name = "mul"
mul_node = quantize_graph.create_node("Mul", mul_name,
[identity_name, identity_name])
quantize_graph.set_attr_dtype(mul_node, "T", dtypes.float32)
float_graph_def.node.extend([mul_node])
test_graph(float_graph_def, {}, [mul_name])
def test_keep_control_edges(self):
no_op_name = "no_op"
a_constant_name = "a_constant"
b_constant_name = "b_constant"
a_check_name = "a_check"
b_check_name = "b_check"
a_identity_name = "a_identity"
b_identity_name = "b_identity"
add_name = "add"
graph_def = graph_pb2.GraphDef()
no_op = quantize_graph.create_node("NoOp", no_op_name, [])
graph_def.node.extend([no_op])
a_constant = quantize_graph.create_constant_node(
a_constant_name, value=1, dtype=dtypes.float32, shape=[])
graph_def.node.extend([a_constant])
a_check_node = quantize_graph.create_node("CheckNumerics", a_check_name,
[a_constant_name])
graph_def.node.extend([a_check_node])
a_identity_node = quantize_graph.create_node(
"Identity", a_identity_name,
[a_constant_name, "^" + a_check_name, "^" + no_op_name])
graph_def.node.extend([a_identity_node])
b_constant = quantize_graph.create_constant_node(
b_constant_name, value=1, dtype=dtypes.float32, shape=[])
graph_def.node.extend([b_constant])
b_check_node = quantize_graph.create_node("CheckNumerics", b_check_name,
[b_constant_name])
graph_def.node.extend([b_check_node])
b_identity_node = quantize_graph.create_node(
"Identity", b_identity_name, [b_constant_name, "^" + b_check_name])
graph_def.node.extend([b_identity_node])
add_node = quantize_graph.create_node("Add", add_name,
[a_identity_name, b_identity_name])
quantize_graph.set_attr_dtype(add_node, "T", dtypes.float32)
graph_def.node.extend([add_node])
expected_output = graph_pb2.GraphDef()
no_op = quantize_graph.create_node("NoOp", no_op_name, [])
expected_output.node.extend([no_op])
a_constant = quantize_graph.create_constant_node(
a_constant_name, value=1, dtype=dtypes.float32, shape=[])
expected_output.node.extend([a_constant])
a_identity_node = quantize_graph.create_node(
"Identity", a_identity_name, [a_constant_name, "^" + no_op_name])
expected_output.node.extend([a_identity_node])
b_constant = quantize_graph.create_constant_node(
b_constant_name, value=1, dtype=dtypes.float32, shape=[])
expected_output.node.extend([b_constant])
add_node = quantize_graph.create_node("Add", add_name,
[a_identity_name, b_constant_name])
quantize_graph.set_attr_dtype(add_node, "T", dtypes.float32)
expected_output.node.extend([add_node])
expected_output.versions.CopyFrom(graph_def.versions)
expected_output.library.CopyFrom(graph_def.library)
output = graph_util.remove_training_nodes(graph_def)
stripped_output = graph_util.extract_sub_graph(output, [add_name])
self.assertProtoEquals(expected_output, stripped_output)
def test_batch_norm(self):
input_constant_name = "input_constant"
mean_constant_name = "mean_constant"
variance_constant_name = "variance_constant"
beta_constant_name = "beta_constant"
gamma_constant_name = "gamma_constant"
batch_norm_name = "batch_norm"
float_graph_def = graph_pb2.GraphDef()
input_constant = quantize_graph.create_constant_node(
input_constant_name,
value=[1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6],
dtype=dtypes.float32,
shape=[1, 1, 6, 2])
float_graph_def.node.extend([input_constant])
mean_constant = quantize_graph.create_constant_node(
mean_constant_name, value=[10, 20], dtype=dtypes.float32, shape=[2])
float_graph_def.node.extend([mean_constant])
variance_constant = quantize_graph.create_constant_node(
variance_constant_name,
value=[0.25, 0.5],
dtype=dtypes.float32,
shape=[2])
float_graph_def.node.extend([variance_constant])
beta_constant = quantize_graph.create_constant_node(
beta_constant_name, value=[0.1, 0.6], dtype=dtypes.float32, shape=[2])
float_graph_def.node.extend([beta_constant])
gamma_constant = quantize_graph.create_constant_node(
gamma_constant_name, value=[0, 0], dtype=dtypes.float32, shape=[2])
float_graph_def.node.extend([gamma_constant])
batch_norm_node = quantize_graph.create_node(
"BatchNormWithGlobalNormalization", batch_norm_name, [
input_constant_name, mean_constant_name, variance_constant_name,
beta_constant_name, gamma_constant_name
])
quantize_graph.set_attr_dtype(batch_norm_node, "T", dtypes.float32)
quantize_graph.set_attr_bool(batch_norm_node, "scale_after_normalization",
False)
quantize_graph.set_attr_float(batch_norm_node, "variance_epsilon", 0.001)
float_graph_def.node.extend([batch_norm_node])
test_graph(float_graph_def, {}, [batch_norm_name])
def test_max_pool(self):
input_constant_name = "input_constant"
max_pool_name = "max_pool"
float_graph_def = graph_pb2.GraphDef()
input_constant = quantize_graph.create_constant_node(
input_constant_name,
value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
dtype=dtypes.float32,
shape=[1, 2, 6, 1])
float_graph_def.node.extend([input_constant])
max_pool_node = quantize_graph.create_node("MaxPool", max_pool_name,
[input_constant_name])
quantize_graph.set_attr_int_list(max_pool_node, "ksize", [1, 2, 2, 1])
quantize_graph.set_attr_int_list(max_pool_node, "strides", [1, 1, 1, 1])
quantize_graph.set_attr_string(max_pool_node, "padding", b"SAME")
float_graph_def.node.extend([max_pool_node])
test_graph(float_graph_def, {}, [max_pool_name])
def test_avg_pool(self):
input_constant_name = "input_constant"
avg_pool_name = "avg_pool"
float_graph_def = graph_pb2.GraphDef()
input_constant = quantize_graph.create_constant_node(
input_constant_name,
value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
dtype=dtypes.float32,
shape=[1, 2, 6, 1])
float_graph_def.node.extend([input_constant])
avg_pool_node = quantize_graph.create_node("AvgPool", avg_pool_name,
[input_constant_name])
quantize_graph.set_attr_dtype(avg_pool_node, "T", dtypes.float32)
quantize_graph.set_attr_int_list(avg_pool_node, "ksize", [1, 2, 2, 1])
quantize_graph.set_attr_int_list(avg_pool_node, "strides", [1, 1, 1, 1])
quantize_graph.set_attr_string(avg_pool_node, "padding", b"SAME")
float_graph_def.node.extend([avg_pool_node])
test_graph(float_graph_def, {}, [avg_pool_name])
def test_relu(self):
input_constant_name = "input_constant"
relu_name = "relu"
float_graph_def = graph_pb2.GraphDef()
input_constant = quantize_graph.create_constant_node(
input_constant_name,
value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
dtype=dtypes.float32,
shape=[1, 2, 6, 1])
float_graph_def.node.extend([input_constant])
relu_node = quantize_graph.create_node("Relu", relu_name,
[input_constant_name])
quantize_graph.set_attr_dtype(relu_node, "T", dtypes.float32)
float_graph_def.node.extend([relu_node])
test_graph(float_graph_def, {}, [relu_name])
def test_relu_w_fake_quant_w_min_max_vars(self):
input_node = quantize_graph.create_constant_node(
"input",
value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
dtype=dtypes.float32,
shape=[1, 2, 6, 1])
relu_node = quantize_graph.create_node("Relu", "relu", [input_node.name])
quantize_graph.set_attr_dtype(relu_node, "T", dtypes.float32)
min_node = quantize_graph.create_constant_node(
"min_bias_add", value=0, dtype=dtypes.float32, shape=[])
max_node = quantize_graph.create_constant_node(
"max_bias_add", value=12, dtype=dtypes.float32, shape=[])
fake_quant_node = quantize_graph.create_node(
"FakeQuantWithMinMaxVars", "fake_quant",
[relu_node.name, min_node.name, max_node.name])
float_graph_def = graph_pb2.GraphDef()
float_graph_def.node.extend(
[input_node, relu_node, min_node, max_node, fake_quant_node])
test_graph(float_graph_def, {}, [fake_quant_node.name], log_graph=True)
# Verify there is only one Quantize and one Requantize op.
eightbit_rewriter = quantize_graph.GraphRewriter(
float_graph_def, "eightbit", quantized_input_range=None)
eightbit_graph_def = eightbit_rewriter.rewrite([fake_quant_node.name])
ops = [node.op for node in eightbit_graph_def.node]
# No quantize since all inputs are const and can be quantized up-front.
self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize"))
# One dequantize at the end.
self.assertEqual(1, ops.count("Dequantize"))
def test_relu6(self):
input_constant_name = "input_constant"
relu6_name = "relu6"
float_graph_def = graph_pb2.GraphDef()
input_constant = quantize_graph.create_constant_node(
input_constant_name,
value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
dtype=dtypes.float32,
shape=[1, 2, 6, 1])
float_graph_def.node.extend([input_constant])
relu6_node = quantize_graph.create_node("Relu6", relu6_name,
[input_constant_name])
quantize_graph.set_attr_dtype(relu6_node, "T", dtypes.float32)
float_graph_def.node.extend([relu6_node])
test_graph(float_graph_def, {}, [relu6_name])
def test_bias_add(self):
input_constant_name = "input_constant"
offset_constant_name = "offset_constant"
bias_add_name = "bias_add"
float_graph_def = graph_pb2.GraphDef()
input_constant = quantize_graph.create_constant_node(
input_constant_name,
value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
dtype=dtypes.float32,
shape=[1, 1, 2, 6])
float_graph_def.node.extend([input_constant])
offset_constant = quantize_graph.create_constant_node(
offset_constant_name,
value=[1, 2, 3, 4, 5, 6],
dtype=dtypes.float32,
shape=[6])
float_graph_def.node.extend([offset_constant])
bias_add_node = quantize_graph.create_node(
"BiasAdd", bias_add_name, [input_constant_name, offset_constant_name])
quantize_graph.set_attr_dtype(bias_add_node, "T", dtypes.float32)
float_graph_def.node.extend([bias_add_node])
test_graph(float_graph_def, {}, [bias_add_name])
def test_quantized_input_range_errors(self):
with self.assertRaises(ValueError):
# Invalid mode.
quantize_graph.GraphRewriter(graph_pb2.GraphDef(), "weights_rounded",
[0, 1])
with self.assertRaises(ValueError):
# Invalid range.
quantize_graph.GraphRewriter(graph_pb2.GraphDef(), "eightbit", [0, -1])
def test_quantized_input_range_bias_add(self):
input_shape = [1, 1, 2, 6]
input_n = quantize_graph.create_node("Placeholder", "input", [])
quantize_graph.set_attr_dtype(input_n, "dtype", dtypes.float32)
quantize_graph.set_attr_shape(input_n, "shape", input_shape)
offset_n = quantize_graph.create_constant_node(
"offset", value=[1, 2, 3, 4, 5, 6], dtype=dtypes.float32, shape=[6])
bias_add_n = quantize_graph.create_node("BiasAdd", "bias_add",
[input_n.name, offset_n.name])
quantize_graph.set_attr_dtype(bias_add_n, "T", dtypes.float32)
float_graph_def = graph_pb2.GraphDef()
float_graph_def.node.extend([input_n, offset_n, bias_add_n])
input_map = {
input_n.name + ":0":
np.reshape([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], input_shape)
}
self._RunTestsForQuantizedInputRange(float_graph_def, input_map,
[bias_add_n.name], [-1, 20.])
self._RunTestsForQuantizedInputRange(float_graph_def, input_map,
[bias_add_n.name], [0, 12.])
def test_quantized_input_range_mat_mul(self):
shapes = [[3, 2], [2, 4]]
inputs = []
for i, shape in enumerate(shapes):
node = quantize_graph.create_node("Placeholder", "input_%s" % i, [])
quantize_graph.set_attr_dtype(node, "dtype", dtypes.float32)
quantize_graph.set_attr_shape(node, "shape", shape)
inputs.append(node)
mat_mul_node = quantize_graph.create_node("MatMul", "mat_mul",
[n.name for n in inputs])
quantize_graph.set_attr_dtype(mat_mul_node, "T", dtypes.float32)
float_graph_def = graph_pb2.GraphDef()
float_graph_def.node.extend(inputs + [mat_mul_node])
input_map = {
inputs[0].name + ":0":
np.reshape([1, 2, 3, 4, 5, 6], shapes[0]),
inputs[1].name + ":0":
np.reshape([.8, .7, .6, .5, .4, .3, .2, .1], shapes[1])
}
self._RunTestsForQuantizedInputRange(float_graph_def, input_map,
[mat_mul_node.name], [-1, 20.])
self._RunTestsForQuantizedInputRange(float_graph_def, input_map,
[mat_mul_node.name], [0, 6.])
def _RunTestsForQuantizedInputRange(self, float_graph_def, input_map,
output_names, input_range):
if sys.version_info[0] == 3:
# uint8->quint8 conversion for numpy is not working currently.
return
quantized_input_map = {}
for k, v in input_map.items():
arr = [
int(
round((n - input_range[0]) * 255 / (input_range[1] - input_range[
0]))) for n in v.flat
]
arr = np.array(arr, np.uint8)
arr = arr.reshape(v.shape)
arr = arr.astype(dtypes.quint8.as_numpy_dtype)
quantized_input_map[k] = arr
output_tensors = [output_name + ":0" for output_name in output_names]
float_results = run_graph_def(float_graph_def, input_map, output_tensors)
# Quantize treating the input as quantized in range <input_range>.
rewriter = quantize_graph.GraphRewriter(float_graph_def, "eightbit",
input_range)
graph_def = rewriter.rewrite(output_names)
results = run_graph_def(graph_def, quantized_input_map, output_tensors)
for expected, result in zip(float_results, results):
assert are_tensors_near(expected, result, .5)
ops = [node.op for node in graph_def.node]
self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize"))
self.assertEqual(len(output_names), ops.count("Dequantize"))
# Quantize without treating input as quantized.
rewriter = quantize_graph.GraphRewriter(
float_graph_def, "eightbit", quantized_input_range=None)
graph_def = rewriter.rewrite(output_names)
results = run_graph_def(graph_def, input_map, output_tensors)
for expected, result in zip(float_results, results):
assert are_tensors_near(expected, result, .5)
ops = [node.op for node in graph_def.node]
self.assertEqual(
len(input_map), ops.count("QuantizeV2") + ops.count("Quantize"))
self.assertEqual(len(output_names), ops.count("Dequantize"))
def test_bias_add_w_fake_quant_w_min_max_vars(self):
input_node = quantize_graph.create_constant_node(
"input",
value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
dtype=dtypes.float32,
shape=[1, 1, 2, 5])
offset_node = quantize_graph.create_constant_node(
"offset", value=[1, 2, 3, 4, 5], dtype=dtypes.float32, shape=[5])
bias_add_node = quantize_graph.create_node(
"BiasAdd", "bias_add", [input_node.name, offset_node.name])
quantize_graph.set_attr_dtype(bias_add_node, "T", dtypes.float32)
min_node = quantize_graph.create_constant_node(
"min_bias_add", value=-.5, dtype=dtypes.float32, shape=[])
max_node = quantize_graph.create_constant_node(
"max_bias_add", value=15.5, dtype=dtypes.float32, shape=[])
fake_quant_node = quantize_graph.create_node(
"FakeQuantWithMinMaxVars", "fake_quant",
[bias_add_node.name, min_node.name, max_node.name])
float_graph_def = graph_pb2.GraphDef()
float_graph_def.node.extend([
input_node, offset_node, bias_add_node, min_node, max_node,
fake_quant_node
])
test_graph(float_graph_def, {}, [fake_quant_node.name], log_graph=True)
# Verify there is only one Quantize and one Requantize op.
# Pass in fallback_quantization_range, although it will have no effect
# because the FakeQuantWithMinMaxVars are used instead.
eightbit_rewriter = quantize_graph.GraphRewriter(
float_graph_def,
"eightbit",
quantized_input_range=None,
fallback_quantization_range=[-100, 100])
eightbit_graph_def = eightbit_rewriter.rewrite([fake_quant_node.name])
ops = [node.op for node in eightbit_graph_def.node]
node_names = [node.name for node in eightbit_graph_def.node]
# No quantize since all inputs are const and can be quantized up-front.
self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize"))
# One dequantize at the end.
self.assertEqual(1, ops.count("Dequantize"))
# The fallback constants are not in the graph.
self.assertEqual(0, node_names.count("fallback_quantization_min_value"))
self.assertEqual(0, node_names.count("fallback_quantization_max_value"))
def test_bias_add_w_fallback_min_max_vars(self):
input_node = quantize_graph.create_constant_node(
"input",
value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
dtype=dtypes.float32,
shape=[1, 1, 2, 5])
offset_node = quantize_graph.create_constant_node(
"offset", value=[1, 2, 3, 4, 5], dtype=dtypes.float32, shape=[5])
bias_add_node = quantize_graph.create_node(
"BiasAdd", "bias_add", [input_node.name, offset_node.name])
quantize_graph.set_attr_dtype(bias_add_node, "T", dtypes.float32)
float_graph_def = graph_pb2.GraphDef()
float_graph_def.node.extend([input_node, offset_node, bias_add_node])
test_graph(float_graph_def, {}, [bias_add_node.name], log_graph=True)
# Verify there is only one Quantize, one Requantize op, and no
# RequantizationRange op.
eightbit_rewriter = quantize_graph.GraphRewriter(
float_graph_def,
"eightbit",
quantized_input_range=None,
fallback_quantization_range=[-.5, 15.5])
eightbit_graph_def = eightbit_rewriter.rewrite([bias_add_node.name])
ops = [node.op for node in eightbit_graph_def.node]
node_names = [node.name for node in eightbit_graph_def.node]
# No quantize since all inputs are const and can be quantized up-front.
self.assertEqual(0, ops.count("QuantizeV2") + ops.count("Quantize"))
# One dequantize at the end.
self.assertEqual(1, ops.count("Dequantize"))
# No RequantizationRange
self.assertEqual(0, ops.count("RequantizationRange"))
# The fallback constants are in the graph.
self.assertEqual(1, node_names.count("fallback_quantization_min_value"))
self.assertEqual(1, node_names.count("fallback_quantization_max_value"))
def test_remove_redundant_quantization(self):
a_constant_name = "a_constant"
a_constant_min_name = "a_constant_min"
a_constant_max_name = "a_constant_max"
a_dequantize_name = "a_dequantize"
a_quantize_name = "a_quantize"
b_constant_name = "b_constant"
b_constant_min_name = "b_constant_min"
b_constant_max_name = "b_constant_max"
b_dequantize_name = "b_dequantize"
b_quantize_name = "b_quantize"
mat_mul_name = "mat_mul"
graph_def = graph_pb2.GraphDef()
a_constant = quantize_graph.create_constant_node(
a_constant_name, value=(0,), dtype=dtypes.quint8, shape=[])
graph_def.node.extend([a_constant])
a_constant_min = quantize_graph.create_constant_node(
a_constant_min_name, value=2, dtype=dtypes.float32, shape=[])
graph_def.node.extend([a_constant_min])
a_constant_max = quantize_graph.create_constant_node(
a_constant_max_name, value=2, dtype=dtypes.float32, shape=[])
graph_def.node.extend([a_constant_max])
a_dequantize_node = quantize_graph.create_node(
"Dequantize", a_dequantize_name,
[a_constant_name, a_constant_min_name, a_constant_max_name])
quantize_graph.set_attr_dtype(a_dequantize_node, "T", dtypes.uint8)
graph_def.node.extend([a_dequantize_node])
a_quantize_node = quantize_graph.create_node(
"QuantizeV2", a_quantize_name,
[a_dequantize_name, a_dequantize_name + ":1", a_dequantize_name + ":2"])
quantize_graph.set_attr_dtype(a_quantize_node, "T", dtypes.uint8)
graph_def.node.extend([a_quantize_node])
b_constant = quantize_graph.create_constant_node(
b_constant_name, value=(0,), dtype=dtypes.quint8, shape=[])
graph_def.node.extend([b_constant])
b_constant_min = quantize_graph.create_constant_node(
b_constant_min_name, value=3, dtype=dtypes.float32, shape=[])
graph_def.node.extend([b_constant_min])
b_constant_max = quantize_graph.create_constant_node(
b_constant_max_name, value=3, dtype=dtypes.float32, shape=[])
graph_def.node.extend([b_constant_max])
b_dequantize_node = quantize_graph.create_node(
"Dequantize", b_dequantize_name,
[b_constant_name, b_constant_min_name, b_constant_max_name])
quantize_graph.set_attr_dtype(b_dequantize_node, "T", dtypes.uint8)
graph_def.node.extend([b_dequantize_node])
b_quantize_node = quantize_graph.create_node(
"QuantizeV2", b_quantize_name,
[b_dequantize_name, b_dequantize_name + ":1", b_dequantize_name + ":2"])
quantize_graph.set_attr_dtype(b_quantize_node, "T", dtypes.uint8)
graph_def.node.extend([b_quantize_node])
mat_mul_node = quantize_graph.create_node("QuantizedMatMul", mat_mul_name, [
a_quantize_name, b_quantize_name, a_quantize_name + ":1",
a_quantize_name + ":2", b_quantize_name + ":1", b_quantize_name + ":2"
])
quantize_graph.set_attr_dtype(mat_mul_node, "T1", dtypes.uint8)
quantize_graph.set_attr_dtype(mat_mul_node, "T2", dtypes.int32)
graph_def.node.extend([mat_mul_node])
expected_output = graph_pb2.GraphDef()
a_constant = quantize_graph.create_constant_node(
a_constant_name, value=(0,), dtype=dtypes.quint8, shape=[])
expected_output.node.extend([a_constant])
a_constant_min = quantize_graph.create_constant_node(
a_constant_min_name, value=2, dtype=dtypes.float32, shape=[])
expected_output.node.extend([a_constant_min])
a_constant_max = quantize_graph.create_constant_node(
a_constant_max_name, value=2, dtype=dtypes.float32, shape=[])
expected_output.node.extend([a_constant_max])
b_constant = quantize_graph.create_constant_node(
b_constant_name, value=(0,), dtype=dtypes.quint8, shape=[])
expected_output.node.extend([b_constant])
b_constant_min = quantize_graph.create_constant_node(
b_constant_min_name, value=3, dtype=dtypes.float32, shape=[])
expected_output.node.extend([b_constant_min])
b_constant_max = quantize_graph.create_constant_node(
b_constant_max_name, value=3, dtype=dtypes.float32, shape=[])
expected_output.node.extend([b_constant_max])
mat_mul_node = quantize_graph.create_node("QuantizedMatMul", mat_mul_name, [
a_constant_name, b_constant_name, a_constant_min_name,
a_constant_max_name, b_constant_min_name, b_constant_max_name
])
quantize_graph.set_attr_dtype(mat_mul_node, "T1", dtypes.uint8)
quantize_graph.set_attr_dtype(mat_mul_node, "T2", dtypes.int32)
expected_output.node.extend([mat_mul_node])
expected_output.versions.CopyFrom(graph_def.versions)
expected_output.library.CopyFrom(graph_def.library)
rewriter = quantize_graph.GraphRewriter(
graph_def, [mat_mul_name], quantized_input_range=None)
output = rewriter.remove_redundant_quantization(graph_def)
stripped_output = graph_util.extract_sub_graph(output, [mat_mul_name])
self.assertProtoEquals(expected_output, stripped_output)
if __name__ == "__main__":
test.main()
| 2.078125 | 2 |
layerserver/migrations/0001_initial.py | aroiginfraplan/giscube-admin | 5 | 3149 | # -*- coding: utf-8 -*-
# Generated by Django 1.11.10 on 2018-04-26 09:14
import colorfield.fields
from django.db import migrations, models
import django.db.models.deletion
import giscube.utils
class Migration(migrations.Migration):
initial = True
dependencies = [
('giscube', '0002_update'),
]
operations = [
migrations.CreateModel(
name='GeoJsonLayer',
fields=[
('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')),
('name', models.CharField(max_length=50, unique=True)),
('title', models.CharField(blank=True, max_length=100, null=True)),
('description', models.TextField(blank=True, null=True)),
('keywords', models.CharField(blank=True, max_length=200, null=True)),
('active', models.BooleanField(default=True)),
('visibility', models.CharField(choices=[('private', 'Private'), ('public', 'Public')], default='private', max_length=10)),
('visible_on_geoportal', models.BooleanField(default=False)),
('shapetype', models.CharField(blank=True, choices=[('marker', 'Marker'), ('line', 'Line'), ('polygon', 'Polygon'), ('Circle', 'Circle')], max_length=20, null=True)),
('shape_radius', models.IntegerField(blank=True, null=True)),
('stroke_color', colorfield.fields.ColorField(blank=True, default=b'#FF3333', max_length=18, null=True)),
('stroke_width', models.IntegerField(blank=True, default=1, null=True)),
('stroke_dash_array', models.CharField(blank=True, default='', max_length=25, null=True)),
('fill_color', colorfield.fields.ColorField(blank=True, default=b'#FFC300', max_length=18, null=True)),
('fill_opacity', models.DecimalField(blank=True, decimal_places=1, default=1, max_digits=2, null=True)),
('url', models.CharField(blank=True, max_length=100, null=True)),
('data_file', models.FileField(blank=True, null=True, upload_to=giscube.utils.unique_service_directory)),
('service_path', models.CharField(max_length=255)),
('cache_time', models.IntegerField(blank=True, null=True)),
('last_fetch_on', models.DateField(blank=True, null=True)),
('category', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='giscube.Category')),
],
options={
'verbose_name': 'GeoJSONLayer',
'verbose_name_plural': 'GeoJSONLayers',
},
),
]
| 1.726563 | 2 |
SETTINGS.py | pirica/fortnite-leaks-image-generator | 5 | 3150 | <filename>SETTINGS.py
backgroundurl = "https://storage.needpix.com/rsynced_images/colored-background.jpg" # <- Need to be a Image URL!!!
lang = "en" # <- language code
displayset = True # <- Display the Set of the Item
raritytext = True # <- Display the Rarity of the Item
typeconfig = {
"BannerToken": True,
"AthenaBackpack": True,
"AthenaPetCarrier": True,
"AthenaPet": True,
"AthenaPickaxe": True,
"AthenaCharacter": True,
"AthenaSkyDiveContrail": True,
"AthenaGlider": True,
"AthenaDance": True,
"AthenaEmoji": True,
"AthenaLoadingScreen": True,
"AthenaMusicPack": True,
"AthenaSpray": True,
"AthenaToy": True,
"AthenaBattleBus": True,
"AthenaItemWrap": True
}
interval = 5 # <- Time (in seconds) until the bot checks for leaks again | Recommend: 7
watermark = "" # <- Leave it empty if you dont want one
watermarksize = 25 # <- Size of the Watermark
| 2.203125 | 2 |
src/healthvaultlib/tests/testbase.py | rajeevs1992/pyhealthvault | 1 | 3151 | <filename>src/healthvaultlib/tests/testbase.py
import unittest
import settings
from healthvaultlib.helpers.connection import Connection
class TestBase(unittest.TestCase):
def setUp(self):
self.connection = self.get_connection()
def get_connection(self):
conn = Connection(settings.HV_APPID, settings.HV_SERVICE_SERVER)
conn.thumbprint = settings.APP_THUMBPRINT
conn.publickey = settings.APP_PUBLIC_KEY
conn.privatekey = settings.APP_PRIVATE_KEY
conn.connect()
conn.set_person_and_record(settings.OFFLINE_PERSON_ID, settings.OFFLINE_RECORD_ID)
return conn
| 2.234375 | 2 |
apps/extensions/migrations/0012_imports_path_urlfield_to_charfield.py | StepicOrg/stepik-apps | 5 | 3152 | # -*- coding: utf-8 -*-
# Generated by Django 1.10.6 on 2017-06-09 03:01
from __future__ import unicode_literals
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('extensions', '0011_auto_20170502_0908'),
]
operations = [
migrations.AlterField(
model_name='extension',
name='imports_path',
field=models.CharField(default='imports/', max_length=255),
),
]
| 1.40625 | 1 |
regtests/bench/thread_collision.py | secureosv/pythia | 17 | 3153 | '''
multi-threading (python3 version)
https://docs.python.org/3/library/threading.html
'''
from time import clock
import threading
THREADS=2
lock = threading.Lock()
A = 0
B = 0
C = 0
def test_globals():
global A, B, C
for i in range(1024*1024):
lock.acquire()
A += 1
B += 2
C = A + B
lock.release()
def main():
print( 'starting threading test')
starttime = clock()
threads = []
for i in range(THREADS):
t = threading.Thread( target=test_globals, args=() )
t.start()
threads.append( t )
for t in threads:
t.join()
print( clock()-starttime)
print('A:', A)
print('B:', B)
print('C:', C)
main() | 3.765625 | 4 |
game/board.py | scooler/checkers | 0 | 3154 | import numpy as np
class Board:
"""
0 - black
1 - white
"""
def __init__(self):
board = [
[0, 1] * 4,
[1, 0] * 4
] * 4
players_board = [
[0, 1] * 4, # player 1
[1, 0] * 4
] + [[0] * 8] * 4 + [ # 4 rows of nothing
[0, 2] * 4, # player 2
[2, 0] * 4
]
self.board = np.array(board)
self.players_board = np.array(players_board)
self.x_size = 8
self.y_size = 8
# def move(self, x, y, current_player):
# self.board[x, y] = current_player
# def are_same_and_non_zero(self, array):
# return np.unique(array).size == 1 and array[0] != 0
# def is_board_full(self):
# return not np.any(np.unique(self.board) == 0)
def is_finished(self):
"""is game finished"""
return True
# for i in range(0, self.x_size): # rows
# if self.are_same_and_non_zero(self.board[i, :]):
# self.player_who_won = self.board[i, 0]
# self.result = 'Won {} - row {}'.format(self.player(self.player_who_won), i)
# return True
# for i in range(0, self.y_size): # columns
# if self.are_same_and_non_zero(self.board[:, i]):
# self.player_who_won = self.board[0, i]
# self.result = 'Won {} - col {}'.format(self.player(self.player_who_won), i)
# return True
# if self.are_same_and_non_zero(np.diag(self.board)): # diagonal
# self.player_who_won = self.board[1, 1]
# self.result = 'Won {} - diagonal {}'.format(self.player(self.player_who_won), i)
# return True
# if self.are_same_and_non_zero(np.diag(np.flipud(self.board))): # anty-diagonal
# self.player_who_won = self.board[1, 1]
# self.result = 'Won {} - anty-diagonal {}'.format(self.player(self.player_who_won), i)
# return True
# if self.is_board_full():
# self.player_who_won = 0 # nobody
# self.result = 'Draw'
# return True # draw
return False
def show(self):
# print(self.board)
# print(self.players_board)
return
# def player(self, player_no):
# if player_no == 1: return 'Player 1 (X)'
# if player_no == 2: return 'Player 2 (O)'
# def show_player_info(self, player_no):
# print("It's turn of ", self.player(player_no))
| 3.546875 | 4 |
utils/get_season_things_price.py | vogelfenx/storagebot | 0 | 3155 | def get_season_things_price(thing, amount, price):
if thing == 'wheel':
wheel_price = price[thing]['month'] * amount
return f'Стоимость составит {wheel_price}/месяц'
else:
other_thing_price_week = price[thing]['week'] * amount
other_thing_price_month = price[thing]['month'] * amount
return f'Стоимость составит {other_thing_price_week} р./неделю' + \
f' или {other_thing_price_month} р./месяц' | 3.453125 | 3 |
zge/engine.py | zhester/zge | 0 | 3156 | <reponame>zhester/zge
"""
Zoe Game Engine Core Implementation
===================================
Requirements
------------
[pygame](http://www.pygame.org/)
"""
# core packages
# third-party packages
import pygame
# local package
import layer
__version__ = '0.0.0'
#=============================================================================
class Engine( object ):
"""
Simple game engine object.
"""
#=========================================================================
def __init__( self, size ):
"""
Initializes an Engine object.
"""
# pygame initialization
pygame.init()
# initialize the root display surface
self.window = pygame.display.set_mode( size, 0, 32 )
# set the title bar text and iconification text
pygame.display.set_caption( 'Demonstration', 'Demo' )
# set the application icon
icon = pygame.image.load( '../assets/z32.png' )
pygame.display.set_icon( icon )
# create a list of normal display layers
self._layers = []
# create a transparent "top" layer for overlayed information
self._top = layer.TextLayer()
# initialize last tick value
self._last_tick = pygame.time.get_ticks()
self._last_wait = 0
# set an FPS cap
self._fps = 0.0
self._fps_limit = 120.0
self._tick_step = int( round( 1000.0 / self._fps_limit ) )
# engine is currently running
self._is_running = False
# short debug string for various things
self._debug = ''
#=========================================================================
def run( self ):
"""
Run the game loop (does not return until the application quits).
"""
# update tick value before entering the loop
self._last_tick = pygame.time.get_ticks()
# execute infinite application loop
self._is_running = True
while self._is_running:
# process event queue
for event in pygame.event.get():
# check for quit event
if event.type == pygame.QUIT:
self._is_running = False
# check for key event
elif ( event.type == pygame.KEYDOWN ) \
or ( event.type == pygame.KEYUP ) :
self.trigger_key_event( event )
# exit application loop if done
if self._is_running == False:
break
# update the game display
self.update()
# ZIH - simulate hard work
#pygame.time.delay( 3 )
# compute duration of last event/render loop
end_tick = pygame.time.get_ticks()
delta = end_tick - self._last_tick
self._last_tick = end_tick
# update FPS value
if delta > 0:
self._fps = 1000.0 / float( delta )
else:
self._fps = self._fps_limit
# compute remaining time available inside this iteration
if delta < self._tick_step:
self._last_wait = self._tick_step - delta
else:
self._last_wait = 0
# let the OS do other stuff on this core
pygame.time.wait( self._last_wait )
# shut down pygame
pygame.quit()
# return exit status
return 0
#=========================================================================
def trigger_key_event( self, event ):
"""
Initiates key input events.
"""
# ZIH - temp, just seeing how to poll the keys
mods = pygame.key.get_mods()
mod_bits = [
( pygame.KMOD_ALT, 'A' ),
( pygame.KMOD_CTRL, 'C' ),
( pygame.KMOD_SHIFT, 'S' )
]
mod_str = ''.join( b[ 1 ] for b in mod_bits if b[ 0 ] & mods )
if event.type == pygame.KEYUP:
self._debug = '({})'.format( mod_str )
elif event.type == pygame.KEYDOWN:
self._debug = '({}){}'.format(
mod_str,
pygame.key.name( event.key )
)
#=========================================================================
def update( self ):
"""
Updates the display.
"""
# update overlayed information
self._top.set_text(
' [ fps:{:4.0f} sch:{:3} tck:{:08} dbg:{} ]'.format(
self._fps,
self._last_wait,
self._last_tick,
self._debug
)
)
# draw the display on the back buffer
self._draw_layers()
# update the display (swap video buffers)
pygame.display.update()
#=========================================================================
def _draw_layers( self ):
"""
Blits all the display layers onto the back buffer.
"""
# fill the background
self.window.fill( ( 32, 32, 32 ) )
# blit all user layers
for layer in self._layers:
layer.blit( self.window )
# blit the top layer
self._top.blit( self.window )
| 2.96875 | 3 |
Authentication/migrations/0004_auto_20201115_1105.py | CHESyrian/Estebyan | 0 | 3157 | <filename>Authentication/migrations/0004_auto_20201115_1105.py
# Generated by Django 3.0.6 on 2020-11-15 09:05
from django.db import migrations, models
class Migration(migrations.Migration):
dependencies = [
('Authentication', '0003_auto_20201113_2210'),
]
operations = [
migrations.AlterField(
model_name='profiles',
name='Qu_Shares',
field=models.IntegerField(default=0),
),
migrations.AlterField(
model_name='profiles',
name='Questionnais',
field=models.IntegerField(default=0),
),
]
| 1.34375 | 1 |
dashboard/urls.py | EdisonBr/MockDados | 0 | 3158 | <filename>dashboard/urls.py
from django.urls import path, re_path
from django.views.generic.base import TemplateView
from .views import dashboard_cost, dashboard_energy, MotorDataListView
app_name = 'dashboard'
urlpatterns = [
path('', MotorDataListView.as_view(), name='dashboard_custom'),
#path('', dashboard_custom, name='dashboard_custom'),
path('energy', dashboard_energy, name='dashboard_energy'),
path('cost', dashboard_cost, name='dashboard_cost'),
]
| 1.84375 | 2 |
Coursera/Python for Everybody Specialization/Python for everybody basics/hourly rate.py | ejgarcia1991/Courses-and-other-non-professional-projects | 1 | 3159 | hrs = input("Enter Hours:")
rate = input("Enter rate:")
pay = float(hrs) * float(rate)
print("Pay: " +str(pay)) | 3.796875 | 4 |
litex_boards/platforms/xilinx_kcu105.py | smunaut/litex-boards | 177 | 3160 | #
# This file is part of LiteX-Boards.
#
# Copyright (c) 2017-2019 <NAME> <<EMAIL>>
# SPDX-License-Identifier: BSD-2-Clause
from litex.build.generic_platform import *
from litex.build.xilinx import XilinxPlatform, VivadoProgrammer
# IOs ----------------------------------------------------------------------------------------------
_io = [
# Clk / Rst
("clk125", 0,
Subsignal("p", Pins("G10"), IOStandard("LVDS")),
Subsignal("n", Pins("F10"), IOStandard("LVDS"))
),
("clk300", 0,
Subsignal("p", Pins("AK17"), IOStandard("DIFF_SSTL12")),
Subsignal("n", Pins("AK16"), IOStandard("DIFF_SSTL12"))
),
("cpu_reset", 0, Pins("AN8"), IOStandard("LVCMOS18")),
# Leds
("user_led", 0, Pins("AP8"), IOStandard("LVCMOS18")),
("user_led", 1, Pins("H23"), IOStandard("LVCMOS18")),
("user_led", 2, Pins("P20"), IOStandard("LVCMOS18")),
("user_led", 3, Pins("P21"), IOStandard("LVCMOS18")),
("user_led", 4, Pins("N22"), IOStandard("LVCMOS18")),
("user_led", 5, Pins("M22"), IOStandard("LVCMOS18")),
("user_led", 6, Pins("R23"), IOStandard("LVCMOS18")),
("user_led", 7, Pins("P23"), IOStandard("LVCMOS18")),
# Buttons
("user_btn_c", 0, Pins("AE10"), IOStandard("LVCMOS18")),
("user_btn_n", 0, Pins("AD10"), IOStandard("LVCMOS18")),
("user_btn_s", 0, Pins("AF8"), IOStandard("LVCMOS18")),
("user_btn_w", 0, Pins("AF9"), IOStandard("LVCMOS18")),
("user_btn_e", 0, Pins("AE8"), IOStandard("LVCMOS18")),
# Switches
("user_dip_btn", 0, Pins("AN16"), IOStandard("LVCMOS12")),
("user_dip_btn", 1, Pins("AN19"), IOStandard("LVCMOS12")),
("user_dip_btn", 2, Pins("AP18"), IOStandard("LVCMOS12")),
("user_dip_btn", 3, Pins("AN14"), IOStandard("LVCMOS12")),
# SMA
("user_sma_clock", 0,
Subsignal("p", Pins("D23"), IOStandard("LVDS")),
Subsignal("n", Pins("C23"), IOStandard("LVDS"))
),
("user_sma_clock_p", 0, Pins("D23"), IOStandard("LVCMOS18")),
("user_sma_clock_n", 0, Pins("C23"), IOStandard("LVCMOS18")),
("user_sma_gpio", 0,
Subsignal("p", Pins("H27"), IOStandard("LVDS")),
Subsignal("n", Pins("G27"), IOStandard("LVDS"))
),
("user_sma_gpio_p", 0, Pins("H27"), IOStandard("LVCMOS18")),
("user_sma_gpio_n", 0, Pins("G27"), IOStandard("LVCMOS18")),
# I2C
("i2c", 0,
Subsignal("scl", Pins("J24")),
Subsignal("sda", Pins("J25")),
IOStandard("LVCMOS18")
),
# Serial
("serial", 0,
Subsignal("cts", Pins("L23")),
Subsignal("rts", Pins("K27")),
Subsignal("tx", Pins("K26")),
Subsignal("rx", Pins("G25")),
IOStandard("LVCMOS18")
),
# SPIFlash
("spiflash", 0, # clock needs to be accessed through primitive
Subsignal("cs_n", Pins("U7")),
Subsignal("dq", Pins("AC7 AB7 AA7 Y7")),
IOStandard("LVCMOS18")
),
("spiflash", 1, # clock needs to be accessed through primitive
Subsignal("cs_n", Pins("G26")),
Subsignal("dq", Pins("M20 L20 R21 R22")),
IOStandard("LVCMOS18")
),
# SDCard
("spisdcard", 0,
Subsignal("clk", Pins("AL10")),
Subsignal("cs_n", Pins("AH8")),
Subsignal("mosi", Pins("AD9"), Misc("PULLUP")),
Subsignal("miso", Pins("AP9"), Misc("PULLUP")),
Misc("SLEW=FAST"),
IOStandard("LVCMOS18")
),
("sdcard", 0,
Subsignal("clk", Pins("AL10")),
Subsignal("cmd", Pins("AD9"), Misc("PULLUP True")),
Subsignal("data", Pins("AP9 AN9 AH9 AH8"), Misc("PULLUP True")),
Misc("SLEW=FAST"),
IOStandard("LVCMOS18")
),
# Rotary Encoder
("rotary", 0,
Subsignal("a", Pins("Y21")),
Subsignal("b", Pins("AD26")),
Subsignal("push", Pins("AF28")),
IOStandard("LVCMOS18")
),
# HDMI
("hdmi", 0,
Subsignal("d", Pins(
"AK11 AP11 AP13 AN13 AN11 AM11 AN12 AM12",
"AL12 AK12 AL13 AK13 AD11 AH12 AG12 AJ11",
"AG10 AK8")),
Subsignal("de", Pins("AE11")),
Subsignal("clk", Pins("AF13")),
Subsignal("vsync", Pins("AH13")),
Subsignal("hsync", Pins("AE13")),
Subsignal("spdif", Pins("AE12")),
Subsignal("spdif_out", Pins("AF12")),
IOStandard("LVCMOS18")
),
# DDR4 SDRAM
("ddram", 0,
Subsignal("a", Pins(
"AE17 AH17 AE18 AJ15 AG16 AL17 AK18 AG17",
"AF18 AH19 AF15 AD19 AJ14 AG19"),
IOStandard("SSTL12_DCI")),
Subsignal("ba", Pins("AF17 AL15"), IOStandard("SSTL12_DCI")),
Subsignal("bg", Pins("AG15"), IOStandard("SSTL12_DCI")),
Subsignal("ras_n", Pins("AF14"), IOStandard("SSTL12_DCI")), # A16
Subsignal("cas_n", Pins("AG14"), IOStandard("SSTL12_DCI")), # A15
Subsignal("we_n", Pins("AD16"), IOStandard("SSTL12_DCI")), # A14
Subsignal("cs_n", Pins("AL19"), IOStandard("SSTL12_DCI")),
Subsignal("act_n", Pins("AH14"), IOStandard("SSTL12_DCI")),
#Subsignal("ten", Pins("AH16"), IOStandard("SSTL12_DCI")),
#Subsignal("alert_n", Pins("AJ16"), IOStandard("SSTL12_DCI")),
#Subsignal("par", Pins("AD18"), IOStandard("SSTL12_DCI")),
Subsignal("dm", Pins("AD21 AE25 AJ21 AM21 AH26 AN26 AJ29 AL32"),
IOStandard("POD12_DCI")),
Subsignal("dq", Pins(
"AE23 AG20 AF22 AF20 AE22 AD20 AG22 AE20",
"AJ24 AG24 AJ23 AF23 AH23 AF24 AH22 AG25",
"AL22 AL25 AM20 AK23 AK22 AL24 AL20 AL23",
"AM24 AN23 AN24 AP23 AP25 AN22 AP24 AM22",
"AH28 AK26 AK28 AM27 AJ28 AH27 AK27 AM26",
"AL30 AP29 AM30 AN28 AL29 AP28 AM29 AN27",
"AH31 AH32 AJ34 AK31 AJ31 AJ30 AH34 AK32",
"AN33 AP33 AM34 AP31 AM32 AN31 AL34 AN32"),
IOStandard("POD12_DCI"),
Misc("PRE_EMPHASIS=RDRV_240"),
Misc("EQUALIZATION=EQ_LEVEL2")),
Subsignal("dqs_p", Pins("AG21 AH24 AJ20 AP20 AL27 AN29 AH33 AN34"),
IOStandard("DIFF_POD12_DCI"),
Misc("PRE_EMPHASIS=RDRV_240"),
Misc("EQUALIZATION=EQ_LEVEL2")),
Subsignal("dqs_n", Pins("AH21 AJ25 AK20 AP21 AL28 AP30 AJ33 AP34"),
IOStandard("DIFF_POD12_DCI"),
Misc("PRE_EMPHASIS=RDRV_240"),
Misc("EQUALIZATION=EQ_LEVEL2")),
Subsignal("clk_p", Pins("AE16"), IOStandard("DIFF_SSTL12_DCI")),
Subsignal("clk_n", Pins("AE15"), IOStandard("DIFF_SSTL12_DCI")),
Subsignal("cke", Pins("AD15"), IOStandard("SSTL12_DCI")),
Subsignal("odt", Pins("AJ18"), IOStandard("SSTL12_DCI")),
Subsignal("reset_n", Pins("AL18"), IOStandard("LVCMOS12")),
Misc("SLEW=FAST"),
),
# PCIe
("pcie_x1", 0,
Subsignal("rst_n", Pins("K22"), IOStandard("LVCMOS18")),
Subsignal("clk_p", Pins("AB6")),
Subsignal("clk_n", Pins("AB5")),
Subsignal("rx_p", Pins("AB2")),
Subsignal("rx_n", Pins("AB1")),
Subsignal("tx_p", Pins("AC4")),
Subsignal("tx_n", Pins("AC3"))
),
("pcie_x2", 0,
Subsignal("rst_n", Pins("K22"), IOStandard("LVCMOS18")),
Subsignal("clk_p", Pins("AB6")),
Subsignal("clk_n", Pins("AB5")),
Subsignal("rx_p", Pins("AB2 AD2")),
Subsignal("rx_n", Pins("AB1 AD1")),
Subsignal("tx_p", Pins("AC4 AE4")),
Subsignal("tx_n", Pins("AC3 AE3"))
),
("pcie_x4", 0,
Subsignal("rst_n", Pins("K22"), IOStandard("LVCMOS18")),
Subsignal("clk_p", Pins("AB6")),
Subsignal("clk_n", Pins("AB5")),
Subsignal("rx_p", Pins("AB2 AD2 AF2 AH2")),
Subsignal("rx_n", Pins("AB1 AD1 AF1 AH1")),
Subsignal("tx_p", Pins("AC4 AE4 AG4 AH6")),
Subsignal("tx_n", Pins("AC3 AE3 AG3 AH5"))
),
("pcie_x8", 0,
Subsignal("rst_n", Pins("K22"), IOStandard("LVCMOS18")),
Subsignal("clk_p", Pins("AB6")),
Subsignal("clk_n", Pins("AB5")),
Subsignal("rx_p", Pins("AB2 AD2 AF2 AH2 AJ4 AK2 AM2 AP2")),
Subsignal("rx_n", Pins("AB1 AD1 AF1 AH1 AJ3 AK1 AM1 AP1")),
Subsignal("tx_p", Pins("AC4 AE4 AG4 AH6 AK6 AL4 AM6 AN4")),
Subsignal("tx_n", Pins("AC3 AE3 AG3 AH5 AK5 AL3 AM5 AN3"))
),
# SGMII Clk
("sgmii_clock", 0,
Subsignal("p", Pins("P26"), IOStandard("LVDS_25")),
Subsignal("n", Pins("N26"), IOStandard("LVDS_25"))
),
# SI570
("si570_refclk", 0,
Subsignal("p", Pins("P6")),
Subsignal("n", Pins("P5"))
),
# SMA
("user_sma_mgt_refclk", 0,
Subsignal("p", Pins("V6")),
Subsignal("n", Pins("V5"))
),
("user_sma_mgt_tx", 0,
Subsignal("p", Pins("R4")),
Subsignal("n", Pins("R3"))
),
("user_sma_mgt_rx", 0,
Subsignal("p", Pins("P2")),
Subsignal("n", Pins("P1"))
),
# SFP
("sfp", 0,
Subsignal("txp", Pins("U4")),
Subsignal("txn", Pins("U3")),
Subsignal("rxp", Pins("T2")),
Subsignal("rxn", Pins("T1"))
),
("sfp_tx", 0,
Subsignal("p", Pins("U4")),
Subsignal("n", Pins("U3")),
),
("sfp_rx", 0,
Subsignal("p", Pins("T2")),
Subsignal("n", Pins("T1")),
),
("sfp_tx_disable_n", 0, Pins("AL8"), IOStandard("LVCMOS18")),
("sfp", 1,
Subsignal("txp", Pins("W4")),
Subsignal("txn", Pins("W3")),
Subsignal("rxp", Pins("V2")),
Subsignal("rxn", Pins("V1"))
),
("sfp_tx", 1,
Subsignal("p", Pins("W4")),
Subsignal("n", Pins("W3")),
),
("sfp_rx", 1,
Subsignal("p", Pins("V2")),
Subsignal("n", Pins("V1")),
),
("sfp_tx_disable_n", 1, Pins("D28"), IOStandard("LVCMOS18")),
]
# Connectors ---------------------------------------------------------------------------------------
_connectors = [
("HPC", {
"DP0_C2M_P" : "F6",
"DP0_C2M_N" : "F5",
"DP0_M2C_P" : "E4",
"DP0_M2C_N" : "E3",
"DP1_C2M_P" : "D6",
"DP1_C2M_N" : "D5",
"DP1_M2C_P" : "D2",
"DP1_M2C_N" : "D1",
"DP2_C2M_P" : "C4",
"DP2_C2M_N" : "C3",
"DP2_M2C_P" : "B2",
"DP2_M2C_N" : "B1",
"DP3_C2M_P" : "B6",
"DP3_C2M_N" : "B5",
"DP3_M2C_P" : "A4",
"DP3_M2C_N" : "A3",
"DP4_C2M_P" : "N4",
"DP4_C2M_N" : "N3",
"DP4_M2C_P" : "M2",
"DP4_M2C_N" : "M1",
"DP5_C2M_P" : "J4",
"DP5_C2M_N" : "J3",
"DP5_M2C_P" : "H2",
"DP5_M2C_N" : "H1",
"DP6_C2M_P" : "L4",
"DP6_C2M_N" : "L3",
"DP6_M2C_P" : "K2",
"DP6_M2C_N" : "K1",
"DP7_C2M_P" : "G4",
"DP7_C2M_N" : "G3",
"DP7_M2C_P" : "F2",
"DP7_M2C_N" : "F1",
"LA06_P" : "D13",
"LA06_N" : "C13",
"LA10_P" : "L8",
"LA10_N" : "K8",
"LA14_P" : "B10",
"LA14_N" : "A10",
"LA18_CC_P" : "E22",
"LA18_CC_N" : "E23",
"LA27_P" : "H21",
"LA27_N" : "G21",
"HA01_CC_P" : "E16",
"HA01_CC_N" : "D16",
"HA05_P" : "J15",
"HA05_N" : "J14",
"HA09_P" : "F18",
"HA09_N" : "F17",
"HA13_P" : "B14",
"HA13_N" : "A14",
"HA16_P" : "A19",
"HA16_N" : "A18",
"HA20_P" : "C19",
"HA20_N" : "B19",
"CLK1_M2C_P" : "E25",
"CLK1_M2C_N" : "D25",
"LA00_CC_P" : "H11",
"LA00_CC_N" : "G11",
"LA03_P" : "A13",
"LA03_N" : "A12",
"LA08_P" : "J8",
"LA08_N" : "H8",
"LA12_P" : "E10",
"LA12_N" : "D10",
"LA16_P" : "B9",
"LA16_N" : "A9",
"LA20_P" : "B24",
"LA20_N" : "A24",
"LA22_P" : "G24",
"LA22_N" : "F25",
"LA25_P" : "D20",
"LA25_N" : "D21",
"LA29_P" : "B20",
"LA29_N" : "A20",
"LA31_P" : "B25",
"LA31_N" : "A25",
"LA33_P" : "A27",
"LA33_N" : "A28",
"HA03_P" : "G15",
"HA03_N" : "G14",
"HA07_P" : "L19",
"HA07_N" : "L18",
"HA11_P" : "J19",
"HA11_N" : "J18",
"HA14_P" : "F15",
"HA14_N" : "F14",
"HA18_P" : "B17",
"HA18_N" : "B16",
"HA22_P" : "C18",
"HA22_N" : "C17",
"GBTCLK1_M2C_P" : "H6",
"GBTCLK1_M2C_N" : "H5",
"GBTCLK0_M2C_P" : "K6",
"GBTCLK0_M2C_N" : "K5",
"LA01_CC_P" : "G9",
"LA01_CC_N" : "F9",
"LA05_P" : "L13",
"LA05_N" : "K13",
"LA09_P" : "J9",
"LA09_N" : "H9",
"LA13_P" : "D9",
"LA13_N" : "C9",
"LA17_CC_P" : "D24",
"LA17_CC_N" : "C24",
"LA23_P" : "G22",
"LA23_N" : "F22",
"LA26_P" : "G20",
"LA26_N" : "F20",
"PG_M2C" : "L27",
"HA00_CC_P" : "G17",
"HA00_CC_N" : "G16",
"HA04_P" : "G19",
"HA04_N" : "F19",
"HA08_P" : "K18",
"HA08_N" : "K17",
"HA12_P" : "K16",
"HA12_N" : "J16",
"HA15_P" : "D14",
"HA15_N" : "C14",
"HA19_P" : "D19",
"HA19_N" : "D18",
"PRSNT_M2C_B" : "H24",
"CLK0_M2C_P" : "H12",
"CLK0_M2C_N" : "G12",
"LA02_P" : "K10",
"LA02_N" : "J10",
"LA04_P" : "L12",
"LA04_N" : "K12",
"LA07_P" : "F8",
"LA07_N" : "E8",
"LA11_P" : "K11",
"LA11_N" : "J11",
"LA15_P" : "D8",
"LA15_N" : "C8",
"LA19_P" : "C21",
"LA19_N" : "C22",
"LA21_P" : "F23",
"LA21_N" : "F24",
"LA24_P" : "E20",
"LA24_N" : "E21",
"LA28_P" : "B21",
"LA28_N" : "B22",
"LA30_P" : "C26",
"LA30_N" : "B26",
"LA32_P" : "E26",
"LA32_N" : "D26",
"HA02_P" : "H19",
"HA02_N" : "H18",
"HA06_P" : "L15",
"HA06_N" : "K15",
"HA10_P" : "H17",
"HA10_N" : "H16",
"HA17_CC_P" : "E18",
"HA17_CC_N" : "E17",
"HA21_P" : "E15",
"HA21_N" : "D15",
"HA23_P" : "B15",
"HA23_N" : "A15",
}
),
("LPC", {
"GBTCLK0_M2C_P" : "AA24",
"GBTCLK0_M2C_N" : "AA25",
"LA01_CC_P" : "W25",
"LA01_CC_N" : "Y25",
"LA05_P" : "V27",
"LA05_N" : "V28",
"LA09_P" : "V26",
"LA09_N" : "W26",
"LA13_P" : "AA20",
"LA13_N" : "AB20",
"LA17_CC_P" : "AA32",
"LA17_CC_N" : "AB32",
"LA23_P" : "AD30",
"LA23_N" : "AD31",
"LA26_P" : "AF33",
"LA26_N" : "AG34",
"CLK0_M2C_P" : "AA24",
"CLK0_M2C_N" : "AA25",
"LA02_P" : "AA22",
"LA02_N" : "AB22",
"LA04_P" : "U26",
"LA04_N" : "U27",
"LA07_P" : "V22",
"LA07_N" : "V23",
"LA11_P" : "V21",
"LA11_N" : "W21",
"LA15_P" : "AB25",
"LA15_N" : "AB26",
"LA19_P" : "AA29",
"LA19_N" : "AB29",
"LA21_P" : "AC33",
"LA21_N" : "AD33",
"LA24_P" : "AE32",
"LA24_N" : "AF32",
"LA28_P" : "V31",
"LA28_N" : "W31",
"LA30_P" : "Y31",
"LA30_N" : "Y32",
"LA32_P" : "W30",
"LA32_N" : "Y30",
"LA06_P" : "V29",
"LA06_N" : "W29",
"LA10_P" : "T22",
"LA10_N" : "T23",
"LA14_P" : "U21",
"LA14_N" : "U22",
"LA18_CC_P" : "AB30",
"LA18_CC_N" : "AB31",
"LA27_P" : "AG31",
"LA27_N" : "AG32",
"CLK1_M2C_P" : "AC31",
"CLK1_M2C_N" : "AC32",
"LA00_CC_P" : "W23",
"LA00_CC_N" : "W24",
"LA03_P" : "W28",
"LA03_N" : "Y28",
"LA08_P" : "U24",
"LA08_N" : "U25",
"LA12_P" : "AC22",
"LA12_N" : "AC23",
"LA16_P" : "AB21",
"LA16_N" : "AC21",
"LA20_P" : "AA34",
"LA20_N" : "AB34",
"LA22_P" : "AC34",
"LA22_N" : "AD34",
"LA25_P" : "AE33",
"LA25_N" : "AF34",
"LA29_P" : "U34",
"LA29_N" : "V34",
"LA31_P" : "V33",
"LA31_N" : "W34",
"LA33_P" : "W33",
"LA33_N" : "Y33",
}
),
("pmod0", "AK25 AN21 AH18 AM19 AE26 AF25 AE21 AM17"),
("pmod1", "AL14 AM14 AP16 AP15 AM16 AM15 AN18 AN17"),
]
# Platform -----------------------------------------------------------------------------------------
class Platform(XilinxPlatform):
default_clk_name = "clk125"
default_clk_period = 1e9/125e6
def __init__(self):
XilinxPlatform.__init__(self, "xcku040-ffva1156-2-e", _io, _connectors, toolchain="vivado")
def create_programmer(self):
return VivadoProgrammer()
def do_finalize(self, fragment):
XilinxPlatform.do_finalize(self, fragment)
self.add_period_constraint(self.lookup_request("clk125", loose=True), 1e9/125e6)
self.add_period_constraint(self.lookup_request("clk300", loose=True), 1e9/300e6)
self.add_platform_command("set_property INTERNAL_VREF 0.84 [get_iobanks 44]")
self.add_platform_command("set_property INTERNAL_VREF 0.84 [get_iobanks 45]")
self.add_platform_command("set_property INTERNAL_VREF 0.84 [get_iobanks 46]")
| 1.34375 | 1 |
code/advent_of_code_day3.py | erinleeryan/2020adventofcode | 0 | 3161 | <gh_stars>0
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import numpy as np
import math
# In[2]:
fileObj = open('../data/advent_of_code_input_day_three.txt', "r") #opens the file in read mode.
items = fileObj. read(). splitlines() #puts the file into an array.
# In[3]:
#print (items)
def split(line):
return list(line)
holding = []
for i, line in enumerate(items):
result = split(line)
holding.append(result)
holding = np.array(holding)
holding[holding == '.'] = 0
holding[holding == '#'] = 1
holding = holding.astype(int)
print (holding)
# In[7]:
def dup_and_count(rightstep, downstep, basedata):
needed_slope_elements = math.floor(basedata.shape[0]/downstep)
replications_needed = (needed_slope_elements* rightstep)/basedata.shape[1]
duplicated = np.tile(basedata, math.ceil(replications_needed))
right = np.arange(0,(needed_slope_elements)*rightstep, rightstep).astype(int)
down = np.arange(0,(needed_slope_elements)*downstep,downstep).astype(int)
moves = []
for ii in range(len(right)):
moves.append(duplicated[down[ii], right[ii]])
hits = np.sum(moves)
return hits
down1_right3 = dup_and_count(3,1,holding)
down1_right1 = dup_and_count(1,1,holding)
down1_right5 = dup_and_count(5,1,holding)
down1_right7 = dup_and_count(7,1,holding)
down2_right1 = dup_and_count(1,2,holding)
results = np.array([down1_right3, down1_right1, down1_right5, down1_right7, down2_right1], dtype=np.int64)
print(results)
product = np.prod(results)
print (product)
# In[ ]:
| 3.375 | 3 |
input_handler.py | Wyverns010/Body-Keypoints-Detection | 1 | 3162 | import os
import traceback
class InputHandler:
IMAGES_PARENT_FOLDER = './images'
def __init__(self):
filesList = []
def listFiles(self,path=''):
if path != '':
self.IMAGES_PARENT_FOLDER = path
try:
self.listFiles = [os.path.join(self.IMAGES_PARENT_FOLDER,imageFile) for imageFile in os.listdir(self.IMAGES_PARENT_FOLDER)\
if os.path.isfile(os.path.join(self.IMAGES_PARENT_FOLDER,imageFile))]
except:
print(traceback.print_exec())
return self.listFiles
if __name__ == '__main__':
obj = InputHandler()
print(obj.listFiles()) | 3.109375 | 3 |
docker/autoconfig.py | misc0110/bepasty-server | 0 | 3163 | <filename>docker/autoconfig.py
#!/usr/bin/python
import os
import sys
SITENAME = os.environ.get("BEPASTY_SITENAME", None)
if SITENAME is None:
print("\n\nEnvironment variable BEPASTY_SITENAME must be set.")
sys.exit(1)
SECRET_KEY = os.environ.get("BEPASTY_SECRET_KEY", None)
if SECRET_KEY is None:
print("\n\nEnvironment variable BEPASTY_SECRET_KEY must be set.")
sys.exit(1)
APP_BASE_PATH = os.environ.get("BEPASTY_APP_BASE_PATH", None)
STORAGE_FILESYSTEM_DIRECTORY = os.environ.get(
"BEPASTY_STORAGE_FILESYSTEM_DIRECTORY", "/app/data",
)
DEFAULT_PERMISSIONS = os.environ.get("BEPASTY_DEFAULT_PERMISSIONS", "create,read")
PERMISSIONS = {}
admin_secret = os.environ.get("BEPASTY_ADMIN_SECRET", None)
if admin_secret is not None:
PERMISSIONS.update({admin_secret: "admin,list,create,modify,read,delete"})
try:
max_allowed_file_size = os.environ.get("BEPASTY_MAX_ALLOWED_FILE_SIZE", 5000000000)
MAX_ALLOWED_FILE_SIZE = int(max_allowed_file_size)
except ValueError as err:
print("\n\nInvalid BEPASTY_MAX_ALLOWED_FILE_SIZE: %s", str(err))
sys.exit(1)
try:
max_body_size = os.environ.get("BEPASTY_MAX_BODY_SIZE", 1040384)
MAX_BODY_SIZE = int(max_body_size)
except ValueError as err:
print("\n\nInvalid BEPASTY_MAX_BODY_SIZE: %s", str(err))
sys.exit(1)
| 2.265625 | 2 |
pysh/transforms/alpha/bangexpr.py | drslump/pysh | 3 | 3164 | <reponame>drslump/pysh
from io import StringIO
import re
import tokenize
import os
from collections import deque, ChainMap
from functools import lru_cache
from enum import Enum
import pysh
from pysh.path import PathWrapper, Path
from typing import List, Callable, Iterator, Tuple, NamedTuple, Deque, Union, Any
TBangTransformer = Callable[ [List[str]], Iterator[str]]
# runtime symbols
__all__ = ['BangExpr', 'BangOp', 'BangSeq', 'BangGlob', 'BangEnv', 'BangBang']
class BangTokenType(Enum):
OPAQUE = 'OPAQUE'
GLOB = 'GLOB'
LOCAL = 'LOCAL'
ENV = 'ENV'
EXPR = 'EXPR'
OP = 'OP'
class BangToken(NamedTuple):
type: BangTokenType
value: str
span: Tuple[int, int]
TBangLexerToken = Tuple[str, str, Tuple[int,int]]
class BangLexer:
def _tokener(self, token, transformer=lambda x: x, **kwargs):
def cb(s, v):
v = transformer(v, **kwargs)
return None if v is None else (token, v, (s.match.start(), s.match.end()))
return cb
@lru_cache() # it's intended for this to be global
def build_scanner(self):
t = self._tokener
return re.Scanner([
(r'\#.+', t('COMMENT', lambda v: v[1:])),
(r'\\.', t('ESCAPE')),
(r"'( \\. | [^\\']+ )+'", t('SQS', lambda v: v[1:-1])),
(r'"( \\. | [^\\"]+ )+"', t('DQS', lambda v: v[1:-1])),
(r'\$[A-Za-z_][A-Za-z0-9_]*', t('VAR', lambda v: v[1:])),
(r'\${( \\. | [^\\}]+ )+}', t('EXPR', lambda v: v[2:-1])),
(r'[|<>^]+', t('OP')),
(r'[A-Za-z0-9_%*+:.,=/@~\[\]{}-]+', t('OPAQUE')),
(r'\s+', t('WS')),
], flags=re.X)
@lru_cache()
def build_dqs_scanner(self):
t = self._tokener
return re.Scanner([
(r'\\.', t('ESCAPE')),
(r'\$[A-Za-z_][A-Za-z0-9_]*', t('VAR', lambda v: v[1:])),
(r'\${( \\. | [^\\}]+ )+}', t('EXPR', lambda v: v[2:-1])),
(r'[^\\\$]+', t('SQS')) # handle as single quoted
], flags=re.X)
def scan_dqs(self, code: str, offset=0) -> Iterator[TBangLexerToken]:
tokens, remaining = self.build_scanner().scan(code)
if remaining:
raise SyntaxError('Unexpected char <{}> at position {}'.format(remaining[0], len(code)-len(remaining)))
for tkn, val, pos in tokens:
yield tkn, val, (offset+pos[0], offset+pos[1])
def demux_dqs(self, tokens: Iterator[TBangLexerToken]) -> Iterator[TBangLexerToken]:
""" Split double quoted strings into parts
"""
for tkn, val, pos in tokens:
if tkn == 'DQS':
yield from self.scan_dqs(val, offset=pos[0]+1)
else:
yield tkn, val, pos
def scan(self, code: str) -> Iterator[BangToken]:
tokens, remaining = self.build_scanner().scan(code)
if remaining:
raise SyntaxError('Unexpected char at position {}'.format(len(code)-len(remaining)))
# Add a terminating token so we can simplify the parsing
tokens.append(('END', '', (len(code),len(code))))
last_token = last_pos = None
for token, value, pos in self.demux_dqs(tokens):
assert token != 'DQS' # double quoted are demuxed
# Inject whitespace operator if needed
if token != 'OP' and last_token and last_token == 'WS':
yield BangToken(BangTokenType.OP, ' ', last_pos)
if token in ('COMMENT', 'END'):
continue
elif token == 'WS':
pass
elif token == 'OP':
value = value.strip()
yield BangToken(BangTokenType.OP, value, pos)
else:
if token == 'OPAQUE':
if re.search(r'(?!<\\)[~*?{]', value):
yield BangToken(BangTokenType.GLOB, value, pos)
else:
yield BangToken(BangTokenType.OPAQUE, value, pos)
elif token in ('ESCAPE', 'SQS'):
#TODO: handle special escapes \n
value = re.sub(r'\\(.)', r'\1', value)
yield BangToken(BangTokenType.OPAQUE, value, pos)
elif token in ('VAR', 'EXPR'):
value = value.strip()
if value.isalnum() and not value.isdigit():
if value.isupper():
yield BangToken(BangTokenType.ENV, value, pos)
else:
yield BangToken(BangTokenType.LOCAL, value, pos)
else:
assert token == 'EXPR'
value = re.sub(r'\\(.)', r'\1', value)
yield BangToken(BangTokenType.EXPR, value, pos)
else:
assert False, 'unexpected {}, what happened?'.format(token)
last_token, last_pos = token, pos
class BangEnv:
__slots__ = ('name',)
def __init__(self, name):
self.name = name
def __repr__(self):
return 'BangEnv<{}>'.format(self.name)
class BangSeq:
__slots__ = ('items',)
def __init__(self, *items):
self.items = items
def __repr__(self):
return 'BangSeq<{!r}>'.format(self.items)
class BangOp:
__slots__ = ('op',)
def __init__(self, op):
self.op = op
def __repr__(self):
return 'BangOp<{}>'.format(self.op)
class BangGlob:
__slots__ = ('glob',)
def __init__(self, glob):
self.glob = glob
def __repr__(self):
return 'BangGlob<{}>'.format(self.glob)
class BangExpr:
__slots__ = ('args', 'vars')
def __init__(self, *args, locals=None, globals=None):
assert locals is not None
assert globals is not None
self.args = args
self.vars = ChainMap(locals, globals)
def eval_command(self, mut_args):
arg = mut_args.popleft()
cmd = self.vars.get(str(arg))
if cmd is None:
raise RuntimeError('Unable to find {}'.format(arg))
while mut_args:
if isinstance(mut_args[0], BangOp):
break
arg = mut_args.popleft()
cmd = cmd(self.eval_expr(arg))
return cmd
def eval_expr(self, expr: Any) -> Union[str, Iterator[Path]]:
if isinstance(expr, BangSeq):
return self.eval_seq(expr)
elif isinstance(expr, BangEnv):
return os.environ[expr.name]
elif isinstance(expr, BangGlob):
return PathWrapper().glob(expr.glob)
else:
return str(expr)
def eval_seq(self, seq: BangSeq) -> Union[str, Iterator[Path]]:
exprs: Deque[Any] = deque(seq.items)
accum = ''
while exprs:
expr = exprs.popleft()
if isinstance(expr, BangGlob):
if exprs:
raise RuntimeError('Globbing can only occur at the end of a seq')
return PathWrapper(accum).glob(expr.glob)
accum += self.eval_expr(expr)
return accum
def eval(self):
mut_args = deque(self.args)
cmd = self.eval_command(mut_args)
while mut_args:
arg = mut_args.popleft()
assert isinstance(arg, BangOp), 'Expected OP but found: {}'.format(arg)
assert len(mut_args) > 0, 'No operands left!'
if arg.op == '|':
cmd |= self.eval_command(mut_args)
elif arg.op == '^':
cmd ^= self.eval_command(mut_args)
elif arg.op == '>':
cmd = cmd > self.eval_expr(mut_args.popleft())
elif arg.op == '>>':
cmd = cmd >> self.eval_expr(mut_args.popleft())
else:
raise RuntimeError('Unsupported operator {}'.format(arg.op))
return cmd
def __str__(self):
return str(self.eval())
def __repr__(self):
return 'BangExpr<{!r}>'.format(self.args)
class BangBang:
__slots__ = ('code',)
def __init__(self, code):
self.code = code
def eval(self):
#TODO: Detect shebang and use it instead of default shell
import sys, subprocess
result = subprocess.run(
['bash', '-c', self.code],
encoding='utf-8',
stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if result.stderr:
print(result.stderr, file=sys.stderr)
if result.returncode > 0:
if result.stdout:
print(result.stdout)
raise pysh.ExitStatusError(result.returncode)
return result.stdout
def __str__(self):
return str(self.eval())
def __repr__(self):
return 'BangBang<{}>'.format(self.code)
def parse_bangexpr(code: str) -> str:
as_str = lambda s: "'{}'".format(s.replace("\\", "\\\\").replace("'", "\\'"))
lexer = BangLexer().scan(code)
seq = []
exprs = []
while True:
tkn = next(lexer, None)
if tkn and tkn.type != BangTokenType.OP:
if tkn.type in (BangTokenType.LOCAL, BangTokenType.EXPR):
seq.append(tkn.value)
elif tkn.type == BangTokenType.ENV:
seq.append('pysh.BangEnv({})'.format(as_str(tkn.value)))
elif tkn.type == BangTokenType.OPAQUE:
seq.append('{}'.format(as_str(tkn.value)))
elif tkn.type == BangTokenType.GLOB:
seq.append('pysh.BangGlob({})'.format(as_str(tkn.value)))
else:
assert False, 'Unexpected token {}'.format(tkn.type)
continue
if seq:
if len(seq) > 1:
exprs.append('pysh.BangSeq({})'.format(', '.join(seq)))
else:
exprs.append(seq[0])
seq = []
if not tkn:
break
assert tkn.type == BangTokenType.OP
if tkn.value == ' ':
continue
exprs.append('pysh.BangOp("{}")'.format(tkn.value))
# We need to provide locals/globals so we can resolve commands to variables
return 'pysh.BangExpr({}, locals=locals(), globals=globals())'.format(', '.join(exprs))
def transform(code: StringIO, transformer: TBangTransformer) -> Iterator[str]:
""" Scans python code to transform bang expressions.
Given some python code it will extract bang expressions and process
them with a callback that can report back the transformation.
Returns a generator that allows to consume the transformed code
line by line.
"""
tokens = tokenize.generate_tokens(code.readline)
bangexpr = [] # type: List[str]
bangcont = False
prebang = None
ptkn = None
indent = 0
bang_indent = -100
last_bang_line = -100
for ctkn in tokens:
if ctkn.type == tokenize.INDENT:
indent += 1
if last_bang_line + 1 == ctkn.start[0]:
bang_indent = indent
elif ctkn.type == tokenize.DEDENT:
indent -= 1
if bang_indent > indent:
bang_indent = -100
# due to continuations we can't rely on NEWLINE tokens, instead we have
# use the lexical information to detect when we're on a new line
#TODO: Support indent/dedent for multiline
if ptkn and ctkn.start[0] > ptkn.start[0]:
if bangcont or bang_indent == indent:
if ctkn.type is tokenize.ENDMARKER:
raise SyntaxError('BangExpr continuation at program end')
line = ctkn.line.rstrip('\r\n')
bangexpr.append(line)
bangcont = line.endswith('\\')
last_bang_line = ctkn.start[0]
elif bangexpr:
lines = list(transformer(bangexpr))
assert len(lines) <= len(bangexpr)
if lines and prebang:
lines[0] = prebang + lines[0]
yield from lines
bangexpr = []
last_bang_line = ptkn.start[0]
else:
yield ptkn.line
ptkn = ctkn
if bangexpr:
continue
if ctkn.string == '!':
col = ctkn.start[1]
prebang = ctkn.line[0:col]
line = ctkn.line[col+1:].lstrip(' \t').rstrip('\r\n')
bangexpr.append(line.rstrip('\\'))
bangcont = line.endswith('\\')
last_bang_line = ctkn.start[0]
assert not bangexpr, bangexpr
def transformer(lines: List[str]) -> Iterator[str]:
if lines[0].startswith('!'):
#TODO: Detect $ident to expose them on env when evaluated
lines[0] = lines[0][1:]
code = '\n'.join(lines)
code = code.strip().replace("'", "\\'").replace("\\", "\\\\")
code = "pysh.BangBang('{}')".format(code)
lines = code.split('\n')
for line in lines:
yield line
else:
yield from parse_bangexpr(' '.join(lines)).split('\n')
from io import StringIO
code = r'''
foo = ! ls foo${bar}.* \
| grep foo
> /dev/null
foo = r' ls foo${bar} ' >> expr
expr<' ls foo${bar} '
!! #!/bin/fish
ls .*
'''.strip()
#TODO: !! is probably better solved with:
# locals are solved with inspect.frame.f_locals
sh << r'''
# << means with variables interpolated
# < is plain text
ls .*
'''
for line in transform(StringIO(code), transformer):
print(line.rstrip('\n'))
from pysh.command import command
ls = command('ls')
grep = command('grep')
bar = 10
print('::BangExpr::')
be = BangExpr('ls', BangSeq('foo', bar, BangGlob('.*')), BangOp("|"), 'grep', 'foo', 'baz', BangOp(">"), '/dev/null', locals=locals(), globals=globals())
# print(be)
print('::BangBang::')
bb = BangBang('''#!/bin/bash
ls *.py''')
print(bb) | 2.25 | 2 |
example/bayesian-methods/data_loader.py | Vikas-kum/incubator-mxnet | 54 | 3165 | <gh_stars>10-100
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import print_function
import numpy
import os
import ssl
def load_mnist(training_num=50000):
data_path = os.path.join(os.path.dirname(os.path.realpath('__file__')), 'mnist.npz')
if not os.path.isfile(data_path):
from six.moves import urllib
origin = (
'https://github.com/sxjscience/mxnet/raw/master/example/bayesian-methods/mnist.npz'
)
print('Downloading data from %s to %s' % (origin, data_path))
ctx = ssl._create_unverified_context()
with urllib.request.urlopen(origin, context=ctx) as u, open(data_path, 'wb') as f:
f.write(u.read())
print('Done!')
dat = numpy.load(data_path)
X = (dat['X'][:training_num] / 126.0).astype('float32')
Y = dat['Y'][:training_num]
X_test = (dat['X_test'] / 126.0).astype('float32')
Y_test = dat['Y_test']
Y = Y.reshape((Y.shape[0],))
Y_test = Y_test.reshape((Y_test.shape[0],))
return X, Y, X_test, Y_test
def load_toy():
training_data = numpy.loadtxt('toy_data_train.txt')
testing_data = numpy.loadtxt('toy_data_test_whole.txt')
X = training_data[:, 0].reshape((training_data.shape[0], 1))
Y = training_data[:, 1].reshape((training_data.shape[0], 1))
X_test = testing_data[:, 0].reshape((testing_data.shape[0], 1))
Y_test = testing_data[:, 1].reshape((testing_data.shape[0], 1))
return X, Y, X_test, Y_test
def load_synthetic(theta1, theta2, sigmax, num=20):
flag = numpy.random.randint(0, 2, (num,))
X = flag * numpy.random.normal(theta1, sigmax, (num,)) \
+ (1.0 - flag) * numpy.random.normal(theta1 + theta2, sigmax, (num,))
return X
| 1.9375 | 2 |
start.py | mickeyckm/nanodegree-freshtomatoes | 1 | 3166 | import os
import tmdbsimple as tmdb
import media
import fresh_tomatoes as ft
movies = []
if os.environ.get('TMDB_API', False):
# Retrieve API KEY
tmdb.API_KEY = os.environ['TMDB_API']
# TMDB Movie Ids
movie_ids = [271110, 297761, 246655, 278154, 135397, 188927]
# Get Configuration
configuration = tmdb.Configuration().info()
image_base_url = configuration['images']['secure_base_url']
image_width = "w500"
for movie_id in movie_ids:
m = tmdb.Movies(movie_id)
# Retrieve Image URL
minfo = m.info()
poster_image_url = image_base_url + image_width + minfo['poster_path']
# Retrieve Youtube Video URL
videos = m.videos()
video = videos['results'][0]
youtube_url = 'https://youtube.com/watch?v=' + video['key']
# Append Movie object
movie = media.Movie(m.title)
movie.storyline = m.overview
movie.poster_url = poster_image_url
movie.trailer_url = youtube_url
movies.append(movie)
else:
# Avatar
avatar = media.Movie("Avatar")
avatar.storyline = ("A paraplegic marine dispatched to the moon Pandora "
"on a unique mission becomes torn between following "
"his orders and protecting the world he feels is "
"his home.")
avatar.poster_url = ("https://upload.wikimedia.org/wikipedia/"
"en/b/b0/Avatar-Teaser-Poster.jpg")
avatar.trailer_url = "https://www.youtube.com/watch?v=-9ceBgWV8io"
# Deadpool
deadpool = media.Movie("Deadpool")
deadpool.storyline = ("A fast-talking mercenary with a morbid sense of "
"humor is subjected to a rogue experiment that "
"leaves him with accelerated healing powers and a "
"quest for revenge.")
deadpool.poster_url = ("https://upload.wikimedia.org/wikipedia/en/4/46/"
"Deadpool_poster.jpg")
deadpool.trailer_url = "https://www.youtube.com/watch?v=gtTfd6tISfw"
# Ghostbusters
ghostbusters = media.Movie("Ghostbusters")
ghostbusters.storyline = ("Following a ghost invasion of Manhattan, "
"paranormal enthusiasts <NAME> and Abby "
"Yates, nuclear engineer <NAME>, "
"and subway worker <NAME> band together "
"to stop the otherworldly threat.")
ghostbusters.poster_url = ("https://upload.wikimedia.org/wikipedia/"
"en/3/32/Ghostbusters_2016_film_poster.png")
ghostbusters.trailer_url = "https://www.youtube.com/watch?v=w3ugHP-yZXw"
# Olympus
olympus = media.Movie("Olympus Has Fallen")
olympus.storyline = ("Disgraced Secret Service agent (and former "
"presidential guard) <NAME> finds himself "
"trapped inside the White House in the wake of a "
"terrorist attack; using his inside knowledge, "
"Banning works with national security to rescue "
"the President from his kidnappers.")
olympus.poster_url = ("https://upload.wikimedia.org/wikipedia/en/b/bf/"
"Olympus_Has_Fallen_poster.jpg")
olympus.trailer_url = "https://www.youtube.com/watch?v=vwx1f0kyNwI"
# Angry Birds
angry_birds = media.Movie("The Angry Birds Movie")
angry_birds.storyline = ("Find out why the birds are so angry. When an "
"island populated by happy, flightless birds "
"is visited by mysterious green piggies, it's "
"up to three unlikely outcasts - Red, Chuck "
"and Bomb - to figure out what the pigs are up "
"to.")
angry_birds.poster_url = ("https://upload.wikimedia.org/wikipedia/en/f/"
"f9/The_Angry_Birds_Movie_poster.png")
angry_birds.trailer_url = "https://www.youtube.com/watch?v=1U2DKKqxHgE"
# Ironman
ironman = media.Movie("Iron Man")
ironman.storyline = ("After being held captive in an Afghan cave, "
"billionaire engineer <NAME> creates a unique "
"weaponized suit of armor to fight evil.")
ironman.poster_url = ("https://upload.wikimedia.org/wikipedia/en/7/70/"
"Ironmanposter.JPG")
ironman.trailer_url = "https://www.youtube.com/watch?v=8hYlB38asDY"
movies = [avatar, deadpool, ghostbusters, olympus, angry_birds, ironman]
ft.open_movies_page(movies)
| 2.59375 | 3 |
qiskit_metal/_gui/elements_ui.py | sarafs1926/qiskit-metal | 1 | 3167 | # -*- coding: utf-8 -*-
# Form implementation generated from reading ui file './elements_ui.ui',
# licensing of './elements_ui.ui' applies.
#
# Created: Wed Jun 16 14:29:03 2021
# by: pyside2-uic running on PySide2 5.13.2
#
# WARNING! All changes made in this file will be lost!
from PySide2 import QtCore, QtGui, QtWidgets
class Ui_ElementsWindow(object):
def setupUi(self, ElementsWindow):
ElementsWindow.setObjectName("ElementsWindow")
ElementsWindow.resize(841, 623)
self.centralwidget = QtWidgets.QWidget(ElementsWindow)
self.centralwidget.setObjectName("centralwidget")
self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.centralwidget)
self.verticalLayout_2.setSpacing(0)
self.verticalLayout_2.setContentsMargins(0, 0, 0, 0)
self.verticalLayout_2.setObjectName("verticalLayout_2")
self.verticalLayout = QtWidgets.QVBoxLayout()
self.verticalLayout.setSizeConstraint(
QtWidgets.QLayout.SetDefaultConstraint)
self.verticalLayout.setObjectName("verticalLayout")
self.horizontalLayout = QtWidgets.QHBoxLayout()
self.horizontalLayout.setObjectName("horizontalLayout")
self.btn_refresh = QtWidgets.QPushButton(self.centralwidget)
self.btn_refresh.setCursor(QtCore.Qt.ClosedHandCursor)
self.btn_refresh.setText("")
icon = QtGui.QIcon()
icon.addPixmap(QtGui.QPixmap(":/refresh"), QtGui.QIcon.Normal,
QtGui.QIcon.Off)
self.btn_refresh.setIcon(icon)
self.btn_refresh.setIconSize(QtCore.QSize(20, 20))
self.btn_refresh.setAutoDefault(False)
self.btn_refresh.setDefault(False)
self.btn_refresh.setFlat(True)
self.btn_refresh.setObjectName("btn_refresh")
self.horizontalLayout.addWidget(self.btn_refresh)
self.label = QtWidgets.QLabel(self.centralwidget)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum,
QtWidgets.QSizePolicy.Minimum)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(
self.label.sizePolicy().hasHeightForWidth())
self.label.setSizePolicy(sizePolicy)
font = QtGui.QFont()
font.setWeight(75)
font.setBold(True)
self.label.setFont(font)
self.label.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignTrailing |
QtCore.Qt.AlignVCenter)
self.label.setObjectName("label")
self.horizontalLayout.addWidget(self.label)
self.combo_element_type = QtWidgets.QComboBox(self.centralwidget)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred,
QtWidgets.QSizePolicy.Minimum)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(
self.combo_element_type.sizePolicy().hasHeightForWidth())
self.combo_element_type.setSizePolicy(sizePolicy)
self.combo_element_type.setCurrentText("")
self.combo_element_type.setSizeAdjustPolicy(
QtWidgets.QComboBox.AdjustToContents)
self.combo_element_type.setObjectName("combo_element_type")
self.horizontalLayout.addWidget(self.combo_element_type)
self.line = QtWidgets.QFrame(self.centralwidget)
self.line.setFrameShape(QtWidgets.QFrame.VLine)
self.line.setFrameShadow(QtWidgets.QFrame.Sunken)
self.line.setObjectName("line")
self.horizontalLayout.addWidget(self.line)
self.label_3 = QtWidgets.QLabel(self.centralwidget)
font = QtGui.QFont()
font.setWeight(75)
font.setBold(True)
self.label_3.setFont(font)
self.label_3.setObjectName("label_3")
self.horizontalLayout.addWidget(self.label_3)
self.label_2 = QtWidgets.QLabel(self.centralwidget)
self.label_2.setObjectName("label_2")
self.horizontalLayout.addWidget(self.label_2)
self.lineEdit = QtWidgets.QLineEdit(self.centralwidget)
self.lineEdit.setObjectName("lineEdit")
self.horizontalLayout.addWidget(self.lineEdit)
self.label_4 = QtWidgets.QLabel(self.centralwidget)
self.label_4.setObjectName("label_4")
self.horizontalLayout.addWidget(self.label_4)
self.lineEdit_2 = QtWidgets.QLineEdit(self.centralwidget)
self.lineEdit_2.setObjectName("lineEdit_2")
self.horizontalLayout.addWidget(self.lineEdit_2)
self.line_2 = QtWidgets.QFrame(self.centralwidget)
self.line_2.setFrameShape(QtWidgets.QFrame.VLine)
self.line_2.setFrameShadow(QtWidgets.QFrame.Sunken)
self.line_2.setObjectName("line_2")
self.horizontalLayout.addWidget(self.line_2)
self.verticalLayout.addLayout(self.horizontalLayout)
self.tableElements = QtWidgets.QTableView(self.centralwidget)
sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding,
QtWidgets.QSizePolicy.Expanding)
sizePolicy.setHorizontalStretch(0)
sizePolicy.setVerticalStretch(0)
sizePolicy.setHeightForWidth(
self.tableElements.sizePolicy().hasHeightForWidth())
self.tableElements.setSizePolicy(sizePolicy)
self.tableElements.setProperty("showDropIndicator", False)
self.tableElements.setDragDropOverwriteMode(False)
self.tableElements.setAlternatingRowColors(True)
self.tableElements.setSortingEnabled(False)
self.tableElements.setObjectName("tableElements")
self.verticalLayout.addWidget(self.tableElements)
self.verticalLayout_2.addLayout(self.verticalLayout)
ElementsWindow.setCentralWidget(self.centralwidget)
self.menubar = QtWidgets.QMenuBar()
self.menubar.setGeometry(QtCore.QRect(0, 0, 841, 22))
self.menubar.setObjectName("menubar")
ElementsWindow.setMenuBar(self.menubar)
self.statusbar = QtWidgets.QStatusBar(ElementsWindow)
self.statusbar.setEnabled(True)
self.statusbar.setObjectName("statusbar")
ElementsWindow.setStatusBar(self.statusbar)
self.retranslateUi(ElementsWindow)
QtCore.QObject.connect(self.combo_element_type,
QtCore.SIGNAL("currentIndexChanged(QString)"),
ElementsWindow.combo_element_type)
QtCore.QObject.connect(self.btn_refresh, QtCore.SIGNAL("clicked()"),
ElementsWindow.force_refresh)
QtCore.QMetaObject.connectSlotsByName(ElementsWindow)
def retranslateUi(self, ElementsWindow):
ElementsWindow.setWindowTitle(
QtWidgets.QApplication.translate("ElementsWindow", "MainWindow",
None, -1))
self.btn_refresh.setToolTip(
QtWidgets.QApplication.translate("ElementsWindow",
"Force refresh the table ", None,
-1))
self.btn_refresh.setStatusTip(
QtWidgets.QApplication.translate("ElementsWindow",
"Force refresh the table ", None,
-1))
self.btn_refresh.setWhatsThis(
QtWidgets.QApplication.translate("ElementsWindow",
"Force refresh the table ", None,
-1))
self.btn_refresh.setAccessibleDescription(
QtWidgets.QApplication.translate("ElementsWindow",
"Force refresh the table ", None,
-1))
self.label.setText(
QtWidgets.QApplication.translate("ElementsWindow", "Element type: ",
None, -1))
self.combo_element_type.setToolTip(
QtWidgets.QApplication.translate(
"ElementsWindow",
"<html><head/><body><p>Select the element table you wish to view</p></body></html>",
None, -1))
self.label_3.setText(
QtWidgets.QApplication.translate("ElementsWindow", " Filter: ",
None, -1))
self.label_2.setText(
QtWidgets.QApplication.translate("ElementsWindow", "Component: ",
None, -1))
self.label_4.setText(
QtWidgets.QApplication.translate("ElementsWindow", " Layer: ",
None, -1))
from . import main_window_rc_rc
| 1.40625 | 1 |
Python/function.py | manishaverma1012/programs | 0 | 3168 | def cube(number):
return number*number*number
digit = input(" the cube of which digit do you want >")
result = cube(int(digit))
print(result)
| 4.0625 | 4 |
tests/test_runner.py | elifesciences/proofreader-python | 1 | 3169 | <reponame>elifesciences/proofreader-python<gh_stars>1-10
try:
from unittest.mock import patch
except ImportError: # pragma: no cover
from mock import patch
from proofreader.runner import run, _run_command
def test_it_will_return_1_exit_code_on_failure(bad_py_file):
try:
run(targets=[bad_py_file.strpath])
except SystemExit as exception:
assert exception.code == 1
def test_it_will_return_zero_exit_code_on_success(good_py_file):
try:
run(targets=[good_py_file.strpath])
except SystemExit as exception:
assert exception.code == 0
def test_it_returns_zero_exit_code_on_builtin_shadowing_fail(builtin_fail_py_file):
try:
run(targets=[builtin_fail_py_file.strpath])
except SystemExit as exception:
assert exception.code == 0
def test_run_command_will_return_a_bool():
with patch('proofreader.runner.Popen') as mock_popen:
mock_popen.returncode = 0
result = _run_command('dummy_cmd', [''], [''])
assert isinstance(result, bool)
def test_will_return_zero_on_success_with_license_check(good_py_file):
try:
run(targets=[good_py_file.strpath], check_licenses=True)
except SystemExit as exception:
assert exception.code == 0
| 2.671875 | 3 |
tanim/core/container/container.py | wofeicaoge/Tanim | 0 | 3170 | from tanim.utils.config_ops import digest_config
from tanim.utils.iterables import list_update
# Currently, this is only used by both Scene and Mobject.
# Still, we abstract its functionality here, albeit purely nominally.
# All actual implementation has to be handled by derived classes for now.
class Container(object):
def __init__(self, **kwargs):
digest_config(self, kwargs)
self.submobjects = [] # Is it really better to name it submobjects?
def add(self, *mobjects):
if self in mobjects:
raise Exception("Mobject cannot contain self")
self.submobjects = list_update(self.submobjects, mobjects)
return self
def add_to_back(self, *mobjects):
self.remove(*mobjects)
self.submobjects = list(mobjects) + self.submobjects
return self
def remove(self, *mobjects, ):
for mobject in mobjects:
for submod in self.submobjects:
if isinstance(submod, GroupContainer):
submod.remove(mobject)
elif mobject == submod:
self.submobjects.remove(mobject)
return self
class GroupContainer(Container):
def __init__(self, *containers, **kwargs):
self.add(*containers)
| 2.46875 | 2 |
article.py | ZACHSTRIVES/AUCSS-StaffPlatform | 3 | 3171 | from config import *
def fetch_all_article():
try:
cur = db.cursor()
sql = "SELECT * FROM article WHERE article_status='N'"
db.ping(reconnect=True)
cur.execute(sql)
result = cur.fetchall()
db.commit()
cur.close()
return result
except Exception as e:
print(e)
def add_article_to_db(title, due):
try:
cur = db.cursor()
sql = "INSERT INTO article(article_title,article_dueday)VALUES ('%s','%s')" % (title, due)
db.ping(reconnect=True)
cur.execute(sql)
db.commit()
cur.close()
except Exception as e:
print(e)
def fetch_all_mkt_staff():
try:
cur = db.cursor()
sql = "SELECT Name,email FROM user WHERE type=5"
db.ping(reconnect=True)
cur.execute(sql)
result = cur.fetchall()
db.commit()
cur.close()
return result
except Exception as e:
print(e)
def get_article_id(title):
try:
cur = db.cursor()
sql = "SELECT article_id FROM article WHERE article_title='%s' AND article_status='N'" % title
db.ping(reconnect=True)
cur.execute(sql)
result = cur.fetchone()
db.commit()
cur.close()
return result
except Exception as e:
print(e)
def add_works_to_db(article_id, type, staff, work_due):
try:
cur = db.cursor()
sql = "INSERT INTO article_works(works_type,works_article,works_dueday,works_staff)VALUES (%s,%s,'%s','%s');" % (
type, article_id, work_due, staff)
db.ping(reconnect=True)
cur.execute(sql)
db.commit()
cur.close()
except Exception as e:
print(e)
def get_article_s_work(id):
try:
cur = db.cursor()
sql = "SELECT * FROM article_works WHERE works_article=%s ORDER BY works_type" % id
db.ping(reconnect=True)
cur.execute(sql)
result = cur.fetchall()
db.commit()
cur.close()
return result
except Exception as e:
print(e)
def get_user_name(email):
try:
cur = db.cursor()
sql = "SELECT Name FROM user WHERE email='%s'" % email
db.ping(reconnect=True)
cur.execute(sql)
result = cur.fetchone()
db.commit()
cur.close()
return result
except Exception as e:
print(e)
def get_works_list(articles):
res = {}
for i in range(0, len(articles)):
id = articles[i][0]
work = []
works = get_article_s_work(id)
for w in works:
my_list = [w[0], w[1], w[3], get_user_name(w[5])[0]]
work.append(my_list)
res[id] = work
return res
def get_your_task_with_article(email, id):
try:
cur = db.cursor()
sql = "SELECT * FROM article_works WHERE works_staff='%s' AND works_article=%s" % (email, id)
db.ping(reconnect=True)
cur.execute(sql)
result = cur.fetchall()
db.commit()
cur.close()
return result
except Exception as e:
print(e)
def get_task_list(email, articles):
res = {}
for a in articles:
id = a[0]
tasks = get_your_task_with_article(email, id)
res[id] = tasks
return res
def update_finish_status(type, id):
try:
type = int(type)
cur = db.cursor()
sql = ''
if type == 1:
sql = "UPDATE article SET banner_status='Y' WHERE article_id=%s" % id
elif type == 2:
sql = "UPDATE article SET text_status='Y' WHERE article_id=%s" % id
elif type == 3:
sql = "UPDATE article SET style_status='Y' WHERE article_id=%s" % id
db.ping(reconnect=True)
cur.execute(sql)
db.commit()
cur.close()
except Exception as e:
print(e)
def update_task_status(id):
try:
cur = db.cursor()
sql = "UPDATE article_works SET is_finished='Y' WHERE works_num=%s" % id
db.ping(reconnect=True)
cur.execute(sql)
db.commit()
cur.close()
except Exception as e:
print(e)
def finish_task_in_db(task, article, type):
update_task_status(task)
update_finish_status(type, article)
def count_person_performance(type, email):
try:
cur = db.cursor()
sql = "SELECT * FROM article_works WHERE works_staff='%s' AND works_type=%s AND is_finished='Y'" % (email, type)
db.ping(reconnect=True)
cur.execute(sql)
res = cur.fetchall()
db.commit()
cur.close()
return res
except Exception as e:
print(e)
def count_performance():
all_staff = fetch_all_mkt_staff()
performance_list = []
for s in all_staff:
email = s[1]
banner = count_person_performance(1, email)
text = count_person_performance(2, email)
style = count_person_performance(3, email)
p_list = [s[0], len(banner), len(text), len(style)]
performance_list.append(p_list)
return performance_list
| 2.953125 | 3 |
12-Querying-Data-II/just_filtering.py | dwang-ischool/w205 | 23 | 3172 | <reponame>dwang-ischool/w205<gh_stars>10-100
#!/usr/bin/env python
"""Extract events from kafka and write them to hdfs
"""
import json
from pyspark.sql import SparkSession, Row
from pyspark.sql.functions import udf
@udf('boolean')
def is_purchase(event_as_json):
event = json.loads(event_as_json)
if event['event_type'] == 'purchase_sword':
return True
return False
def main():
"""main
"""
spark = SparkSession \
.builder \
.appName("ExtractEventsJob") \
.getOrCreate()
raw_events = spark \
.read \
.format("kafka") \
.option("kafka.bootstrap.servers", "kafka:29092") \
.option("subscribe", "events") \
.option("startingOffsets", "earliest") \
.option("endingOffsets", "latest") \
.load()
purchase_events = raw_events \
.select(raw_events.value.cast('string').alias('raw'),
raw_events.timestamp.cast('string')) \
.filter(is_purchase('raw'))
extracted_purchase_events = purchase_events \
.rdd \
.map(lambda r: Row(timestamp=r.timestamp, **json.loads(r.raw))) \
.toDF()
extracted_purchase_events.printSchema()
extracted_purchase_events.show()
if __name__ == "__main__":
main()
| 2.65625 | 3 |
test.py | navjotk/pysz | 3 | 3173 | import numpy as np
from pysz import compress, decompress
def test_compress_decompress():
a = np.linspace(0, 100, num=1000000).reshape((100, 100, 100)).astype(np.float32)
tolerance = 0.0001
compressed = compress(a, tolerance=tolerance)
recovered = decompress(compressed, a.shape, a.dtype)
assert(a.shape == recovered.shape)
assert(np.allclose(a, recovered, atol=tolerance))
test_compress_decompress()
| 2.46875 | 2 |
sparkdq/outliers/params/KSigmaParams.py | PasaLab/SparkDQ | 1 | 3174 | import json
from sparkdq.outliers.params.OutlierSolverParams import OutlierSolverParams
from sparkdq.outliers.OutlierSolver import OutlierSolver
class KSigmaParams(OutlierSolverParams):
def __init__(self, deviation=1.5):
self.deviation = deviation
def model(self):
return OutlierSolver.kSigma
@staticmethod
def from_json(json_str):
d = json.loads(json_str)
return KSigmaParams(d["deviation"])
| 2.453125 | 2 |
webhooks/sentry/alerta_sentry.py | dunzoit/alerta-contrib | 0 | 3175 | <reponame>dunzoit/alerta-contrib
from alerta.models.alert import Alert
from alerta.webhooks import WebhookBase
class SentryWebhook(WebhookBase):
def incoming(self, query_string, payload):
# For Sentry v9
# Defaults to value before Sentry v9
if 'request' in payload.get('event'):
key = 'request'
else:
key = 'sentry.interfaces.Http'
if payload.get('event')[key]['env'].get('ENV', 'prod') == 'prod':
environment = 'Production'
else:
environment = 'Development'
if payload['level'] == 'error':
severity = 'critical'
else:
severity = 'ok'
return Alert(
resource=payload['culprit'],
event=payload['event']['event_id'],
environment=environment,
severity=severity,
service=[payload['project']],
group='Application',
value=payload['level'],
text='{}\n{}\n{}'.format(payload['message'], payload['event'].get('title', ''), payload['url']),
tags=['{}={}'.format(k, v) for k, v in payload['event']['tags']],
attributes={'modules': ['{}=={}'.format(k, v) for k, v in payload['event']['modules'].items()]},
origin='sentry.io',
raw_data=str(payload)
)
| 2.078125 | 2 |
XMLHttpRequest/resources/shift-jis-html.py | watilde/web-platform-tests | 4 | 3176 | def main(request, response):
headers = [("Content-type", "text/html;charset=shift-jis")]
# Shift-JIS bytes for katakana TE SU TO ('test')
content = chr(0x83) + chr(0x65) + chr(0x83) + chr(0x58) + chr(0x83) + chr(0x67);
return headers, content
| 2.15625 | 2 |
setup.py | dolfim/django-mail-gmailapi | 0 | 3177 | import re
from setuptools import setup, find_packages
import sys
if sys.version_info < (3, 5):
raise 'must use Python version 3.5 or higher'
with open('./gmailapi_backend/__init__.py', 'r') as f:
MATCH_EXPR = "__version__[^'\"]+(['\"])([^'\"]+)"
VERSION = re.search(MATCH_EXPR, f.read()).group(2).strip()
setup(
name='django-gmailapi-backend',
version=VERSION,
packages=find_packages(),
author="<NAME>",
author_email="<EMAIL>",
license="Apache License 2.0",
entry_points={
'console_scripts': [
'gmail_oauth2 = gmailapi_backend.bin.gmail_oauth2:main',
]
},
install_requires=[
'google-api-python-client~=2.0',
'google-auth>=1.16.0,<3.0.0dev',
],
url="https://github.com/dolfim/django-gmailapi-backend",
long_description_content_type='text/markdown',
long_description=open('README.md').read(),
description='Email backend for Django which sends email via the Gmail API',
classifiers=[
'Intended Audience :: Developers',
'License :: OSI Approved :: Apache Software License',
'Operating System :: MacOS :: MacOS X',
'Operating System :: Microsoft :: Windows',
'Operating System :: POSIX',
'Programming Language :: Python',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.5',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'Framework :: Django',
'Topic :: Communications :: Email',
'Development Status :: 4 - Beta'
],
)
| 1.539063 | 2 |
openpeerpower/scripts/ensure_config.py | OpenPeerPower/openpeerpower | 0 | 3178 | """Script to ensure a configuration file exists."""
import argparse
import os
import openpeerpower.config as config_util
from openpeerpower.core import OpenPeerPower
# mypy: allow-untyped-calls, allow-untyped-defs
def run(args):
"""Handle ensure config commandline script."""
parser = argparse.ArgumentParser(
description=(
"Ensure a Open Peer Power config exists, creates one if necessary."
)
)
parser.add_argument(
"-c",
"--config",
metavar="path_to_config_dir",
default=config_util.get_default_config_dir(),
help="Directory that contains the Open Peer Power configuration",
)
parser.add_argument("--script", choices=["ensure_config"])
args = parser.parse_args()
config_dir = os.path.join(os.getcwd(), args.config)
# Test if configuration directory exists
if not os.path.isdir(config_dir):
print("Creating directory", config_dir)
os.makedirs(config_dir)
opp = OpenPeerPower()
opp.config.config_dir = config_dir
config_path = opp.loop.run_until_complete(async_run(opp))
print("Configuration file:", config_path)
return 0
async def async_run(opp):
"""Make sure config exists."""
path = await config_util.async_ensure_config_exists(opp)
await opp.async_stop(force=True)
return path
| 3 | 3 |
atcoder/abc132A_fifty_fifty.py | uninhm/kyopro | 31 | 3179 | # Vicfred
# https://atcoder.jp/contests/abc132/tasks/abc132_a
# implementation
S = list(input())
if len(set(S)) == 2:
if S.count(S[0]) == 2:
print("Yes")
quit()
print("No")
| 3.46875 | 3 |
dabl/plot/tests/test_supervised.py | nrohan09-cloud/dabl | 500 | 3180 | <reponame>nrohan09-cloud/dabl<gh_stars>100-1000
import pytest
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import itertools
from sklearn.datasets import (make_regression, make_blobs, load_digits,
fetch_openml, load_diabetes)
from sklearn.preprocessing import KBinsDiscretizer
from dabl.preprocessing import clean, detect_types, guess_ordinal
from dabl.plot.supervised import (
plot, plot_classification_categorical,
plot_classification_continuous, plot_regression_categorical,
plot_regression_continuous)
from dabl.utils import data_df_from_bunch
from dabl import set_config
# FIXME: check that target is not y but a column name
@pytest.mark.filterwarnings('ignore:the matrix subclass')
@pytest.mark.parametrize("continuous_features, categorical_features, task",
itertools.product([0, 1, 3, 100], [0, 1, 3, 100],
['classification', 'regression']))
def test_plots_smoke(continuous_features, categorical_features, task):
# simple smoke test
# should be parametrized
n_samples = 100
X_cont, y_cont = make_regression(
n_samples=n_samples, n_features=continuous_features,
n_informative=min(continuous_features, 2))
X_cat, y_cat = make_regression(
n_samples=n_samples, n_features=categorical_features,
n_informative=min(categorical_features, 2))
if X_cat.shape[1] > 0:
X_cat = KBinsDiscretizer(encode='ordinal').fit_transform(X_cat)
cont_columns = ["asdf_%d_cont" % i for i in range(continuous_features)]
df_cont = pd.DataFrame(X_cont, columns=cont_columns)
if categorical_features > 0:
cat_columns = ["asdf_%d_cat" % i for i in range(categorical_features)]
df_cat = pd.DataFrame(X_cat, columns=cat_columns).astype('int')
df_cat = df_cat.astype("category")
X_df = pd.concat([df_cont, df_cat], axis=1)
else:
X_df = df_cont
assert(X_df.shape[1] == continuous_features + categorical_features)
X_clean = clean(X_df.copy())
y = y_cont + y_cat
if X_df.shape[1] == 0:
y = np.random.uniform(size=n_samples)
if task == "classification":
y = np.digitize(y, np.percentile(y, [5, 10, 60, 85]))
X_clean['target'] = y
if task == "classification":
X_clean['target'] = X_clean['target'].astype('category')
types = detect_types(X_clean)
column_types = types.T.idxmax()
assert np.all(column_types[:continuous_features] == 'continuous')
assert np.all(column_types[continuous_features:-1] == 'categorical')
if task == "classification":
assert column_types[-1] == 'categorical'
else:
assert column_types[-1] == 'continuous'
plot(X_clean, target_col='target')
plt.close("all")
@pytest.mark.parametrize("add, feature_type, target_type",
itertools.product([0, .1],
['continuous', 'categorical'],
['continuous', 'categorical']))
def test_type_hints(add, feature_type, target_type):
X = pd.DataFrame(np.random.randint(4, size=100)) + add
X['target'] = np.random.uniform(size=100)
plot(X, type_hints={0: feature_type,
'target': target_type},
target_col='target')
# get title of figure
text = plt.gcf()._suptitle.get_text()
assert feature_type.capitalize() in text
ax = plt.gca()
# one of the labels is 'target' iif regression
labels = ax.get_ylabel() + ax.get_xlabel()
assert ('target' in labels) == (target_type == 'continuous')
plt.close("all")
def test_float_classification_target():
# check we can plot even if we do classification with a float target
X, y = make_blobs()
data = pd.DataFrame(X)
data['target'] = y.astype(np.float)
types = detect_types(data)
assert types.categorical['target']
plot(data, target_col='target')
# same with "actual float" - we need to specify classification for that :-/
data['target'] = y.astype(np.float) + .2
plot(data, target_col='target', type_hints={'target': 'categorical'})
plt.close("all")
@pytest.mark.filterwarnings('ignore:Discarding near-constant')
def test_plot_classification_n_classes():
X, y = make_blobs()
X = pd.DataFrame(X)
X['target'] = 0
with pytest.raises(ValueError, match="Less than two classes"):
plot_classification_categorical(X, 'target')
with pytest.raises(ValueError, match="Less than two classes"):
plot_classification_continuous(X, 'target')
def test_plot_wrong_target_type():
X, y = make_blobs()
X = pd.DataFrame(X)
X['target'] = y
with pytest.raises(ValueError, match="need continuous"):
plot_regression_categorical(X, 'target')
with pytest.raises(ValueError, match="need continuous"):
plot_regression_continuous(X, 'target')
X['target'] = X[0]
with pytest.raises(ValueError, match="need categorical"):
plot_classification_categorical(X, 'target')
with pytest.raises(ValueError, match="need categorical"):
plot_classification_continuous(X, 'target')
def test_plot_target_low_card_int():
data = load_digits()
df = data_df_from_bunch(data)
plot(df[::10], target_col='target')
def test_plot_X_y():
X, y = make_blobs()
X = pd.DataFrame(X)
plot(X, y)
def test_plot_regression_numpy():
X, y = make_regression()
plot(X, y)
def test_plot_lda_binary():
X, y = make_blobs(centers=2)
X = pd.DataFrame(X)
plot(X, y, univariate_plot='kde')
def test_plot_int_column_name():
X, y = make_blobs()
X = pd.DataFrame(X)
X[3] = y
plot(X, target_col=3)
def test_negative_ordinal():
# check that a low card int with negative values is plotted correctly
data = pd.DataFrame([np.random.randint(0, 10, size=1000) - 5,
np.random.randint(0, 2, size=1000)]).T
# ensure first column is low_card_int
assert (detect_types(data).T.idxmax()
== ['low_card_int', 'categorical']).all()
assert guess_ordinal(data[0])
# smoke test
plot(data, target_col=1)
def test_large_ordinal():
# check that large integers don't bring us down (bincount memory error)
# here some random phone numbers
assert not guess_ordinal(pd.Series([6786930208, 2142878625, 9106275431]))
def test_plot_classification_continuous():
data = fetch_openml('MiceProtein')
df = data_df_from_bunch(data)
# only univariate plots
figures = plot_classification_continuous(df, target_col='target',
plot_pairwise=False)
assert len(figures) == 1
# top 10 axes
assert len(figures[0].get_axes()) == 10
# six is the minimum number of features for histograms
# (last column is target)
figures = plot_classification_continuous(df.iloc[:, -7:],
target_col='target',
plot_pairwise=False)
assert len(figures) == 1
assert len(figures[0].get_axes()) == 6
# for 5 features, do full pairplot
figures = plot_classification_continuous(df.iloc[:, -6:],
target_col='target',
plot_pairwise=False)
assert len(figures) == 1
# diagonal has twin axes
assert len(figures[0].get_axes()) == 5 * 5 + 5
# also do pairwise plots
figures = plot_classification_continuous(df, target_col='target',
random_state=42)
# univariate, pairwise, pca, lda
assert len(figures) == 4
# univariate
axes = figures[0].get_axes()
assert len(axes) == 10
# known result
assert axes[0].get_xlabel() == "SOD1_N"
# bar plot never has ylabel
assert axes[0].get_ylabel() == ""
# pairwise
axes = figures[1].get_axes()
assert len(axes) == 4
# known result
assert axes[0].get_xlabel() == "SOD1_N"
assert axes[0].get_ylabel() == 'S6_N'
# PCA
axes = figures[2].get_axes()
assert len(axes) == 4
# known result
assert axes[0].get_xlabel() == "PCA 1"
assert axes[0].get_ylabel() == 'PCA 5'
# LDA
axes = figures[3].get_axes()
assert len(axes) == 4
# known result
assert axes[0].get_xlabel() == "LDA 0"
assert axes[0].get_ylabel() == 'LDA 1'
def test_plot_string_target():
X, y = make_blobs(n_samples=30)
data = pd.DataFrame(X)
y = pd.Series(y)
y[y == 0] = 'a'
y[y == 1] = 'b'
y[y == 2] = 'c'
data['target'] = y
plot(data, target_col='target')
def test_na_vals_reg_plot_raise_warning():
X, y = load_diabetes(return_X_y=True)
X = pd.DataFrame(X)
y[::50] = np.NaN
X['target_col'] = y
with pytest.warns(UserWarning, match="Missing values in target_col have "
"been removed for regression"):
plot(X, 'target_col')
with pytest.warns(UserWarning, match="Missing values in target_col have "
"been removed for regression"):
plot_regression_continuous(X, 'target_col')
with pytest.warns(UserWarning, match="Missing values in target_col have "
"been removed for regression"):
plot_regression_categorical(X, 'target_col')
def test_plot_regression_continuous_with_target_outliers():
df = pd.DataFrame(
data={
"feature": np.random.randint(low=1, high=100, size=200),
# target values are bound between 50 and 100
"target": np.random.randint(low=50, high=100, size=200)
}
)
# append single outlier record with target value 0
df = df.append({"feature": 50, "target": 0}, ignore_index=True)
with pytest.warns(
UserWarning,
match="Dropped 1 outliers in column target."
):
plot_regression_continuous(df, 'target')
def test_plot_regression_categorical_missing_value():
df = pd.DataFrame({'y': np.random.normal(size=300)})
df.loc[100:200, 'y'] += 1
df.loc[200:300, 'y'] += 2
df['x'] = 'a'
df.loc[100:200, 'x'] = 'b'
df.loc[200:300, 'x'] = np.NaN
res = plot(df, target_col='y')
assert len(res[1][0, 0].get_yticklabels()) == 3
assert res[1][0, 0].get_yticklabels()[2].get_text() == 'dabl_mi...'
def test_label_truncation():
a = ('a_really_long_name_that_would_mess_up_the_layout_a_lot'
'_by_just_being_very_long')
b = ('the_target_that_has_an_equally_long_name_which_would_'
'mess_up_everything_as_well_but_in_different_places')
df = pd.DataFrame({a: np.random.uniform(0, 1, 1000)})
df[b] = df[a] + np.random.uniform(0, 0.1, 1000)
res = plot_regression_continuous(df, target_col=b)
assert res[0, 0].get_ylabel() == 'the_target_that_h...'
assert res[0, 0].get_xlabel() == 'a_really_long_nam...'
set_config(truncate_labels=False)
res = plot_regression_continuous(df, target_col=b)
assert res[0, 0].get_ylabel() == b
assert res[0, 0].get_xlabel() == a
set_config(truncate_labels=True)
| 2.484375 | 2 |
scripts/calculate_rank.py | daniel-theis/multicore-test-harness | 15 | 3181 | <reponame>daniel-theis/multicore-test-harness
################################################################################
# Copyright (c) 2017 <NAME>, <NAME>, <NAME>
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
################################################################################
import sys
import json
from pprint import pprint
class CalculateRank(object):
def __init__(self, input_file):
self._input_file = input_file
def get_rank(self):
# Read the configuration in the JSON file
with open(self._input_file) as data_file:
experiments_object = json.load(data_file)
# Sort all the configurations in a list
dict_list = list()
for experiment in experiments_object:
ranked_list = experiments_object[experiment]["it"]
od = list(sorted(ranked_list.values(), key=lambda x:x['q_value'], reverse=True))
dict_list.append(od)
# for it in dict_list:
# print()
# print()
# for i in range(len(it)):
# print(it[i]['mapping'])
# print(it[i]['q_value'])
# For each environment. get the rank in the other experiments and store in 'rank'
for it in dict_list[0]:
environment = it['mapping']
rank_list = list()
# Look it up for each victim(experiment)
for it2 in dict_list:
# Find its rank there
for i in range(len(it2)):
env = it2[i]['mapping']
if environment == env:
rank_here = i
break
rank_list.append(rank_here)
it['rank'] = rank_list
# Identify the ones that are not Pareto optimal
rank_list_bad = list()
for it1 in dict_list[0]:
for it2 in dict_list[0]:
if len([i for i, j in zip(it1['rank'], it2['rank']) if i > j]) == len(it1['rank']):
rank_list_bad.append(it1)
# Put the Pareto Optimal in a list
paretto_optimal = list()
for it in dict_list[0]:
if not (it in rank_list_bad):
paretto_optimal.append(it)
# If there are ties, try to break them at fewer comparisons
if len(paretto_optimal) > 1:
rank_list_bad = list()
for it1 in paretto_optimal:
for it2 in paretto_optimal:
if len([i for i, j in zip(it1['rank'], it2['rank']) if i > j]) == len(it1['rank']) - 1:
rank_list_bad.append(it1)
# Put the tie broken ones in a list
paretto_optimal_tie_break = list()
for it in paretto_optimal:
if not (it in rank_list_bad):
paretto_optimal_tie_break.append(it)
print("With no tie breaking")
for i in range(len(paretto_optimal)):
print(paretto_optimal[i]['mapping'])
print("With tie breaking")
for i in range(len(paretto_optimal_tie_break)):
print(paretto_optimal_tie_break[i]['mapping'])
else:
print(paretto_optimal[0]['mapping'])
print("There was no tie breaking")
if __name__ == "__main__":
if len(sys.argv) != 2:
print("usage: " + sys.argv[0] + " <ranked_environments>.json\n")
exit(1)
rank = CalculateRank(sys.argv[1])
rank.get_rank()
| 1.53125 | 2 |
contrib/antlrqueryparser/src/python/generate_asts.py | marblestation/montysolr | 24 | 3182 |
import sys
import subprocess as sub
import os
"""
Simple utility script to generate HTML charts of how ANTLR parses
every query and what is the resulting AST.
"""
def run(grammar_name, basedir='',
cp='.:/dvt/antlr-142/lib/antlr-3.4-complete.jar:/x/dev/antlr-34/lib/antlr-3.4-complete.jar',
grammardir='',
java_executable='java',
dot_executable='dot'
):
if not basedir:
basedir = os.path.abspath('../../../../../../../../../../bin')
old_dir = os.getcwd()
thisdir = grammardir
if not thisdir:
thisdir = os.path.dirname(os.path.abspath(__file__))
os.chdir(thisdir)
cp += os.pathsep + basedir
#print "We'll generate ANTLR graphs\ngramar: %s\nbasedir: %s\nclasspath: %s\nparserdir: %s" % (grammar_name, basedir, cp, thisdir)
grammar_file = os.path.join(thisdir, grammar_name + '.g')
if not os.path.exists(grammar_file):
raise Exception('Grammar %s does not exist in classpath: %s' % (grammar_file, cp))
tmp_file = os.path.join(basedir, 'ast-tree.dot')
index_file = os.path.join(basedir, '%s.html' % grammar_name)
gunit_file = os.path.join(thisdir, grammar_name + '.gunit')
generate_ast_command = '%s -cp %s org.apache.lucene.queryparser.flexible.aqp.parser.BuildAST %s "%%s"' % (java_executable, cp, grammar_name)
generate_svg_command = '%s -Tsvg %s' % (dot_executable, tmp_file)
test_cases = load_gunit_file(gunit_file)
index_fo = open(index_file, 'w')
index_fo.write('<h1>Test cases generated from grammar: %s</h1>\n' % grammar_name)
out_lines = []
i = 0
cmds = generate_ast_command.split()
cmds_svg = generate_svg_command.split()
total = sum(map(lambda x: len(x), test_cases.values()))
toc = []
data = []
toc.append('<a name="toc" />')
for section,values in test_cases.items():
output = tree = svg = ''
toc.append('The rule: <a href="#anchor%s"><pre>%s</pre></a><br/>' % (section, section))
# generate AST tree
for query in values:
i += 1
cmds[-1] = query
#tmp_dot = os.path.join(basedir, 'tmp-%s.dot' % i)
tmp_dot = tmp_file
if os.path.exists(tmp_dot):
os.remove(tmp_dot)
toc.append('%s. <a href="#anchor%s"><pre>%s</pre></a><br/>' % (i, i, query))
print '// %s/%s :: %s' % (i, total, query)
#generate graph
p = sub.Popen(cmds,stdout=sub.PIPE,stderr=sub.PIPE)
output, errors = p.communicate()
if output:
fo = open(tmp_dot, 'w')
fo.write(output)
fo.close()
else:
print 'Error generating AST for: ' + query
print errors
if 'java.lang.ClassNotFoundException' in errors:
raise Exception('Please fix your classpath')
continue
#generate tree
cmds.append(section)
cmds.append("tree")
p = sub.Popen(cmds,stdout=sub.PIPE,stderr=sub.PIPE)
tree, errors = p.communicate()
if tree:
q = query.replace('\\', '\\\\').replace('"', '\\"').replace('\'', '\\\'')
t = tree.strip().replace('\\', '\\\\').replace('"', '\\"').replace("'", "\\'")
print "\"%s\" -> \"%s\"" % (q, t)
else:
print 'Error generating AST for: ' + query
print errors
tree = errors
cmds.pop()
cmds.pop()
cmds_svg[-1] = tmp_dot
try:
p = sub.Popen(cmds_svg,stdout=sub.PIPE,stderr=sub.PIPE)
except Exception, e:
print "The following command failed:"
print ' '.join(cmds_svg)
raise e
output, errors = p.communicate()
data.append(' <a name="anchor%s"/><h3>%s. <pre">%s</pre> <a href="#toc">^</a> </h3>' % (i, i, query))
data.append(output)
data.append('<br/><pre>' + tree + '</pre>')
data.append('<br/>')
index_fo.write('''
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<style type="text/css">
pre {display:inline;}
</style>
</head>
</body>
''')
index_fo.write('\n'.join(toc))
index_fo.write('\n'.join(data))
index_fo.write('''
</body>
</html>
''')
index_fo.close()
print 'HTML charts generated into:', index_fo.name
os.chdir(old_dir)
def load_gunit_file(gunit_file):
fi = open(gunit_file, 'r')
test_cases = {}
section = None
for line in fi:
l = line.strip()
if not l or l[:2] == '//':
continue
parts = split_line(l)
if len(parts) == 1 and parts[0][-1] == ':':
section = parts[0][:-1]
test_cases.setdefault(section, [])
elif len(parts) > 1 and parts[1].lower() != 'fails':
query = parts[0]
query = query.replace('\\\"', '"').replace('\\\'', '\'').replace('\\\\', '\\')
test_cases[section].append(query)
fi.close()
return test_cases
def split_line(line):
line = line.replace('->', '')
start = 0
last_pos = None
parts = []
while line.find('"', start) > -1:
p = line.index('"', start)
start = p+1
if line[p-1] != '\\':
if last_pos is None:
last_pos = p
else:
parts.append(line[last_pos+1:p])
parts.append(line[p+1:].strip())
last_pos = None
break
if not parts:
parts.append(line.strip())
return parts
if __name__ == '__main__':
if len(sys.argv) == 1:
sys.argv.insert(1, "StandardLuceneGrammar")
run(*sys.argv[1:])
| 2.78125 | 3 |
visual_perception/Detection/yolov4/__init__.py | SSusantAchary/Visual-Perception | 0 | 3183 | <reponame>SSusantAchary/Visual-Perception
"""
MIT License
Copyright (c) 2020 <NAME> <<EMAIL>>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
from visual_perception.Detection.yolov4.tf import YOLOv4 as yolo_main
import numpy as np
import cv2
labels = {0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus', 6: 'train', 7: 'truck', 8: 'boat',
9: 'traffic light', 10: 'fire hydrant', 11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat', 16: 'dog',
17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear', 22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella',
26: 'handbag', 27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard', 32: 'sports ball', 33: 'kite',
34: 'baseball bat', 35: 'baseball glove', 36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle', 40: 'wine glass',
41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl', 46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange',
50: 'broccoli', 51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake', 56: 'chair', 57: 'couch', 58: 'potted plant',
59: 'bed', 60: 'dining table', 61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard', 67: 'cell phone',
68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink', 72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'}
class YOLOv4:
def __init__(self):
self.weights_path = ""
self.model = None
self.yolo_classes = ""
self.iou = 0
self.score = 0
self.input_shape = 0
self.output_path = ""
def load_model(self, weights_path:str = None, classes_path:str = None, input_shape:int = 608):
if (weights_path is None) or (classes_path is None):
raise RuntimeError ('weights_path AND classes_path should not be None.')
self.yolo_classes = classes_path
self.weights_path = weights_path
self.input_shape = input_shape
self.model = yolo_main(shape = self.input_shape)
self.model.classes = self.yolo_classes
self.model.make_model()
self.model.load_weights(self.weights_path, weights_type = 'yolo')
def predict(self, img:np.ndarray, output_path:str, iou = 0.45, score = 0.25, custom_objects:dict = None,
debug=True):
self.output_path = output_path
self.iou = iou
self.score = score
#img = np.array(Image.open(img))[..., ::-1]
pred_bboxes = self.model.predict(img, iou_threshold = self.iou, score_threshold = self.score)
boxes = []
if (custom_objects != None):
for i in range(len(pred_bboxes)):
check_name = labels[pred_bboxes[i][4]]
check = custom_objects.get(check_name, 'invalid')
if check == 'invalid':
continue
elif check == 'valid':
boxes.append(list(pred_bboxes[i]))
boxes = np.array(boxes)
res = self.model.draw_bboxes(img, boxes)
if debug:
cv2.imwrite(self.output_path, res)
else:
res = self.model.draw_bboxes(img, pred_bboxes)
if debug:
cv2.imwrite(self.output_path, res)
return res
class TinyYOLOv4:
def __init__(self):
self.weights_path = ""
self.model = None
self.yolo_classes = ""
self.iou = 0
self.score = 0
self.input_shape = 0
self.output_path = ""
def load_model(self, weights_path:str = None, classes_path:str = None, input_shape:int = 0):
if (weights_path is None) or (classes_path is None):
raise RuntimeError ('weights_path AND classes_path should not be None.')
self.yolo_classes = classes_path
self.weights_path = weights_path
self.input_shape = input_shape
self.model = yolo_main(tiny = True, shape = self.input_shape)
self.model.classes = self.yolo_classes
self.model.make_model()
self.model.load_weights(self.weights_path, weights_type = 'yolo')
def predict(self, img:np.ndarray, output_path:str, iou = 0.4, score = 0.07, custom_objects:dict = None,
debug=True):
self.output_path = output_path
self.iou = iou
self.score = score
#img = np.array(Image.open(img))[..., ::-1]
pred_bboxes = self.model.predict(img, iou_threshold = self.iou, score_threshold = self.score)
boxes = []
if (custom_objects != None):
for i in range(len(pred_bboxes)):
check_name = labels[pred_bboxes[i][4]]
check = custom_objects.get(check_name, 'invalid')
if check == 'invalid':
continue
elif check == 'valid':
boxes.append(list(pred_bboxes[i]))
boxes = np.array(boxes)
res = self.model.draw_bboxes(img, boxes)
if debug:
cv2.imwrite(self.output_path, res)
else:
res = self.model.draw_bboxes(img, pred_bboxes)
if debug:
cv2.imwrite(self.output_path, res)
return res
| 1.296875 | 1 |
server/mqtt/handler.py | rishab-rb/MyIOTMap | 1 | 3184 | <reponame>rishab-rb/MyIOTMap
import paho.client as mqtt
HOST = 'localhost'
PORT = 1883
class MQTTConnector:
def __init__(self, host, port):
host = host
port = port
client = mqtt.Client()
def connect():
self.client.connect(self.host, self.port, 60)
def run(self):
self.client.loop_forever()
class MQTTSubscriber:
def __init__(self, *args, **kwargs):
super(MQTTSubscriber, self).__init__(*args, **kwargs)
class MQTTPublisher:
def __init__(self, host) | 2.71875 | 3 |
scripts/spacy_files/similarity_replacement.py | HighDeFing/thesis_v4 | 0 | 3185 | #!/bin/env python
from black import main
import spacy
import json
from spacy import displacy
import unidecode
import pandas as pd
import numpy as np
import os
csv_source = "scripts/spacy_files/data/thesis_200_with_school.csv"
df = pd.read_csv(csv_source)
df = df[df['isScan']==False]
df = df.sort_values('isScan', ascending=False)
text1= "Escuela de Enfermería"
text2 = "ESCUELA DE ENFERMERIA"
file = open("scripts/spacy_files/data/escuelas.json", "r")
file = json.load(file)
temp_list = []
for facultad in file:
temp_list.append(facultad['escuela'])
#print(facultad['escuela'])
escuelas = [item for sublist in temp_list for item in sublist] # make the list flat
#print(escuelas)
text1_u = unidecode.unidecode(text1)
text1_l_u = text1_u.lower()
text2_l_u = unidecode.unidecode(text2).lower()
print(text1_l_u, "<-->", text2_l_u)
if text1_l_u == text2_l_u:
print(text1, " is correct.")
def unaccent_list(accent_list):
unaccented_schools = []
for sch in accent_list:
unaccented_schools.append(unidecode.unidecode(sch).lower())
return unaccented_schools
def set_school_to_unaccent(escuelas):
escuelas = unaccent_list(escuelas)
return escuelas
def create_dictionary(schools):
myDict = dict((e,i) for i,e in enumerate(schools))
return myDict
def set_schools_accents(row, dict, dict_c):
index = dict.get(row.lower())
key_list = list(dict_c.keys())
val_list = list(dict_c.values())
try:
position = val_list.index(index)
key_list[position]
except:
return None
if __name__ == "__main__":
u_escuelas = set_school_to_unaccent(escuelas)
u_escuelas_dict = create_dictionary(u_escuelas)
escuelas_dict = create_dictionary(escuelas)
print(u_escuelas_dict)
print(escuelas_dict)
print(set_schools_accents("No school", u_escuelas_dict, escuelas_dict))
| 3.09375 | 3 |
test/unittest_base.py | dat-boris/tensorforce | 0 | 3186 | <filename>test/unittest_base.py
# Copyright 2018 Tensorforce Team. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from copy import deepcopy
from datetime import datetime
import os
import sys
import warnings
from tensorforce import TensorforceError
from tensorforce.agents import Agent
from tensorforce.core.layers import Layer
from tensorforce.environments import Environment
from tensorforce.execution import Runner
from test.unittest_environment import UnittestEnvironment
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
class UnittestBase(object):
"""
Unit-test base class.
"""
# Unittest
num_updates = None
num_episodes = None
num_timesteps = None
# Environment
min_timesteps = 1
states = dict(
bool_state=dict(type='bool', shape=(1,)),
int_state=dict(type='int', shape=(2,), num_values=4),
float_state=dict(type='float', shape=(1, 1, 2)),
bounded_state=dict(type='float', shape=(), min_value=-0.5, max_value=0.5)
)
actions = dict(
bool_action=dict(type='bool', shape=(1,)),
int_action=dict(type='int', shape=(2,), num_values=4),
float_action=dict(type='float', shape=(1, 1)),
bounded_action=dict(type='float', shape=(2,), min_value=-0.5, max_value=0.5)
)
# Exclude action types
exclude_bool_action = False
exclude_int_action = False
exclude_float_action = False
exclude_bounded_action = False
# Agent
agent = dict(
update=4, policy=dict(network=dict(type='auto', size=8, depth=1, internal_rnn=2)),
objective='policy_gradient', reward_estimation=dict(horizon=3)
)
# Tensorforce config
require_observe = False
require_all = False
def setUp(self):
warnings.filterwarnings(
action='ignore',
message='Converting sparse IndexedSlices to a dense Tensor of unknown shape'
)
def start_tests(self, name=None):
"""
Start unit-test method.
"""
if name is None:
sys.stdout.write('\n{} {}: '.format(
datetime.now().strftime('%H:%M:%S'), self.__class__.__name__[4:]
))
else:
sys.stdout.write('\n{} {} ({}): '.format(
datetime.now().strftime('%H:%M:%S'), self.__class__.__name__[4:], name
))
sys.stdout.flush()
def finished_test(self, assertion=None):
"""
Finished unit-test.
"""
if assertion is None:
assertion = True
else:
self.assertTrue(expr=assertion)
if assertion:
sys.stdout.write('.')
sys.stdout.flush()
def prepare(
self, environment=None, min_timesteps=None, states=None, actions=None,
exclude_bool_action=False, exclude_int_action=False, exclude_float_action=False,
exclude_bounded_action=False, require_observe=False, require_all=False, **agent
):
"""
Generic unit-test preparation.
"""
Layer.layers = None
if environment is None:
if states is None:
states = deepcopy(self.__class__.states)
if actions is None:
actions = deepcopy(self.__class__.actions)
if exclude_bool_action or self.__class__.exclude_bool_action:
actions.pop('bool_action')
if exclude_int_action or self.__class__.exclude_int_action:
actions.pop('int_action')
if exclude_float_action or self.__class__.exclude_float_action:
actions.pop('float_action')
if exclude_bounded_action or self.__class__.exclude_bounded_action:
actions.pop('bounded_action')
if min_timesteps is None:
min_timesteps = self.__class__.min_timesteps
environment = UnittestEnvironment(
states=states, actions=actions, min_timesteps=min_timesteps
)
elif min_timesteps is not None:
raise TensorforceError.unexpected()
environment = Environment.create(environment=environment, max_episode_timesteps=5)
for key, value in self.__class__.agent.items():
if key not in agent:
agent[key] = value
if self.__class__.require_all or require_all:
config = None
elif self.__class__.require_observe or require_observe:
config = dict(api_functions=['reset', 'act', 'observe'])
else:
config = dict(api_functions=['reset', 'act'])
agent = Agent.create(agent=agent, environment=environment, config=config)
return agent, environment
def unittest(
self, num_updates=None, num_episodes=None, num_timesteps=None, environment=None,
min_timesteps=None, states=None, actions=None, exclude_bool_action=False,
exclude_int_action=False, exclude_float_action=False, exclude_bounded_action=False,
require_observe=False, require_all=False, **agent
):
"""
Generic unit-test.
"""
agent, environment = self.prepare(
environment=environment, min_timesteps=min_timesteps, states=states, actions=actions,
exclude_bool_action=exclude_bool_action, exclude_int_action=exclude_int_action,
exclude_float_action=exclude_float_action,
exclude_bounded_action=exclude_bounded_action, require_observe=require_observe,
require_all=require_all, **agent
)
self.runner = Runner(agent=agent, environment=environment)
assert (num_updates is not None) + (num_episodes is not None) + \
(num_timesteps is not None) <= 1
if num_updates is None and num_episodes is None and num_timesteps is None:
num_updates = self.__class__.num_updates
num_episodes = self.__class__.num_episodes
num_timesteps = self.__class__.num_timesteps
if num_updates is None and num_episodes is None and num_timesteps is None:
num_updates = 2
assert (num_updates is not None) + (num_episodes is not None) + \
(num_timesteps is not None) == 1
evaluation = not any([
require_all, require_observe, self.__class__.require_all,
self.__class__.require_observe
])
self.runner.run(
num_episodes=num_episodes, num_timesteps=num_timesteps, num_updates=num_updates,
use_tqdm=False, evaluation=evaluation
)
self.runner.close()
agent.close()
environment.close()
self.finished_test()
| 2.1875 | 2 |
mspray/apps/reveal/__init__.py | onaio/mspray | 0 | 3187 | """init module for reveal app"""
# pylint: disable=invalid-name
default_app_config = "mspray.apps.reveal.apps.RevealConfig" # noqa
| 1.210938 | 1 |
guifw/models/port.py | luizerico/PyGuiFW | 1 | 3188 | from django.db import models
from django import forms
from audit_log.models.managers import AuditLog
# Create your models here.
class Port(models.Model):
name = models.CharField(max_length=250)
port = models.CharField(max_length=250)
description = models.TextField(blank=True)
audit_log = AuditLog()
#icon = models.ImageField(upload_to='images', blank=True)
def __str__(self):
return self.name
class FormPort(forms.ModelForm):
pass
class Meta:
model = Port | 2.078125 | 2 |
app/backend/arm/migrations/0002_auto_20190924_1712.py | karstenv/nmp-arm | 2 | 3189 | <reponame>karstenv/nmp-arm
# Generated by Django 2.2.5 on 2019-09-25 00:12
from django.db import migrations
class Migration(migrations.Migration):
dependencies = [
('arm', '0001_initial'),
]
operations = [
migrations.DeleteModel(
name='CautionMessage',
),
migrations.DeleteModel(
name='RiskRatingValue',
),
]
| 1.367188 | 1 |
webcam_demo.py | taranek/tennis-stats-provider | 0 | 3190 | import tensorflow as tf
import json
import math
import cv2
import time
import argparse
import concurrent.futures
import posenet
import keyboard
import sys
import numpy as np
from threading import Thread
from slugify import slugify
parser = argparse.ArgumentParser()
parser.add_argument('--model', type=int, default=101)
parser.add_argument('--cam_id', type=int, default=0)
parser.add_argument('--cam_width', type=int, default=1280)
parser.add_argument('--cam_height', type=int, default=720)
parser.add_argument('--scale_factor', type=float, default=0.7125)
parser.add_argument('--file', type=str, default=None, help="Optionally use a video file instead of a live camera")
args = parser.parse_args()
def main():
# tf.config.threading.set_inter_op_parallelism_threads(0)
# tf.config.threading.set_intra_op_parallelism_threads(0)
# print(tf.config.threading.get_inter_op_parallelism_threads())
# print(tf.config.threading.get_intra_op_parallelism_threads())
with tf.compat.v1.Session() as sess:
model_cfg, model_outputs = posenet.load_model(args.model, sess)
output_stride = model_cfg['output_stride']
if args.file is not None:
cap = cv2.VideoCapture(args.file)
else:
cap = cv2.VideoCapture(args.cam_id)
cap.set(3, args.cam_width)
cap.set(4, args.cam_height)
start = time.time()
frame_count = 0
recording = True
# ret,frame1 = cap.read()
# ret,frame2 = cap.read()
file_content = []
while True:
# diff = cv2.absdiff(frame1,frame2)
# gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
# blur = cv2.GaussianBlur(gray,(15,15),0)
# _, thresh = cv2.threshold(blur,20,255,cv2.THRESH_BINARY)
# dilated = cv2.dilate(thresh,None, iterations=3)
# contours, _ = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# # if(len(contours)>0):
# # print("One:")
# # print(dir(contours[0]))
# # print("One it is.")
# for contour in contours:
# (x,y,w,h) = cv2.boundingRect(contour)
# if(cv2.contourArea(contour)>400):
# continue
# cv2.rectangle(frame1,(x,y),(x+w,y+h),(0,255,0),2)
# # cv2.drawContours(frame1,contours, -1,(0,255,0),2)
# cv2.imshow("feed",frame1)
# frame1 = frame2
# ret, frame2 = cap.read()
input_image, display_image, output_scale = posenet.read_cap(cap, scale_factor=args.scale_factor, output_stride=output_stride)
heatmaps_result, offsets_result, displacement_fwd_result, displacement_bwd_result = sess.run(
model_outputs,
feed_dict={'image:0': input_image}
)
pose_scores, keypoint_scores, keypoint_coords = posenet.decode_multi.decode_multiple_poses(
heatmaps_result.squeeze(axis=0),
offsets_result.squeeze(axis=0),
displacement_fwd_result.squeeze(axis=0),
displacement_bwd_result.squeeze(axis=0),
output_stride=output_stride,
max_pose_detections=1,
min_pose_score=0.15)
keypoint_coords *= output_scale
# TODO this isn't particularly fast, use GL for drawing and display someday...
# print("\n ===================================== \n")
img = posenet.draw_skel_and_kp(
display_image, pose_scores, keypoint_scores, keypoint_coords,
min_pose_score=0.15, min_part_score=0.15)
cv2.imshow('posenet', img)
frame_count += 1
if(recording):
normalize_poses(keypoint_coords)
results = json.dumps({
"timestamp":time.time() - start,
"pose_scores":pose_scores.tolist(),
"keypoint_scores":keypoint_scores.tolist(),
"scores": keypoint_scores.size,
"keypoint_coords":normalize_poses(keypoint_coords),
"coords": keypoint_coords.size
})
file_content.append(results)
file_content = file_content[-30:]
if cv2.waitKey(1) & keyboard.is_pressed('w'):
print('you pressed w - service it was!')
time.sleep(0.5)
path = "collected/serves/"
filename = str(slugify("s-"+str(time.time()))+".txt")
x = Thread(target=save_to_file, args=(str(path+filename),str(file_content)))
x.start()
x.join()
file_content = []
if cv2.waitKey(1) & keyboard.is_pressed('d'):
print('you pressed d - forehand it was!')
time.sleep(0.5)
path = "collected/forehand/"
filename = str(slugify("f-"+str(time.time()))+".txt")
x = Thread(target=save_to_file, args=(str(path+filename),str(file_content)))
x.start()
x.join()
file_content = []
if cv2.waitKey(1) & keyboard.is_pressed('a'):
print('you pressed a - backhand it was!')
time.sleep(0.5)
path = "collected/backhand/"
filename = str(slugify("b-"+str(time.time()))+".txt")
x = Thread(target=save_to_file, args=(str(path+filename),str(file_content)))
x.start()
x.join()
file_content = []
if cv2.waitKey(1) & keyboard.is_pressed('q'):
print('you pressed q - quitting!')
cv2.destroyAllWindows()
break
print('Average FPS: ', frame_count / (time.time() - start))
return 0
def my_function(toPrint):
print(toPrint)
def save_to_file(filename,data):
file = open(filename,'w')
file.write(data)
file.close()
def find_middle(left,right):
x = (left[0]+right[0])/2.0
y = (left[1]+right[1])/2.0
return [x,y]
def find_distance(pointA,pointB):
dist = math.sqrt((pointB[0] - pointA[0])**2 + (pointB[1] - pointA[1])**2)
return dist
def normalize_poses(poses):
leftShoulderCords = poses[0][5]
rightShoulderCords = poses[0][6]
middleShoulderPoint = find_middle(leftShoulderCords,rightShoulderCords)
leftHipCords = poses[0][11]
rightHipCords = poses[0][12]
middleHipPoint = find_middle(leftHipCords,rightHipCords)
armHipDistance = find_distance(middleHipPoint,middleShoulderPoint);
normalized = []
for pose in poses[0]:
normalized.append(
[(pose[0]-middleHipPoint[0])/armHipDistance,
(pose[1]-middleHipPoint[1])/armHipDistance]
)
return normalized
if __name__ == "__main__":
main() | 2.234375 | 2 |
otcextensions/tests/unit/osclient/dcs/v1/fakes.py | zsoltn/python-otcextensions | 0 | 3191 | # Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
# import datetime
import random
import uuid
import mock
from openstackclient.tests.unit import utils
from otcextensions.tests.unit.osclient import test_base
from otcextensions.sdk.dcs.v1 import backup
from otcextensions.sdk.dcs.v1 import config
from otcextensions.sdk.dcs.v1 import instance
from otcextensions.sdk.dcs.v1 import restore
from otcextensions.sdk.dcs.v1 import statistic
class TestDCS(utils.TestCommand):
def setUp(self):
super(TestDCS, self).setUp()
self.app.client_manager.dcs = mock.Mock()
self.client = self.app.client_manager.dcs
self.client.get_instance = mock.Mock()
self.client.find_instance = mock.Mock()
self.client.instances = mock.Mock()
self.client.delete_instance = mock.Mock()
self.client.update_instance = mock.Mock()
self.client.create_instance = mock.Mock()
self.client.extend_instance = mock.Mock()
class FakeInstance(test_base.Fake):
"""Fake one or more Instance"""
@classmethod
def generate(cls):
object_info = {
'name': 'group-' + uuid.uuid4().hex,
'id': 'id-' + uuid.uuid4().hex,
'description': 'SOME description',
'status': random.choice(['CREATING', 'CREATEFILED',
'RUNNING', 'ERROR', 'STARTING',
'RESTARTING', 'CLOSING', 'CLOSED',
'EXTENDING']),
'engine': uuid.uuid4().hex,
'capacity': random.randint(1, 100),
'ip': uuid.uuid4().hex,
'port': random.randint(1, 65535),
'resource_spec_code': random.choice(['dcs.single_node',
'dcs.master_standby',
'dcs.cluster'
]),
'engine_version': uuid.uuid4().hex,
'internal_version': uuid.uuid4().hex,
'charging_mode': random.randint(0, 10),
'vpc_id': uuid.uuid4().hex,
'vpc_name': uuid.uuid4().hex,
'subnet_id': uuid.uuid4().hex,
'subnet_name': uuid.uuid4().hex,
'subnet_cidr': uuid.uuid4().hex,
'security_group_id': uuid.uuid4().hex,
'security_group_name': uuid.uuid4().hex,
'created_at': uuid.uuid4().hex,
'error_code': uuid.uuid4().hex,
'product_id': random.choice(['OTC_DCS_SINGLE',
'OTC_DCS_MS',
'OTC_DCS_CL']),
'available_zones': uuid.uuid4().hex,
'max_memory': random.randint(0, 10),
'used_memory': random.randint(0, 10),
'user_id': uuid.uuid4().hex,
'user_name': uuid.uuid4().hex,
'order_id': uuid.uuid4().hex,
'maintain_begin': uuid.uuid4().hex,
'maintain_end': uuid.uuid4().hex,
}
obj = instance.Instance.existing(**object_info)
return obj
class FakeStatistic(test_base.Fake):
"""Fake one or more Statistic"""
@classmethod
def generate(cls):
object_info = {
'instance_id': 'instance_id-' + uuid.uuid4().hex,
'max_memory': random.randint(1, 65535),
'used_memory': random.randint(1, 65535),
'cmd_get_count': random.randint(1, 65535),
'cmd_set_count': random.randint(1, 65535),
'used_cpu': 'cpu-' + uuid.uuid4().hex,
'input_kbps': 'input-' + uuid.uuid4().hex,
'output_kbps': 'output-' + uuid.uuid4().hex,
}
obj = statistic.Statistic.existing(**object_info)
return obj
class FakeBackup(test_base.Fake):
"""Fake one or more Backup"""
@classmethod
def generate(cls):
object_info = {
'instance_id': 'instance_id-' + uuid.uuid4().hex,
'id': 'id-' + uuid.uuid4().hex,
'size': random.randint(1, 65535),
'period': uuid.uuid4().hex,
'description': uuid.uuid4().hex,
'progress': uuid.uuid4().hex,
'created_at': uuid.uuid4().hex,
'updated_at': uuid.uuid4().hex,
'type': uuid.uuid4().hex,
'name': uuid.uuid4().hex,
'error_code': uuid.uuid4().hex,
'is_restorable': True,
}
obj = backup.Backup.existing(**object_info)
return obj
class FakeRestore(test_base.Fake):
"""Fake one or more Restore"""
@classmethod
def generate(cls):
object_info = {
'instance_id': 'instance_id-' + uuid.uuid4().hex,
'max_memory': random.randint(1, 65535),
'used_memory': random.randint(1, 65535),
'cmd_get_count': random.randint(1, 65535),
'cmd_set_count': random.randint(1, 65535),
'used_cpu': 'cpu-' + uuid.uuid4().hex,
'input_kbps': 'input-' + uuid.uuid4().hex,
'output_kbps': 'output-' + uuid.uuid4().hex
}
obj = restore.Restore.existing(**object_info)
return obj
class FakeConfig(test_base.Fake):
"""Fake one or more Config"""
@classmethod
def generate(cls):
object_info = {
'instance_id': 'instance_id-' + uuid.uuid4().hex,
'id': uuid.uuid4().hex,
'name': uuid.uuid4().hex,
'value': uuid.uuid4().hex,
'value_type': uuid.uuid4().hex,
'value_range': uuid.uuid4().hex,
'default_value': uuid.uuid4().hex,
'description': uuid.uuid4().hex
}
obj = config.Config.existing(**object_info)
return obj
| 1.898438 | 2 |
tests/dummy_repo/tvm/python/tvm/api.py | csullivan/ffi-navigator | 148 | 3192 | from ._ffi.base import string_types
from ._ffi.object import register_object, Object
from ._ffi.node import register_node, NodeBase
from ._ffi.node import convert_to_node as _convert_to_node
from ._ffi.node_generic import _scalar_type_inference
from ._ffi.function import Function
from ._ffi.function import _init_api, register_func, get_global_func, extract_ext_funcs
from ._ffi.function import convert_to_tvm_func as _convert_tvm_func
from ._ffi.runtime_ctypes import TVMType
from . import _api_internal
from . import make as _make
from . import expr as _expr
from . import tensor as _tensor
from . import schedule as _schedule
from . import container as _container
from . import tag as _tag
int8 = "int8"
int32 = "int32"
float32 = "float32"
handle = "handle"
def min_value(dtype):
return _api_internal._min_value(dtype)
| 1.679688 | 2 |
torchattacks/attacks/multiattack.py | Harry24k/adversarial-attacks-pytorch | 782 | 3193 | <filename>torchattacks/attacks/multiattack.py
import copy
import torch
from ..attack import Attack
class MultiAttack(Attack):
r"""
MultiAttack is a class to attack a model with various attacks agains same images and labels.
Arguments:
model (nn.Module): model to attack.
attacks (list): list of attacks.
Examples::
>>> atk1 = torchattacks.PGD(model, eps=8/255, alpha=2/255, iters=40, random_start=True)
>>> atk2 = torchattacks.PGD(model, eps=8/255, alpha=2/255, iters=40, random_start=True)
>>> atk = torchattacks.MultiAttack([atk1, atk2])
>>> adv_images = attack(images, labels)
"""
def __init__(self, attacks, verbose=False):
# Check validity
ids = []
for attack in attacks:
ids.append(id(attack.model))
if len(set(ids)) != 1:
raise ValueError("At least one of attacks is referencing a different model.")
super().__init__("MultiAttack", attack.model)
self.attacks = attacks
self.verbose = verbose
self._accumulate_multi_atk_records = False
self._multi_atk_records = [0.0]
self._supported_mode = ['default']
def forward(self, images, labels):
r"""
Overridden.
"""
batch_size = images.shape[0]
fails = torch.arange(batch_size).to(self.device)
final_images = images.clone().detach().to(self.device)
labels = labels.clone().detach().to(self.device)
multi_atk_records = [batch_size]
for _, attack in enumerate(self.attacks):
adv_images = attack(images[fails], labels[fails])
outputs = self.model(adv_images)
_, pre = torch.max(outputs.data, 1)
corrects = (pre == labels[fails])
wrongs = ~corrects
succeeds = torch.masked_select(fails, wrongs)
succeeds_of_fails = torch.masked_select(torch.arange(fails.shape[0]).to(self.device), wrongs)
final_images[succeeds] = adv_images[succeeds_of_fails]
fails = torch.masked_select(fails, corrects)
multi_atk_records.append(len(fails))
if len(fails) == 0:
break
if self.verbose:
print(self._return_sr_record(multi_atk_records))
if self._accumulate_multi_atk_records:
self._update_multi_atk_records(multi_atk_records)
return final_images
def _clear_multi_atk_records(self):
self._multi_atk_records = [0.0]
def _covert_to_success_rates(self, multi_atk_records):
sr = [((1-multi_atk_records[i]/multi_atk_records[0])*100) for i in range(1, len(multi_atk_records))]
return sr
def _return_sr_record(self, multi_atk_records):
sr = self._covert_to_success_rates(multi_atk_records)
return "Attack success rate: "+" | ".join(["%2.2f %%"%item for item in sr])
def _update_multi_atk_records(self, multi_atk_records):
for i, item in enumerate(multi_atk_records):
self._multi_atk_records[i] += item
def save(self, data_loader, save_path=None, verbose=True, return_verbose=False):
r"""
Overridden.
"""
self._clear_multi_atk_records()
verbose = self.verbose
self.verbose = False
self._accumulate_multi_atk_records = True
for i, attack in enumerate(self.attacks):
self._multi_atk_records.append(0.0)
rob_acc, l2, elapsed_time = super().save(data_loader, save_path, verbose, return_verbose)
sr = self._covert_to_success_rates(self._multi_atk_records)
self._clear_multi_atk_records()
self._accumulate_multi_atk_records = False
self.verbose = verbose
if return_verbose:
return rob_acc, sr, l2, elapsed_time
def _save_print(self, progress, rob_acc, l2, elapsed_time, end):
r"""
Overridden.
"""
print("- Save progress: %2.2f %% / Robust accuracy: %2.2f %%"%(progress, rob_acc)+\
" / "+self._return_sr_record(self._multi_atk_records)+\
' / L2: %1.5f (%2.3f it/s) \t'%(l2, elapsed_time), end=end)
| 3.171875 | 3 |
src/manager/om/script/gspylib/inspection/items/os/CheckPortConflict.py | wotchin/openGauss-server | 1 | 3194 | # -*- coding:utf-8 -*-
# Copyright (c) 2020 Huawei Technologies Co.,Ltd.
#
# openGauss is licensed under Mulan PSL v2.
# You can use this software according to the terms
# and conditions of the Mulan PSL v2.
# You may obtain a copy of Mulan PSL v2 at:
#
# http://license.coscl.org.cn/MulanPSL2
#
# THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS,
# WITHOUT WARRANTIES OF ANY KIND,
# EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
# MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
# See the Mulan PSL v2 for more details.
# ----------------------------------------------------------------------------
import subprocess
from gspylib.inspection.common.CheckItem import BaseItem
from gspylib.inspection.common.CheckResult import ResultStatus
class CheckPortConflict(BaseItem):
def __init__(self):
super(CheckPortConflict, self).__init__(self.__class__.__name__)
def doCheck(self):
cmd = "netstat -apn | grep 'tcp' " \
"| grep 'LISTEN'| awk -F ' ' '$4 ~ /25[0-9][0-9][0-9]/'"
(status, output) = subprocess.getstatusoutput(cmd)
if (status != 0):
self.result.rst = ResultStatus.NG
self.result.val = "Failed to excuted commands: %s\noutput:%s " % (
cmd, output)
else:
if (output.strip() == ""):
self.result.rst = ResultStatus.OK
self.result.val = "ports is normal"
else:
self.result.rst = ResultStatus.NG
self.result.val = output
self.result.raw = "checked ports: (25000-26000)\n" + output
def doSet(self):
pidList = []
cmd = "netstat -apn| grep 'tcp'" \
"| grep 'LISTEN'| awk -F ' ' '$4 ~ /25[0-9][0-9][0-9]/'" \
"| awk '{print $NF}'"
(status, output) = subprocess.getstatusoutput(cmd)
if (status == 0 and output != ""):
for line in output.split('\n'):
if (line.find('/') > 0):
pid = line.split('/')[0].strip()
if (pid.isdigit()):
pidList.append(pid)
if (pidList):
cmd = "kill -9"
for pid in pidList:
cmd += " %s" % pid
(status, output) = subprocess.getstatusoutput(cmd)
if (status != ""):
self.result.val = "Failed to kill process.Error:%s\n" % output
self.result.val += "The cmd is %s " % cmd
else:
self.result.val = \
"Successfully killed the process with occupies the port.\n"
| 2.046875 | 2 |
_scripts/_build.py | dfreeman06/wxyz | 1 | 3195 | import subprocess
import sys
from . import ROOT, PY_SRC, _run, PY, DIST
CONDA_ORDER = [
"core",
"html",
"lab",
"datagrid",
"svg",
"tpl-jjinja"
"yaml"
]
CONDA_BUILD_ARGS = [
"conda-build", "-c", "conda-forge", "--output-folder", DIST / "conda-bld",
]
if __name__ == "__main__":
for pkg in PY_SRC.glob("wxyz_*"):
_run([PY, "setup.py", "sdist", "--dist-dir", DIST / "sdist"], cwd=str(pkg))
try:
_run([*CONDA_BUILD_ARGS, "--skip-existing", "."], cwd=ROOT / "recipes")
except:
for pkg in CONDA_ORDER:
_run([*CONDA_BUILD_ARGS, f"wxyz-{pkg}"], cwd=ROOT / "recipes")
| 1.726563 | 2 |
scripts/C189/C189Checkin.py | xiaopowanyi/py_scripts | 2 | 3196 | <gh_stars>1-10
import requests, time, re, rsa, json, base64
from urllib import parse
s = requests.Session()
username = ""
password = ""
if(username == "" or password == ""):
username = input("账号:")
password = input("密码:")
def main():
login(username, password)
rand = str(round(time.time()*1000))
surl = f'https://api.cloud.189.cn/mkt/userSign.action?rand={rand}&clientType=TELEANDROID&version=8.6.3&model=SM-G930K'
url = f'https://m.cloud.189.cn/v2/drawPrizeMarketDetails.action?taskId=TASK_SIGNIN&activityId=ACT_SIGNIN'
url2 = f'https://m.cloud.189.cn/v2/drawPrizeMarketDetails.action?taskId=TASK_SIGNIN_PHOTOS&activityId=ACT_SIGNIN'
headers = {
'User-Agent':'Mozilla/5.0 (Linux; Android 5.1.1; SM-G930K Build/NRD90M; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/74.0.3729.136 Mobile Safari/537.36 Ecloud/8.6.3 Android/22 clientId/355325117317828 clientModel/SM-G930K imsi/460071114317824 clientChannelId/qq proVersion/1.0.6',
"Referer" : "https://m.cloud.189.cn/zhuanti/2016/sign/index.jsp?albumBackupOpened=1",
"Host" : "m.cloud.189.cn",
"Accept-Encoding" : "gzip, deflate",
}
response = s.get(surl,headers=headers)
netdiskBonus = response.json()['netdiskBonus']
if(response.json()['isSign'] == "false"):
print(f"未签到,签到获得{netdiskBonus}M空间")
else:
print(f"已经签到过了,签到获得{netdiskBonus}M空间")
headers = {
'User-Agent':'Mozilla/5.0 (Linux; Android 5.1.1; SM-G930K Build/NRD90M; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/74.0.3729.136 Mobile Safari/537.36 Ecloud/8.6.3 Android/22 clientId/355325117317828 clientModel/SM-G930K imsi/460071114317824 clientChannelId/qq proVersion/1.0.6',
"Referer" : "https://m.cloud.189.cn/zhuanti/2016/sign/index.jsp?albumBackupOpened=1",
"Host" : "m.cloud.189.cn",
"Accept-Encoding" : "gzip, deflate",
}
response = s.get(url,headers=headers)
try:
if ("errorCode" in response.text):
print(response.json()['errorCode'])
elif (response.json().has_key('description')):
description = response.json()['description']
print(f"抽奖获得{description}")
except:
print(f"抽奖1完成,解析时失败")
try:
response2 = s.get(url2,headers=headers)
if ("errorCode" in response2.text):
print(response.json()['errorCode'])
elif (response2.json().has_key('description')):
description = response2.json()['description']
print(f"抽奖2获得{description}")
except:
print(f"抽奖2完成,解析时失败")
BI_RM = list("0123456789abcdefghijklmnopqrstuvwxyz")
def int2char(a):
return BI_RM[a]
b64map = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"
def b64tohex(a):
d = ""
e = 0
c = 0
for i in range(len(a)):
if list(a)[i] != "=":
v = b64map.index(list(a)[i])
if 0 == e:
e = 1
d += int2char(v >> 2)
c = 3 & v
elif 1 == e:
e = 2
d += int2char(c << 2 | v >> 4)
c = 15 & v
elif 2 == e:
e = 3
d += int2char(c)
d += int2char(v >> 2)
c = 3 & v
else:
e = 0
d += int2char(c << 2 | v >> 4)
d += int2char(15 & v)
if e == 1:
d += int2char(c << 2)
return d
def rsa_encode(j_rsakey, string):
rsa_key = f"-----BEGIN PUBLIC KEY-----\n{j_rsakey}\n-----END PUBLIC KEY-----"
pubkey = rsa.PublicKey.load_pkcs1_openssl_pem(rsa_key.encode())
result = b64tohex((base64.b64encode(rsa.encrypt(f'{string}'.encode(), pubkey))).decode())
return result
def calculate_md5_sign(params):
return hashlib.md5('&'.join(sorted(params.split('&'))).encode('utf-8')).hexdigest()
def login(username, password):
url = "https://cloud.189.cn/udb/udb_login.jsp?pageId=1&redirectURL=/main.action"
r = s.get(url)
captchaToken = re.findall(r"captchaToken' value='(.+?)'", r.text)[0]
lt = re.findall(r'lt = "(.+?)"', r.text)[0]
returnUrl = re.findall(r"returnUrl = '(.+?)'", r.text)[0]
paramId = re.findall(r'paramId = "(.+?)"', r.text)[0]
j_rsakey = re.findall(r'j_rsaKey" value="(\S+)"', r.text, re.M)[0]
s.headers.update({"lt": lt})
username = rsa_encode(j_rsakey, username)
password = rsa_encode(j_rsakey, password)
url = "https://open.e.189.cn/api/logbox/oauth2/loginSubmit.do"
headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:74.0) Gecko/20100101 Firefox/76.0',
'Referer': 'https://open.e.189.cn/',
}
data = {
"appKey": "cloud",
"accountType": '01',
"userName": f"{{RSA}}{username}",
"password": f"{{<PASSWORD>}",
"validateCode": "",
"captchaToken": captchaToken,
"returnUrl": returnUrl,
"mailSuffix": "@189.cn",
"paramId": paramId
}
r = s.post(url, data=data, headers=headers, timeout=5)
if(r.json()['result'] == 0):
print(r.json()['msg'])
else:
print(r.json()['msg'])
redirect_url = r.json()['toUrl']
r = s.get(redirect_url)
return s
if __name__ == "__main__":
main()
| 2.515625 | 3 |
Mmint/CGratio.py | lijiacd985/Mplot | 5 | 3197 | import subprocess
from .Genome_fasta import get_fasta
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
import numpy as np
import pysam
def run(parser):
args = parser.parse_args()
bases,chrs = get_fasta(args.genome)
l={}
for c in chrs:
l[c]=len(bases[c])
chrs = set(chrs)
#p = subprocess.Popen('bamToBed -i '+args.bamfile,shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE)
reads_num=0
reads_cg_num=[0,0,0] #CG,cg,Cg
cgnum_per_read=[]
with pysam.AlignmentFile(args.bamfile) as f:
for line in f:
#t = line.decode('utf-8').strip().split()
chr = line.reference_name#t[0]
start= line.reference_start
end= line.reference_end
strand= not line.is_reverse # True +strand; False -strand
if not chr in chrs: continue
end=min(end+1,l[chr])
reads_num+=1
if strand:#=='+':
cg=[bases[chr].count('CG',start,end)+bases[chr].count('Cg',start,end),bases[chr].count('cG',start,end)+bases[chr].count('cg',start,end)]
else:
cg=[bases[chr].count('GC',start,end)+bases[chr].count('gC',start,end),bases[chr].count('Gc',start,end)+bases[chr].count('gc',start,end)]
#We need to consider strand specific situation.
#'+' strand we have CG but '-' we should count 'GC'.
#print cg
# for i in range(1,ls):
# r2=read[i]
# r1=read[i-1]
# if 'G'==r2 or 'g'==r2:
# if 'C'==r1: cg[0]+=1
# if 'c'==r1: cg[1]+=1
#count = int(cg[0]>0)+int(cg[1]>0)
if cg[0]+cg[1]==0: continue
#print cg
cgnum_per_read.append(sum(cg))
if cg[0]>0 and cg[1]>0:
reads_cg_num[2]+=1
continue
if cg[0]>0:
reads_cg_num[0]+=1
else:
reads_cg_num[1]+=1
#print reads_cg_num
#print reads_num
plt.figure()
plt.subplot(211)
labels = ['noCG','NonRepeat CG','Repeat cg','CGcg mix']
colors = ['r','b','g','y']
explode=(0.05,0,0,0)
sizes=[reads_num-sum(reads_cg_num)]+reads_cg_num
patches,l_text,p_text = plt.pie(sizes,explode=explode,labels=labels,colors=colors, labeldistance = 1.1,autopct = '%3.1f%%',shadow = False, startangle = 90,pctdistance = 0.6)
plt.axis('equal')
#plt.legend(loc=2,bbox_to_anchor=(0, 0))
ax=plt.subplot(212)
t=np.zeros(20)
for num in cgnum_per_read:
t[min(num-1,19)]+=1
labels = list(map(str,np.arange(1,20)))+['20+']
#print(t)
t = (np.array(t).astype(float)/sum(reads_cg_num))*100
plt.bar(np.arange(20),t)
ax.set_xticks(np.arange(20))
ax.set_xticklabels(labels)
ax.set_ylabel('Percentage of reads including CG')
ax.set_xlabel('CG number per read')
plt.text(4,max(t)+4,'All reads including CG site: '+str(sum(reads_cg_num)))
#print args.output+'.pdf'
plt.savefig(args.output+'.pdf')
if __name__=="__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-b','--bamfile',help="bam file name", metavar="FILE")
parser.add_argument('-g','--genome',help="Genome fasta file path")
parser.add_argument('-o','--output',help="pie figure's filename")
run(parser)
| 2.328125 | 2 |
src/furo/__init__.py | sethmlarson/furo | 0 | 3198 | <reponame>sethmlarson/furo<filename>src/furo/__init__.py
"""A clean customisable Sphinx documentation theme."""
__version__ = "2020.9.8.beta2"
from pathlib import Path
from .body import wrap_tables
from .code import get_pygments_style_colors
from .navigation import get_navigation_tree
from .toc import should_hide_toc
def _html_page_context(app, pagename, templatename, context, doctree):
if app.config.html_theme != "furo":
return
# Custom Navigation Tree (adds checkboxes and labels)
toctree = context.get("toctree", lambda **kwargs: "")
toctree_html = toctree(
collapse=False, titles_only=True, maxdepth=-1, includehidden=True
)
context["furo_navigation_tree"] = get_navigation_tree(toctree_html)
# Custom "should hide ToC" logic
context["furo_hide_toc"] = should_hide_toc(context.get("toc", ""))
# Allow for hiding toc via ToC in page-wide metadata.
if "hide-toc" in (context.get("meta", None) or {}):
context["furo_hide_toc"] = True
# Inject information about styles
colors = get_pygments_style_colors(
app.builder.highlighter.formatter_args["style"],
fallbacks={"foreground": "#000000", "background": "#FFFFFF"},
)
context["furo_pygments"] = colors
# Patch the content
if "body" in context:
context["body"] = wrap_tables(context["body"])
def setup(app):
"""Entry point for sphinx theming."""
theme_path = (Path(__file__).parent / "theme").resolve()
app.add_html_theme("furo", str(theme_path))
app.connect("html-page-context", _html_page_context)
| 2.015625 | 2 |
experiments/mix_down.py | fretboardfreak/potty_oh | 0 | 3199 | #!/usr/bin/env python3
# Copyright 2016 <NAME>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""A test for what happens when two waveforms are averaged together."""
from potty_oh import common
from potty_oh.wav_file import wav_file_context
from potty_oh.waveform import mix_down
from potty_oh.signal_generator import Generator
from potty_oh.music.pitch import Key
from potty_oh.music.interval import Interval
def main():
parser = common.get_cmd_line_parser(description=__doc__)
common.ParserArguments.filename(parser)
common.ParserArguments.length(parser)
common.ParserArguments.framerate(parser)
common.ParserArguments.set_defaults(parser, type='constant',
length=2.0)
args = parser.parse_args()
common.defaults.framerate = args.framerate
sg = Generator(length=args.length, verbose=args.debug)
key = Key()
unison = sg.sin_constant(key.interval(Interval.unison))
maj_third = sg.sin_constant(key.interval(Interval.major_third))
min_third = sg.sin_constant(key.interval(Interval.minor_third))
fifth = sg.sin_constant(key.interval(Interval.fifth))
powerchord = unison.mix_down(fifth)
maj_triad = powerchord.mix_down(maj_third)
min_triad = mix_down(powerchord, min_third)
with wav_file_context(args.filename) as fout:
fout.write_frames(powerchord.frames)
fout.write_frames(maj_triad.frames)
fout.write_frames(min_triad.frames)
return 0
if __name__ == "__main__":
common.call_main(main)
| 2.78125 | 3 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.