max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
setup.py
pnxenopoulos/soccer-data-gen
0
2400
from setuptools import setup, find_packages setup( name="soccergen", version="0.1", packages=find_packages(), # Project uses reStructuredText, so ensure that the docutils get # installed or upgraded on the target machine install_requires=["gfootball>=2.8",], # metadata to display on PyPI author="<NAME>", author_email="<EMAIL>", description="Soccer trajectory and event data generation", keywords="soccer data-generation foootball", url="https://github.com/pnxenopoulos/soccer-data-gen", # project home page, if any project_urls={ "Issues": "https://github.com/pnxenopoulos/soccer-data-gen/issues", "Documentation": "https://github.com/pnxenopoulos/soccer-data-gen/csgo/", "Github": "https://github.com/pnxenopoulos/soccer-data-gen/csgo/", }, classifiers=["License :: OSI Approved :: MIT License"], )
1.390625
1
metaspace/engine/sm/engine/tests/test_fdr.py
METASPACE2020/METASPACE
0
2401
from itertools import product from unittest.mock import patch import pytest import numpy as np import pandas as pd from pandas.util.testing import assert_frame_equal from sm.engine.annotation.fdr import FDR, run_fdr_ranking from sm.engine.formula_parser import format_modifiers FDR_CONFIG = {'decoy_sample_size': 2} @patch('sm.engine.annotation.fdr.DECOY_ADDUCTS', ['+He', '+Li']) def test_fdr_decoy_adduct_selection_saves_corr(): fdr = FDR( fdr_config=FDR_CONFIG, chem_mods=[], neutral_losses=[], target_adducts=['+H', '+K', '[M]+'], analysis_version=1, ) exp_target_decoy_df = pd.DataFrame( [ ('H2O', '+H', '+He'), ('H2O', '+H', '+Li'), ('H2O', '+K', '+He'), ('H2O', '+K', '+Li'), ('H2O', '', '+He'), ('H2O', '', '+Li'), ], columns=['formula', 'tm', 'dm'], ) fdr.decoy_adducts_selection(target_formulas=['H2O']) assert_frame_equal( fdr.td_df.sort_values(by=['formula', 'tm', 'dm']).reset_index(drop=True), exp_target_decoy_df.sort_values(by=['formula', 'tm', 'dm']).reset_index(drop=True), ) @pytest.mark.parametrize('analysis_version,expected_fdrs', [(1, [0.2, 0.8]), (3, [1 / 4, 2 / 3])]) def test_estimate_fdr_returns_correct_df(analysis_version, expected_fdrs): fdr = FDR( fdr_config=FDR_CONFIG, chem_mods=[], neutral_losses=[], target_adducts=['+H'], analysis_version=analysis_version, ) fdr.fdr_levels = [0.2, 0.8] fdr.td_df = pd.DataFrame( [['H2O', '+H', '+Cu'], ['H2O', '+H', '+Co'], ['C2H2', '+H', '+Ag'], ['C2H2', '+H', '+Ar']], columns=['formula', 'tm', 'dm'], ) msm_df = pd.DataFrame( [ ['H2O', '+H', 0.85], ['C2H2', '+H', 0.5], ['H2O', '+Cu', 0.5], ['H2O', '+Co', 0.5], ['C2H2', '+Ag', 0.75], ['C2H2', '+Ar', 0.0], ], columns=['formula', 'modifier', 'msm'], ) exp_sf_df = pd.DataFrame( [ ['H2O', '+H', 0.85], ['C2H2', '+H', 0.5], ], columns=['formula', 'modifier', 'msm'], ).assign(fdr=expected_fdrs) assert_frame_equal(fdr.estimate_fdr(msm_df, None), exp_sf_df) def test_estimate_fdr_digitize_works(): fdr_config = {**FDR_CONFIG, 'decoy_sample_size': 1} fdr = FDR( fdr_config=fdr_config, chem_mods=[], neutral_losses=[], target_adducts=['+H'], analysis_version=1, ) fdr.fdr_levels = [0.4, 0.8] fdr.td_df = pd.DataFrame( [['C1', '+H', '+Cu'], ['C2', '+H', '+Ag'], ['C3', '+H', '+Cl'], ['C4', '+H', '+Co']], columns=['formula', 'tm', 'dm'], ) msm_df = pd.DataFrame( [ ['C1', '+H', 1.0], ['C2', '+H', 0.75], ['C3', '+H', 0.5], ['C4', '+H', 0.25], ['C1', '+Cu', 0.75], ['C2', '+Ag', 0.3], ['C3', '+Cl', 0.25], ['C4', '+Co', 0.1], ], columns=['formula', 'modifier', 'msm'], ) exp_sf_df = pd.DataFrame( [ ['C1', '+H', 1.0, 0.4], ['C2', '+H', 0.75, 0.4], ['C3', '+H', 0.5, 0.4], ['C4', '+H', 0.25, 0.8], ], columns=['formula', 'modifier', 'msm', 'fdr'], ) assert_frame_equal(fdr.estimate_fdr(msm_df, None), exp_sf_df) def test_ions(): formulas = ['H2O', 'C5H2OH'] target_adducts = ['+H', '+Na'] decoy_sample_size = 5 fdr_config = {**FDR_CONFIG, 'decoy_sample_size': decoy_sample_size} fdr = FDR( fdr_config=fdr_config, chem_mods=[], neutral_losses=[], target_adducts=target_adducts, analysis_version=1, ) fdr.decoy_adducts_selection(target_formulas=['H2O', 'C5H2OH']) ions = fdr.ion_tuples() assert type(ions) == list # total number varies because different (formula, modifier) pairs may receive the same (formula, decoy_modifier) pair assert ( len(formulas) * decoy_sample_size + len(formulas) * len(target_adducts) < len(ions) <= len(formulas) * len(target_adducts) * decoy_sample_size + len(formulas) * len(target_adducts) ) target_ions = [(formula, adduct) for formula, adduct in product(formulas, target_adducts)] assert set(target_ions).issubset(set(map(tuple, ions))) def test_chem_mods_and_neutral_losses(): formulas = ['H2O', 'C5H2OH'] chem_mods = ['-H+C'] neutral_losses = ['-O', '-C'] target_adducts = ['+H', '+Na', '[M]+'] target_modifiers = [ format_modifiers(cm, nl, ta) for cm, nl, ta in product(['', *chem_mods], ['', *neutral_losses], target_adducts) ] decoy_sample_size = 5 fdr_config = {**FDR_CONFIG, 'decoy_sample_size': decoy_sample_size} fdr = FDR( fdr_config=fdr_config, chem_mods=chem_mods, neutral_losses=neutral_losses, target_adducts=target_adducts, analysis_version=1, ) fdr.decoy_adducts_selection(target_formulas=['H2O', 'C5H2OH']) ions = fdr.ion_tuples() assert type(ions) == list # total number varies because different (formula, modifier) pairs may receive the same (formula, decoy_modifier) pair min_count = len(formulas) * len(target_modifiers) max_count = len(formulas) * len(target_modifiers) * (1 + decoy_sample_size) assert min_count < len(ions) <= max_count target_ions = list(product(formulas, target_modifiers)) assert set(target_ions).issubset(set(map(tuple, ions))) def test_run_fdr_ranking(): target_scores = pd.Series([1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0]) decoy_scores = pd.Series([0.8, 0.55, 0.2, 0.1]) n_targets = pd.Series([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) n_decoys = pd.Series([0, 0, 1, 1, 1, 2, 2, 2, 3, 4, 4]) expected_fdr = n_decoys / n_targets expected_fdr_ros = (n_decoys + 1) / (n_targets + 1) expected_fdr_mono = pd.Series( [0 / 2, 0 / 2, 1 / 5, 1 / 5, 1 / 5, 2 / 8, 2 / 8, 2 / 8, 3 / 9, 4 / 11, 4 / 11] ) fdr = run_fdr_ranking(target_scores, decoy_scores, 1, False, False) fdr_ros = run_fdr_ranking(target_scores, decoy_scores, 1, True, False) fdr_mono = run_fdr_ranking(target_scores, decoy_scores, 1, False, True) assert np.isclose(fdr, expected_fdr).all() assert np.isclose(fdr_ros, expected_fdr_ros).all() assert np.isclose(fdr_mono, expected_fdr_mono).all()
1.9375
2
tests/__init__.py
acarl005/plotille
2
2402
from logging import getLogger getLogger('flake8').propagate = False
1.234375
1
umigame/nlp/labelling.py
penguinwang96825/Umigame
0
2403
<reponame>penguinwang96825/Umigame import math import numpy as np import pandas as pd def fixed_time_horizon(df, column='close', lookback=20): """ Fixed-time Horizon As it relates to finance, virtually all ML papers label observations using the fixed-time horizon method. Fixed-time horizon is presented as one of the main procedures to label data when it comes to processing financial time series for machine learning. Parameters ---------- df: pd.DataFrame column: str Choose from "open", "high", "low", and "close." lookahead: str The number of days to look ahead. References ---------- 1. https://mlfinlab.readthedocs.io/en/latest/labeling/labeling_fixed_time_horizon.html 2. https://arxiv.org/pdf/1603.08604.pdf 3. https://quantdare.com/4-simple-ways-to-label-financial-data-for-machine-learning/ 4. De Prado, Advances in financial machine learning, 2018 5. Dixon et al., Classification-based financial markets prediction using deep neural networks, 2017 """ price = df[column] label = (price.shift(-lookback) / price > 1).astype(int) return label def triple_barrier(df, column='close', ub=0.07, lb=0.03, lookback=20, binary_classification=True): """ Triple Barrier The idea is to consider the full dynamics of a trading strategy and not a simple performance proxy. The rationale for this extension is that often money managers implement P&L triggers that cash in when gains are sufficient or opt out to stop their losses. Upon inception of the strategy, three barriers are fixed (De Prado, 2018). Parameters ---------- df: pd.DataFrame column: str Choose from "open", "high", "low", and "close." ub: float It stands for upper bound, e.g. 0.07 is a 7% profit taking. lb: float It stands for lower bound, e.g. 0.03 is a 3% stop loss. lookback: str Maximum holding time. References ---------- 1. https://www.finlab.tw/generate-labels-stop-loss-stop-profit/ 2. http://www.mlfactor.com/Data.html#the-triple-barrier-method 3. https://chrisconlan.com/calculating-triple-barrier-labels-from-advances-in-financial-machine-learning/ 4. https://towardsdatascience.com/financial-machine-learning-part-1-labels-7eeed050f32e 5. De Prado, Advances in financial machine learning, 2018 """ ub = 1 + ub lb = 1- lb def end_price(s): return np.append(s[(s / s[0] > ub) | (s / s[0] < lb)], s[-1])[0]/s[0] r = np.array(range(lookback)) def end_time(s): return np.append(r[(s / s[0] > ub) | (s / s[0] < lb)], lookback-1)[0] price = df[column] p = price.rolling(lookback).apply(end_price, raw=True).shift(-lookback+1) t = price.rolling(lookback).apply(end_time, raw=True).shift(-lookback+1) t = pd.Series( [t.index[int(k+i)] if not math.isnan(k+i) else np.datetime64('NaT') for i, k in enumerate(t)], index=t.index ).dropna() label = pd.Series(0, p.index) label.loc[p > ub] = 1 label.loc[p < lb] = -1 if binary_classification: label = np.where(label == 1, 1, 0) return pd.Series(label, index=price.index) def get_continuous_trading_signals(df, column='close', lookahead=5): """ Continuous Trading Signal A hybrid stock trading framework integrating technical analysis with machine learning techniques. Parameters ---------- df: pd.DataFrame column: str Choose from "open", "high", "low", and "close." lookahead: str The number of days to look ahead. References ---------- 1. https://translateyar.ir/wp-content/uploads/2020/05/1-s2.0-S2405918815300179-main-1.pdf 2. Dash and Dash, A hybrid stock trading framework integrating technical analysis with machine learning techniques, 2016 """ price = df.data[column] OTr = [] trends = [] for idx in range(len(price)-lookahead+1): arr_window = price[idx:(idx+lookahead)] if price[idx+lookahead-1] > price[idx]: coef = (price[idx+lookahead-1]-min(arr_window)) / (max(arr_window)-min(arr_window)) y_t = coef * 0.5 + 0.5 elif price[idx+lookahead-1] <= price[idx]: coef = (price[idx+lookahead-1]-min(arr_window)) / (max(arr_window)-min(arr_window)) y_t = coef * 0.5 OTr.append(y_t) OTr = np.append(OTr, np.zeros(shape=(len(price)-len(OTr)))) trends = (OTr >= np.mean(OTr)).astype(int) return pd.Series(OTr, index=price.index), pd.Series(trends, index=price.index)
3.71875
4
mayan/apps/converter/api.py
Dave360-crypto/mayan-edms
3
2404
from __future__ import absolute_import import hashlib import logging import os from django.utils.encoding import smart_str from common.conf.settings import TEMPORARY_DIRECTORY from common.utils import fs_cleanup from .exceptions import OfficeConversionError, UnknownFileFormat from .literals import (DEFAULT_PAGE_NUMBER, DEFAULT_ZOOM_LEVEL, DEFAULT_ROTATION, DEFAULT_FILE_FORMAT) from .literals import (TRANSFORMATION_CHOICES, TRANSFORMATION_RESIZE, TRANSFORMATION_ROTATE, TRANSFORMATION_ZOOM, DIMENSION_SEPARATOR, FILE_FORMATS) from .runtime import backend, office_converter HASH_FUNCTION = lambda x: hashlib.sha256(x).hexdigest() logger = logging.getLogger(__name__) def cache_cleanup(input_filepath, *args, **kwargs): try: os.remove(create_image_cache_filename(input_filepath, *args, **kwargs)) except OSError: pass def create_image_cache_filename(input_filepath, *args, **kwargs): if input_filepath: hash_value = HASH_FUNCTION(u''.join([HASH_FUNCTION(smart_str(input_filepath)), unicode(args), unicode(kwargs)])) return os.path.join(TEMPORARY_DIRECTORY, hash_value) else: return None def convert(input_filepath, output_filepath=None, cleanup_files=False, mimetype=None, *args, **kwargs): size = kwargs.get('size') file_format = kwargs.get('file_format', DEFAULT_FILE_FORMAT) zoom = kwargs.get('zoom', DEFAULT_ZOOM_LEVEL) rotation = kwargs.get('rotation', DEFAULT_ROTATION) page = kwargs.get('page', DEFAULT_PAGE_NUMBER) transformations = kwargs.get('transformations', []) if transformations is None: transformations = [] if output_filepath is None: output_filepath = create_image_cache_filename(input_filepath, *args, **kwargs) if os.path.exists(output_filepath): return output_filepath if office_converter: try: office_converter.convert(input_filepath, mimetype=mimetype) if office_converter.exists: input_filepath = office_converter.output_filepath mimetype = 'application/pdf' else: # Recycle the already detected mimetype mimetype = office_converter.mimetype except OfficeConversionError: raise UnknownFileFormat('office converter exception') if size: transformations.append( { 'transformation': TRANSFORMATION_RESIZE, 'arguments': dict(zip([u'width', u'height'], size.split(DIMENSION_SEPARATOR))) } ) if zoom != 100: transformations.append( { 'transformation': TRANSFORMATION_ZOOM, 'arguments': {'percent': zoom} } ) if rotation != 0 and rotation != 360: transformations.append( { 'transformation': TRANSFORMATION_ROTATE, 'arguments': {'degrees': rotation} } ) try: backend.convert_file(input_filepath=input_filepath, output_filepath=output_filepath, transformations=transformations, page=page, file_format=file_format, mimetype=mimetype) finally: if cleanup_files: fs_cleanup(input_filepath) return output_filepath def get_page_count(input_filepath): logger.debug('office_converter: %s' % office_converter) if office_converter: try: office_converter.convert(input_filepath) logger.debug('office_converter.exists: %s' % office_converter.exists) if office_converter.exists: input_filepath = office_converter.output_filepath except OfficeConversionError: raise UnknownFileFormat('office converter exception') return backend.get_page_count(input_filepath) def get_available_transformations_choices(): result = [] for transformation in backend.get_available_transformations(): result.append((transformation, TRANSFORMATION_CHOICES[transformation]['label'])) return result def get_format_list(): return [(format, FILE_FORMATS.get(format, u'')) for format in backend.get_format_list()]
1.914063
2
LogisticRegression/learn.py
ValYouW/DeepLearningCourse
0
2405
<reponame>ValYouW/DeepLearningCourse import numpy as np import pandas as pd import matplotlib.pyplot as plt import utils def plot_data(x_mat, y, db_x, db_y): plt.figure() plt.title('Data') admitted = (y == 1).flatten() rejected = (y == 0).flatten() # plot decision boundary plt.plot(db_x, db_y) # plot admitted plt.scatter(x_mat[admitted, 0], x_mat[admitted, 1], color='blue', marker='+') # plot rejected plt.scatter(x_mat[rejected, 0], x_mat[rejected, 1], edgecolors='red', facecolors='none', marker='o') plt.xlabel('exam 1 score') plt.ylabel('exam 2 score') plt.legend(['boundary', 'admitted', 'rejected']) def main(): print('Loading dataset...') # data is: exam 1 score, exam 2 score, bool whether admitted frame = pd.read_csv('ex2data1.csv', header=None) data = frame.values x_mat = data[:, 0:2] # exam scores y = data[:, 2:3] # admitted or not # normalize input (input has large values which causes sigmoid to always be 1 or 0) x_mean = np.mean(x_mat, axis=0) x_std = np.std(x_mat, axis=0) x_norm = (x_mat - x_mean) / x_std # add intercept x_norm = np.insert(x_norm, 0, 1, axis=1) # Learn model print('starting to learn...') (loss, reg_loss, theta) = utils.learn(x_norm, y, 5000, 0.1) print('Final loss %s' % loss[-1]) print('Final theta \n%s' % theta) # predict for student joe = np.array([[45, 85]]) joe_norm = (joe - x_mean) / x_std joe_norm = np.insert(joe_norm, 0, 1, axis=1) p = utils.sigmoid(joe_norm.dot(theta)) print('Student with grades %s and %s has admission probability: %s' % (45, 85, p[0, 0])) # Predict on train set prediction = (utils.sigmoid(x_norm.dot(theta)) >= 0.5) actual = (y == 1) predict_success = np.sum(prediction == actual) print('Model evaluation on training set has success of %s/%s' % (predict_success, y.shape[0])) # calc decision boundary # The decision boundary is the threshold line that separates true/false predictions, # this means that on this line the prediction is exactly 0.5, meaning: # p = sigmoid(x_mat.dot(theta)) = 0.5 ====> x_mat.dot(theta) = 0 # so our line equation is: theta0 + theta1*x1 + theta2*x2 = 0 # x2 = -theta0 / theta2 - (theta1/theta2)*x1 theta = theta.flatten() # calc 2 points on the line plot_x = np.array([np.min(x_norm[:, 1]), np.max(x_norm[:, 1])]) plot_y = -1 * (theta[0] / theta[2]) - (theta[1] / theta[2]) * plot_x # denormalize the points plot_x = plot_x * x_std[0] + x_mean[0] plot_y = plot_y * x_std[1] + x_mean[1] plot_data(x_mat, y, plot_x, plot_y) utils.plot_loss(loss) plt.show() if __name__ == '__main__': main()
3.71875
4
ignite/handlers/time_profilers.py
iamhardikat11/ignite
4,119
2406
import functools from collections import OrderedDict from typing import Any, Callable, Dict, List, Mapping, Sequence, Tuple, Union, cast import torch from ignite.engine import Engine, EventEnum, Events from ignite.handlers.timing import Timer class BasicTimeProfiler: """ BasicTimeProfiler can be used to profile the handlers, events, data loading and data processing times. Examples: .. code-block:: python from ignite.handlers import BasicTimeProfiler trainer = Engine(train_updater) # Create an object of the profiler and attach an engine to it profiler = BasicTimeProfiler() profiler.attach(trainer) @trainer.on(Events.EPOCH_COMPLETED) def log_intermediate_results(): profiler.print_results(profiler.get_results()) trainer.run(dataloader, max_epochs=3) profiler.write_results('path_to_dir/time_profiling.csv') .. versionadded:: 0.4.6 """ events_to_ignore = [ Events.EXCEPTION_RAISED, Events.TERMINATE, Events.TERMINATE_SINGLE_EPOCH, Events.DATALOADER_STOP_ITERATION, ] def __init__(self) -> None: self._dataflow_timer = Timer() self._processing_timer = Timer() self._event_handlers_timer = Timer() self.dataflow_times = torch.zeros(1) self.processing_times = torch.zeros(1) self.event_handlers_times = {} # type: Dict[EventEnum, torch.Tensor] self._events = [ Events.EPOCH_STARTED, Events.EPOCH_COMPLETED, Events.ITERATION_STARTED, Events.ITERATION_COMPLETED, Events.GET_BATCH_STARTED, Events.GET_BATCH_COMPLETED, Events.COMPLETED, ] self._fmethods = [ self._as_first_epoch_started, self._as_first_epoch_completed, self._as_first_iter_started, self._as_first_iter_completed, self._as_first_get_batch_started, self._as_first_get_batch_completed, self._as_first_completed, ] self._lmethods = [ self._as_last_epoch_started, self._as_last_epoch_completed, self._as_last_iter_started, self._as_last_iter_completed, self._as_last_get_batch_started, self._as_last_get_batch_completed, self._as_last_completed, ] def _reset(self, num_epochs: int, total_num_iters: int) -> None: self.dataflow_times = torch.zeros(total_num_iters) self.processing_times = torch.zeros(total_num_iters) self.event_handlers_times = { Events.STARTED: torch.zeros(1), Events.COMPLETED: torch.zeros(1), Events.EPOCH_STARTED: torch.zeros(num_epochs), Events.EPOCH_COMPLETED: torch.zeros(num_epochs), Events.ITERATION_STARTED: torch.zeros(total_num_iters), Events.ITERATION_COMPLETED: torch.zeros(total_num_iters), Events.GET_BATCH_COMPLETED: torch.zeros(total_num_iters), Events.GET_BATCH_STARTED: torch.zeros(total_num_iters), } def _as_first_started(self, engine: Engine) -> None: if hasattr(engine.state.dataloader, "__len__"): num_iters_per_epoch = len(engine.state.dataloader) # type: ignore[arg-type] else: if engine.state.epoch_length is None: raise ValueError( "As epoch_length is not set, we can not use BasicTimeProfiler in this case." "Please, set trainer.run(..., epoch_length=epoch_length) in order to fix this." ) num_iters_per_epoch = engine.state.epoch_length self.max_epochs = cast(int, engine.state.max_epochs) self.total_num_iters = self.max_epochs * num_iters_per_epoch self._reset(self.max_epochs, self.total_num_iters) self.event_handlers_names = { e: [ h.__qualname__ if hasattr(h, "__qualname__") else h.__class__.__name__ for (h, _, _) in engine._event_handlers[e] if "BasicTimeProfiler." not in repr(h) # avoid adding internal handlers into output ] for e in Events if e not in self.events_to_ignore } # Setup all other handlers: engine._event_handlers[Events.STARTED].append((self._as_last_started, (engine,), {})) for e, m in zip(self._events, self._fmethods): engine._event_handlers[e].insert(0, (m, (engine,), {})) for e, m in zip(self._events, self._lmethods): engine._event_handlers[e].append((m, (engine,), {})) # Let's go self._event_handlers_timer.reset() def _as_last_started(self, engine: Engine) -> None: self.event_handlers_times[Events.STARTED][0] = self._event_handlers_timer.value() def _as_first_epoch_started(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_epoch_started(self, engine: Engine) -> None: t = self._event_handlers_timer.value() e = engine.state.epoch - 1 self.event_handlers_times[Events.EPOCH_STARTED][e] = t def _as_first_get_batch_started(self, engine: Engine) -> None: self._event_handlers_timer.reset() self._dataflow_timer.reset() def _as_last_get_batch_started(self, engine: Engine) -> None: t = self._event_handlers_timer.value() i = engine.state.iteration - 1 self.event_handlers_times[Events.GET_BATCH_STARTED][i] = t def _as_first_get_batch_completed(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_get_batch_completed(self, engine: Engine) -> None: t = self._event_handlers_timer.value() i = engine.state.iteration - 1 self.event_handlers_times[Events.GET_BATCH_COMPLETED][i] = t d = self._dataflow_timer.value() self.dataflow_times[i] = d self._dataflow_timer.reset() def _as_first_iter_started(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_iter_started(self, engine: Engine) -> None: t = self._event_handlers_timer.value() i = engine.state.iteration - 1 self.event_handlers_times[Events.ITERATION_STARTED][i] = t self._processing_timer.reset() def _as_first_iter_completed(self, engine: Engine) -> None: t = self._processing_timer.value() i = engine.state.iteration - 1 self.processing_times[i] = t self._event_handlers_timer.reset() def _as_last_iter_completed(self, engine: Engine) -> None: t = self._event_handlers_timer.value() i = engine.state.iteration - 1 self.event_handlers_times[Events.ITERATION_COMPLETED][i] = t def _as_first_epoch_completed(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_epoch_completed(self, engine: Engine) -> None: t = self._event_handlers_timer.value() e = engine.state.epoch - 1 self.event_handlers_times[Events.EPOCH_COMPLETED][e] = t def _as_first_completed(self, engine: Engine) -> None: self._event_handlers_timer.reset() def _as_last_completed(self, engine: Engine) -> None: self.event_handlers_times[Events.COMPLETED][0] = self._event_handlers_timer.value() # Remove added handlers: engine.remove_event_handler(self._as_last_started, Events.STARTED) for e, m in zip(self._events, self._fmethods): engine.remove_event_handler(m, e) for e, m in zip(self._events, self._lmethods): engine.remove_event_handler(m, e) def attach(self, engine: Engine) -> None: """Attach BasicTimeProfiler to the given engine. Args: engine: the instance of Engine to attach """ if not isinstance(engine, Engine): raise TypeError(f"Argument engine should be ignite.engine.Engine, but given {type(engine)}") if not engine.has_event_handler(self._as_first_started): engine._event_handlers[Events.STARTED].insert(0, (self._as_first_started, (engine,), {})) @staticmethod def _compute_basic_stats(data: torch.Tensor) -> Dict[str, Union[str, float, Tuple[Union[float], Union[float]]]]: # compute on non-zero data: data = data[data > 0] out = [ ("total", torch.sum(data).item() if len(data) > 0 else "not yet triggered") ] # type: List[Tuple[str, Union[str, float, Tuple[Union[float], Union[float]]]]] if len(data) > 1: out += [ ("min/index", (torch.min(data).item(), torch.argmin(data).item())), ("max/index", (torch.max(data).item(), torch.argmax(data).item())), ("mean", torch.mean(data).item()), ("std", torch.std(data).item()), ] return OrderedDict(out) def get_results(self) -> Dict[str, Dict[str, Any]]: """ Method to fetch the aggregated profiler results after the engine is run .. code-block:: python results = profiler.get_results() """ total_eh_time = sum( [(self.event_handlers_times[e]).sum() for e in Events if e not in self.events_to_ignore] ) # type: Union[int, torch.Tensor] event_handlers_stats = dict( [ (str(e.name).replace(".", "_"), self._compute_basic_stats(self.event_handlers_times[e])) for e in Events if e not in self.events_to_ignore ] + [("total_time", total_eh_time)] # type: ignore[list-item] ) return OrderedDict( [ ("processing_stats", self._compute_basic_stats(self.processing_times)), ("dataflow_stats", self._compute_basic_stats(self.dataflow_times)), ("event_handlers_stats", event_handlers_stats), ( "event_handlers_names", {str(e.name).replace(".", "_") + "_names": v for e, v in self.event_handlers_names.items()}, ), ] ) def write_results(self, output_path: str) -> None: """ Method to store the unaggregated profiling results to a csv file Args: output_path: file output path containing a filename .. code-block:: python profiler.write_results('path_to_dir/awesome_filename.csv') Examples: .. code-block:: text ----------------------------------------------------------------- epoch iteration processing_stats dataflow_stats Event_STARTED ... 1.0 1.0 0.00003 0.252387 0.125676 1.0 2.0 0.00029 0.252342 0.125123 """ try: import pandas as pd except ImportError: raise RuntimeError("Need pandas to write results as files") iters_per_epoch = self.total_num_iters // self.max_epochs epochs = torch.arange(self.max_epochs, dtype=torch.float32).repeat_interleave(iters_per_epoch) + 1 iterations = torch.arange(self.total_num_iters, dtype=torch.float32) + 1 processing_stats = self.processing_times dataflow_stats = self.dataflow_times event_started = self.event_handlers_times[Events.STARTED].repeat_interleave(self.total_num_iters) event_completed = self.event_handlers_times[Events.COMPLETED].repeat_interleave(self.total_num_iters) event_epoch_started = self.event_handlers_times[Events.EPOCH_STARTED].repeat_interleave(iters_per_epoch) event_epoch_completed = self.event_handlers_times[Events.EPOCH_COMPLETED].repeat_interleave(iters_per_epoch) event_iter_started = self.event_handlers_times[Events.ITERATION_STARTED] event_iter_completed = self.event_handlers_times[Events.ITERATION_COMPLETED] event_batch_started = self.event_handlers_times[Events.GET_BATCH_STARTED] event_batch_completed = self.event_handlers_times[Events.GET_BATCH_COMPLETED] results_dump = torch.stack( [ epochs, iterations, processing_stats, dataflow_stats, event_started, event_completed, event_epoch_started, event_epoch_completed, event_iter_started, event_iter_completed, event_batch_started, event_batch_completed, ], dim=1, ).numpy() results_df = pd.DataFrame( data=results_dump, columns=[ "epoch", "iteration", "processing_stats", "dataflow_stats", "Event_STARTED", "Event_COMPLETED", "Event_EPOCH_STARTED", "Event_EPOCH_COMPLETED", "Event_ITERATION_STARTED", "Event_ITERATION_COMPLETED", "Event_GET_BATCH_STARTED", "Event_GET_BATCH_COMPLETED", ], ) results_df.to_csv(output_path, index=False) @staticmethod def print_results(results: Dict) -> str: """ Method to print the aggregated results from the profiler Args: results: the aggregated results from the profiler .. code-block:: python profiler.print_results(results) Examples: .. code-block:: text ---------------------------------------------------- | Time profiling stats (in seconds): | ---------------------------------------------------- total | min/index | max/index | mean | std Processing function: 157.46292 | 0.01452/1501 | 0.26905/0 | 0.07730 | 0.01258 Dataflow: 6.11384 | 0.00008/1935 | 0.28461/1551 | 0.00300 | 0.02693 Event handlers: 2.82721 - Events.STARTED: [] 0.00000 - Events.EPOCH_STARTED: [] 0.00006 | 0.00000/0 | 0.00000/17 | 0.00000 | 0.00000 - Events.ITERATION_STARTED: ['PiecewiseLinear'] 0.03482 | 0.00001/188 | 0.00018/679 | 0.00002 | 0.00001 - Events.ITERATION_COMPLETED: ['TerminateOnNan'] 0.20037 | 0.00006/866 | 0.00089/1943 | 0.00010 | 0.00003 - Events.EPOCH_COMPLETED: ['empty_cuda_cache', 'training.<locals>.log_elapsed_time', ] 2.57860 | 0.11529/0 | 0.14977/13 | 0.12893 | 0.00790 - Events.COMPLETED: [] not yet triggered """ def to_str(v: Union[str, tuple]) -> str: if isinstance(v, str): return v elif isinstance(v, tuple): return f"{v[0]:.5f}/{v[1]}" return f"{v:.5f}" def odict_to_str(d: Mapping) -> str: out = " | ".join([to_str(v) for v in d.values()]) return out others = { k: odict_to_str(v) if isinstance(v, OrderedDict) else v for k, v in results["event_handlers_stats"].items() } others.update(results["event_handlers_names"]) output_message = """ ---------------------------------------------------- | Time profiling stats (in seconds): | ---------------------------------------------------- total | min/index | max/index | mean | std Processing function: {processing_stats} Dataflow: {dataflow_stats} Event handlers: {total_time:.5f} - Events.STARTED: {STARTED_names} {STARTED} - Events.EPOCH_STARTED: {EPOCH_STARTED_names} {EPOCH_STARTED} - Events.ITERATION_STARTED: {ITERATION_STARTED_names} {ITERATION_STARTED} - Events.ITERATION_COMPLETED: {ITERATION_COMPLETED_names} {ITERATION_COMPLETED} - Events.EPOCH_COMPLETED: {EPOCH_COMPLETED_names} {EPOCH_COMPLETED} - Events.COMPLETED: {COMPLETED_names} {COMPLETED} """.format( processing_stats=odict_to_str(results["processing_stats"]), dataflow_stats=odict_to_str(results["dataflow_stats"]), **others, ) print(output_message) return output_message class HandlersTimeProfiler: """ HandlersTimeProfiler can be used to profile the handlers, data loading and data processing times. Custom events are also profiled by this profiler Examples: .. code-block:: python from ignite.handlers import HandlersTimeProfiler trainer = Engine(train_updater) # Create an object of the profiler and attach an engine to it profiler = HandlersTimeProfiler() profiler.attach(trainer) @trainer.on(Events.EPOCH_COMPLETED) def log_intermediate_results(): profiler.print_results(profiler.get_results()) trainer.run(dataloader, max_epochs=3) profiler.write_results('path_to_dir/time_profiling.csv') .. versionadded:: 0.4.6 """ EVENT_FILTER_THESHOLD_TIME = 0.0001 def __init__(self) -> None: self._dataflow_timer = Timer() self._processing_timer = Timer() self._event_handlers_timer = Timer() self.dataflow_times = [] # type: List[float] self.processing_times = [] # type: List[float] self.event_handlers_times = {} # type: Dict[EventEnum, Dict[str, List[float]]] @staticmethod def _get_callable_name(handler: Callable) -> str: # get name of the callable handler return getattr(handler, "__qualname__", handler.__class__.__name__) def _create_wrapped_handler(self, handler: Callable, event: EventEnum) -> Callable: @functools.wraps(handler) def _timeit_handler(*args: Any, **kwargs: Any) -> None: self._event_handlers_timer.reset() handler(*args, **kwargs) t = self._event_handlers_timer.value() hname = self._get_callable_name(handler) # filter profiled time if the handler was attached to event with event filter if not hasattr(handler, "_parent") or t >= self.EVENT_FILTER_THESHOLD_TIME: self.event_handlers_times[event][hname].append(t) # required to revert back to original handler after profiling setattr(_timeit_handler, "_profiler_original", handler) return _timeit_handler def _timeit_processing(self) -> None: # handler used for profiling processing times t = self._processing_timer.value() self.processing_times.append(t) def _timeit_dataflow(self) -> None: # handler used for profiling dataflow times t = self._dataflow_timer.value() self.dataflow_times.append(t) def _reset(self, event_handlers_names: Mapping[EventEnum, List[str]]) -> None: # reset the variables used for profiling self.dataflow_times = [] self.processing_times = [] self.event_handlers_times = {e: {h: [] for h in event_handlers_names[e]} for e in event_handlers_names} @staticmethod def _is_internal_handler(handler: Callable) -> bool: # checks whether the handler is internal return any(n in repr(handler) for n in ["HandlersTimeProfiler.", "Timer."]) def _detach_profiler_handlers(self, engine: Engine) -> None: # reverts handlers to original handlers for e in engine._event_handlers: for i, (func, args, kwargs) in enumerate(engine._event_handlers[e]): if hasattr(func, "_profiler_original"): engine._event_handlers[e][i] = (func._profiler_original, args, kwargs) def _as_first_started(self, engine: Engine) -> None: # wraps original handlers for profiling self.event_handlers_names = { e: [ self._get_callable_name(h) for (h, _, _) in engine._event_handlers[e] if not self._is_internal_handler(h) ] for e in engine._allowed_events } self._reset(self.event_handlers_names) for e in engine._allowed_events: for i, (func, args, kwargs) in enumerate(engine._event_handlers[e]): if not self._is_internal_handler(func): engine._event_handlers[e][i] = (self._create_wrapped_handler(func, e), args, kwargs) # processing timer engine.add_event_handler(Events.ITERATION_STARTED, self._processing_timer.reset) engine._event_handlers[Events.ITERATION_COMPLETED].insert(0, (self._timeit_processing, (), {})) # dataflow timer engine.add_event_handler(Events.GET_BATCH_STARTED, self._dataflow_timer.reset) engine._event_handlers[Events.GET_BATCH_COMPLETED].insert(0, (self._timeit_dataflow, (), {})) # revert back the wrapped handlers with original handlers at the end engine.add_event_handler(Events.COMPLETED, self._detach_profiler_handlers) def attach(self, engine: Engine) -> None: """Attach HandlersTimeProfiler to the given engine. Args: engine: the instance of Engine to attach """ if not isinstance(engine, Engine): raise TypeError(f"Argument engine should be ignite.engine.Engine, but given {type(engine)}") if not engine.has_event_handler(self._as_first_started): engine._event_handlers[Events.STARTED].insert(0, (self._as_first_started, (engine,), {})) def get_results(self) -> List[List[Union[str, float]]]: """ Method to fetch the aggregated profiler results after the engine is run .. code-block:: python results = profiler.get_results() """ total_eh_time = sum( [ sum(self.event_handlers_times[e][h]) for e in self.event_handlers_times for h in self.event_handlers_times[e] ] ) total_eh_time = round(float(total_eh_time), 5) def compute_basic_stats( times: Union[Sequence, torch.Tensor] ) -> List[Union[str, float, Tuple[Union[str, float], Union[str, float]]]]: data = torch.as_tensor(times, dtype=torch.float32) # compute on non-zero data: data = data[data > 0] total = round(torch.sum(data).item(), 5) if len(data) > 0 else "not triggered" # type: Union[str, float] min_index = ("None", "None") # type: Tuple[Union[str, float], Union[str, float]] max_index = ("None", "None") # type: Tuple[Union[str, float], Union[str, float]] mean = "None" # type: Union[str, float] std = "None" # type: Union[str, float] if len(data) > 0: min_index = (round(torch.min(data).item(), 5), torch.argmin(data).item()) max_index = (round(torch.max(data).item(), 5), torch.argmax(data).item()) mean = round(torch.mean(data).item(), 5) if len(data) > 1: std = round(torch.std(data).item(), 5) return [total, min_index, max_index, mean, std] event_handler_stats = [ [ h, getattr(e, "name", str(e)), *compute_basic_stats(torch.tensor(self.event_handlers_times[e][h], dtype=torch.float32)), ] for e in self.event_handlers_times for h in self.event_handlers_times[e] ] event_handler_stats.append(["Total", "", total_eh_time, "", "", "", ""]) event_handler_stats.append(["Processing", "None", *compute_basic_stats(self.processing_times)]) event_handler_stats.append(["Dataflow", "None", *compute_basic_stats(self.dataflow_times)]) return event_handler_stats def write_results(self, output_path: str) -> None: """ Method to store the unaggregated profiling results to a csv file Args: output_path: file output path containing a filename .. code-block:: python profiler.write_results('path_to_dir/awesome_filename.csv') Examples: .. code-block:: text ----------------------------------------------------------------- # processing_stats dataflow_stats training.<locals>.log_elapsed_time (EPOCH_COMPLETED) ... 1 0.00003 0.252387 0.125676 2 0.00029 0.252342 0.125123 """ try: import pandas as pd except ImportError: raise RuntimeError("Need pandas to write results as files") processing_stats = torch.tensor(self.processing_times, dtype=torch.float32) dataflow_stats = torch.tensor(self.dataflow_times, dtype=torch.float32) cols = [processing_stats, dataflow_stats] headers = ["processing_stats", "dataflow_stats"] for e in self.event_handlers_times: for h in self.event_handlers_times[e]: headers.append(f"{h} ({getattr(e, 'name', str(e))})") cols.append(torch.tensor(self.event_handlers_times[e][h], dtype=torch.float32)) # Determine maximum length max_len = max([x.numel() for x in cols]) count_col = torch.arange(max_len, dtype=torch.float32) + 1 cols.insert(0, count_col) headers.insert(0, "#") # pad all tensors to have same length cols = [torch.nn.functional.pad(x, pad=(0, max_len - x.numel()), mode="constant", value=0) for x in cols] results_dump = torch.stack(cols, dim=1).numpy() results_df = pd.DataFrame(data=results_dump, columns=headers) results_df.to_csv(output_path, index=False) @staticmethod def print_results(results: List[List[Union[str, float]]]) -> None: """ Method to print the aggregated results from the profiler Args: results: the aggregated results from the profiler .. code-block:: python profiler.print_results(results) Examples: .. code-block:: text ----------------------------------------- ----------------------- -------------- ... Handler Event Name Total(s) ----------------------------------------- ----------------------- -------------- run.<locals>.log_training_results EPOCH_COMPLETED 19.43245 run.<locals>.log_validation_results EPOCH_COMPLETED 2.55271 run.<locals>.log_time EPOCH_COMPLETED 0.00049 run.<locals>.log_intermediate_results EPOCH_COMPLETED 0.00106 run.<locals>.log_training_loss ITERATION_COMPLETED 0.059 run.<locals>.log_time COMPLETED not triggered ----------------------------------------- ----------------------- -------------- Total 22.04571 ----------------------------------------- ----------------------- -------------- Processing took total 11.29543s [min/index: 0.00393s/1875, max/index: 0.00784s/0, mean: 0.00602s, std: 0.00034s] Dataflow took total 16.24365s [min/index: 0.00533s/1874, max/index: 0.01129s/937, mean: 0.00866s, std: 0.00113s] """ # adopted implementation of torch.autograd.profiler.build_table handler_column_width = max([len(item[0]) for item in results]) + 4 # type: ignore[arg-type] event_column_width = max([len(item[1]) for item in results]) + 4 # type: ignore[arg-type] DEFAULT_COLUMN_WIDTH = 14 headers = [ "Handler", "Event Name", "Total(s)", "Min(s)/IDX", "Max(s)/IDX", "Mean(s)", "Std(s)", ] # Have to use a list because nonlocal is Py3 only... SPACING_SIZE = 2 row_format_lst = [""] header_sep_lst = [""] line_length_lst = [-SPACING_SIZE] def add_column(padding: int, text_dir: str = ">") -> None: row_format_lst[0] += "{: " + text_dir + str(padding) + "}" + (" " * SPACING_SIZE) header_sep_lst[0] += "-" * padding + (" " * SPACING_SIZE) line_length_lst[0] += padding + SPACING_SIZE add_column(handler_column_width, text_dir="<") add_column(event_column_width, text_dir="<") for _ in headers[2:]: add_column(DEFAULT_COLUMN_WIDTH) row_format = row_format_lst[0] header_sep = header_sep_lst[0] result = [] def append(s: str) -> None: result.append(s) result.append("\n") result.append("\n") append(header_sep) append(row_format.format(*headers)) append(header_sep) for row in results[:-3]: # format min/idx and max/idx row[3] = "{}/{}".format(*row[3]) # type: ignore[misc] row[4] = "{}/{}".format(*row[4]) # type: ignore[misc] append(row_format.format(*row)) append(header_sep) # print total handlers time row append(row_format.format(*results[-3])) append(header_sep) summary_format = "{} took total {}s [min/index: {}, max/index: {}, mean: {}s, std: {}s]" for row in results[-2:]: row[3] = "{}s/{}".format(*row[3]) # type: ignore[misc] row[4] = "{}s/{}".format(*row[4]) # type: ignore[misc] del row[1] append(summary_format.format(*row)) print("".join(result))
2.515625
3
bellmanford.py
asmodehn/aiokraken
0
2407
<gh_stars>0 """ Bellman Ford Arbitrage implementation over websocket API. """ from __future__ import annotations from collections import namedtuple from datetime import datetime from decimal import Decimal from math import log import pandas as pd import numpy as np import asyncio import typing from aiokraken.model.assetpair import AssetPair from aiokraken.rest import AssetPairs, Assets from aiokraken.model.asset import Asset from aiokraken.rest.client import RestClient from aiokraken.websockets.publicapi import ticker import networkx as nx client = RestClient() async def ticker_updates(pairs: typing.Union[AssetPairs, typing.Iterable[AssetPair]], pmatrix): # For required pairs, get ticket updates if isinstance(pairs, AssetPairs): # TODO : we need to unify iterable of pairs somehow... properpairs = pairs pairs = [p for p in pairs.values()] else: properpairs = AssetPairs({p.wsname: p for p in pairs}) tkrs = await client.ticker(pairs=[p for p in pairs]) # TODO : build price matrix for p, tk in tkrs.items(): # retrieve the actual pair pair = properpairs[p] fee = pair.fees[0].get('fee') # TODO : pick the right fee depending on total traded volume ! await pmatrix(base=pair.base, quote=pair.quote, ask_price=tk.ask.price, bid_price=tk.bid.price, fee_pct=fee) # TODO : 2 levels : # - slow updates with wide list of pairs and potential interest (no fees - small data for quick compute) # - websockets with potential arbitrage (including fees - detailed data & precise compute) async for upd in ticker(pairs=pairs, restclient=client): print(f"wss ==> tick: {upd}") # update pricematrix base = upd.pairname.base quote = upd.pairname.quote fee = properpairs[upd.pairname].fees[0].get('fee') await pmatrix(base=base, quote=quote, ask_price=upd.ask.price, bid_price=upd.bid.price, fee_pct=fee) class PriceMatrix: # Note This matrix is square # since we want to do arbitrage and find cycles... df: pd.DataFrame # we also need to be careful that only one writer can modify data at a time... wlock: asyncio.Lock assets: typing.Optional[Assets] def __init__(self, assets: typing.Union[Assets, typing.Iterable[Asset]]): self.wlock = asyncio.Lock() if isinstance(assets, Assets): assets = [a for a in assets.values()] self.df = pd.DataFrame(data={c.restname: {c.restname: None for c in assets} for c in assets}, columns=[c.restname for c in assets], dtype='float64') self.assets = None async def __call__(self, base: Asset, ask_price: Decimal, quote: Asset, bid_price: Decimal, fee_pct: Decimal): if self.assets is None: # retrieve assets for filtering calls params, only once. self.assets = await client.retrieve_assets() async with self.wlock: # careful with concurrent control. if not isinstance(base, Asset): base = self.assets[base].restname if not isinstance(quote, Asset): quote = self.assets[quote].restname # These are done with decimal, but stored as numpy floats for faster compute self.df[quote][base] = bid_price * ((100 - fee_pct) /100) # bid price to get: quote_curr -- (buy_price - fee) --> base_curr self.df[base][quote] = ((100 - fee_pct)/100) / ask_price # ask price to get: base_curr -- (sell_price - fee) --> quote_curr def __getitem__(self, item): if item not in self.df.columns: raise KeyError(f"{item} not found") if item not in self.df: return pd.Series(dtype=pd.dtype('decimal')) return self.df[item] def __len__(self): return len(self.df.columns) def __str__(self): return self.df.to_string() def neglog(self): if not self.assets: return False newpm = PriceMatrix(assets=[self.assets[c] for c in self.df.columns]) # copy all values and take -log() for c in self.df.columns: # TODO : fix this : is it on row, or columns ? which is best ?? newpm.df[c] = np.negative(np.log(self.df[c])) return newpm def to_graph(self): G = nx.from_pandas_adjacency(self.df, create_using=nx.DiGraph) # from bokeh.io import output_file, show # from bokeh.plotting import figure, from_networkx # # plot = figure(title="Networkx Integration Demonstration", x_range=(-1.1, 1.1), y_range=(-1.1, 1.1), # tools="", toolbar_location=None) # # graph = from_networkx(G, nx.spring_layout, scale=2, center=(0, 0)) # plot.renderers.append(graph) # # output_file("networkx_graph.html") # show(plot) return G def test_pricematrix_mapping(): # testing with string for simplicity for now pm = PriceMatrix(["EUR", "BTC"]) pm["EUR"]["BTC"] = Decimal(1.234) pm["BTC"]["EUR"] = Decimal(4.321) assert pm["EUR"]["BTC"] == Decimal(1.234) assert pm["BTC"]["EUR"] == Decimal(4.321) async def arbiter(user_assets): assets = await client.retrieve_assets() proper_userassets = Assets(assets_as_dict={assets[a].restname: assets[a] for a in user_assets}) assetpairs = await client.retrieve_assetpairs() proper_userpairs = AssetPairs(assetpairs_as_dict={p.wsname:p for p in assetpairs.values() if p.wsname is not None and ( p.base in proper_userassets or p.quote in proper_userassets )}) # retrieving widely related assets related_assets = set(assets[p.base] for p in proper_userpairs.values()) | set(assets[p.quote] for p in proper_userpairs.values()) proper_related_assets = Assets({a.restname: a for a in related_assets}) pmtx = PriceMatrix(assets=proper_related_assets) # running ticker updates in background bgtsk = asyncio.create_task(ticker_updates(pairs=proper_userpairs, pmatrix=pmtx)) try: # observe pricematrix changes while True: # TODO : efficient TUI lib ! # print(pmtx) # pricegraph = pmtx.to_graph() # display... neglog = pmtx.neglog() if neglog: negcycle = bellmanford(neglog) if len(negcycle): amnt = 1 # arbitrary starting amount pred = negcycle[-1] dscr = f"{amnt} {pred}" for cn in reversed(negcycle[:-1]): amnt = amnt * pmtx[pred][cn] pred = cn dscr = dscr + f" -> {amnt} {pred}" print(f"ARBITRAGE POSSIBLE: {dscr}") # TODO : from these we can extract market making opportunities ?? # Another way : # negloggraph = neglog.to_graph() # # negcycle = list() # # if nx.negative_edge_cycle(negloggraph): # # find it ! # print("NEGATIVE CYCLE FOUND !") # # # Now find it # print(f"computing cycles... {datetime.now()}") # # for cycle in nx.simple_cycles(negloggraph): # # for cycle in nx.cycle_basis(negloggraph): # NOT implemented ! # # find negative weight sum (cycle need to be more than one node) # if sum(negloggraph[n][m].get('weight') for n, m in zip(cycle, cycle[1:])) < 0: # print(f"Found one: {cycle}") # negcycle.append(cycle) # print(negcycle) # print(f"computing cycles DONE ! {datetime.now()}") await asyncio.sleep(5) finally: # in every case cancel the background task now bgtsk.cancel() # TODO: react ! def bellmanford(pmatrix_neglog: PriceMatrix, source='ZEUR'): n = len(pmatrix_neglog) min_dist = {source: 0} min_pred = {} # Relax edges |V - 1| times for i in range(n - 1): # iterations for v in pmatrix_neglog.df.columns: # vertex source if v in min_dist.keys(): # otherwise distance infinite until we know it... for w in pmatrix_neglog.df.columns: # vertex target if w not in min_dist.keys() or min_dist[w] > min_dist[v] + pmatrix_neglog[v][w]: min_dist[w] = min_dist[v] + pmatrix_neglog[v][w] min_pred[w] = v # If we can still relax edges, then we have a negative cycle for v in pmatrix_neglog.df.columns: if v in min_dist.keys(): # otherwise node is not yet relevant here for w in pmatrix_neglog.df.columns: if min_dist[w] > min_dist[v] + pmatrix_neglog[v][w]: # print(f"{min_dist[w]} > {min_dist[v]} + {pmatrix_neglog[v][w]}") path = (w, min_pred[w]) while len(set(path)) == len(path): # while no duplicates, cycle is not complete... path = (*path, min_pred[path[-1]]) # First cycle retrieved is *likely* (?) to be the minimal one -> the only one we are interested in return path[path.index(path[-1]):] return () if __name__ == '__main__': asyncio.run(arbiter(user_assets=["XTZ", "ETH", "XBT", "EUR"]), debug=True)
2.3125
2
custom_components/snowtire/__init__.py
borys-kupar/smart-home
128
2408
# # Copyright (c) 2020, Andrey "Limych" Khrolenok <<EMAIL>> # Creative Commons BY-NC-SA 4.0 International Public License # (see LICENSE.md or https://creativecommons.org/licenses/by-nc-sa/4.0/) # """ The Snowtire binary sensor. For more details about this platform, please refer to the documentation at https://github.com/Limych/ha-snowtire/ """
0.949219
1
tests/test_bayes_classifier.py
manishgit138/pomegranate
3,019
2409
from __future__ import (division) from pomegranate import * from pomegranate.io import DataGenerator from pomegranate.io import DataFrameGenerator from nose.tools import with_setup from nose.tools import assert_almost_equal from nose.tools import assert_equal from nose.tools import assert_not_equal from nose.tools import assert_less_equal from nose.tools import assert_raises from nose.tools import assert_true from numpy.testing import assert_array_almost_equal import pandas import random import pickle import numpy as np nan = numpy.nan def setup_multivariate_gaussian(): mu, cov = [0, 0, 0], numpy.eye(3) d1 = MultivariateGaussianDistribution(mu, cov) mu, cov = [2, 2, 2], numpy.eye(3) d2 = MultivariateGaussianDistribution(mu, cov) global model model = BayesClassifier([d1, d2]) global X X = numpy.array([[ 0.3, 0.5, 0.1], [ 0.8, 1.4, 0.5], [ 1.4, 2.6, 1.8], [ 4.2, 3.3, 3.7], [ 2.6, 3.6, 3.3], [ 3.1, 2.2, 1.7], [ 1.8, 2.2, 1.8], [-1.2, -1.8, -1.5], [-1.8, 0.3, 0.5], [ 0.7, -1.3, -0.1]]) global y y = [0, 0, 0, 1, 1, 1, 1, 0, 0, 0] global X_nan X_nan = numpy.array([[ 0.3, nan, 0.1], [ nan, 1.4, nan], [ 1.4, 2.6, nan], [ nan, nan, nan], [ nan, 3.6, 3.3], [ 3.1, nan, 1.7], [ nan, nan, 1.8], [-1.2, -1.8, -1.5], [ nan, 0.3, 0.5], [ nan, -1.3, nan]]) def setup_multivariate_mixed(): mu, cov = [0, 0, 0], numpy.eye(3) d1 = MultivariateGaussianDistribution(mu, cov) d21 = ExponentialDistribution(5) d22 = LogNormalDistribution(0.2, 0.8) d23 = PoissonDistribution(3) d2 = IndependentComponentsDistribution([d21, d22, d23]) global model model = BayesClassifier([d1, d2]) global X X = numpy.array([[ 0.3, 0.5, 0.1], [ 0.8, 1.4, 0.5], [ 1.4, 2.6, 1.8], [ 4.2, 3.3, 3.7], [ 2.6, 3.6, 3.3], [ 3.1, 2.2, 1.7], [ 1.8, 2.2, 1.8], [ 1.2, 1.8, 1.5], [ 1.8, 0.3, 0.5], [ 0.7, 1.3, 0.1]]) global y y = [0, 0, 0, 1, 1, 1, 1, 0, 0, 0] global X_nan X_nan = numpy.array([[ 0.3, nan, 0.1], [ nan, 1.4, nan], [ 1.4, 2.6, nan], [ nan, nan, nan], [ nan, 3.6, 3.3], [ 3.1, nan, 1.7], [ nan, nan, 1.8], [ 1.2, 1.8, 1.5], [ nan, 0.3, 0.5], [ nan, 1.3, nan]]) def setup_hmm(): global model global hmm1 global hmm2 global hmm3 rigged = State( DiscreteDistribution({ 'H': 0.8, 'T': 0.2 }) ) unrigged = State( DiscreteDistribution({ 'H': 0.5, 'T':0.5 }) ) hmm1 = HiddenMarkovModel() hmm1.start = rigged hmm1.add_transition(rigged, rigged, 1) hmm1.bake() hmm2 = HiddenMarkovModel() hmm2.start = unrigged hmm2.add_transition(unrigged, unrigged, 1) hmm2.bake() hmm3 = HiddenMarkovModel() hmm3.add_transition(hmm3.start, unrigged, 0.5) hmm3.add_transition(hmm3.start, rigged, 0.5) hmm3.add_transition(rigged, rigged, 0.5) hmm3.add_transition(rigged, unrigged, 0.5) hmm3.add_transition(unrigged, rigged, 0.5) hmm3.add_transition(unrigged, unrigged, 0.5) hmm3.bake() model = BayesClassifier([hmm1, hmm2, hmm3]) def setup_multivariate(): pass def teardown(): pass @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_initialization(): assert_equal(model.d, 3) assert_equal(model.n, 2) assert_equal(model.is_vl_, False) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_initialization(): assert_equal(model.d, 3) assert_equal(model.n, 2) assert_equal(model.is_vl_, False) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_log_proba(): y_hat = model.predict_log_proba(X) y = [[ -1.48842547e-02, -4.21488425e+00], [ -4.37487950e-01, -1.03748795e+00], [ -5.60369104e+00, -3.69104343e-03], [ -1.64000001e+01, -7.54345812e-08], [ -1.30000023e+01, -2.26032685e-06], [ -8.00033541e+00, -3.35406373e-04], [ -5.60369104e+00, -3.69104343e-03], [ -3.05902274e-07, -1.50000003e+01], [ -3.35406373e-04, -8.00033541e+00], [ -6.11066022e-04, -7.40061107e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_log_proba(): y_hat = model.predict_log_proba(X) y = [[ -5.03107596e-01, -9.27980626e-01], [ -1.86355320e-01, -1.77183117e+00], [ -5.58542088e-01, -8.48731256e-01], [ -7.67315597e-01, -6.24101927e-01], [ -2.32860808e+00, -1.02510436e-01], [ -3.06641866e-03, -5.78877778e+00], [ -9.85292840e-02, -2.36626165e+00], [ -2.61764180e-01, -1.46833995e+00], [ -2.01640009e-03, -6.20744952e+00], [ -1.47371167e-01, -1.98758175e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_nan_predict_log_proba(): y_hat = model.predict_log_proba(X_nan) y = [[ -3.99533332e-02, -3.23995333e+00], [ -1.17110067e+00, -3.71100666e-01], [ -4.01814993e+00, -1.81499279e-02], [ -6.93147181e-01, -6.93147181e-01], [ -9.80005545e+00, -5.54500620e-05], [ -5.60369104e+00, -3.69104343e-03], [ -1.78390074e+00, -1.83900741e-01], [ -3.05902274e-07, -1.50000003e+01], [ -8.68361522e-02, -2.48683615e+00], [ -1.00016521e-02, -4.61000165e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_nan_predict_log_proba(): y_hat = model.predict_log_proba(X_nan) y = [[ -3.57980882e-01, -1.20093223e+00], [ -1.20735130e+00, -3.55230506e-01], [ -2.43174286e-01, -1.53310132e+00], [ -6.93147181e-01, -6.93147181e-01], [ -9.31781101e+00, -8.98143220e-05], [ -6.29755079e-04, -7.37049444e+00], [ -1.31307006e+00, -3.13332194e-01], [ -2.61764180e-01, -1.46833995e+00], [ -2.29725479e-01, -1.58353505e+00], [ -1.17299253e+00, -3.70251760e-01]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_log_proba_parallel(): y_hat = model.predict_log_proba(X, n_jobs=2) y = [[ -1.48842547e-02, -4.21488425e+00], [ -4.37487950e-01, -1.03748795e+00], [ -5.60369104e+00, -3.69104343e-03], [ -1.64000001e+01, -7.54345812e-08], [ -1.30000023e+01, -2.26032685e-06], [ -8.00033541e+00, -3.35406373e-04], [ -5.60369104e+00, -3.69104343e-03], [ -3.05902274e-07, -1.50000003e+01], [ -3.35406373e-04, -8.00033541e+00], [ -6.11066022e-04, -7.40061107e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_log_proba_parallel(): y_hat = model.predict_log_proba(X, n_jobs=2) y = [[ -5.03107596e-01, -9.27980626e-01], [ -1.86355320e-01, -1.77183117e+00], [ -5.58542088e-01, -8.48731256e-01], [ -7.67315597e-01, -6.24101927e-01], [ -2.32860808e+00, -1.02510436e-01], [ -3.06641866e-03, -5.78877778e+00], [ -9.85292840e-02, -2.36626165e+00], [ -2.61764180e-01, -1.46833995e+00], [ -2.01640009e-03, -6.20744952e+00], [ -1.47371167e-01, -1.98758175e+00]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_proba(): y_hat = model.predict_proba(X) y = [[ 9.85225968e-01, 1.47740317e-02], [ 6.45656306e-01, 3.54343694e-01], [ 3.68423990e-03, 9.96315760e-01], [ 7.54345778e-08, 9.99999925e-01], [ 2.26032430e-06, 9.99997740e-01], [ 3.35350130e-04, 9.99664650e-01], [ 3.68423990e-03, 9.96315760e-01], [ 9.99999694e-01, 3.05902227e-07], [ 9.99664650e-01, 3.35350130e-04], [ 9.99389121e-01, 6.10879359e-04]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_proba(): y_hat = model.predict_proba(X) y = [[ 0.60464873, 0.39535127], [ 0.82997863, 0.17002137], [ 0.57204244, 0.42795756], [ 0.46425765, 0.53574235], [ 0.09743127, 0.90256873], [ 0.99693828, 0.00306172], [ 0.90616916, 0.09383084], [ 0.76969251, 0.23030749], [ 0.99798563, 0.00201437], [ 0.86297361, 0.13702639]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_nan_predict_proba(): y_hat = model.predict_proba(X_nan) y = [[ 9.60834277e-01, 3.91657228e-02], [ 3.10025519e-01, 6.89974481e-01], [ 1.79862100e-02, 9.82013790e-01], [ 5.00000000e-01, 5.00000000e-01], [ 5.54485247e-05, 9.99944551e-01], [ 3.68423990e-03, 9.96315760e-01], [ 1.67981615e-01, 8.32018385e-01], [ 9.99999694e-01, 3.05902227e-07], [ 9.16827304e-01, 8.31726965e-02], [ 9.90048198e-01, 9.95180187e-03]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_nan_predict_proba(): y_hat = model.predict_proba(X_nan) y = [[ 6.99086440e-01, 3.00913560e-01], [ 2.98988163e-01, 7.01011837e-01], [ 7.84134838e-01, 2.15865162e-01], [ 5.00000000e-01, 5.00000000e-01], [ 8.98102888e-05, 9.99910190e-01], [ 9.99370443e-01, 6.29556825e-04], [ 2.68992964e-01, 7.31007036e-01], [ 7.69692511e-01, 2.30307489e-01], [ 7.94751748e-01, 2.05248252e-01], [ 3.09439547e-01, 6.90560453e-01]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_proba_parallel(): y_hat = model.predict_proba(X, n_jobs=2) y = [[ 9.85225968e-01, 1.47740317e-02], [ 6.45656306e-01, 3.54343694e-01], [ 3.68423990e-03, 9.96315760e-01], [ 7.54345778e-08, 9.99999925e-01], [ 2.26032430e-06, 9.99997740e-01], [ 3.35350130e-04, 9.99664650e-01], [ 3.68423990e-03, 9.96315760e-01], [ 9.99999694e-01, 3.05902227e-07], [ 9.99664650e-01, 3.35350130e-04], [ 9.99389121e-01, 6.10879359e-04]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_proba_parallel(): y_hat = model.predict_proba(X, n_jobs=2) y = [[ 0.60464873, 0.39535127], [ 0.82997863, 0.17002137], [ 0.57204244, 0.42795756], [ 0.46425765, 0.53574235], [ 0.09743127, 0.90256873], [ 0.99693828, 0.00306172], [ 0.90616916, 0.09383084], [ 0.76969251, 0.23030749], [ 0.99798563, 0.00201437], [ 0.86297361, 0.13702639]] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict(): y_hat = model.predict(X) y = [0, 0, 1, 1, 1, 1, 1, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict(): y_hat = model.predict(X) y = [0, 0, 0, 1, 1, 0, 0, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_nan_predict(): y_hat = model.predict(X_nan) y = [0, 1, 1, 0, 1, 1, 1, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_nan_predict(): y_hat = model.predict(X_nan) y = [0, 1, 0, 0, 1, 0, 1, 0, 0, 1] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_predict_parallel(): y_hat = model.predict(X, n_jobs=2) y = [0, 0, 1, 1, 1, 1, 1, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_predict_parallel(): y_hat = model.predict(X, n_jobs=2) y = [0, 0, 0, 1, 1, 0, 0, 0, 0, 0] assert_array_almost_equal(y, y_hat) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_fit_parallel(): model.fit(X, y, n_jobs=2) mu1 = model.distributions[0].parameters[0] cov1 = model.distributions[0].parameters[1] mu1_t = [0.03333333, 0.28333333, 0.21666666] cov1_t = [[1.3088888, 0.9272222, 0.6227777], [0.9272222, 2.2513888, 1.3402777], [0.6227777, 1.3402777, 0.9547222]] mu2 = model.distributions[1].parameters[0] cov2 = model.distributions[1].parameters[1] mu2_t = [2.925, 2.825, 2.625] cov2_t = [[0.75687499, 0.23687499, 0.4793750], [0.23687499, 0.40187499, 0.5318749], [0.47937500, 0.53187499, 0.7868750]] assert_array_almost_equal(mu1, mu1_t) assert_array_almost_equal(cov1, cov1_t) assert_array_almost_equal(mu2, mu2_t) assert_array_almost_equal(cov2, cov2_t) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_fit_parallel(): model.fit(X, y, n_jobs=2) mu1 = model.distributions[0].parameters[0] cov1 = model.distributions[0].parameters[1] mu1_t = [1.033333, 1.3166667, 0.75] cov1_t = [[0.242222, 0.0594444, 0.178333], [0.059444, 0.5980555, 0.414166], [0.178333, 0.4141666, 0.439166]] d21 = model.distributions[1].distributions[0] d22 = model.distributions[1].distributions[1] d23 = model.distributions[1].distributions[2] assert_array_almost_equal(mu1, mu1_t) assert_array_almost_equal(cov1, cov1_t) assert_array_almost_equal(d21.parameters, [0.34188034]) assert_array_almost_equal(d22.parameters, [1.01294275, 0.22658346]) assert_array_almost_equal(d23.parameters, [2.625]) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_from_samples(): model = BayesClassifier.from_samples(MultivariateGaussianDistribution, X, y) mu1 = model.distributions[0].parameters[0] cov1 = model.distributions[0].parameters[1] mu1_t = [0.03333333, 0.2833333, 0.21666666] cov1_t = [[1.308888888, 0.9272222222, 0.6227777777], [0.927222222, 2.251388888, 1.340277777], [0.622777777, 1.340277777, 0.9547222222]] mu2 = model.distributions[1].parameters[0] cov2 = model.distributions[1].parameters[1] mu2_t = [2.925, 2.825, 2.625] cov2_t = [[0.75687500, 0.23687499, 0.47937500], [0.23687499, 0.40187499, 0.53187499], [0.47937500, 0.53187499, 0.78687500]] assert_array_almost_equal(mu1, mu1_t) assert_array_almost_equal(cov1, cov1_t) assert_array_almost_equal(mu2, mu2_t) assert_array_almost_equal(cov2, cov2_t) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_pickle(): model2 = pickle.loads(pickle.dumps(model)) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], MultivariateGaussianDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_pickle(): model2 = pickle.loads(pickle.dumps(model)) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], IndependentComponentsDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_to_json(): model2 = BayesClassifier.from_json(model.to_json()) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], MultivariateGaussianDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_to_json(): model2 = BayesClassifier.from_json(model.to_json()) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], IndependentComponentsDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_gaussian, teardown) def test_bc_multivariate_gaussian_robust_from_json(): model2 = from_json(model.to_json()) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], MultivariateGaussianDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_multivariate_mixed, teardown) def test_bc_multivariate_mixed_robust_from_json(): model2 = from_json(model.to_json()) assert_true(isinstance(model2, BayesClassifier)) assert_true(isinstance(model2.distributions[0], MultivariateGaussianDistribution)) assert_true(isinstance(model2.distributions[1], IndependentComponentsDistribution)) assert_array_almost_equal(model.weights, model2.weights) @with_setup(setup_hmm, teardown) def test_model(): assert_almost_equal(hmm1.log_probability(list('H')), -0.2231435513142097 ) assert_almost_equal(hmm1.log_probability(list('T')), -1.6094379124341003 ) assert_almost_equal(hmm1.log_probability(list('HHHH')), -0.8925742052568388 ) assert_almost_equal(hmm1.log_probability(list('THHH')), -2.2788685663767296 ) assert_almost_equal(hmm1.log_probability(list('TTTT')), -6.437751649736401 ) assert_almost_equal(hmm2.log_probability(list('H')), -0.6931471805599453 ) assert_almost_equal(hmm2.log_probability(list('T')), -0.6931471805599453 ) assert_almost_equal(hmm2.log_probability(list('HHHH')), -2.772588722239781 ) assert_almost_equal(hmm2.log_probability(list('THHH')), -2.772588722239781 ) assert_almost_equal(hmm2.log_probability(list('TTTT')), -2.772588722239781 ) assert_almost_equal(hmm3.log_probability(list('H')), -0.43078291609245417) assert_almost_equal(hmm3.log_probability(list('T')), -1.0498221244986776) assert_almost_equal(hmm3.log_probability(list('HHHH')), -1.7231316643698167) assert_almost_equal(hmm3.log_probability(list('THHH')), -2.3421708727760397) assert_almost_equal(hmm3.log_probability(list('TTTT')), -4.1992884979947105) assert_almost_equal(hmm3.log_probability(list('THTHTHTHTHTH')), -8.883630243546788) assert_almost_equal(hmm3.log_probability(list('THTHHHHHTHTH')), -7.645551826734343) assert_equal(model.d, 1) @with_setup(setup_hmm, teardown) def test_hmm_log_proba(): logs = model.predict_log_proba(np.array([list('H'), list('THHH'), list('TTTT'), list('THTHTHTHTHTH'), list('THTHHHHHTHTH')])) assert_almost_equal(logs[0][0], -0.89097292388986515) assert_almost_equal(logs[0][1], -1.3609765531356006) assert_almost_equal(logs[0][2], -1.0986122886681096) assert_almost_equal(logs[1][0], -0.93570553121744293) assert_almost_equal(logs[1][1], -1.429425687080494) assert_almost_equal(logs[1][2], -0.9990078376167526) assert_almost_equal(logs[2][0], -3.9007882563128864) assert_almost_equal(logs[2][1], -0.23562532881626597) assert_almost_equal(logs[2][2], -1.6623251045711958) assert_almost_equal(logs[3][0], -3.1703366478831185) assert_almost_equal(logs[3][1], -0.49261403211260379) assert_almost_equal(logs[3][2], -1.058478108940049) assert_almost_equal(logs[4][0], -1.3058441172130273) assert_almost_equal(logs[4][1], -1.4007102236822906) assert_almost_equal(logs[4][2], -0.7284958836972919) @with_setup(setup_hmm, teardown) def test_hmm_proba(): probs = model.predict_proba(np.array([list('H'), list('THHH'), list('TTTT'), list('THTHTHTHTHTH'), list('THTHHHHHTHTH')])) assert_almost_equal(probs[0][0], 0.41025641025641024) assert_almost_equal(probs[0][1], 0.25641025641025639) assert_almost_equal(probs[0][2], 0.33333333333333331) assert_almost_equal(probs[1][0], 0.39230898163446098) assert_almost_equal(probs[1][1], 0.23944639992337707) assert_almost_equal(probs[1][2], 0.36824461844216183) assert_almost_equal(probs[2][0], 0.020225961918306088) assert_almost_equal(probs[2][1], 0.79007663743383105) assert_almost_equal(probs[2][2], 0.18969740064786292) assert_almost_equal(probs[3][0], 0.041989459861032523) assert_almost_equal(probs[3][1], 0.61102706038265642) assert_almost_equal(probs[3][2], 0.346983479756311) assert_almost_equal(probs[4][0], 0.27094373022369794) assert_almost_equal(probs[4][1], 0.24642188711704707) assert_almost_equal(probs[4][2], 0.48263438265925512) @with_setup(setup_hmm, teardown) def test_hmm_prediction(): predicts = model.predict(np.array([list('H'), list('THHH'), list('TTTT'), list('THTHTHTHTHTH'), list('THTHHHHHTHTH')])) assert_equal(predicts[0], 0) assert_equal(predicts[1], 0) assert_equal(predicts[2], 1) assert_equal(predicts[3], 1) assert_equal(predicts[4], 2) @with_setup(setup_multivariate_gaussian, teardown) def test_io_log_probability(): X2 = DataGenerator(X) X3 = DataFrameGenerator(pandas.DataFrame(X)) logp1 = model.log_probability(X) logp2 = model.log_probability(X2) logp3 = model.log_probability(X3) assert_array_almost_equal(logp1, logp2) assert_array_almost_equal(logp1, logp3) @with_setup(setup_multivariate_gaussian, teardown) def test_io_predict(): X2 = DataGenerator(X) X3 = DataFrameGenerator(pandas.DataFrame(X)) y_hat1 = model.predict(X) y_hat2 = model.predict(X2) y_hat3 = model.predict(X3) assert_array_almost_equal(y_hat1, y_hat2) assert_array_almost_equal(y_hat1, y_hat3) @with_setup(setup_multivariate_gaussian, teardown) def test_io_predict_proba(): X2 = DataGenerator(X) X3 = DataFrameGenerator(pandas.DataFrame(X)) y_hat1 = model.predict_proba(X) y_hat2 = model.predict_proba(X2) y_hat3 = model.predict_proba(X3) assert_array_almost_equal(y_hat1, y_hat2) assert_array_almost_equal(y_hat1, y_hat3) @with_setup(setup_multivariate_gaussian, teardown) def test_io_predict_log_proba(): X2 = DataGenerator(X) X3 = DataFrameGenerator(pandas.DataFrame(X)) y_hat1 = model.predict_log_proba(X) y_hat2 = model.predict_log_proba(X2) y_hat3 = model.predict_log_proba(X3) assert_array_almost_equal(y_hat1, y_hat2) assert_array_almost_equal(y_hat1, y_hat3) def test_io_fit(): X = numpy.random.randn(100, 5) + 0.5 weights = numpy.abs(numpy.random.randn(100)) y = numpy.random.randint(2, size=100) data_generator = DataGenerator(X, weights, y) mu1 = numpy.array([0, 0, 0, 0, 0]) mu2 = numpy.array([1, 1, 1, 1, 1]) cov = numpy.eye(5) d1 = MultivariateGaussianDistribution(mu1, cov) d2 = MultivariateGaussianDistribution(mu2, cov) bc1 = BayesClassifier([d1, d2]) bc1.fit(X, y, weights) d1 = MultivariateGaussianDistribution(mu1, cov) d2 = MultivariateGaussianDistribution(mu2, cov) bc2 = BayesClassifier([d1, d2]) bc2.fit(data_generator) logp1 = bc1.log_probability(X) logp2 = bc2.log_probability(X) assert_array_almost_equal(logp1, logp2) def test_io_from_samples(): X = numpy.random.randn(100, 5) + 0.5 weights = numpy.abs(numpy.random.randn(100)) y = numpy.random.randint(2, size=100) data_generator = DataGenerator(X, weights, y) d = MultivariateGaussianDistribution bc1 = BayesClassifier.from_samples(d, X=X, y=y, weights=weights) bc2 = BayesClassifier.from_samples(d, X=data_generator) logp1 = bc1.log_probability(X) logp2 = bc2.log_probability(X) assert_array_almost_equal(logp1, logp2)
1.960938
2
ks_engine/variable_scoring.py
FilippoRanza/ks.py
2
2410
#! /usr/bin/python from .solution import Solution try: import gurobipy except ImportError: print("Gurobi not found: error ignored to allow tests") def variable_score_factory(sol: Solution, base_kernel: dict, config: dict): if config.get("VARIABLE_RANKING"): output = VariableRanking(sol, base_kernel) else: output = ReducedCostScoring(sol, base_kernel) return output class AbstactVariableScoring: def __init__(self, solution: Solution, base_kernel: dict): self.score = {k: 0 if base_kernel[k] else v for k, v in solution.vars.items()} def get_value(self, var_name): return self.score[var_name] def success_update_score(self, curr_kernel, curr_bucket): raise NotImplementedError def failure_update_score(self, curr_kernel, curr_bucket): raise NotImplementedError class ReducedCostScoring(AbstactVariableScoring): def success_update_score(self, curr_kernel, curr_bucket): pass def failure_update_score(self, curr_kernel, curr_bucket): pass class VariableRanking(AbstactVariableScoring): def cb_update_score(self, name, value): if value == 0: self.score[name] += 0.1 else: self.score[name] -= 0.1 def success_update_score(self, curr_kernel, curr_bucket): for var in curr_bucket: if curr_kernel[var]: self.score[var] -= 15 else: self.score[var] += 15 def failure_update_score(self, curr_kernel, curr_bucket): for var in curr_bucket: if curr_kernel[var]: self.score[var] += 1 else: self.score[var] -= 1 def callback_factory(scoring: AbstactVariableScoring): if isinstance(scoring, VariableRanking): output = __build_callback__(scoring) else: output = None return output def __build_callback__(scoring): def callback(model, where): if where == gurobipy.GRB.Callback.MIPSOL: for var in model.getVars(): value = model.cbGetSolution(var) scoring.cb_update_score(var.varName, value) return callback
2.375
2
src/fetchcode/vcs/pip/_internal/utils/entrypoints.py
quepop/fetchcode
7
2411
<gh_stars>1-10 import sys from fetchcode.vcs.pip._internal.cli.main import main from fetchcode.vcs.pip._internal.utils.typing import MYPY_CHECK_RUNNING if MYPY_CHECK_RUNNING: from typing import Optional, List def _wrapper(args=None): # type: (Optional[List[str]]) -> int """Central wrapper for all old entrypoints. Historically pip has had several entrypoints defined. Because of issues arising from PATH, sys.path, multiple Pythons, their interactions, and most of them having a pip installed, users suffer every time an entrypoint gets moved. To alleviate this pain, and provide a mechanism for warning users and directing them to an appropriate place for help, we now define all of our old entrypoints as wrappers for the current one. """ sys.stderr.write( "WARNING: pip is being invoked by an old script wrapper. This will " "fail in a future version of pip.\n" "Please see https://github.com/pypa/pip/issues/5599 for advice on " "fixing the underlying issue.\n" "To avoid this problem you can invoke Python with '-m pip' instead of " "running pip directly.\n" ) return main(args)
1.984375
2
Support/Make_Documentation.py
bvbohnen/x4-projects
24
2412
<filename>Support/Make_Documentation.py ''' Support for generating documentation readmes for the extensions. Extracts from decorated lua block comments and xml comments. ''' from pathlib import Path from lxml import etree import sys from itertools import chain project_dir = Path(__file__).resolve().parents[1] # Set up an import from the customizer for some text processing. x4_customizer_dir = str(project_dir.parent / 'X4_Customizer') if x4_customizer_dir not in sys.path: sys.path.append(x4_customizer_dir) from Framework.Make_Documentation import Merge_Lines #from Framework.Make_Documentation import Get_BB_Text # Grab the project specifications. from Release_Specs import release_specs def Make(): for spec in release_specs: # Update all of the content.xml files. spec.Update_Content_Version() # Make each of the doc files (if any). # (Note: this function not included in the class methods to avoid # import issues with the text helper functions below.) for rel_path, file_list in spec.doc_specs.items(): # Set up the full path. doc_path = spec.root_path / rel_path # Get lines for all files. doc_lines = [] for file_path in file_list: if file_path.suffix == '.xml': doc_lines += Get_XML_Cue_Text(file_path) elif file_path.suffix == '.lua': doc_lines += Get_Lua_Text(file_path) with open(doc_path, 'w') as file: file.write('\n'.join(doc_lines)) return def Sections_To_Lines(doc_text_sections): ''' Converts a dict of {section label: text} to a list of text lines, with labelling and formatting applied. Expects the input to start with a 'title', then 'overview', then a series of names of cues or functions. ''' # Transfer to annotated/indented lines. functions_started = False title = '' ret_text_lines = [] for key, text in doc_text_sections: # Extract the title and continue; this isn't printed directly. if key == 'title': title = text.strip() continue # Header gets an 'overview' label. if key == 'overview': ret_text_lines += ['', '### {} Overview'.format(title), ''] indent = '' # Lua functions are in one lump, like overview. elif key == 'functions': ret_text_lines += ['', '### {} Functions'.format(title), ''] indent = '' # Sections may be multiple. elif key == 'section': ret_text_lines += ['',''] indent = '' # Otherwise these are md cues. else: indent = ' ' # Stick a label line when starting the function section. if not functions_started: functions_started = True ret_text_lines += ['', '### {} Cues'.format(title), ''] # Bullet the function name. ret_text_lines.append('* **{}**'.format(key)) # Process the text a bit. text = Merge_Lines(text) # Add indents to functions, and break into convenient lines. text_lines = [indent + line for line in text.splitlines()] # Record for output. ret_text_lines += text_lines return ret_text_lines def Get_XML_Cue_Text(xml_path): ''' Returns a list of lines holding the documentation extracted from a decorated MD xml file. ''' # List of tuples of (label, text) hold the extracted text lines. doc_text_sections = [] # Read the xml and pick out the cues. tree = etree.parse(str(xml_path)) root = tree.xpath('/*')[0] cues = tree.xpath('/*/cues')[0] # Stride through comments/cues in the list. # Looking for decorated comments. for node in chain(root.iterchildren(), cues.iterchildren()): # Skip non-comments. # Kinda awkward how lxml checks this (isinstance doesn't work). if node.tag is not etree.Comment: continue # Handle title declarations. if '@doc-title' in node.text: label = 'title' text = node.text.replace('@doc-title','') elif '@doc-overview' in node.text: label = 'overview' text = node.text.replace('@doc-overview','') elif '@doc-section' in node.text: label = 'section' text = node.text.replace('@doc-section','') elif '@doc-cue' in node.text: label = node.getnext().get('name') text = node.text.replace('@doc-cue','') else: # Unwanted comment; skip. continue # Record it. doc_text_sections.append((label, text)) # Process into lines and return. return Sections_To_Lines(doc_text_sections) def Get_Lua_Text(lua_path): ''' Extract documentation text from a decorated lua file. ''' text = lua_path.read_text() ret_text_lines = [] # Extract non-indented comments. # TODO: maybe regex this. comment_blocks = [] lua_lines = text.splitlines() i = 0 while i < len(lua_lines): this_line = lua_lines[i] if this_line.startswith('--[['): # Scan until the closing ]]. these_lines = [] # Record the first line. these_lines.append(this_line.replace('--[[','')) i += 1 # Only search to the end of the doc. while i < len(lua_lines): next_line = lua_lines[i] if next_line.startswith(']]'): # Found the last line; skip it. break these_lines.append(next_line) i += 1 comment_blocks.append('\n'.join(these_lines)) # Check single-line comments after block comments, to avoid # -- confusion. elif this_line.startswith('--'): comment_blocks.append(this_line.replace('--','')) # Always one increment per loop. i += 1 # Title to put on label lines. # Starts blank, filled by decorator. title = '' # List of tuples of (label, text) hold the extracted text lines. doc_text_sections = [] # Go through the comments looking for decorators. for comment in comment_blocks: # Handle title declarations. if '@doc-title' in comment: label = 'title' text = comment.replace('@doc-title','') # Text blocks are either overview or cue. elif '@doc-overview' in comment: label = 'overview' text = comment.replace('@doc-overview','') # For now, all functions are lumped together in one comment. elif '@doc-functions' in comment: label = 'functions' text = comment.replace('@doc-functions','') else: # Unwanted comment; skip. continue # Record it. doc_text_sections.append((label, text)) # Process into lines and return. return Sections_To_Lines(doc_text_sections) #-Removed; generally avoiding putting main docs on the forum. #def Make_BB_Code(doc_dir, header_lines = []): # ''' # Turn the ext_dir's readme into a bbcode txt file. # Output is placed in the release folder. # ''' # release_dir = project_dir / 'Release' # if not release_dir.exists(): # release_dir.mkdir() # # # Grab the readme contents. # doc_lines = (doc_dir / 'Readme.md').read_text().splitlines() # # Generate a bbcode version, prefixing with custom header. # bb_lines = header_lines + Get_BB_Text(doc_lines) # (release_dir / (doc_dir.name + '_bb_readme.txt')).write_text('\n'.join(bb_lines)) # return if __name__ == '__main__': Make()
2.484375
2
Chapter 2 - Variables & Data Types/05_pr_set_add_two_no.py
alex-dsouza777/Python-Basics
0
2413
#Addition of two numbers a = 30 b = 17 print("Sum of a and b is",a + b)
3.65625
4
curso 1/04 - caixa de texto/a4.py
andersonssh/aprendendo-pyqt5
0
2414
<reponame>andersonssh/aprendendo-pyqt5<filename>curso 1/04 - caixa de texto/a4.py import sys from PyQt5.QtWidgets import (QApplication, QMainWindow, QPushButton, QToolTip, QLabel, QLineEdit) from PyQt5 import QtGui class Janela(QMainWindow): def __init__(self): super().__init__() self.topo = 50 self.esquerda = 50 self.largura = 800 self.altura = 600 self.titulo = 'Primeira janela' self.gera_labels() self.gera_botoes() self.gera_imagens() self.gera_caixas_de_texto() def carregar_janela(self): self.setGeometry(self.esquerda, self.topo, self.largura, self.altura) self.setWindowTitle(self.titulo) self.show() def gera_botoes(self): # botoes botao1 = QPushButton('Botao 1', self) botao1.move(100, 100) botao1.resize(100, 50) botao1.setStyleSheet( 'QPushButton{background-color: white; color: black;} QPushButton:hover{ background: orange; font-weight: 600;}') botao1.clicked.connect(self.b1) botao2 = QPushButton('Botao 2', self) botao2.move(300, 100) botao2.resize(100, 50) botao2.setStyleSheet( 'QPushButton{background-color: blue; color: white;} QPushButton:hover{ background: orange; font-weight: 600}') botao2.clicked.connect(self.b2) botao3 = QPushButton('Texto', self) botao3.move(500, 100) botao3.resize(100, 50) botao3.setStyleSheet('QPushButton{background-color: black; color: white;} QPushButton:hover{ background: orange; font-weight: 600}') botao3.clicked.connect(self.b3) def gera_labels(self): self.l1 = QLabel(self) self.l1.setText('Clique em um botao') self.l1.move(50, 50) self.l1.setStyleSheet('QLabel{font: bold; font-size: 20px;}') self.l1.resize(250, 50) self.l2 = QLabel(self) self.l2.setText('Digitou: ') self.l2.move(300, 30) self.l2.resize(260, 50) self.l2.setStyleSheet('QLabel{font: bold; font-size: 30px;}') def gera_imagens(self): self.carro = QLabel(self) self.carro.move(25, 200) self.carro.resize(450, 337) self.carro.setPixmap(QtGui.QPixmap('carro.jpg')) def gera_caixas_de_texto(self): self.caixa_texto = QLineEdit(self) self.caixa_texto.move(25, 10) self.caixa_texto.resize(150, 50) def b1(self): # forma 1 self.carro.setPixmap(QtGui.QPixmap('carro.jpg')) def b2(self, l): # forma 2 self.carro.setPixmap(QtGui.QPixmap('carro2.jpg')) def b3(self): conteudo = self.caixa_texto.text() self.l2.setText('Digitou: {}'.format(conteudo)) if __name__ == '__main__': app = QApplication(sys.argv) janela = Janela() janela.carregar_janela() sys.exit(app.exec_())
3.1875
3
pdf2write.py
codeunik/stylus_labs_write_pdf_importer
0
2415
import base64 import os import sys import PyPDF2 svg = '''<svg id="write-document" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <rect id="write-doc-background" width="100%" height="100%" fill="#808080"/> <defs id="write-defs"> <script type="text/writeconfig"> <int name="docFormatVersion" value="2" /> <int name="pageColor" value="-1" /> <int name="pageNum" value="0" /> <int name="ruleColor" value="0" /> <float name="marginLeft" value="0" /> <float name="xOffset" value="-380.701752" /> <float name="xRuling" value="0" /> <float name="yOffset" value="1536.84216" /> <float name="yRuling" value="0" /> </script> </defs> ''' pdf_path = sys.argv[1] pdf = PyPDF2.PdfFileReader(pdf_path, "rb") img_width = 720 n_pages = pdf.getNumPages() + 1 page = pdf.getPage(0) width = page.mediaBox.getWidth() height = page.mediaBox.getHeight() aspect_ratio = height/width img_height = int(aspect_ratio * img_width) os.system('mkdir -p /tmp/pdf2write') new_page_height = 0 for page in range(n_pages): print(f"Processing {page}/{n_pages}", end='\r') os.system(f'pdftoppm {pdf_path} /tmp/pdf2write/tmp{page} -png -f {page} -singlefile') with open(f'/tmp/pdf2write/tmp{page}.png', 'rb') as f: base64_data = base64.b64encode(f.read()).decode('utf-8') tmp_svg = f'''<svg class="write-page" color-interpolation="linearRGB" x="10" y="{new_page_height+10}" width="{img_width}px" height="{img_height}px" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <g class="write-content write-v3" width="{img_width}" height="{img_height}" xruling="0" yruling="0" marginLeft="0" papercolor="#FFFFFF" rulecolor="#00000000"> <g class="ruleline write-std-ruling write-scale-down" fill="none" stroke="none" stroke-width="1" shape-rendering="crispEdges" vector-effect="non-scaling-stroke"> <rect class="pagerect" fill="#FFFFFF" stroke="none" x="0" y="0" width="{img_width}" height="{img_height}" /> </g> <image x="0" y="0" width="{img_width}" height="{img_height}" xlink:href="data:image/png;base64,{base64_data}"/> </g> </svg>''' new_page_height += (img_height+10) svg += tmp_svg svg += '''</svg>''' os.system('rm -rf /tmp/pdf2write') with open(f'{os.path.dirname(pdf_path)}/{os.path.basename(pdf_path).split(".")[0]}.svg', 'w') as f: f.write(svg) os.system(f'gzip -S z {os.path.dirname(pdf_path)}/{os.path.basename(pdf_path).split(".")[0]}.svg')
2.703125
3
py_headless_daw/project/having_parameters.py
hq9000/py-headless-daw
22
2416
from typing import Dict, List, cast from py_headless_daw.project.parameter import Parameter, ParameterValueType, ParameterRangeType class HavingParameters: def __init__(self): self._parameters: Dict[str, Parameter] = {} super().__init__() def has_parameter(self, name: str) -> bool: return name in self._parameters def add_parameter(self, name: str, value: ParameterValueType, param_type: str, value_range: ParameterRangeType): if name in self._parameters: raise Exception('parameter named ' + name + ' already added to this object') parameter = Parameter(name, value, param_type, value_range) self._parameters[name] = parameter def add_parameter_object(self, parameter: Parameter) -> None: self._parameters[parameter.name] = parameter def get_parameter(self, name: str) -> Parameter: for parameter in self.parameters: if parameter.name == name: return parameter list_of_names: List[str] = [p.name for p in self.parameters] # noinspection PyTypeChecker available_names: List[str] = cast(List[str], list_of_names) raise Exception('parameter named ' + name + ' not found. Available: ' + ', '.join(available_names)) def get_parameter_value(self, name: str) -> ParameterValueType: param = self.get_parameter(name) return param.value def get_float_parameter_value(self, name: str) -> float: param = self.get_parameter(name) if param.type != Parameter.TYPE_FLOAT: raise ValueError(f"parameter {name} was expected to be float (error: f009d0ef)") value = self.get_parameter_value(name) cast_value = cast(float, value) return cast_value def get_enum_parameter_value(self, name: str) -> str: param = self.get_parameter(name) if param.type != Parameter.TYPE_ENUM: raise ValueError(f"parameter {name} was expected to be enum (error: 80a1d180)") value = self.get_parameter_value(name) cast_value = cast(str, value) return cast_value def set_parameter_value(self, name: str, value: ParameterValueType): param = self.get_parameter(name) param.value = value @property def parameters(self) -> List[Parameter]: return list(self._parameters.values())
2.703125
3
wasatch/ROI.py
adiravishankara/Wasatch.PY
9
2417
## # This class encapsulates a Region Of Interest, which may be either horizontal # (pixels) or vertical (rows/lines). class ROI: def __init__(self, start, end): self.start = start self.end = end self.len = end - start + 1 def valid(self): return self.start >= 0 and self.start < self.end def crop(self, spectrum): return spectrum[self.start:self.end+1] def contains(self, value): return self.start <= value <= self.end
3.109375
3
examples/python/oled_ssd1327.py
whpenner/upm
1
2418
#!/usr/bin/python # Author: <NAME> <<EMAIL>> # Copyright (c) 2015 Intel Corporation. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # Load i2clcd display module import time, signal, sys import pyupm_i2clcd as upmLCD myLCD = upmLCD.SSD1327(0, 0x3C); logoArr = [0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x60, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xC0, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xC0, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x80, 0x03, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x80, 0x03, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0x80, 0x01, 0xC0, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x07, 0x80, 0x01, 0xE0, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x20, 0x0F, 0x80, 0x01, 0xE0, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0F, 0x00, 0x01, 0xE0, 0x08, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0F, 0x00, 0x01, 0xE0, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0F, 0x00, 0x01, 0xE0, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x30, 0x0F, 0x00, 0x01, 0xE0, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x38, 0x0F, 0x00, 0x01, 0xE0, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x38, 0x0F, 0x00, 0x01, 0xE0, 0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x38, 0x0F, 0x80, 0x01, 0xE0, 0x38, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3C, 0x0F, 0x80, 0x01, 0xE0, 0x78, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x3E, 0x0F, 0x80, 0x03, 0xE0, 0x78, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1E, 0x07, 0x80, 0x03, 0xE0, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1E, 0x07, 0x80, 0x03, 0xE0, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1F, 0x07, 0x80, 0x03, 0xC1, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x87, 0xC0, 0x07, 0xC1, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0x83, 0xC0, 0x07, 0x83, 0xE0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0xC3, 0xC0, 0x07, 0x87, 0xE0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x07, 0xE1, 0xE0, 0x07, 0x0F, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0xF0, 0xE0, 0x0F, 0x0F, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xF8, 0xF0, 0x0E, 0x1F, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0xF8, 0x70, 0x1C, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFC, 0x30, 0x18, 0x7E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7F, 0x18, 0x30, 0xFC, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1F, 0x88, 0x21, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0F, 0xC4, 0x47, 0xE0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0xE0, 0x0F, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xF8, 0x3E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0E, 0xE0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x6C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x06, 0x00, 0x00, 0x6C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x06, 0x00, 0x00, 0x60, 0x00, 0x7E, 0x3F, 0x0F, 0xC3, 0xF0, 0xFA, 0x0F, 0xDF, 0xE1, 0x9F, 0xEC, 0x7E, 0xE6, 0x73, 0x9C, 0xE7, 0x39, 0xCE, 0x1C, 0xDF, 0xE1, 0xB9, 0xEC, 0xE7, 0xE0, 0x61, 0xD8, 0x66, 0x1B, 0x86, 0x1C, 0x06, 0x61, 0xB0, 0x6D, 0xC3, 0x7C, 0x7F, 0xFF, 0xFF, 0xFF, 0x06, 0x0F, 0x86, 0x61, 0xB0, 0x6D, 0x83, 0x3E, 0x7F, 0xFF, 0xFF, 0xFF, 0x06, 0x07, 0xC6, 0x61, 0xB0, 0x6D, 0x83, 0xC3, 0x61, 0x18, 0x46, 0x03, 0x86, 0x18, 0x66, 0x61, 0xB0, 0x6D, 0xC3, 0xFE, 0x7F, 0x9F, 0xE7, 0xF9, 0xFE, 0x1F, 0xE6, 0x3F, 0x9F, 0xEC, 0xFE, 0x7E, 0x3F, 0x0F, 0xC3, 0xF0, 0xFA, 0x0F, 0xC6, 0x3F, 0x9F, 0xEC, 0x7E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7C, 0x00, 0x00, 0x20, 0x82, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x44, 0x00, 0x00, 0x20, 0x82, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6C, 0xF3, 0xCF, 0x70, 0x9E, 0x79, 0xE7, 0x80, 0x00, 0x00, 0x00, 0x00, 0x7D, 0x9E, 0x68, 0x20, 0xB2, 0xC8, 0x64, 0x00, 0x00, 0x00, 0x00, 0x00, 0x47, 0x9E, 0x6F, 0x20, 0xB2, 0xF9, 0xE7, 0x80, 0x00, 0x00, 0x00, 0x00, 0x46, 0x9A, 0x61, 0x20, 0xB2, 0xCB, 0x60, 0x80, 0x00, 0x00, 0x00, 0x00, 0x7C, 0xF3, 0xCF, 0x30, 0x9E, 0x79, 0xE7, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x7C, 0x02, 0x00, 0x00, 0x82, 0x60, 0x00, 0x00, 0xF8, 0x00, 0x00, 0x40, 0x40, 0x02, 0x00, 0x00, 0x83, 0x60, 0x00, 0x00, 0x8C, 0x00, 0x00, 0x40, 0x60, 0xB7, 0x79, 0xE7, 0x81, 0xC7, 0x92, 0x70, 0x89, 0xE7, 0x9E, 0x78, 0x7C, 0xE2, 0xC9, 0x2C, 0x81, 0xCC, 0xD2, 0x40, 0xFB, 0x21, 0xB2, 0x48, 0x40, 0x62, 0xF9, 0x2C, 0x80, 0x8C, 0xD2, 0x40, 0x8B, 0xE7, 0xB0, 0x48, 0x40, 0xE2, 0xC9, 0x2C, 0x80, 0x84, 0xD2, 0x40, 0x8B, 0x2D, 0x92, 0x48, 0x7D, 0xB3, 0x79, 0x27, 0x80, 0x87, 0x9E, 0x40, 0x8D, 0xE7, 0x9E, 0x48, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00] SeeedLogo = upmLCD.uint8Array(len(logoArr)) for x in range(len(logoArr)): SeeedLogo.__setitem__(x, logoArr[x]) # If you don't set the display to be white, the seeed logo will appear jagged myLCD.setGrayLevel(12) myLCD.draw(SeeedLogo, 96 * 96 / 8); for i in range(12): myLCD.setCursor(i, 0) myLCD.setGrayLevel(i) myLCD.write('Hello World') print "Exiting"
1.53125
2
digital_image_processing/algorithms/edge_detection_algorithms/threshold/adaptive_thresholding_methods/__init__.py
juansdev/digital_image_processing
1
2419
from .bernsen import bernsen_thresholding_method from .bradley_roth import bradley_thresholding_method from .contrast import contrast_thresholding_method from .feng import feng_thresholding_method from .gaussian import threshold_value_gaussian from .johannsen import johannsen_thresholding_method from .kapur import kapur_thresholding_method from .mean import threshold_value_mean from .minimum_error import minimum_err_thresholding_method from .niblack import niblack_thresholding_method from .nick import nick_thresholding_method from .otsu import otsu_thresholding_method from .p_tile import p_tile_thresholding_method from .pun import pun_thresholding_method from .rosin import rosin_thresholding_method from .sauvola import sauvola_thresholding_method from .singh import singh_thresholding_method from .two_peaks import two_peaks_thresholding_method from .wolf import wolf_thresholding_method
1.21875
1
data/train/python/be1d04203f18e6f16b60a723e614122b48a08671celeryconfig.py
harshp8l/deep-learning-lang-detection
84
2420
<filename>data/train/python/be1d04203f18e6f16b60a723e614122b48a08671celeryconfig.py import os from kombu import Queue, Exchange ## Broker settings. BROKER_URL = os.getenv('BROKER_URL', 'amqp://guest:guest@localhost:5672') #BROKER_URL = "amqp://guest:guest@localhost:5672/" #BROKER_URL = os.getenv('BROKER_URL', 'redis://guest@localhost:6379') #BROKER_HOST = "localhost" #BROKER_PORT = 27017 #BROKER_TRANSPORT = 'mongodb' #BROKER_VHOST = 'celery' CELERY_DEFAULT_QUEUE = 'default' CELERY_QUEUES = ( Queue('default', exchange=Exchange('default'), routing_key='default'), # Queue('aws_uploads', routing_key='video.uploads'), ) CELERY_DEFAULT_EXCHANGE = 'default' CELERY_DEFAULT_EXCHANGE_TYPE = 'direct' CELERY_DEFAULT_ROUTING_KEY = 'default' CELERY_IMPORTS = ('celeryservice.tasks',) #CELERY_RESULT_BACKEND = os.getenv('CELERY_RESULT_BACKEND', 'redis') CELERY_RESULT_BACKEND = os.getenv('CELERY_RESULT_BACKEND', 'amqp') ## Using the database to store task state and results. #CELERY_RESULT_BACKEND = "mongodb" #CELERY_MONGODB_BACKEND_SETTINGS = { # "host": "localhost", # "port": 27017, # "database": "celery", # "taskmeta_collection": "celery_taskmeta", #}
1.617188
2
timesheet.py
dgollub/timesheet-google-thingy
0
2421
# -*- coding: utf-8 -*- # # from __future__ import print_function import csv import os import re import sys import arrow from gsheets import Sheets CURRENT_PATH = os.path.abspath(os.path.dirname(os.path.realpath(__file__))) DEBUG = os.environ.get('DEBUG', "0") == "1" AS_CSV = os.environ.get('CSV', "0") == "1" COL_DATE = 0 COL_WEEKDAY = 1 COL_TIME_START = 2 COL_TIME_END = 3 COL_LUNCH = 4 COL_TIME = 5 # includes lunch COL_TIME_FIXED = 6 # does not include lunch COL_MOVE = 7 COL_WORK_FROM_HOME = 8 COL_NOTES = 9 COL_TASKS_START = 10 SPECIAL_VALUES = ["sick", "ab", "off", "wfh", "hol"] SATURDAY = 5 SUNDAY = 6 def calc(hour, half_it=False, split_char = ":"): parts = str(hour).split(split_char) try: local_hours = int(parts[0]) local_minutes = int(parts[1]) if half_it: local_hours = local_hours / 2 local_minutes = local_minutes / 2 return local_hours, local_minutes except: if len(parts) == 1: try: return int(parts[0]), 0 except: return 0, 0 def get_client_secret_filenames(): filename = os.path.join(CURRENT_PATH, "client-secrets.json") cachefile = os.path.join(CURRENT_PATH, "client-secrets-cache.json") if not os.path.exists(filename): filename = os.path.expanduser(os.path.join("~", "client-secrets.json")) cachefile = os.path.expanduser(os.path.join("~", "client-secrets-cache.json")) if not os.path.exists(filename): raise Exception("Please provide a client-secret.json file, as described here: https://github.com/xflr6/gsheets#quickstart") return filename, cachefile def load_first_sheet_rows(api, timesheet_url, date=arrow.now().format('YYYYMMDD')): print("Opening timesheet for %s ..." % (date)) sheets = api.get(timesheet_url) sheet = sheets.sheets[0] print(u"Timesheet [%s] sheet [%s] opened. Accessing cell data ..." % (sheets.title or "???", sheet.title or "???")) rows = sheet.values() return rows def load_sheet_and_read_data(api, timesheet_url, commandline, user_full_name): now = arrow.now() today = now.format('YYYYMMDD') try: other_date = arrow.get(commandline, 'YYYYMMDD').format('YYYYMMDD') except arrow.parser.ParserError: other_date = today use_date = other_date rows = load_first_sheet_rows(api, timesheet_url, use_date) timesheet = get_timesheet_for_date(rows, use_date, user_full_name) if timesheet: print("\n\n") print("Timesheet for %s" % (use_date)) print(timesheet) print("\n") else: print("No entry found for %s" % use_date) def get_timesheet_for_date(rows, date, user_full_name): # find the row with the first column that has today's date in it result_rows = [row for row in rows if row and str(row[COL_DATE]) == date] if result_rows is None or not result_rows: return None if len(result_rows) != 1: print("More than one entry (%d) found for date %s! Please fix your sheet!" % (len(result_rows), date)) return None found_row = result_rows[0] found_index = rows.index(found_row) start_val = found_row[COL_TIME_START] end_val = found_row[COL_TIME_END] duration_val = found_row[COL_TIME_FIXED] max_cols = len(found_row) if not start_val: if start_val in SPECIAL_VALUES: print("You forgot to add your start time.") return None if not end_val: if end_val in SPECIAL_VALUES: print("You forgot to add your end time.") return None #if max_cols >= COL_NOTES: # print("No notes/tasks entered yet.") # return None def parse_hours(val): try: return arrow.get(val, "HH:mm") except arrow.parser.ParserError: return arrow.get(val, "H:mm") start = parse_hours(start_val).format("HH:mm") end = parse_hours(end_val).format("HH:mm") duration = str(duration_val) notes_str = found_row[COL_NOTES] notes = notes_str.split('\n') # check the previous Friday entry (if today is not Friday), to see what work from home # days were were selected weekday = (found_row[COL_WEEKDAY] or "").lower() check_start_index = found_index if weekday.startswith("fr") else found_index - 7 check_row = found_row while (check_start_index < found_index): check_row = rows[check_start_index] if (len(check_row) > COL_WEEKDAY and check_row[COL_WEEKDAY] or "").lower().startswith("fr"): break check_start_index += 1 is_same_day = None if check_start_index != found_index: # print("HA! GOT PREVS FRIDAY.") is_same_day = False else: # print("SAME DAY") is_same_day = True wfh = u"" if len(check_row)-1 < COL_WORK_FROM_HOME else check_row[COL_WORK_FROM_HOME] wfh = wfh.replace("Mon", "Monday") wfh = wfh.replace("Tue", "Tuesday") wfh = wfh.replace("Wed", "Wednesday") wfh = wfh.replace("Thu", "Thursday") wfh = wfh.replace("Fri", "Friday") wfh = wfh.replace(", ", ",").replace(",", " and ") wfh_extra = "Next week" if is_same_day else "This week" wfh_info = """%s %s""" % (wfh_extra, wfh) if wfh != "" else "all days" # 2021-01-04 just make this the default for now wfh_info = "at all times, unless mentioned otherwise below" # regex: ([a-zA-Z].+-\d+)(.*)((?<=\[).+(?=\])) # text: SCAN-4167 As a developer, I want to update AIScanRobo every week [1h] # 3 groups: # SCAN-4167 # As a developer, I want to update AIScanRobo every week [ # 1h r = re.compile(r"([a-zA-Z].+-\d+)(.*)((?<=\[).+(?=\]))") total_time_minutes_from_tasks = 0 tasks = [] for idx in range(COL_TASKS_START, max_cols): task = found_row[idx].strip() if task: t = task.split('\n')[0] if '\n' in task else task try: g = r.match(t).groups() except Exception as ex: print("ERROR: %s - %s" % (t, str(ex))) continue if DEBUG: print("task: %s" % (t)) print("groups: %s" % len(g)) [task_number, task_details, task_duration] = g hours, half_hours = calc(task_duration.replace("h", ""), split_char=".") minutes = (hours * 60) + (6 * half_hours) total_time_minutes_from_tasks += minutes other_lines = task.split('\n')[1:] tasks.append("%s %s\n%s" % (task_number.strip(), task_details[:-2].strip(), '\n'.join(other_lines))) def format_tasks(tasks): if not tasks: return '' result = 'Tasks:\n' for task in tasks: if '\n' in task: sub_tasks = task.split('\n') if len(sub_tasks) > 1: result += '\n* ' + sub_tasks[0] # main task for sub_task in sub_tasks[1:]: # actual sub tasks result += '\n\t' + sub_task result += '\n' else: result += '\n* ' + task else: result += '\n* ' + task return result def format_notes(notes): if not notes or (len(notes) == 1 and not notes[0]): return '' result = 'Additional Notes:\n' for note in notes: result += '\n* ' + note return result total_hours = str(int(total_time_minutes_from_tasks / 60)).zfill(2) total_minutes = str(total_time_minutes_from_tasks % 60).zfill(2) total_duration = "%s:%s" % (total_hours, total_minutes) test_duration = duration if len(test_duration) <= 4: test_duration = "0%s" % duration if total_duration != test_duration: print("") print("") print("The task times do not add up! Tasks vs time entered: %s != %s" % (total_duration, test_duration)) print("") print("") # Time: %(start)s - %(end)s (%(duration)s hours total [%(total_hours)s:%(total_minutes)s]) msg = """ [Daily Report] %(date)s WFH: %(wfh_info)s Hi, Daily Report for Date: %(date)s %(tasks)s %(notes)s Kind regards, %(user_full_name)s """.strip() % { "date": date, "user_full_name": user_full_name, "start": start, "end": end, "duration": duration, "wfh_info": wfh_info, "tasks": format_tasks(tasks) if tasks else "", "notes": format_notes(notes) if notes else "", "total_hours": total_hours, "total_minutes": total_minutes, } print("Total time for all tasks (%s): %s - %s:%s" % (len(tasks), total_time_minutes_from_tasks, total_hours, total_minutes)) return msg def _load_sheet_data(api, timesheet_url, arg_date=None): try: date = arrow.get(arg_date, 'YYYYMM') except Exception: # pylint: disable=W0703 now = arrow.now() date = now.format('YYYYMM') rows = load_first_sheet_rows(api, timesheet_url, date) date_str = str(date.format('YYYYMM')) return (rows, date_str) def export_csv(api, timesheet_url, arg_date): rows, date = _load_sheet_data(api, timesheet_url, arg_date) filtered = [row for row in rows if row and str(row[COL_DATE]).startswith(date)] if filtered is None or not filtered: return None csv_filename = os.path.join(os.getcwd(), "%s.csv" % (arg_date)) print("") print("Found (%d) entries for date %s!" % (len(filtered), date)) print("Writing to %s" % (csv_filename)) with open(csv_filename, mode='w') as f: f = csv.writer(f, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) # f.writerow(['<NAME>', 'Accounting', 'November']) f.writerow(["username", "date", "task", "duration", "work_type", "details"]) def w(task, duration_minutes, details = ""): work_type = "Meeting" if "meeting" in details.lower() else "Development" # Needed CSV columns # username|date|task|duration|work_type|details f.writerow(["daniel", arrow.get(str(date), 'YYYYMMDD').format('YYYY.MM.DD'), task, "%dm" % (duration_minutes), work_type, details]) # regex: ([a-zA-Z].+-\d+)(.*)((?<=\[).+(?=\])) # text: SCAN-4167 As a developer, I want to update AIScanRobo every week [1h] # 3 groups: # SCAN-4167 # As a developer, I want to update AIScanRobo every week [ # 1h r = re.compile(r"([a-zA-Z].+-\d+)(.*)((?<=\[).+(?=\]))") for row in filtered: max_cols = len(row) time = row[COL_TIME_FIXED] if max_cols >= COL_TIME_FIXED else None time_start = row[COL_TIME_START] if max_cols >= COL_TIME_START else None time_end = row[COL_TIME_END] if max_cols >= COL_TIME_END else None date = row[COL_DATE] if max_cols >= COL_DATE else None if time_start is None or time_end is None or date is None: continue tasks = [] for idx in range(COL_TASKS_START, max_cols): task = row[idx].strip() if task: tasks.append(task) if len(tasks) == 0: print("%s: no tasks found! %s" % (date, time_start)) continue print("%s: %d tasks found!" % (date, len(tasks))) for task in tasks: t = task.split('\n')[0] if '\n' in task else task try: g = r.match(t).groups() except Exception as ex: print("ERROR: %s - %s" % (t, str(ex))) continue if DEBUG: print("task: %s" % (t)) print("groups: %s" % len(g)) [task_number, task_details, duration] = g hours, half_hours = calc(duration.replace("h", ""), split_char=".") minutes = (hours * 60) + (6 * half_hours) if DEBUG: print("time: %s, %s $ %s $ %s" % (hours, half_hours, duration, minutes)) details = "%s %s" % (task_number, task_details[:-1].strip()) w(task_number, minutes, details.strip()) print("") print("CSV output to: %s" % (csv_filename)) def calc_daily_hours_for_month(api, timesheet_url, arg_date): rows, date = _load_sheet_data(api, timesheet_url, arg_date) filtered = [row for row in rows if row and str(row[COL_DATE]).startswith(date)] if filtered is None or not filtered: return None print("") print("Found (%d) entries for date %s!" % (len(filtered), date)) minutes = 0 days = 0 for row in filtered: max_cols = len(row) time = row[COL_TIME_FIXED] if max_cols >= COL_TIME_FIXED else None time_start = row[COL_TIME_START] if max_cols >= COL_TIME_START else None time_end = row[COL_TIME_END] if max_cols >= COL_TIME_END else None date = row[COL_DATE] if max_cols >= COL_DATE else None worked_at = row[COL_MOVE] if max_cols >= COL_MOVE else None notes = row[COL_NOTES] if max_cols >= COL_NOTES else "" if time_start is None or time_end is None or date is None: continue start_hours, start_minutes = calc(time_start) end_hours, end_minutes = calc(time_end) if start_hours == 0: print("%s: Day off because of %s" % (date, "whatever" if time_start == 0 else time_start)) continue extra_info = "" the_date = arrow.get(str(date), 'YYYYMMDD') if the_date.weekday() in [SATURDAY, SUNDAY]: extra_info += " - Weekend work" half_day = 'half' in row[COL_WORK_FROM_HOME] if half_day: extra_info += " - half day PTO" if worked_at in ['o', 'O'] or "OFFICE" in notes.upper(): extra_info += " - Commute to office" minutes_day = abs(end_hours - start_hours) * 60 minutes_day += end_minutes - start_minutes minutes += minutes_day hours_day = int(minutes_day / 60) hours_day_without_lunch = hours_day - 1 minutes_day = minutes_day % 60 total_time_for_date = str(hours_day).zfill(2) + ':' + str(minutes_day).zfill(2) days += 1 no_lunch = str(hours_day_without_lunch).zfill(2) + ':' + str(minutes_day).zfill(2) print("%s: %s to %s = %s (without lunch: %s)%s" % (date, str(time_start).zfill(2), str(time_end).zfill(2), total_time_for_date, no_lunch, extra_info)) hours = str(minutes / 60).zfill(2) minutes = str(minutes % 60).zfill(2) lunch_hours = str(int(float(hours)) - days).zfill(2) print("") print("Total days worked: %s" % str(days)) print("Total hours: %s:%s (with 1 hour lunch: %s:%s)" % (hours, minutes, lunch_hours, minutes)) print("") def calc_stats(api, timesheet_url, arg_date=None): rows, date = _load_sheet_data(api, timesheet_url, arg_date) # find the rows for the given month filtered = [row for row in rows if row and str(row[COL_DATE]).startswith(date)] if filtered is None or not filtered: return None if not AS_CSV: print("") print("Found (%d) entries for date %s!" % (len(filtered), date)) dates, hours = [], [] half_days = {} first = None last = None for row in filtered: max_cols = len(row) time = row[COL_TIME_FIXED] if max_cols >= COL_TIME_FIXED else None tasks = [] for idx in range(COL_TASKS_START, max_cols): task = row[idx].strip() if task: tasks.append(task) day_type = row[COL_TIME_START] if max_cols >= COL_TIME_START else None date = row[COL_DATE] if max_cols >= COL_DATE else None if day_type is None: continue if day_type in SPECIAL_VALUES: time = day_type hours.append(time) dates.append(date) continue elif not tasks: continue # If it was a half day, meaning I took half a day off, then only count half the time half_day = 'half' in row[COL_WORK_FROM_HOME] if half_day: half_days[date] = time hours.append(time) dates.append(date) if first is None: first = row else: last = row total_hours, total_minutes, total_time = 0, 0, "" for index, hour in enumerate(hours): date = dates[index] local_hours, local_minutes = calc(hour, date in half_days) total_hours += local_hours total_minutes += local_minutes if total_minutes >= 60: total_hours += (total_minutes / 60) total_minutes = total_minutes % 60 total_time = "%d:%d hours:minutes" % (total_hours, total_minutes) expected = 0 actual_h, actual_m = 0, 0 if not AS_CSV: print("*" * 50) print("") print("Valid hours entries: %s\t[required vs actual]" % len(hours)) deduct_work_hours = 0 work_hours = 0 work_minutes = 0 days = 0 expected_hours_accumulated_total = 0 for index, worked_date in enumerate(dates): days += 1 if hours[index] in SPECIAL_VALUES: if not AS_CSV: print(" %s: Off, because %s" % (worked_date, hours[index])) else: pass else: half_day = worked_date in half_days # each workday has 8 hours of work, but on half days it is only half of 8, aka 4. work_hours_for_the_day = 8 if not half_day else 4 expected_hours_accumulated_total += 8 - (8 - work_hours_for_the_day) expected_minutes_accumulated_total = expected_hours_accumulated_total * 60 # hours[index] is the actual time worked, e.g. 6:30 means 6 hours and 30 minutes local_h, local_m = calc(hours[index]) work_hours += local_h work_minutes += local_m actual_h = work_hours # 330 minutes = 6 hours and 30 minutes actual_h += int(work_minutes / 60) actual_m = work_minutes % 60 if AS_CSV: print("%s;%s;" % (worked_date, hours[index])) else: print(" %s: %s\t[%s:00 vs %s:%s] %s" % (worked_date, hours[index], expected_hours_accumulated_total, str(actual_h).zfill(2), str(actual_m).zfill(2), "Half day" if half_day else "")) if not AS_CSV: print("") print("First:", "<first> not found" if first is None else first[COL_DATE]) print("Last:", "<last> not found" if last is None else last[COL_DATE]) print("") print("Total time in %s: %s" % (date, total_time)) print("") print("*" * 50) def main(): # print("Checking environment variable TIMESHEET_URL for spreadsheet URL...") timesheet_url = os.environ.get('TIMESHEET_URL', "").strip() if not timesheet_url: raise Exception("Please set the TIMESHEET_URL environment variable accordingly.") # print("Checking environment variable USER_FULL_NAME for spreadsheet URL...") user_full_name = os.environ.get('USER_FULL_NAME', "").strip() if not user_full_name: print("Warning: USER_FULL_NAME environment variable not set!") user_full_name = "<NAME>" print("") print("Usage: python timesheet.py [command|date] [date]") print("Example: python timesheet.py stats 202011") print("Example: python timesheet.py 20201130") print("") print("Available commands:") print("- stats: show summed up hours and minutes for the given/current month") print(" use \"CSV=1 python timesheet.py stats\" to format the output") print(" as CSV") print("- daily: same as stats, except ready to email to HR") print("- csv: task breakdown for the month and time spend on each task") print("") print("""Tip: use "DEBUG=1 timesheet <parameter>" to enable debug output""") print("") print("Trying to load client-secrets.json file ...") secrets_file, cache_file = get_client_secret_filenames() sheets = Sheets.from_files(secrets_file, cache_file, no_webserver=False) print("Success.") date = None if len(sys.argv) < 3 else sys.argv[2].strip() arg = "read today" if len(sys.argv) < 2 else sys.argv[1].strip() if arg == "stats": calc_stats(sheets, timesheet_url, date or arrow.now().format('YYYYMM')) elif arg == "daily": calc_daily_hours_for_month(sheets, timesheet_url, date or arrow.now().format('YYYYMM')) elif arg == "csv": export_csv(sheets, timesheet_url, date or arrow.now().format('YYYYMM')) else: date_to_use = "read today" if arg == '' else arg load_sheet_and_read_data(sheets, timesheet_url, date_to_use, user_full_name) print("Done.") if __name__ == "__main__": main()
2.578125
3
league/game.py
Orpheon/All-in
0
2422
<gh_stars>0 import numpy as np import pickle import treys import constants FULL_DECK = np.array(treys.Deck.GetFullDeck()) class GameEngine: def __init__(self, BATCH_SIZE, INITIAL_CAPITAL, SMALL_BLIND, BIG_BLIND, logger): self.BATCH_SIZE = BATCH_SIZE self.INITIAL_CAPITAL = INITIAL_CAPITAL self.SMALL_BLIND = SMALL_BLIND self.BIG_BLIND = BIG_BLIND self.logger = logger self.N_PLAYERS = 6 def generate_cards(self): cards = np.tile(np.arange(52), (self.BATCH_SIZE, 1)) for i in range(self.BATCH_SIZE): cards[i, :] = FULL_DECK[np.random.permutation(cards[i, :])] community_cards = cards[:, :5] hole_cards = np.reshape(cards[:, 5:5 + 2 * self.N_PLAYERS], (self.BATCH_SIZE, self.N_PLAYERS, 2)) return community_cards, hole_cards def run_game(self, players): if len(players) != self.N_PLAYERS: raise ValueError('Only {} players allowed'.format(self.N_PLAYERS)) community_cards, hole_cards = self.generate_cards() folded = np.zeros((self.BATCH_SIZE, len(players)), dtype=bool) prev_round_investment = np.zeros((self.BATCH_SIZE, len(players)), dtype=int) for player in players: player.initialize(self.BATCH_SIZE, self.INITIAL_CAPITAL, self.N_PLAYERS) # Pre-flop bets, _ = self.run_round(players, prev_round_investment, folded, constants.PRE_FLOP, hole_cards, community_cards[:, :0]) prev_round_investment += bets # Flop bets, _ = self.run_round(players, prev_round_investment, folded, constants.FLOP, hole_cards, community_cards[:, :3]) prev_round_investment += bets # Turn bets, _ = self.run_round(players, prev_round_investment, folded, constants.TURN, hole_cards, community_cards[:, :4]) prev_round_investment += bets # River bets, end_state = self.run_round(players, prev_round_investment, folded, constants.RIVER, hole_cards, community_cards) prev_round_investment += bets # Showdown pool = np.sum(prev_round_investment, axis=1) total_winnings = np.zeros((self.BATCH_SIZE, self.N_PLAYERS), dtype=float) hand_scores = self.evaluate_hands(community_cards, hole_cards, np.logical_not(folded)) ranks = np.argsort(hand_scores, axis=1) sorted_hands = np.take_along_axis(hand_scores, indices=ranks, axis=1) # Get everyone who has the best hand and among which pots will be split participants = hand_scores == sorted_hands[:, 0][:, None] # Get the number of times each pot will be split n_splits_per_game = participants.sum(axis=1) # Split and distribute the money gains = pool / n_splits_per_game total_winnings += participants * gains[:, None] total_winnings -= prev_round_investment self.logger.log(constants.EV_END_GAME, (hand_scores, total_winnings, [str(p) for p in players], folded, hole_cards)) self.logger.save_to_file() for player_idx, player in enumerate(players): round, current_bets, min_raise, prev_round_investment, folded, last_raiser = end_state player.end_trajectory(player_idx, round, current_bets, min_raise, prev_round_investment, folded, last_raiser, hole_cards[:, player_idx, :], community_cards, total_winnings[:, player_idx]) return total_winnings def run_round(self, players, prev_round_investment, folded, round, hole_cards, community_cards): """ :param players: [Player] :param prev_round_investment: np.ndarray(batchsize, n_players) = int :param folded: np.ndarray(batchsize, n_players) = bool :param round: int ∈ {0..3} :param hole_cards: np.ndarray(batchsize, n_players, 2) = treys.Card :param community_cards: np.ndarray(batchsize, n_players, {0,3,4,5}) = treys.Card :return: current_bets: np.ndarray(batchsize, n_players)=int {0-200} """ current_bets = np.zeros((self.BATCH_SIZE, self.N_PLAYERS), dtype=int) max_bets = np.zeros(self.BATCH_SIZE, dtype=int) min_raise = np.zeros(self.BATCH_SIZE, dtype=int) min_raise[:] = self.BIG_BLIND last_raiser = np.zeros(self.BATCH_SIZE, dtype=int) player_order = list(enumerate(players)) round_countdown = np.zeros(self.BATCH_SIZE, dtype=int) round_countdown[:] = self.N_PLAYERS if round == constants.PRE_FLOP: current_bets[:, 0] = self.SMALL_BLIND current_bets[:, 1] = self.BIG_BLIND max_bets[:] = self.BIG_BLIND player_order = player_order[2:] + player_order[:2] while True: running_games = np.nonzero(round_countdown > 0)[0] for player_idx, player in player_order: actions, amounts = player.act(player_idx, round, round_countdown > 0, current_bets, min_raise, prev_round_investment, folded, last_raiser, hole_cards[:, player_idx, :], community_cards) # Disabled when not necessary because it bloats the log size (by ~500 kB or so, which triples the size) # self.logger.log(constants.EV_PLAYER_ACTION, (round, player_idx, actions, amounts, round_countdown, folded[:, player_idx])) # People who have already folded continue to fold actions[folded[:, player_idx] == 1] = constants.FOLD # People who have gone all-in continue to be all-in actions[prev_round_investment[:, player_idx] + current_bets[:, player_idx] == self.INITIAL_CAPITAL] = constants.CALL ########### # CALLING # ########### calls = np.where(np.logical_and(round_countdown > 0, actions == constants.CALL))[0] if calls.size > 0: investment = np.minimum(self.INITIAL_CAPITAL - prev_round_investment[calls, player_idx], max_bets[calls]) # Reset the bets and countdown current_bets[calls, player_idx] = investment ########### # RAISING # ########### raises = np.where(np.logical_and(round_countdown > 0, actions == constants.RAISE))[0] if raises.size > 0: # print("True raises", raises, amounts[raises]) investment = np.maximum(current_bets[raises, player_idx] + amounts[raises], max_bets[raises] + min_raise[raises]) min_raise[raises] = investment - max_bets[raises] max_bets[raises] = investment # Reset the bets and countdown current_bets[raises, player_idx] = np.minimum(investment, self.INITIAL_CAPITAL - prev_round_investment[raises, player_idx]) round_countdown[raises] = self.N_PLAYERS last_raiser[raises] = player_idx ########### # FOLDING # ########### folded[np.where(np.logical_and(round_countdown > 0, actions == constants.FOLD))[0], player_idx] = 1 round_countdown[running_games] -= 1 #TODO: if all folded stops game, improves performance but breaks tests # test is not broken, is there another reason? round_countdown[folded.sum(axis=1) == self.N_PLAYERS-1] = 0 if np.max(round_countdown[running_games]) <= 0: return current_bets, (round, current_bets, min_raise, prev_round_investment, folded, last_raiser) def evaluate_hands(self, community_cards, hole_cards, contenders): evaluator = treys.Evaluator() # 7463 = 1 lower than the lowest score a hand can have (scores are descending to 1) results = np.full((self.BATCH_SIZE, self.N_PLAYERS), 7463, dtype=int) for game_idx,community in enumerate(community_cards): for player_idx,hole in enumerate(hole_cards[game_idx]): if contenders[game_idx, player_idx]: results[game_idx, player_idx] = evaluator.evaluate(community.tolist(), hole.tolist()) return results
2.390625
2
cms/admin/views.py
miloprice/django-cms
0
2423
# -*- coding: utf-8 -*- from cms.models import Page, Title, CMSPlugin, Placeholder from cms.utils import get_language_from_request from django.http import Http404 from django.shortcuts import get_object_or_404 def revert_plugins(request, version_id, obj): from reversion.models import Version version = get_object_or_404(Version, pk=version_id) revs = [related_version.object_version for related_version in version.revision.version_set.all()] cms_plugin_list = [] placeholders = {} plugin_list = [] titles = [] others = [] page = obj lang = get_language_from_request(request) for rev in revs: obj = rev.object if obj.__class__ == Placeholder: placeholders[obj.pk] = obj if obj.__class__ == CMSPlugin: cms_plugin_list.append(obj) elif hasattr(obj, 'cmsplugin_ptr_id'): plugin_list.append(obj) elif obj.__class__ == Page: pass #page = obj #Page.objects.get(pk=obj.pk) elif obj.__class__ == Title: titles.append(obj) else: others.append(rev) if not page.has_change_permission(request): raise Http404 current_plugins = list(CMSPlugin.objects.filter(placeholder__page=page)) for pk, placeholder in placeholders.items(): # admin has already created the placeholders/ get them instead try: placeholders[pk] = page.placeholders.get(slot=placeholder.slot) except Placeholder.DoesNotExist: placeholders[pk].save() page.placeholders.add(placeholders[pk]) for plugin in cms_plugin_list: # connect plugins to the correct placeholder plugin.placeholder = placeholders[plugin.placeholder_id] plugin.save(no_signals=True) for plugin in cms_plugin_list: plugin.save() for p in plugin_list: if int(p.cmsplugin_ptr_id) == int(plugin.pk): plugin.set_base_attr(p) p.save() for old in current_plugins: if old.pk == plugin.pk: plugin.save() current_plugins.remove(old) for title in titles: title.page = page try: title.save() except: title.pk = Title.objects.get(page=page, language=title.language).pk title.save() for other in others: other.object.save() for plugin in current_plugins: plugin.delete()
1.953125
2
delete.py
lvwuyunlifan/crop
0
2424
<reponame>lvwuyunlifan/crop import os from PIL import Image, ImageFilter import matplotlib.pyplot as plt import matplotlib.image as mpimg # import seaborn as sns import pandas as pd import numpy as np import random train_path = './AgriculturalDisease_trainingset/' valid_path = './AgriculturalDisease_validationset/' def genImage(gpath, datatype): if datatype == 'train': gen_number = 0 # 统计生成的图片数量 if not os.path.exists(gpath+'delete'): os.makedirs(gpath+'delete') label = pd.read_csv(gpath + 'label.csv') label_gen_dict = {'img_path':[], 'label':[]} # 生成图片label for i in range(61): li = label[label['label'] == i] imagenum = li['label'].count() print('第%d个,总共有有%d个图片'%(i, imagenum)) imagelist = np.array(li['img_path']).tolist() img_path_gen, label_gen = [], [] # for imagefile in imagelist: for aa in range(len(imagelist)): if aa <= 40: print(aa) path, imagename = os.path.split(imagelist[aa]) im = Image.open(imagelist[aa]) im = im.convert('RGB') im_detail = im.transpose(Image.ROTATE_180) # im_detail = im.filter(ImageFilter.DETAIL) # 细节增强 img_path_gen.append(gpath + 'delete/' +'idetail_'+imagename) label_gen.extend([int(i)]) im_detail.save(gpath + 'delete/' +'idetail_'+imagename) gen_number += 1 label_dict = {'img_path':img_path_gen, 'label':label_gen} label_gen_dict['img_path'].extend(img_path_gen) label_gen_dict['label'].extend(label_gen) label_gen_pd = pd.DataFrame(label_dict) # label = label.append(label_gen_pd) # 将生成的图片label加入原先的label # label['label'] = label[['label']].astype('int64') # 转化为int64 # print(label) label_gen_p = pd.DataFrame(label_gen_dict) label_gen_p.to_csv(gpath + 'label_delete.csv', index=False) # label_gen_p = pd.DataFrame(label_gen_dict) # label_gen_p.to_csv(gpath + 'label_gen.csv', index=False) print('训练集总共生成%d个图片'%gen_number) if datatype == 'valid': gen_number = 0 if not os.path.exists(gpath+'delete'): os.makedirs(gpath+'delete') label = pd.read_csv(gpath + 'label.csv') label_gen_dict = {'img_path':[], 'label':[]} for i in range(61): li = label[label['label'] == i] imagenum = li['label'].count() print('第%d个,总共有有%d个图片'%(i, imagenum)) imagelist = np.array(li['img_path']).tolist() img_path_gen, label_gen = [], [] # for imagefile in imagelist: for aa in range(len(imagelist)): if aa <= 20: print(aa) path, imagename = os.path.split(imagelist[aa]) im = Image.open(imagelist[aa]) im = im.convert('RGB') im_detail = im.transpose(Image.ROTATE_180) #im_detail = im.filter(ImageFilter.DETAIL) # 细节增强 img_path_gen.append(gpath + 'delete/' + 'idetail_' + imagename) label_gen.extend([int(i)]) im_detail.save(gpath + 'delete/' + 'idetail_' + imagename) gen_number += 1 label_dict = {'img_path': img_path_gen, 'label': label_gen} label_gen_dict['img_path'].extend(img_path_gen) label_gen_dict['label'].extend(label_gen) label_gen_pd = pd.DataFrame(label_dict) # label = label.append(label_gen_pd) # 将生成的图片label加入原先的label # label['label'] = label[['label']].astype('int64') # 转化为int64 # print(label) label_gen_p = pd.DataFrame(label_gen_dict) label_gen_p.to_csv(gpath + 'label_delete.csv', index=False) print('验证集总共生成%d个图片'%gen_number) if __name__ == '__main__': genImage(train_path, 'train') genImage(valid_path, 'valid')
2.796875
3
数据分析/matplotlib/03.demo.py
likedeke/python-spider-study
1
2425
<gh_stars>1-10 # - - - - - - - - - - - # @author like # @since 2021-02-23 11:08 # @email <EMAIL> # 十点到十二点的气温变化 from matplotlib import pyplot as plt from matplotlib import rc from matplotlib import font_manager import random x = range(0, 120) y = [random.randint(20, 35) for i in range(120)] plt.figure(figsize=(20, 8), dpi=80) plt.plot(x, y) # 中文字体 chFont = font_manager.FontProperties(family="SimHei") # SimHei # chFont = font_manager.FontProperties(fname="C:/Windows/Fonts/SIMHEI.TTF") # 刻度相关设置 step = 10 xLabels = ["10点,{}分".format(i) for i in range(60)] xLabels += ["11点,{}分".format(i) for i in range(60)] plt.xticks(list(x)[::step], xLabels[::step], rotation=25, fontProperties=chFont) # 添加描述信息 plt.xlabel("时间", fontProperties=chFont) plt.ylabel("温度 单位(℃)", fontProperties=chFont) plt.title("10点到12点每分钟的气温变化", fontProperties=chFont) plt.show()
2.921875
3
testing/vcs/test_vcs_isoline_labels.py
xylar/cdat
62
2426
import os, sys, cdms2, vcs, vcs.testing.regression as regression dataset = cdms2.open(os.path.join(vcs.sample_data,"clt.nc")) data = dataset("clt") canvas = regression.init() isoline = canvas.createisoline() isoline.label="y" texts=[] colors = [] for i in range(10): text = canvas.createtext() text.color = 50 + 12 * i text.height = 12 colors.append(100 + 12 * i) if i%2 == 0: texts.append(text.name) else: texts.append(text) isoline.text = texts # First test using isoline.text[...].color canvas.plot(data, isoline, bg=1) baseline = os.path.splitext(sys.argv[1]) baselineImage = "%s%s"%baseline ret = regression.run_wo_terminate(canvas, "test_vcs_isoline_labels.png", baselineImage) # Now set isoline.linecolors and test again. canvas.clear() isoline.linecolors = colors canvas.plot(data, isoline, bg=1) baselineImage = "%s%d%s"%(baseline[0], 2, baseline[1]) testImage = os.path.abspath("test_vcs_isoline_labels2.png") ret += regression.run_wo_terminate(canvas, testImage, baselineImage) # Now set isoline.textcolors and test again. canvas.clear() isoline.textcolors = colors canvas.plot(data, isoline, bg=1) baselineImage = "%s%d%s"%(baseline[0], 3, baseline[1]) testImage = os.path.abspath("test_vcs_isoline_labels3.png") ret += regression.run_wo_terminate(canvas, testImage, baselineImage) sys.exit(ret)
2.21875
2
src/Python_version/ICE_py36.py
ds-utilities/ICE
2
2427
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Mar 5 05:47:03 2018 @author: zg """ import numpy as np #from scipy import io import scipy.io #import pickle from sklearn.model_selection import StratifiedKFold #import sklearn from scipy.sparse import spdiags from scipy.spatial import distance #import matplotlib.pyplot as plt from sklearn.ensemble import BaggingClassifier from sklearn import svm #from sklearn import metrics from sklearn.metrics import roc_auc_score from sklearn import tree import copy import numpy.matlib from sklearn.exceptions import NotFittedError #import FuzzyRwrBagging as frb #from joblib import Parallel, delayed #import multiprocessing def RWR(A, nSteps, laziness, p0 = None): ''' % the random walk algorithm. % A is the input net matrix, with the diag to be 0. % nSteps: how many steps to walk % laziness: the probablity to go back. % p0: the initial probability. usually it is a zero matrix with the diag to % be 1. % % for example, A could be: % A = [0,2,2,0,0,0,0;... % 2,0,1,1,0,0,0;... % 2,1,0,0,1,0,0;... % 0,1,0,0,0,1,1;... % 0,0,1,0,0,0,0;... % 0,0,0,1,0,0,1;... % 0,0,0,1,0,1,0] % % if nSteps is 1000 and laziness is 0.3, p0 is default, the result is: % [0.449, 0.207, 0.220, 0.064, 0.154, 0.034, 0.034;... % 0.207, 0.425, 0.167, 0.132, 0.117, 0.071, 0.071;... % 0.220, 0.167, 0.463, 0.052, 0.324, 0.028, 0.028;... % 0.048, 0.099, 0.039, 0.431, 0.027, 0.232, 0.232;... % 0.038, 0.029, 0.081, 0.009, 0.356, 0.004, 0.004;... % 0.017, 0.035, 0.014, 0.154, 0.009, 0.425, 0.203;... % 0.017, 0.035, 0.014, 0.154, 0.009, 0.203, 0.425] % % Each column represents the propability for each node. each element in the % column means the probability to go to that node. % This algorithm will converge. For example, for the above matrix, nSteps = % 100, 1000 or 10000, will give the same result. ''' n = len(A) if p0 == None: p0 = np.eye(n) ''' % In the example above, spdiags(sum(A)'.^(-1), 0, n, n) will be % 0.2500 0 0 0 0 0 0 % 0 0.2500 0 0 0 0 0 % 0 0 0.2500 0 0 0 0 % 0 0 0 0.3333 0 0 0 % 0 0 0 0 1.0000 0 0 % 0 0 0 0 0 0.5000 0 % 0 0 0 0 0 0 0.5000 % W will be: % 0 0.5000 0.5000 0 0 0 0 % 0.5000 0 0.2500 0.3333 0 0 0 % 0.5000 0.2500 0 0 1.0000 0 0 % 0 0.2500 0 0 0 0.5000 0.5000 % 0 0 0.2500 0 0 0 0 % 0 0 0 0.3333 0 0 0.5000 % 0 0 0 0.3333 0 0.5000 0 ''' #W = A * spdiags(sum(A)'.^(-1), 0, n, n); #W = spdiags(np.power(sum(np.float64(A)) , -1).T , 0, n, n).toarray() W = A.dot( spdiags(np.power(sum(np.float64(A)) , -1)[np.newaxis], \ 0, n, n).toarray() ) p = p0 pl2norm = np.inf unchanged = 0 for i in range(1, nSteps+1): if i % 100 == 0: print(' done rwr ' + str(i-1) ) pnew = (1-laziness) * W.dot(p) + laziness * p0 l2norm = max(np.sqrt(sum((pnew - p) ** 2) ) ) p = pnew if l2norm < np.finfo(float).eps: break else: if l2norm == pl2norm: unchanged = unchanged +1 if unchanged > 10: break else: unchanged = 0 pl2norm = l2norm return p # test RWR() ''' A = np.array([[0,2,2,0,0,0,0],\ [2,0,1,1,0,0,0],\ [2,1,0,0,1,0,0],\ [0,1,0,0,0,1,1],\ [0,0,1,0,0,0,0],\ [0,0,0,1,0,0,1],\ [0,0,0,1,0,1,0]]) nSteps = 1000 lazi = 0.3 RWR(A, nSteps, lazi, None) ''' # test #dst = distance.euclidean(A) # corrent, the same as in Matlab def f_sim_2_aRankNet(sim, k=3): ''' % Convert the similarity matrix to a network graph where each node % has k edges to other nodes (aRank). ''' # delete the diagnal values. # sim = sim-diag(diag(sim) ); np.fill_diagonal(sim, 0) # [~, I] = sort(sim-diag(diag(sim) ) ); I = np.argsort(sim, kind='mergesort') + 1 # [~, I2] = sort(I); I2 = (np.argsort(I, kind='mergesort').T + 1).T # for every column, just keep the top k edges. #aRankNet = (I2 >length(sim)-k); aRankNet = I2 > (len(sim) - k) # make it a diagonal matrix # aRankNet = max(aRankNet, aRankNet'); aRankNet = np.logical_or(aRankNet, aRankNet.T) # remove the diagonal 1s. # aRankNet = aRankNet-diag(diag(aRankNet) ); np.fill_diagonal(aRankNet, False) return aRankNet # test #sim = np.array([[0, 0.5566, 0.6448, 0.3289], \ # [0.5566, 0, -0.0842, -0.0170], \ # [0.6448, -0.0842, 0, 0.8405], \ # [0.3289, -0.0170, 0.8405, 0]]) # #f_sim_2_aRankNet(sim,1) #f_sim_2_aRankNet(sim,2) #f_sim_2_aRankNet(sim,3) # #array([[False, True, True, False], # [ True, False, False, False], # [ True, False, False, True], # [False, False, True, False]]) # #array([[False, True, True, True], # [ True, False, False, False], # [ True, False, False, True], # [ True, False, True, False]]) # #array([[False, True, True, True], # [ True, False, False, True], # [ True, False, False, True], # [ True, True, True, False]]) def f_find_centers_rwMat(rw_mat, k): ''' % on the rw_mat matrix, find some nodes as the centroids for soft % clustering. If we just random pickup some nodes as centroids, that is % not good for fuzzy clusters. % k is the number of centroids. ''' ixs = [] # 1. find the most connected center node as the first centroid. a = np.sum(rw_mat, axis=1) # axis=1 for rows; 0 for col # % most connected node. ix = np.argmax(a) ixs.append(ix) # % 2. iteratively find the rest nodes for i in range(1, k): tmp = rw_mat[:, ixs] b = np.sum(tmp, axis=1) b[ixs] = np.inf # % find the farthest node ix = np.argmin(b) ixs.append(ix) return ixs # test #tmp = f_find_centers_rwMat(rw_mat, 10) def getCutoff(rw_mat, avgNeighborsSize): tmp = rw_mat.flatten('F') a = np.flip(np.sort(tmp), 0) len1 = len(rw_mat) #cutoffs = [] all_neibs = int( avgNeighborsSize * len1 ) print( all_neibs) ct = a[all_neibs] return ct #test #>>> a = np.array([[1,2], [3,4]]) #>>> a.flatten() #array([1, 2, 3, 4]) #>>> a.flatten('F') #array([1, 3, 2, 4]) ''' a = np.array( range(0,100) ) b = np.matlib.repmat(a, 100, 1) ct = getCutoff(b, 70) ''' def f_len_of_each_ele(c1): #% Assume c1 is a 1-dimension cell array, and each element is a 1d double #% array. This function counts the length of each double array. lens = np.zeros(len(c1)) for i in range(0, len(c1)): lens[i] = len(c1[i]) return lens def f_eu_dist(X): ''' calculate the euclidean distance between instances ''' sim = np.zeros(( len(X), len(X) )) for i in range(0, len(X)): for j in range(i+1, len(X)): tmp = distance.euclidean(X[i], X[j]) sim[i][j] = tmp sim[j][i] = tmp sim = -sim np.fill_diagonal(sim, 0) return sim #test #sim = f_eu_dist(X) def f_eu_dist2(X1, X2): ''' calculate the euclidean distance between instances from two datasets ''' sim = np.zeros(( len(X1), len(X2) )) for i in range(0, len(X1) ): for j in range(0, len(X2) ): tmp = distance.euclidean(X1[i], X2[j]) sim[i][j] = tmp sim = -sim return sim #test #sim = f_eu_dist2(X_tr, X_te) def f_fuzzy_rwr_clusters(X, k=100, each_clus_sz=None): # X: data # k: number of clusters ''' The return variable clus stores the instance indices for each cluster. However, this data structure is not easy to find for a instance, which are the clusters it belongs to, thus we also need to convert clus to a true-false matrix. ''' if each_clus_sz == None: # on average, how many clusters does one inst belongs to. #overlap_factor = 2; # the estimated size of each cluster. default is half the number of # instances. each_clus_sz=len(X)/3 print('RWR-based fuzzy clustering starts...') print(' NO. clusters = '+str(k)+'; avg. cluster size = '+str(each_clus_sz) ) # sim = squareform(pdist(X)); # sim = -sim; sim = np.zeros((len(X), len(X) ) ) for i in range(0, len(X)): for j in range(i+1, len(X)): tmp = distance.euclidean(X[i], X[j]) sim[i][j] = tmp sim[j][i] = tmp sim = -sim print(' done calculating the Euclidean distance matrix') # --------------------------------------------------------------- aRank_k_neighbors = np.ceil(np.log10(len(sim)) ) ori_graph = f_sim_2_aRankNet(sim, aRank_k_neighbors) print(' done calculating the A-rank KNN graph') # % -------- RWR -------- nSteps = 1000 lazi = 0.3 rw = RWR(ori_graph, nSteps, lazi) # remove probability of returning start node np.fill_diagonal(rw, 0) rw_mat = rw print(' done RWR') # --------------------------------------------------------------- ixs_centers = f_find_centers_rwMat(rw_mat, k) ct = getCutoff(rw_mat, each_clus_sz) rw_net = rw_mat > ct # % set the diagnal to 1 np.fill_diagonal(rw_net, True) clus = [] for i in range(0, k): tmp = np.argwhere(rw_net[:, ixs_centers[i] ] ).flatten() clus.append(tmp) # --------------------------------------------------------------- # % sort the clusters lens = f_len_of_each_ele(clus) ix = np.argsort(lens)[::-1] clus_ordered = [clus[i] for i in ix] print(' center inst. index of each cluster: ') ixs_centers = np.array(ixs_centers) print(ixs_centers[ix]) print(' size of each cluster: ') print(lens[ix]) print(' done RWR clustering') return clus_ordered #test #clus = f_fuzzy_rwr_clusters(X, 100) # pass def f_clus_to_tfs(clus, n_inst): #% convert the cluster information from cell array to mat. But for each #% instance, the rank of clusters information will be lost - you won't know #% what is the top 1/2/3 cluster it belongs to. #% #% clus e.g: #% 1x5 cell #% 1x195 double 1x193 double 1x169 double 1x161 double 1x62 double #% #% tfs e.g: #% 295x5 double #% 1 0 0 0 0 #% 1 1 1 1 0 #% 1 1 1 0 0 #% 1 1 0 0 0 #% 1 1 1 1 0 #% ... #% 1 1 1 1 1 #% 1 0 0 0 0 #% 1 1 1 0 0 tfs = np.zeros((n_inst, len(clus)), dtype=bool) for i in range(0, len(clus)): tfs[clus[i], i] = True return tfs # test #tfs = f_clus_to_tfs(clus, len(X)) # pass def f_tfs_2_instClus(tfs): ''' convert the boolean table representation of clustering result to for each instance, what clusters it belongs to. ''' inst_clus = [] for i in range(0, len(tfs)): row = list( np.where(tfs[i, :] ) [0] ) inst_clus.append(row) return inst_clus # test #inst_clus = f_tfs_2_instClus(tfs) #def f_bg_svm_tr_te(X_tr, y_tr, X_te, y_te): # #bagging = BaggingClassifier(base_estimator = svm.LinearSVC(), \ # bagging = BaggingClassifier(base_estimator = tree.DecisionTreeClassifier(), \ # random_state=None, n_estimators = 100 ) # bagging.fit(X_tr, y_tr) # # y_pred = bagging.predict_proba(X_te) # y_pred = y_pred[:, 1].flatten() # # auc = roc_auc_score(y_te.flatten(), y_pred) # # return [y_pred, auc] # test ''' X_tr = X y_tr = y X_te = X y_te = y [y_pred, auc] = f_bg_svm_tr_te(X_tr, y_tr, X_te, y_te) ''' #def f_bg_tr_te(X_tr, y_tr, X_te, y_te, BaseBagging): # ''' # corresponds to f_weka_bg_svm_tr_te() in Matlab version # ''' # #bagging = BaggingClassifier(base_estimator = svm.LinearSVC(), \ # bagging = BaggingClassifier(BaseBagging, \ # random_state=None, n_estimators = 100 ) # bagging.fit(X_tr, y_tr) # # y_pred = bagging.predict_proba(X_te) # y_pred = y_pred[:, 1].flatten() # # auc = roc_auc_score(y_te.flatten(), y_pred) # # return [y_pred, auc] def f_tr(X_tr, y_tr, model): model_inner = copy.deepcopy(model) model_inner.fit(X_tr, y_tr) return model_inner def f_te(X_te, model): y_pred = model.predict_proba(X_te) y_pred = y_pred[:, 1].flatten() return y_pred def f_tr_te(X_tr, y_tr, X_te, model): ''' corresponds to f_weka_bg_svm_tr_te() in Matlab version ''' #bagging = BaggingClassifier(base_estimator = svm.LinearSVC(), \ #bagging = BaggingClassifier(BaseBagging, \ # random_state=None, n_estimators = 100 ) model_inner = copy.deepcopy(model) model_inner.fit(X_tr, y_tr) y_pred = model_inner.predict_proba(X_te) y_pred = y_pred[:, 1].flatten() #auc = roc_auc_score(y_te.flatten(), y_pred) return y_pred def f_k_fo(X, y, model, k_fold=10): ''' corresponds to f_weka_bg_svm_arff_k_fo_3_parfor() in Matlab version ''' y = y.flatten() y_pred = np.zeros(y.size) skf = StratifiedKFold(n_splits=k_fold, random_state=None, shuffle=True) skf.get_n_splits(X, y) for train_index, test_index in skf.split(X, y): #print("TRAIN: ", train_index, " TEST: ", test_index) X_tr, X_te = X[train_index], X[test_index] #y_tr, y_te = y[train_index], y[test_index] y_tr = y[train_index] if np.unique(y_tr).size == 1: y_pred_fo = np.zeros( len(test_index) ) #print len(X_te) #print len(test_index) #print y_pred_fo y_pred_fo.fill(np.unique(y_tr)[0] ) #print y_pred_fo else: y_pred_fo = f_tr_te(X_tr, y_tr, X_te, model) y_pred[test_index] = y_pred_fo #auc = roc_auc_score(y.flatten(), y_pred) return y_pred # test #pa = '/Volumes/Macintosh_HD/Users/zg/bio/3_ensembF/3_scripts/2017_4_4/' ##X = scipy.io.loadmat(pa+'/data/data_all_pickle/30/data.mat')['X'] # 30:breast cancer ##y = scipy.io.loadmat(pa+'/data/data_all_pickle/30/data.mat')['y'] #X = scipy.io.loadmat(pa+'/data/data_all_pickle/11/data.mat')['X'] # 11:mesothelioma #y = scipy.io.loadmat(pa+'/data/data_all_pickle/11/data.mat')['y'] # #model = BaggingClassifier(base_estimator = tree.DecisionTreeClassifier(), \ # random_state=None, n_estimators = 100 ) #y_pred = f_k_fo(X, y, model, k_fold=10) # #print roc_auc_score(y.flatten(), y_pred) # the easy dataset mesothelioma get 1.0 CV result. # breast cancer get 0.599 # all results are correct. def f_quantileNorm(templete, target): ''' Templete is the standard, change the target to the values in the templete. Target may have a very different range than the templete. templete and target should be 1d n by 1 array. f_my_quantileNorm() ''' ix_target = np.argsort(target, kind='mergesort') ix_templete = np.argsort(templete, kind='mergesort') target[ix_target] = templete[ix_templete] new = target return new # test #templete = X[:, 0] #target = X[:, 1] #new = f_quantileNorm(templete, target) #def f_bg_k_fo_3(X, y, k_fold=10): # ''' # corresponds to f_weka_bgSvm_arff_k_fo_3_parfor() in Matlab version # corresponds to f_k_fo() # ''' # y_pred = np.zeros((y.size, 1)) # # skf = StratifiedKFold(n_splits=k_fold) # skf.get_n_splits(X, y) # # for train_index, test_index in skf.split(X, y): # #print("TRAIN:", train_index, "TEST:", test_index) # X_tr, X_te = X[train_index], X[test_index] # y_tr, y_te = y[train_index], y[test_index] def f_use_each_clus_forWhole(X, y, clus, y_pred_whole, model, fo_inner): ''' % using each cluster data to predict the whole instances, while self % prediction using 10-fold CV. corresponds to f_use_each_clus_forWhole_bg_svm() in Matlab version ''' n_clusters = len(clus) y_pred_multi = np.zeros((y.size, n_clusters) ) models = [] for j in range(0, n_clusters): # for each cluster Xj = X[clus[j].flatten(), :] yj = y[clus[j].flatten() ] model_a_clust = copy.deepcopy(model) print(' Cluster '+str(j)+' started...') #if len(yj) > 10: if len(yj) > 15 and np.unique(yj).size != 1: # ------------------ for self ------------------ #if np.unique(yj).size == 1: # y_pred = np.zeros(yj.size) # y_pred.fill(np.unique(yj)[0]) #else: try: y_pred = f_k_fo(Xj, yj, model, fo_inner) # quantileNorm templete = y_pred_whole[clus[j].flatten()] target = y_pred y_pred = f_quantileNorm(templete, target) # copy the normed prediction to the whole data. y_pred_multi[clus[j].flatten(), j] = y_pred print(' c-'+str(j)+' done predicting local instances') # ------------------ for other ----------------- ix_other = set(range(0, y.size)) - set(clus[j].flatten()) ix_other = list(ix_other) #print ix_other X_other = X[ix_other , :] #y_other = y[ix_other ] # predict #y_pred = f_tr_te(Xj, yj, X_other, model) #if np.unique(yj).size != 1: model_a_clust.fit(Xj, yj) y_pred = model_a_clust.predict_proba(X_other) y_pred = y_pred[:, 1].flatten() # quantileNorm templete = y_pred_whole[ix_other] target = y_pred y_pred = f_quantileNorm(templete, target) #else: # y_pred = np.zeros(X_other.size) # y_pred.fill(np.unique(yj)[0]) # copy to the whole array y_pred_multi[ix_other, j] = y_pred print(' c-'+str(j)+' done predicting remote instances') except ValueError as e: print(e) print(' skip this cluster') y_pred = np.zeros(y.size) y_pred.fill(np.nan) y_pred_multi[:, j] = y_pred else: if len(yj) <= 15: print (' '+str(len(yj))+' insts in cluster, <= 15, skip...') y_pred = np.zeros(y.size) y_pred.fill(np.nan) y_pred_multi[:, j] = y_pred if np.unique(yj).size == 1: print (' warning, #unique class label(s) == 1') y_pred = np.zeros(y.size) y_pred.fill(np.unique(yj)[0]) y_pred_multi[:, j] = y_pred model_a_clust = np.unique(yj)[0] models.append(model_a_clust) return [y_pred_multi, models] # test #[y_pred_multi, models] = f_use_each_clus_forWhole(X, y, clus, y_pred_whole, model) #def f_dec_tab_4_bg_svm(X, y, clus): # ''' # Calculate the decision table # % This version changed from the cluster-cluster dec_mat to instance-cluster # % dec_mat. This solution will avoid the case that if one cluster decision # % is wrong leading entrie cluster prediction is wrong, which is the reason # % of instability. However, we cannot use a systematic evaluation criteria # % such as AUC, I will try using the predicted prob at first. # # % This version 3 adds the support for fuzzy clustering - one instance may # % belongs to more than one cluster. # % This updated version also outputs the predicted values of y. # % support more than 3 clusters # % normalization take place in y_pred_self and y_pred_other, thus do not # % need normalization when predict y_pred_ICE. # % ixsp is another cluster form. # # corresponds to f_dec_tab_4_bg_svm() in Matlab version # ''' # #n_clusters = len(clus) # ## dec_mat stores the prediction error. # #pred_mat=np.zeros((y.size, n_clusters+1)) #the extra col is for whole pred # # # ## k_fold of inner cross-validation # #fo_inner = 10 # # --------------------------- WHOLE ------------------------- # # # --------------------------- SELF ------------------------- def f_err_mat(X, y, clus, model): ''' Calculate the decision table corresponds to f_dec_tab_4_bg_svm() in Matlab version ''' n_clusters = len(clus) # err_mat stores the prediction error. pred_prob_mat=np.zeros((y.size, n_clusters+1)) #the extra col is for whole pred # col 0 to col n_clusters-1 store the predictions by each cluster # the last col stores the pred by whole data #models = [] # k_fold of inner cross-validation fo_inner = 5 # --------------------------- WHOLE ------------------------- # Predict each cluster using the whole data. model_whole = copy.deepcopy(model) y_pred_whole = f_k_fo(X, y, model_whole, fo_inner) model_whole.fit(X, y) # fit a model using all data rather than only a fold pred_prob_mat[:, n_clusters] = y_pred_whole print (' Done evaluation using whole instances') print (' Start to evaluate each cluster ') # --------------------------- SELF ------------------------- # predict the whole instances using each cluster data, while self # prediction using 10-fold CV. [y_pred_multi, models] = f_use_each_clus_forWhole(X, y, clus, \ y_pred_whole, model, fo_inner) print (' Done evaluation using each cluster') models.append(model_whole) pred_prob_mat[:, 0:n_clusters] = y_pred_multi # make a tmp array a stores y tmp = np.matlib.repmat(y.reshape((y.size, 1)), 1, n_clusters+1) err_mat = abs(pred_prob_mat - tmp ) print (' Done calculating error table and fitting ICE models') return [err_mat, models] """ #mat = scipy.io.loadmat('/Volumes/Macintosh_HD/Users/zg/bio/3_ensembF/'+\ # '3_scripts/2017_4_4/data/names.mat')['names'] #mat = io.loadmat('/Users/zg/Desktop/a.mat')['names'] #test pa = '/Volumes/Macintosh_HD/Users/zg/bio/3_ensembF/3_scripts/2017_4_4/' X = scipy.io.loadmat(pa+'/data/data_all_pickle/30/data.mat')['X'] # 30:breast cancer y = scipy.io.loadmat(pa+'/data/data_all_pickle/30/data.mat')['y'] #X = scipy.io.loadmat(pa+'/data/data_all_pickle/11/data.mat')['X'] # 11:mesothelioma #y = scipy.io.loadmat(pa+'/data/data_all_pickle/11/data.mat')['y'] n_clus = 3 clus = f_fuzzy_rwr_clusters(X, n_clus) tfs = f_clus_to_tfs(clus, len(X)) y = y.astype(float) #model = BaggingClassifier(base_estimator = tree.DecisionTreeClassifier(), \ #model = BaggingClassifier(base_estimator = svm.LinearSVR(), \ #model = BaggingClassifier(base_estimator = svm.LinearSVC(), \ model = BaggingClassifier(base_estimator = svm.SVC(kernel='linear'), \ random_state=None, n_estimators = 100 ) [err_mat, models] = f_err_mat(X, y, clus, model) """ def f_err_2_decMat(err_mat, tfs, adv_whole=0.4, adv_self=0.5): ''' Convert the err table to decision table. ''' dec_mat = np.zeros(( len(err_mat), err_mat[0].size-1 ), dtype=bool) # dec_ixs: for each instance, which clusters should be used. dec_ixs = [] inst_clus = f_tfs_2_instClus(tfs) for i in range(0, len(err_mat)): # Matlab code: #dec_row = dec_mat(cur_nb_ix, :); #dec_row(:, end ) = dec_row(:, end ) - adv_whole; #dec_row(:, clus_id) = dec_row(:, clus_id) - adv_self; row = np.copy( err_mat[i, :] ) #print row row[-1] = row[-1] - adv_whole inst_i_clus = inst_clus[i] if len(inst_i_clus) > 0: row[inst_i_clus] = row[inst_i_clus] - adv_self #print row ix_good_clus = list( np.where( row < row[-1] ) [0] ) #print ix_good_clus if len(ix_good_clus) > 0: dec_mat[i, ix_good_clus] = True dec_ixs.append(ix_good_clus) else: dec_ixs.append([]) return [dec_mat, dec_ixs] #[dec_mat, dec_ixs] = f_err_2_decMat(err_mat, tfs) def f_ICE_tr_te_all_clus(X_tr, X_te, clus, models, doNorm=True): ''' Use the training data to predict the testing data. Use whole training data to predict Use each cluster of training data to predict the testing data. ''' y_pred_all = np.zeros(( len(X_te), len(clus) + 1 )) # the first col is the prediction using the whole data model_whole = models[-1] y_pred_all[:, 0] = f_te(X_te, model_whole) #y_pred_all[:, 0] = f_tr_te(X_tr, y_tr, X_te, model) #print 'whole model good ' # start from the second col, the result is by each cluster for i in range(0, len(clus)): #Xi = X_tr[clus[i].flatten(), :] #yi = y_tr[clus[i].flatten() ] model_i = models[i] #model_a_clust = copy.deepcopy(model) try: y_pred_te = f_te(X_te, model_i) except : if model_i == 0: y_pred_te = np.zeros(len(X_te)) elif model_i == 1: y_pred_te = np.ones(len(X_te)) else: y_pred_te = np.zeros(len(X_te)) y_pred_te.fill(np.nan) #except NotFittedError as e: # print(repr(e)) # y_pred_te = np.zeros(len(X_te)) # y_pred_te.fill(np.nan) #print 'model '+str(i)+' good ' #y_pred_te = f_tr_te(Xi, yi, X_te, model) if doNorm == True: templete = y_pred_all[:, 0] target = y_pred_te y_pred = f_quantileNorm(templete, target) else: y_pred = y_pred_te y_pred_all[:, i+1] = y_pred return y_pred_all # test #y_pred_all = f_ICE_tr_te_all_clus(X, X, clus, model) def f_ICE_fit(X_tr, y_tr, n_clus, model, w=0.4, s=0.5): ''' ''' # rwr based fuzzy clustering clus = f_fuzzy_rwr_clusters(X_tr, n_clus) #print clus[0] tfs = f_clus_to_tfs(clus, len(X_tr)) # train models and calculate the error-dicision tables y_tr = y_tr.astype(float) #model = BaggingClassifier(base_estimator = svm.SVC(kernel='linear'), \ # random_state=None, n_estimators = 100 ) [err_mat, models] = f_err_mat(X_tr, y_tr, clus, model) [dec_mat, dec_ixs] = f_err_2_decMat(err_mat, tfs, w, s) print (' Done calucating decision table') return [clus, models, dec_ixs] #def_deal_miss_v_1(d): ''' deal with missing values by replacing them by mean. ''' def f_ICE_fit_2(X_tr, y_tr, n_clus, model, w=0.4, s=0.5): ''' This version use the err mat to re-clustering ''' # rwr based fuzzy clustering clus = f_fuzzy_rwr_clusters(X_tr, n_clus) #print clus[0] tfs = f_clus_to_tfs(clus, len(X_tr)) # train models and calculate the error-dicision tables y_tr = y_tr.astype(float) #model = BaggingClassifier(base_estimator = svm.SVC(kernel='linear'), \ # random_state=None, n_estimators = 100 ) [err_mat, models] = f_err_mat(X_tr, y_tr, clus, model) # ******************** re-clustering ******************** n_iter = 2 for i in range(0, n_iter): clus = f_fuzzy_rwr_clusters(err_mat, n_clus) tfs = f_clus_to_tfs(clus, len(X_tr)) [err_mat, models] = f_err_mat(X_tr, y_tr, clus, model) # ******************************************************* [dec_mat, dec_ixs] = f_err_2_decMat(err_mat, tfs, w, s) print (' Done calucating decision table') return [clus, models, dec_ixs] def f_ICE_pred(X_tr, y_tr, X_te, clus, dec_ixs, models,N=5,alpha=1,beta=1): ''' clus and inst_clus contains the same information that clus is the instances ids for each cluster, while inst_clus stores that for each instance, which cluster(s) it belongs to. dec_ixs stores the good cluster(s) for each instance, which may include even a remote cluster. each instance in dec_ixs does not contain the whole set of instances. ''' # the first col is the prediction using the whole data # start from the second col, the result is by each cluster y_pred_all = f_ICE_tr_te_all_clus(X_tr, X_te, clus, models) y_pred_ICE = np.zeros( len(X_te) ) neighbour_mat = f_eu_dist2(X_tr, X_te) # ---------- for each testing instance ---------- #n_partials = np.zeros( len(X_te) ) #n_wholes = np.zeros( len(X_te) ) for j in range(0, len(X_te) ): # for each testing instance # find the top 10 neighbors for each test instance neighbour_col = neighbour_mat[:, j].flatten() ix = np.argsort(neighbour_col ) ix = ix[::-1] ix_top_neighbors = ix[0:N] #print 'testing inst ' + str(j) #print ' ix of top neighbors:' #print ix_top_neighbors # ---------- find all neighbors' picks ---------- clus_ids_to_use = [] nei_labels = [] for cur_nb in range(0, N): # for each neighbour # find each neighbour's pick cur_nb_ix = ix_top_neighbors[cur_nb] clus_id_to_use = list( dec_ixs[cur_nb_ix] ) clus_ids_to_use = clus_ids_to_use + clus_id_to_use # also find neighbor's label. maybe will be used later as KNN pred # instead of using whole to pred. nei_labels = nei_labels + list( y_tr[cur_nb_ix] ) #print ' clus_ids_to_use:' #print clus_ids_to_use # cluster id + 1 to make the ix fit the col id in y_pred_all a = clus_ids_to_use a = list( np.array(a) + 1 ) clus_ids_to_use = a # number of partial models used n_partial = len(clus_ids_to_use) # number of whole models used, based on parameters alpha, beta and N. n_whole = int( round( alpha*n_partial + beta*N ) ) clus_ids_to_use = clus_ids_to_use + [0] * n_whole #print ' clus_ids_to_use:' #print clus_ids_to_use #print nei_labels y_pred_ICE[j] = np.nanmean(y_pred_all[j, clus_ids_to_use]) print ('Done predicting testing instances.') return y_pred_ICE # test # pa = '/Volumes/Macintosh_HD/Users/zg/bio/3_ensembF/3_scripts/2017_4_4/' # pa = '/Users/zg/Dropbox/bio/ICE_2018/' # pa = './' pa = 'C:/Users/zg/Dropbox/bio/ICE_2018/' n_clus = 100 w = 0.4 s = 0.5 N = 5 alpha = 1 beta = 1 k_fold = 10 aucs_ICE = [] aucs_whole = [] # f_res = pa + 'data/res_ICE_bg_svm_1_iter.txt' #f_res = pa + 'data/res_ICE_bg_svm_py.txt' f_res = pa + 'data/res_ICE_SVM_py.txt' f = open(f_res, 'w') #for j in range(1, 50): for j in range(1, 49): try: X = scipy.io.loadmat(pa+'data/data_all/'+str(j)+'/data.mat')['X'] # 30:breast cancer y = scipy.io.loadmat(pa+'data/data_all/'+str(j)+'/data.mat')['y'] #X = scipy.io.loadmat(pa+'/data/data_all_pickle/30/data.mat')['X'] # 30:breast cancer #y = scipy.io.loadmat(pa+'/data/data_all_pickle/30/data.mat')['y'] #X = scipy.io.loadmat(pa+'/data/data_all_pickle/37/data.mat')['X'] # 37:congress #y = scipy.io.loadmat(pa+'/data/data_all_pickle/37/data.mat')['y'] #imgplot = plt.imshow(ori_graph, interpolation='nearest', aspect='auto') #plt.show() #sim = np.corrcoef(X) #np.fill_diagonal(sim, 0) #n_clus = 100 #model = BaggingClassifier(base_estimator = svm.SVC(kernel='linear'), \ # random_state=None, n_estimators = 100 ) model = svm.SVC(kernel='linear', probability = True) skf = StratifiedKFold(n_splits=k_fold) skf.get_n_splits(X, y) y_preds_ICE = np.zeros( y.size ) y_preds_whole = np.zeros( y.size ) fold_i = 1 for train_index, test_index in skf.split(X, y): # print("TRAIN:", train_index, "TEST:", test_index) X_tr, X_te = X[train_index], X[test_index] y_tr, y_te = y[train_index], y[test_index] [clus, models, dec_ixs] = f_ICE_fit(X_tr, y_tr, n_clus, model, w, s) #[clus, models, dec_ixs] = f_ICE_fit_2(X_tr, y_tr, n_clus, model, w, s) y_pred_ICE = f_ICE_pred(X_tr, y_tr, X_te, clus, dec_ixs, models,N,alpha,beta) y_preds_ICE[test_index] = y_pred_ICE y_pred_whole = f_tr_te(X_tr, y_tr, X_te, model) y_preds_whole[test_index] = y_pred_whole print( j) print( 'fold ' + str(fold_i) + ' finished') fold_i = fold_i + 1 auc_ICE = roc_auc_score(y.flatten(), y_preds_ICE.flatten() ) auc_whole = roc_auc_score(y.flatten(), y_preds_whole.flatten() ) print (auc_ICE, auc_whole) aucs_ICE.append(auc_ICE) aucs_whole.append(auc_whole) f.write(str(j) + '\t' + str(auc_ICE) + ' \t ' + str(auc_whole) + '\n') except: continue
2.5
2
xc/common/utils/prjxray_routing_import.py
FireFox317/symbiflow-arch-defs
1
2428
<reponame>FireFox317/symbiflow-arch-defs<filename>xc/common/utils/prjxray_routing_import.py #!/usr/bin/env python3 """ Imports 7-series routing fabric to the rr graph. For ROI configurations, this also connects the synthetic IO tiles to the routing node specified. Rough structure: Add rr_nodes for CHANX and CHANY from the database. IPIN and OPIN rr_nodes should already be present from the input rr_graph. Create a mapping between database graph_nodes and IPIN, OPIN, CHANX and CHANY rr_node ids in the rr_graph. Add rr_edge for each row in the graph_edge table. Import channel XML node from connection database and serialize output to rr_graph XML. """ import argparse import os.path from hilbertcurve.hilbertcurve import HilbertCurve import math import prjxray.db from prjxray.roi import Roi import prjxray.grid as grid from lib.rr_graph import graph2 from lib.rr_graph import tracks from lib.connection_database import get_wire_pkey, get_track_model import lib.rr_graph_capnp.graph2 as capnp_graph2 from prjxray_constant_site_pins import feature_when_routed from prjxray_tile_import import remove_vpr_tile_prefix import simplejson as json from lib import progressbar_utils import datetime import re import functools import pickle import sqlite3 now = datetime.datetime.now HCLK_CK_BUFHCLK_REGEX = re.compile('HCLK_CK_BUFHCLK[0-9]+') CLK_HROW_CK_MUX_REGEX = re.compile('CLK_HROW_CK_MUX_OUT_([LR])([0-9]+)') CASCOUT_REGEX = re.compile('BRAM_CASCOUT_ADDR((?:BWR)|(?:ARD))ADDRU([0-9]+)') CONNECTION_BOX_FILTER = re.compile('([^0-9]+)[0-9]*') BUFG_CLK_IN_REGEX = re.compile('CLK_HROW_CK_IN_[LR][0-9]+') BUFG_CLK_OUT_REGEX = re.compile('CLK_HROW_R_CK_GCLK[0-9]+') CCIO_ACTIVE_REGEX = re.compile('HCLK_CMT_CCIO[0-9]+') HCLK_OUT = re.compile('CLK_HROW_CK_HCLK_OUT_([LR])([0-9]+)') IOI_OCLK = re.compile('IOI_OCLK_([01])') # Regex for [LR]IOI_SING tiles IOI_SITE_PIPS = ['OLOGIC', 'ILOGIC', 'IDELAY', 'OCLK_', 'OCLKM_'] IOI_SING_REGEX = re.compile( r'([RL]IOI3_SING_X[0-9]+Y)([0-9]+)(\.IOI_)({})([01])(.*)'.format( "|".join(IOI_SITE_PIPS) ) ) def reduce_connection_box(box): """ Reduce the number of connection boxes by merging some. Examples: >>> reduce_connection_box('IMUX0') 'IMUX' >>> reduce_connection_box('IMUX1') 'IMUX' >>> reduce_connection_box('IMUX10') 'IMUX' >>> reduce_connection_box('BRAM_ADDR') 'IMUX' >>> reduce_connection_box('A_L10') 'A' >>> reduce_connection_box('B') 'B' >>> reduce_connection_box('B_L') 'B' """ box = CONNECTION_BOX_FILTER.match(box).group(1) if 'BRAM_ADDR' in box: box = 'IMUX' if box.endswith('_L'): box = box.replace('_L', '') return box REBUF_NODES = {} REBUF_SOURCES = {} def get_clk_hrow_and_rebuf_tiles_sorted(cur): """ Finds all CLK_HROW_TOP_R, CLK_HROW_BOT_T and REBUF tiles. returns them in a list sorted according to their Y coordinates. """ cur.execute( """ SELECT name FROM phy_tile WHERE name LIKE "CLK_HROW_BOT_R_%" OR name LIKE "CLK_HROW_TOP_R_%" OR name LIKE "CLK_BUFG_REBUF_%" ORDER BY grid_y DESC; """ ) return [t[0] for t in cur.fetchall()] def populate_bufg_rebuf_map(conn): global REBUF_NODES REBUF_NODES = {} global REBUF_SOURCES REBUF_SOURCES = {} rebuf_wire_regexp = re.compile( 'CLK_BUFG_REBUF_R_CK_GCLK([0-9]+)_(BOT|TOP)' ) cur = conn.cursor() # Find CLK_HROW_TOP_R, CLK_HROW_TOP_R and REBUF tiles. rebuf_and_hrow_tiles = get_clk_hrow_and_rebuf_tiles_sorted(cur) # Append None on both ends of the list to simplify the code below. rebuf_and_hrow_tiles = [None] + rebuf_and_hrow_tiles + [None] def maybe_get_clk_hrow(i): """ Returns a name of CLK_HROW tile only if its there on the list. """ tile = rebuf_and_hrow_tiles[i] if tile is not None and tile.startswith("CLK_HROW"): return tile return None # Assign each REBUF tile its above and below CLK_HROW tile. Note that in # VPR coords terms. "above" and "below" mean the opposite... rebuf_to_hrow_map = {} for i, tile_name in enumerate(rebuf_and_hrow_tiles): if tile_name is not None and tile_name.startswith("CLK_BUFG_REBUF"): rebuf_to_hrow_map[tile_name] = { "above": maybe_get_clk_hrow(i - 1), "below": maybe_get_clk_hrow(i + 1), } # Find nodes touching rebuf wires. cur.execute( """ WITH rebuf_wires(wire_in_tile_pkey) AS ( SELECT pkey FROM wire_in_tile WHERE name LIKE "CLK_BUFG_REBUF_R_CK_GCLK%_BOT" OR name LIKE "CLK_BUFG_REBUF_R_CK_GCLK%_TOP" ), rebuf_nodes(node_pkey) AS ( SELECT DISTINCT node_pkey FROM wire WHERE wire_in_tile_pkey IN (SELECT wire_in_tile_pkey FROM rebuf_wires) ) SELECT rebuf_nodes.node_pkey, phy_tile.name, wire_in_tile.name FROM rebuf_nodes INNER JOIN wire ON wire.node_pkey = rebuf_nodes.node_pkey INNER JOIN wire_in_tile ON wire_in_tile.pkey = wire.wire_in_tile_pkey INNER JOIN phy_tile ON phy_tile.pkey = wire.phy_tile_pkey WHERE wire.wire_in_tile_pkey IN (SELECT wire_in_tile_pkey FROM rebuf_wires) ORDER BY rebuf_nodes.node_pkey;""" ) for node_pkey, rebuf_tile, rebuf_wire_name in cur: if node_pkey not in REBUF_NODES: REBUF_NODES[node_pkey] = [] m = rebuf_wire_regexp.fullmatch(rebuf_wire_name) if m.group(2) == 'TOP': REBUF_NODES[node_pkey].append( '{}.GCLK{}_ENABLE_BELOW'.format(rebuf_tile, m.group(1)) ) hrow_tile = rebuf_to_hrow_map[rebuf_tile]["below"] if hrow_tile is not None: REBUF_NODES[node_pkey].append( "{}.CLK_HROW_R_CK_GCLK{}_ACTIVE".format( hrow_tile, m.group(1) ) ) elif m.group(2) == 'BOT': REBUF_NODES[node_pkey].append( '{}.GCLK{}_ENABLE_ABOVE'.format(rebuf_tile, m.group(1)) ) hrow_tile = rebuf_to_hrow_map[rebuf_tile]["above"] if hrow_tile is not None: REBUF_NODES[node_pkey].append( "{}.CLK_HROW_R_CK_GCLK{}_ACTIVE".format( hrow_tile, m.group(1) ) ) else: assert False, (rebuf_tile, rebuf_wire_name) for node_pkey in REBUF_NODES: cur.execute( """ SELECT phy_tile.name, wire_in_tile.name FROM wire INNER JOIN phy_tile ON phy_tile.pkey = wire.phy_tile_pkey INNER JOIN wire_in_tile ON wire_in_tile.pkey = wire.wire_in_tile_pkey WHERE wire.node_pkey = ?;""", (node_pkey, ) ) for tile, wire_name in cur: REBUF_SOURCES[(tile, wire_name)] = node_pkey HCLK_CMT_TILES = {} def populate_hclk_cmt_tiles(db): global HCLK_CMT_TILES HCLK_CMT_TILES = {} grid = db.grid() _, x_max, _, _ = grid.dims() for tile in grid.tiles(): gridinfo = grid.gridinfo_at_tilename(tile) if gridinfo.tile_type not in ['CLK_HROW_BOT_R', 'CLK_HROW_TOP_R']: continue hclk_x, hclk_y = grid.loc_of_tilename(tile) hclk_cmt_x = hclk_x hclk_cmt_y = hclk_y while hclk_cmt_x > 0: hclk_cmt_x -= 1 gridinfo = grid.gridinfo_at_loc((hclk_cmt_x, hclk_cmt_y)) if gridinfo.tile_type == 'HCLK_CMT': HCLK_CMT_TILES[tile, 'L'] = grid.tilename_at_loc( (hclk_cmt_x, hclk_cmt_y) ) break hclk_cmt_x = hclk_x while hclk_cmt_x < x_max: hclk_cmt_x += 1 gridinfo = grid.gridinfo_at_loc((hclk_cmt_x, hclk_cmt_y)) if gridinfo.tile_type == 'HCLK_CMT_L': HCLK_CMT_TILES[tile, 'R'] = grid.tilename_at_loc( (hclk_cmt_x, hclk_cmt_y) ) break def find_hclk_cmt_hclk_feature(hclk_tile, lr, hclk_number): if (hclk_tile, lr) not in HCLK_CMT_TILES: return [] hclk_cmt_tile = HCLK_CMT_TILES[(hclk_tile, lr)] return ['{}.HCLK_CMT_CK_BUFHCLK{}_USED'.format(hclk_cmt_tile, hclk_number)] def check_feature(feature): """ Check if enabling this feature requires other features to be enabled. Some pips imply other features. Example: .HCLK_LEAF_CLK_B_BOTL0.HCLK_CK_BUFHCLK10 implies: .ENABLE_BUFFER.HCLK_CK_BUFHCLK10 """ # IOI_SING tiles have bits in common with the IOI tiles. # # The difference is that the TOP IOI_SING tile shares bits with # the bottom half of a normal IOI tile, while the BOTTOM IOI_SING # shares bits with the top half of a normal IOI TILE. # # The following, is to change the edge feature to accomodate this # need, as the IOI_SING tiles have the same wire, and pip names # despite they are found on the TOP or BOTTOM of an IOI column m = IOI_SING_REGEX.fullmatch(feature) if m: # Each clock region spans a total of 50 IOBs. # The IOI_SING are found on top or bottom of the whole # IOI/IOB column. The Y coordinate identified with the # second capture group is dived by 50 to get the relative # position of the IOI_SING within the clock region column is_bottom_sing = int(m.group(2)) % 50 == 0 # This is the value to attach to the source pip name that # changes based on which IOI_SING is selected (top or bottom) # # Example: IOI_OLOGIC0_D1.IOI_IMUX34_0 -> IOI_OLOGIC0_D1.IOI_IMUX34_1 src_value = '1' if is_bottom_sing else '0' # This is the value to attach to the IOI_SITE_PIPS names # in the destination wire of the pip # # Example: IOI_OLOGIC0 -> IOI_OLOGIC1 dst_value = '0' if is_bottom_sing else '1' unchanged_feature = "{}{}{}{}".format( m.group(1), m.group(2), m.group(3), m.group(4) ) src_wire = m.group(6).replace('_SING', '') for pip in ['IMUX', 'LOGIC_OUTS', 'CTRL', 'FAN', 'BYP']: if pip in src_wire: src_wire = src_wire.replace('_0', '_{}'.format(src_value)) if 'IOI_OCLK' in src_wire: src_wire = src_wire.replace('_0', '_{}'.format(dst_value)) changed_feature = "{}{}".format(dst_value, src_wire) feature = "{}{}".format(unchanged_feature, changed_feature) feature_path = feature.split('.') # IOB_DIFFO_OUT0->IOB_DIFFO_IN1 # # When this PIP is active the IOB operates in the differential output mode. # There is no feature assosciated with that PIP in the prjxray db but there # is a tile-wide feature named "DIFF_OUT". # # The "DIFF_OUT" cannot be set in the architecture as it is defined one # level up in the hierarchy (its tile-wide, not site-wide). So here we # map the PIP's feature to "DIFF_OUT" if feature_path[2] == "IOB_DIFFO_OUT0" and \ feature_path[1] == "IOB_DIFFO_IN1": return '{}.OUT_DIFF'.format(feature_path[0]) # IOB_PADOUT0->IOB_DIFFI_IN1 # IOB_PADOUT1->IOB_DIFFI_IN0 # # These connections are hard wires that connect IOB33M and IOB33S sites. # They are used in differential input mode. # # Vivado does not report this connection as a PIP but in the prjxray db it # is a pip. Instead of making it a pseudo-pip we simply reject fasm # features here. if feature_path[2] == "IOB_PADOUT0" and feature_path[1] == "IOB_DIFFI_IN1": return '' if feature_path[2] == "IOB_PADOUT1" and feature_path[1] == "IOB_DIFFI_IN0": return '' # REBUF stuff rebuf_key = (feature_path[0], feature_path[1]) if rebuf_key in REBUF_SOURCES: return ' '.join([feature] + REBUF_NODES[REBUF_SOURCES[rebuf_key]]) m = IOI_OCLK.fullmatch(feature_path[1]) if m: enable_oclkm_feature = '{}.IOI_OCLKM_{}.{}'.format( feature_path[0], m.group(1), feature_path[-1] ) return ' '.join((feature, enable_oclkm_feature)) if HCLK_CK_BUFHCLK_REGEX.fullmatch(feature_path[-1]): enable_buffer_feature = '{}.ENABLE_BUFFER.{}'.format( feature_path[0], feature_path[-1] ) return ' '.join((feature, enable_buffer_feature)) # BUFHCE sites are now routed through, without the need of placing them, therefore, # when the relative pip is traversed, the correct fasm feature needs to be added. # The relevant features are: # - IN_USE: to enable the BUFHCE site # - ZINV_CE: to disable the inverter on CE input which is connected to VCC. # This sets the CE signal to constant 1 m = CLK_HROW_CK_MUX_REGEX.fullmatch(feature_path[-1]) if m: x_loc_str = m.group(1) if 'L' in x_loc_str: x_loc = 0 elif 'R' in x_loc_str: x_loc = 1 else: assert False, "Impossible to determine X location of BUFHCE" y_loc = m.group(2) bufhce_loc = 'BUFHCE_X{}Y{}'.format(x_loc, y_loc) enable_bufhce_in_use = '{}.BUFHCE.{}.IN_USE'.format( feature_path[0], bufhce_loc ) enable_bufhce_zinv_ce = '{}.BUFHCE.{}.ZINV_CE=1\'b1'.format( feature_path[0], bufhce_loc ) return ' '.join((feature, enable_bufhce_in_use, enable_bufhce_zinv_ce)) if BUFG_CLK_IN_REGEX.fullmatch(feature_path[-1]): enable_feature = '{}.{}_ACTIVE'.format( feature_path[0], feature_path[-1] ) return ' '.join((feature, enable_feature)) if BUFG_CLK_OUT_REGEX.fullmatch(feature_path[-1]): enable_feature = '{}.{}_ACTIVE'.format( feature_path[0], feature_path[-1] ) return ' '.join((feature, enable_feature)) if CCIO_ACTIVE_REGEX.fullmatch(feature_path[-1]): features = [feature] features.append( '{}.{}_ACTIVE'.format(feature_path[0], feature_path[-1]) ) features.append('{}.{}_USED'.format(feature_path[0], feature_path[-1])) return ' '.join(features) m = HCLK_OUT.fullmatch(feature_path[-1]) if m: return ' '.join( [feature] + find_hclk_cmt_hclk_feature( feature_path[0], m.group(1), m.group(2) ) ) m = CASCOUT_REGEX.fullmatch(feature_path[-2]) if m: enable_cascout = '{}.CASCOUT_{}_ACTIVE'.format( feature_path[0], m.group(1) ) return ' '.join((feature, enable_cascout)) parts = feature.split('.') wire_feature = feature_when_routed(parts[1]) if wire_feature is not None: return '{} {}.{}'.format(feature, parts[0], wire_feature) return feature # CLBLL_L.CLBLL_LL_A1[0] -> (CLBLL_L, CLBLL_LL_A1) PIN_NAME_TO_PARTS = re.compile(r'^([^\.]+)\.([^\]]+)\[0\]$') def set_connection_box( graph, node_idx, grid_x, grid_y, box_id, site_pin_delay ): """ Assign a connection box to an IPIN node. """ node_dict = graph.nodes[node_idx]._asdict() node_dict['connection_box'] = graph2.ConnectionBox( x=grid_x, y=grid_y, id=box_id, site_pin_delay=site_pin_delay, ) graph.nodes[node_idx] = graph2.Node(**node_dict) def update_connection_box( conn, graph, graph_node_pkey, node_idx, connection_box_map ): """ Update connection box of IPIN node if needed. """ cur = conn.cursor() cur.execute( """ SELECT connection_box_wire_pkey FROM graph_node WHERE pkey = ?""", (graph_node_pkey, ) ) connection_box_wire_pkey = cur.fetchone()[0] if connection_box_wire_pkey is not None: cur.execute( """ SELECT grid_x, grid_y FROM phy_tile WHERE pkey = ( SELECT phy_tile_pkey FROM wire WHERE pkey = ? )""", (connection_box_wire_pkey, ) ) grid_x, grid_y = cur.fetchone() cur.execute( "SELECT wire_in_tile_pkey FROM wire WHERE pkey = ?", (connection_box_wire_pkey, ) ) wire_in_tile_pkey = cur.fetchone()[0] box_id = connection_box_map[wire_in_tile_pkey] cur.execute( """ SELECT switch.intrinsic_delay FROM switch WHERE pkey = ( SELECT site_pin_switch_pkey FROM wire_in_tile WHERE pkey = ( SELECT wire_in_tile_pkey FROM wire WHERE pkey = ( SELECT site_wire_pkey FROM node WHERE pkey = ( SELECT node_pkey FROM graph_node WHERE pkey = ? ) ) ) )""", (graph_node_pkey, ) ) site_pin_delay = cur.fetchone()[0] set_connection_box( graph, node_idx, grid_x, grid_y, box_id, site_pin_delay ) def create_get_tile_and_site_as_tile_pkey(cur): tiles = {} for tile_pkey, site_as_tile_pkey, grid_x, grid_y in cur.execute(""" SELECT pkey, site_as_tile_pkey, grid_x, grid_y FROM tile;"""): tiles[(grid_x, grid_y)] = (tile_pkey, site_as_tile_pkey) def get_tile_and_site_as_tile_pkey(x, y): return tiles[(x, y)] return get_tile_and_site_as_tile_pkey def create_get_site_as_tile_wire(cur): @functools.lru_cache(maxsize=0) def get_site_from_site_as_tile(site_as_tile_pkey): cur.execute( """ SELECT site.site_type_pkey, site_as_tile.site_pkey FROM site_as_tile INNER JOIN site ON site.pkey = site_as_tile.site_pkey WHERE site_as_tile.pkey = ?""", (site_as_tile_pkey, ) ) results = cur.fetchall() assert len(results) == 1, site_as_tile_pkey return results[0] @functools.lru_cache(maxsize=0) def get_site_as_tile_wire(site_as_tile_pkey, pin): site_type_pkey, site_pkey = get_site_from_site_as_tile( site_as_tile_pkey ) cur.execute( """ SELECT pkey FROM wire_in_tile WHERE site_pin_pkey = ( SELECT pkey FROM site_pin WHERE site_type_pkey = ? AND name = ? ) AND site_pkey = ? ;""", (site_type_pkey, pin, site_pkey) ) results = cur.fetchall() assert len(results) == 1 wire_in_tile_pkey = results[0][0] return wire_in_tile_pkey return get_site_as_tile_wire def import_graph_nodes(conn, graph, node_mapping, connection_box_map): cur = conn.cursor() get_tile_and_site_as_tile_pkey = create_get_tile_and_site_as_tile_pkey(cur) get_site_as_tile_wire = create_get_site_as_tile_wire(cur) for node_idx, node in enumerate(graph.nodes): if node.type not in (graph2.NodeType.IPIN, graph2.NodeType.OPIN): continue gridloc = graph.loc_map[(node.loc.x_low, node.loc.y_low)] pin_name = graph.pin_ptc_to_name_map[ (gridloc.block_type_id, node.loc.ptc)] # Synthetic blocks are handled below. if pin_name.startswith('SYN-'): set_connection_box( graph, node_idx, node.loc.x_low, node.loc.y_low, box_id=graph.maybe_add_connection_box('IMUX'), site_pin_delay=0., ) continue m = PIN_NAME_TO_PARTS.match(pin_name) assert m is not None, pin_name tile_type = m.group(1) tile_type = remove_vpr_tile_prefix(tile_type) pin = m.group(2) tile_pkey, site_as_tile_pkey = get_tile_and_site_as_tile_pkey( node.loc.x_low, node.loc.y_low ) if site_as_tile_pkey is not None: wire_in_tile_pkey = get_site_as_tile_wire(site_as_tile_pkey, pin) else: cur.execute( """ SELECT pkey FROM wire_in_tile WHERE name = ? AND phy_tile_type_pkey IN ( SELECT tile_type_pkey FROM phy_tile WHERE pkey IN ( SELECT phy_tile_pkey FROM tile_map WHERE tile_pkey = ? ) );""", (pin, tile_pkey) ) results = cur.fetchall() assert len(results) == 1 wire_in_tile_pkey = results[0][0] tile_pkey, _ = get_tile_and_site_as_tile_pkey(gridloc[0], gridloc[1]) cur.execute( """ SELECT top_graph_node_pkey, bottom_graph_node_pkey, left_graph_node_pkey, right_graph_node_pkey FROM wire WHERE wire_in_tile_pkey = ? AND tile_pkey = ?;""", (wire_in_tile_pkey, tile_pkey) ) result = cur.fetchone() assert result is not None, (wire_in_tile_pkey, tile_pkey) ( top_graph_node_pkey, bottom_graph_node_pkey, left_graph_node_pkey, right_graph_node_pkey ) = result side = node.loc.side if side == tracks.Direction.LEFT: assert left_graph_node_pkey is not None, (tile_type, pin_name) node_mapping[left_graph_node_pkey] = node.id update_connection_box( conn, graph, left_graph_node_pkey, node_idx, connection_box_map ) elif side == tracks.Direction.RIGHT: assert right_graph_node_pkey is not None, (tile_type, pin_name) node_mapping[right_graph_node_pkey] = node.id update_connection_box( conn, graph, right_graph_node_pkey, node_idx, connection_box_map ) elif side == tracks.Direction.TOP: assert top_graph_node_pkey is not None, (tile_type, pin_name) node_mapping[top_graph_node_pkey] = node.id update_connection_box( conn, graph, top_graph_node_pkey, node_idx, connection_box_map ) elif side == tracks.Direction.BOTTOM: assert bottom_graph_node_pkey is not None, (tile_type, pin_name) node_mapping[bottom_graph_node_pkey] = node.id update_connection_box( conn, graph, bottom_graph_node_pkey, node_idx, connection_box_map ) else: assert False, side def import_tracks(conn, alive_tracks, node_mapping, graph, default_segment_id): cur = conn.cursor() cur2 = conn.cursor() for (graph_node_pkey, track_pkey, graph_node_type, x_low, x_high, y_low, y_high, ptc, capacitance, resistance) in progressbar_utils.progressbar(cur.execute(""" SELECT pkey, track_pkey, graph_node_type, x_low, x_high, y_low, y_high, ptc, capacitance, resistance FROM graph_node WHERE track_pkey IS NOT NULL;""")): if track_pkey not in alive_tracks: continue cur2.execute( """ SELECT name FROM segment WHERE pkey = ( SELECT segment_pkey FROM track WHERE pkey = ? )""", (track_pkey, ) ) result = cur2.fetchone() if result is not None: segment_name = result[0] segment_id = graph.get_segment_id_from_name(segment_name) else: segment_id = default_segment_id node_type = graph2.NodeType(graph_node_type) if node_type == graph2.NodeType.CHANX: direction = 'X' x_low = max(x_low, 1) elif node_type == graph2.NodeType.CHANY: direction = 'Y' y_low = max(y_low, 1) else: assert False, node_type canonical_loc = None cur2.execute( """ SELECT grid_x, grid_y FROM phy_tile WHERE pkey = ( SELECT canon_phy_tile_pkey FROM track WHERE pkey = ? )""", (track_pkey, ) ) result = cur2.fetchone() if result: canonical_loc = graph2.CanonicalLoc(x=result[0], y=result[1]) track = tracks.Track( direction=direction, x_low=x_low, x_high=x_high, y_low=y_low, y_high=y_high, ) assert graph_node_pkey not in node_mapping node_mapping[graph_node_pkey] = graph.add_track( track=track, segment_id=segment_id, ptc=ptc, timing=graph2.NodeTiming( r=resistance, c=capacitance, ), canonical_loc=canonical_loc ) def create_track_rr_graph( conn, graph, node_mapping, use_roi, roi, synth_tiles, segment_id ): cur = conn.cursor() cur.execute("""SELECT count(*) FROM track;""") (num_channels, ) = cur.fetchone() print('{} Import alive tracks'.format(now())) alive_tracks = set() for (track_pkey, ) in cur.execute("SELECT pkey FROM track WHERE alive = 1;"): alive_tracks.add(track_pkey) print('{} Importing alive tracks'.format(now())) import_tracks(conn, alive_tracks, node_mapping, graph, segment_id) print('original {} final {}'.format(num_channels, len(alive_tracks))) def add_synthetic_edges(conn, graph, node_mapping, grid, synth_tiles): cur = conn.cursor() delayless_switch = graph.get_switch_id('__vpr_delayless_switch__') for tile_name, synth_tile in synth_tiles['tiles'].items(): num_inpad = len( list( filter( lambda t: t['port_type'] == 'output', synth_tile['pins'] ) ) ) num_outpad = len( list( filter( lambda t: t['port_type'] == 'input', synth_tile['pins'] ) ) ) for pin in synth_tile['pins']: if pin['port_type'] in ['input', 'output']: wire_pkey = get_wire_pkey(conn, tile_name, pin['wire']) cur.execute( """ SELECT track_pkey FROM node WHERE pkey = ( SELECT node_pkey FROM wire WHERE pkey = ? );""", (wire_pkey, ) ) (track_pkey, ) = cur.fetchone() assert track_pkey is not None, ( tile_name, pin['wire'], wire_pkey ) elif pin['port_type'] == 'VCC': cur.execute('SELECT vcc_track_pkey FROM constant_sources') (track_pkey, ) = cur.fetchone() elif pin['port_type'] == 'GND': cur.execute('SELECT gnd_track_pkey FROM constant_sources') (track_pkey, ) = cur.fetchone() else: assert False, pin['port_type'] tracks_model, track_nodes = get_track_model(conn, track_pkey) option = list( tracks_model.get_tracks_for_wire_at_coord( tuple(synth_tile['loc']) ).values() ) assert len(option) > 0, (pin, len(option)) if pin['port_type'] == 'input': tile_type = synth_tile['tile_name'] wire = 'outpad' elif pin['port_type'] == 'output': tile_type = synth_tile['tile_name'] wire = 'inpad' elif pin['port_type'] == 'VCC': tile_type = 'SYN-VCC' wire = 'VCC' elif pin['port_type'] == 'GND': tile_type = 'SYN-GND' wire = 'GND' else: assert False, pin track_node = track_nodes[option[0]] assert track_node in node_mapping, (track_node, track_pkey) if wire == 'inpad' and num_inpad > 1: pin_name = graph.create_pin_name_from_tile_type_sub_tile_num_and_pin( tile_type, pin['z_loc'], wire ) elif wire == 'outpad' and num_outpad > 1: pin_name = graph.create_pin_name_from_tile_type_sub_tile_num_and_pin( tile_type, (pin['z_loc'] - num_inpad), wire ) else: pin_name = graph.create_pin_name_from_tile_type_and_pin( tile_type, wire ) pin_node = graph.get_nodes_for_pin( tuple(synth_tile['loc']), pin_name ) if pin['port_type'] == 'input': graph.add_edge( src_node=node_mapping[track_node], sink_node=pin_node[0][0], switch_id=delayless_switch, name='synth_{}_{}'.format(tile_name, pin['wire']), ) elif pin['port_type'] in ['VCC', 'GND', 'output']: graph.add_edge( src_node=pin_node[0][0], sink_node=node_mapping[track_node], switch_id=delayless_switch, name='synth_{}_{}'.format(tile_name, pin['wire']), ) else: assert False, pin def get_switch_name(conn, graph, switch_name_map, switch_pkey): assert switch_pkey is not None if switch_pkey not in switch_name_map: cur = conn.cursor() cur.execute( """SELECT name FROM switch WHERE pkey = ?;""", (switch_pkey, ) ) (switch_name, ) = cur.fetchone() switch_id = graph.get_switch_id(switch_name) switch_name_map[switch_pkey] = switch_id else: switch_id = switch_name_map[switch_pkey] return switch_id def create_get_tile_name(conn): cur = conn.cursor() @functools.lru_cache(maxsize=None) def get_tile_name(tile_pkey): cur.execute( """ SELECT name FROM phy_tile WHERE pkey = ?; """, (tile_pkey, ) ) return cur.fetchone()[0] return get_tile_name def create_get_pip_wire_names(conn): cur = conn.cursor() @functools.lru_cache(maxsize=None) def get_pip_wire_names(pip_pkey): cur.execute( """SELECT src_wire_in_tile_pkey, dest_wire_in_tile_pkey FROM pip_in_tile WHERE pkey = ?;""", (pip_pkey, ) ) src_wire_in_tile_pkey, dest_wire_in_tile_pkey = cur.fetchone() cur.execute( """SELECT name FROM wire_in_tile WHERE pkey = ?;""", (src_wire_in_tile_pkey, ) ) (src_net, ) = cur.fetchone() cur.execute( """SELECT name FROM wire_in_tile WHERE pkey = ?;""", (dest_wire_in_tile_pkey, ) ) (dest_net, ) = cur.fetchone() return (src_net, dest_net) return get_pip_wire_names def get_number_graph_edges(conn, graph, node_mapping): num_edges = len(graph.edges) print('{} Counting edges.'.format(now())) cur = conn.cursor() cur.execute("SELECT count() FROM graph_edge;" "") for src_graph_node, dest_graph_node in cur.execute(""" SELECT src_graph_node_pkey, dest_graph_node_pkey FROM graph_edge; """): if src_graph_node not in node_mapping: continue if dest_graph_node not in node_mapping: continue num_edges += 1 return num_edges def import_graph_edges(conn, graph, node_mapping): # First yield existing edges print('{} Importing existing edges.'.format(now())) for edge in graph.edges: yield (edge.src_node, edge.sink_node, edge.switch_id, None) # Then yield edges from database. cur = conn.cursor() cur.execute("SELECT count() FROM graph_edge;" "") (num_edges, ) = cur.fetchone() get_tile_name = create_get_tile_name(conn) get_pip_wire_names = create_get_pip_wire_names(conn) switch_name_map = {} print('{} Importing edges from database.'.format(now())) with progressbar_utils.ProgressBar(max_value=num_edges) as bar: for idx, (src_graph_node, dest_graph_node, switch_pkey, phy_tile_pkey, pip_pkey, backward) in enumerate(cur.execute(""" SELECT src_graph_node_pkey, dest_graph_node_pkey, switch_pkey, phy_tile_pkey, pip_in_tile_pkey, backward FROM graph_edge; """)): if src_graph_node not in node_mapping: continue if dest_graph_node not in node_mapping: continue if pip_pkey is not None: tile_name = get_tile_name(phy_tile_pkey) src_net, dest_net = get_pip_wire_names(pip_pkey) if not backward: pip_name = '{}.{}.{}'.format(tile_name, dest_net, src_net) else: pip_name = '{}.{}.{}'.format(tile_name, src_net, dest_net) else: pip_name = None switch_id = get_switch_name( conn, graph, switch_name_map, switch_pkey ) src_node = node_mapping[src_graph_node] sink_node = node_mapping[dest_graph_node] if pip_name is not None: feature = check_feature(pip_name) if feature: yield ( src_node, sink_node, switch_id, (('fasm_features', feature), ) ) else: yield (src_node, sink_node, switch_id, ()) else: yield (src_node, sink_node, switch_id, ()) if idx % 1024 == 0: bar.update(idx) def create_channels(conn): cur = conn.cursor() cur.execute( """ SELECT chan_width_max, x_min, x_max, y_min, y_max FROM channel;""" ) chan_width_max, x_min, x_max, y_min, y_max = cur.fetchone() cur.execute('SELECT idx, info FROM x_list;') x_list = [] for idx, info in cur: x_list.append(graph2.ChannelList(idx, info)) cur.execute('SELECT idx, info FROM y_list;') y_list = [] for idx, info in cur: y_list.append(graph2.ChannelList(idx, info)) return graph2.Channels( chan_width_max=chan_width_max, x_min=x_min, y_min=y_min, x_max=x_max, y_max=y_max, x_list=x_list, y_list=y_list, ) def create_connection_boxes(conn, graph): """ Assign connection box ids for all connection box types. """ cur = conn.cursor() cur.execute( """ SELECT pkey, tile_type_pkey, name FROM wire_in_tile WHERE pkey IN ( SELECT DISTINCT wire_in_tile_pkey FROM wire WHERE pkey IN ( SELECT connection_box_wire_pkey FROM graph_node WHERE connection_box_wire_pkey IS NOT NULL ) );""" ) connection_box_map = {} for wire_in_tile_pkey, tile_type_pkey, wire_name in cur: connection_box_map[wire_in_tile_pkey] = graph.maybe_add_connection_box( reduce_connection_box(wire_name) ) return connection_box_map def yield_nodes(nodes): with progressbar_utils.ProgressBar(max_value=len(nodes)) as bar: for idx, node in enumerate(nodes): yield node if idx % 1024 == 0: bar.update(idx) def phy_grid_dims(conn): """ Returns physical grid dimensions. """ cur = conn.cursor() cur.execute("SELECT grid_x FROM phy_tile ORDER BY grid_x DESC LIMIT 1;") x_max = cur.fetchone()[0] cur.execute("SELECT grid_y FROM phy_tile ORDER BY grid_y DESC LIMIT 1;") y_max = cur.fetchone()[0] return x_max + 1, y_max + 1 def find_constant_network(graph): """ Find VCC and GND tiles and create synth_tiles input. All arches should have these synthetic tiles, search the input rr graph for the SYN-GND and SYN-VCC tiles. """ block_types = {} for block_type in graph.block_types: block_types[block_type.name] = block_type.id assert 'SYN-GND' in block_types assert 'SYN-VCC' in block_types gnd_block_id = block_types['SYN-GND'] vcc_block_id = block_types['SYN-VCC'] gnd_loc = None vcc_loc = None for grid_loc in graph.grid: if gnd_block_id == grid_loc.block_type_id: assert gnd_loc is None gnd_loc = (grid_loc.x, grid_loc.y) if vcc_block_id == grid_loc.block_type_id: assert vcc_loc is None vcc_loc = (grid_loc.x, grid_loc.y) assert gnd_loc is not None assert vcc_loc is not None synth_tiles = { 'tiles': { "VCC": { 'loc': vcc_loc, 'pins': [ { 'wire': 'VCC', 'pad': 'VCC', 'port_type': 'VCC', 'is_clock': False, }, ], }, "GND": { 'loc': gnd_loc, 'pins': [ { 'wire': 'GND', 'pad': 'GND', 'port_type': 'GND', 'is_clock': False, }, ], }, } } return synth_tiles def create_node_remap(nodes, channels_obj): N = 2 p = math.ceil(math.log2(max(channels_obj.x_max, channels_obj.y_max))) point_map = {} for node in nodes: x = node.loc.x_low y = node.loc.y_low if (x, y) not in point_map: point_map[(x, y)] = [] point_map[(x, y)].append(node.id) hilbert_curve = HilbertCurve(p, N) idx = 0 id_map = {} for h in range(hilbert_curve.max_h + 1): coord = tuple(hilbert_curve.coordinates_from_distance(h)) if coord not in point_map: continue for old_id in point_map[coord]: id_map[old_id] = idx idx += 1 del point_map[coord] return lambda x: id_map[x] def main(): parser = argparse.ArgumentParser() parser.add_argument( '--db_root', required=True, help='Project X-Ray Database' ) parser.add_argument('--part', required=True, help='FPGA part') parser.add_argument( '--read_rr_graph', required=True, help='Input rr_graph file' ) parser.add_argument( '--write_rr_graph', required=True, help='Output rr_graph file' ) parser.add_argument( '--write_rr_node_map', required=True, help='Output map of graph_node_pkey to rr inode file' ) parser.add_argument( '--connection_database', help='Database of fabric connectivity', required=True ) parser.add_argument( '--synth_tiles', help='If using an ROI, synthetic tile defintion from prjxray-arch-import' ) parser.add_argument( '--graph_limit', help='Limit grid to specified dimensions in x_min,y_min,x_max,y_max', ) parser.add_argument( '--vpr_capnp_schema_dir', help='Directory container VPR schema files', ) print('{} Starting routing import'.format(now())) args = parser.parse_args() db = prjxray.db.Database(args.db_root, args.part) populate_hclk_cmt_tiles(db) synth_tiles = None if args.synth_tiles: use_roi = True with open(args.synth_tiles) as f: synth_tiles = json.load(f) roi = Roi( db=db, x1=synth_tiles['info']['GRID_X_MIN'], y1=synth_tiles['info']['GRID_Y_MIN'], x2=synth_tiles['info']['GRID_X_MAX'], y2=synth_tiles['info']['GRID_Y_MAX'], ) print('{} generating routing graph for ROI.'.format(now())) elif args.graph_limit: use_roi = True x_min, y_min, x_max, y_max = map(int, args.graph_limit.split(',')) roi = Roi( db=db, x1=x_min, y1=y_min, x2=x_max, y2=y_max, ) else: use_roi = False roi = None synth_tiles = None capnp_graph = capnp_graph2.Graph( rr_graph_schema_fname=os.path.join( args.vpr_capnp_schema_dir, 'rr_graph_uxsdcxx.capnp' ), input_file_name=args.read_rr_graph, progressbar=progressbar_utils.progressbar, output_file_name=args.write_rr_graph, ) graph = capnp_graph.graph if synth_tiles is None: synth_tiles = find_constant_network(graph) with sqlite3.connect("file:{}?mode=ro".format(args.connection_database), uri=True) as conn: populate_bufg_rebuf_map(conn) cur = conn.cursor() for name, internal_capacitance, drive_resistance, intrinsic_delay, penalty_cost, \ switch_type in cur.execute(""" SELECT name, internal_capacitance, drive_resistance, intrinsic_delay, penalty_cost, switch_type FROM switch;"""): # Add back missing switchs, which were unused in arch xml, and so # were not emitted in rrgraph XML. # # TODO: This can be removed once # https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/354 # is fixed. try: graph.get_switch_id(name) continue except KeyError: capnp_graph.add_switch( graph2.Switch( id=None, name=name, type=graph2.SwitchType[switch_type.upper()], timing=graph2.SwitchTiming( r=drive_resistance, c_in=0.0, c_out=0.0, c_internal=internal_capacitance, t_del=intrinsic_delay, p_cost=penalty_cost, ), sizing=graph2.SwitchSizing( mux_trans_size=0, buf_size=0, ), ) ) # Mapping of graph_node.pkey to rr node id. node_mapping = {} print('{} Creating connection box list'.format(now())) connection_box_map = create_connection_boxes(conn, graph) # Match site pins rr nodes with graph_node's in the connection_database. print('{} Importing graph nodes'.format(now())) import_graph_nodes(conn, graph, node_mapping, connection_box_map) # Walk all track graph nodes and add them. print('{} Creating tracks'.format(now())) segment_id = graph.get_segment_id_from_name('dummy') create_track_rr_graph( conn, graph, node_mapping, use_roi, roi, synth_tiles, segment_id ) # Set of (src, sink, switch_id) tuples that pip edges have been sent to # VPR. VPR cannot handle duplicate paths with the same switch id. print('{} Adding synthetic edges'.format(now())) add_synthetic_edges(conn, graph, node_mapping, grid, synth_tiles) print('{} Creating channels.'.format(now())) channels_obj = create_channels(conn) node_remap = create_node_remap(capnp_graph.graph.nodes, channels_obj) x_dim, y_dim = phy_grid_dims(conn) connection_box_obj = graph.create_connection_box_object( x_dim=x_dim, y_dim=y_dim ) num_edges = get_number_graph_edges(conn, graph, node_mapping) print('{} Serializing to disk.'.format(now())) capnp_graph.serialize_to_capnp( channels_obj=channels_obj, connection_box_obj=connection_box_obj, num_nodes=len(capnp_graph.graph.nodes), nodes_obj=yield_nodes(capnp_graph.graph.nodes), num_edges=num_edges, edges_obj=import_graph_edges(conn, graph, node_mapping), node_remap=node_remap, ) for k in node_mapping: node_mapping[k] = node_remap(node_mapping[k]) print('{} Writing node map.'.format(now())) with open(args.write_rr_node_map, 'wb') as f: pickle.dump(node_mapping, f) print('{} Done writing node map.'.format(now())) if __name__ == '__main__': main()
1.8125
2
testing/onQuest/longClusters/m67/OLD-analyseEBLSSTm67.py
andrewbowen19/ClusterEclipsingBinaries
0
2429
######################### ######################### # Need to account for limit in input period ######################### ######################### # Baseline M67 long script -- NO crowding # New script copied from quest - want to take p and ecc from each population (all, obs, rec) and put them into separate file # Doing this so we don't have to run analyse each time # Can write separate script for p-ecc plots # Quest paths in this version of script import pandas as pd import numpy as np import os from astropy.coordinates import SkyCoord from astropy import units, constants from astropy.modeling import models, fitting import scipy.stats from scipy.integrate import quad #for Quest import matplotlib matplotlib.use('Agg') doIndividualPlots = True from matplotlib import pyplot as plt def file_len(fname): i = 0 with open(fname) as f: for i, l in enumerate(f): pass return i + 1 def getPhs(sigma, m1=1*units.solMass, m2=1*units.solMass, m3=0.5*units.solMass): Phs = np.pi*constants.G/np.sqrt(2.)*(m1*m2/m3)**(3./2.)*(m1 + m2)**(-0.5)*sigma**(-3.) return Phs.decompose().to(units.day) #similar to field, but limiting by the hard-soft boundary def fitRagfb(): x = [0.05, 0.1, 1, 8, 15] #estimates of midpoints in bins, and using this: https://sites.uni.edu/morgans/astro/course/Notes/section2/spectralmasses.html y = [0.20, 0.35, 0.50, 0.70, 0.75] init = models.PowerLaw1D(amplitude=0.5, x_0=1, alpha=-1.) fitter = fitting.LevMarLSQFitter() fit = fitter(init, x, y) return fit def RagNormal(x, cdf = False): mean = 5.03 std = 2.28 if (cdf): return scipy.stats.norm.cdf(x,mean,std) return scipy.stats.norm.pdf(x,mean,std) def saveHist(histAll, histObs, histRec, bin_edges, xtitle, fname, filters = ['u_', 'g_', 'r_', 'i_', 'z_', 'y_','all']): c1 = '#5687A6' #Dali Blue (Andrew's AAS Poster) c2 = '#A62B1F' #Dai Red c3 = '#BF8A26' #Dali Beige fig,ax1 = plt.subplots(figsize=(8,6), sharex=True)#can change to include cdf with ax1, ax2 histAll = np.insert(histAll,0,0) histObs = np.insert(histObs,0,0) for f in filters: histRec[f] = np.insert(histRec[f],0,0) #PDF ax1.step(bin_edges, histAll/np.sum(histAll), color=c1) ax1.step(bin_edges, histObs/np.sum(histObs), color=c2) for f in filters: lw = 1 if (f == 'all'): lw = 0.5 ax1.step(bin_edges, histRec[f]/np.sum(histRec[f]), color=c3, linewidth=lw) ax1.set_ylabel('PDF') ax1.set_yscale('log') ax1.set_title('Globular Clusters - Baseline', fontsize = 16) ax1.set_xlabel(xtitle) #CDF #cdfAll = [] #cdfObs = [] #cdfRec = dict() #for f in filters: # cdfRec[f] = [] # for i in range(len(histAll)): # cdfAll.append(np.sum(histAll[:i])/np.sum(histAll)) # for i in range(len(histObs)): # cdfObs.append(np.sum(histObs[:i])/np.sum(histObs)) # for f in filters: # for i in range(len(histRec[f])): # cdfRec[f].append(np.sum(histRec[f][:i])/np.sum(histRec[f])) #ax2.step(bin_edges, cdfAll, color=c1) #ax2.step(bin_edges, cdfObs, color=c2) #for f in filters: # lw = 1 # if (f == 'all'): # lw = 0.5 # ax2.step(bin_edges, cdfRec[f], color=c3, linewidth=lw) #ax2.set_ylabel('CDF') #ax2.set_xlabel(xtitle) fig.subplots_adjust(hspace=0) fig.savefig('./plots/' + fname+'.pdf',format='pdf', bbox_inches = 'tight') #write to a text file with open('./eblsst_files/' + fname+'.csv','w') as fl: outline = 'binEdges,histAll,histObs' for f in filters: outline += ','+f+'histRec' outline += '\n' fl.write(outline) for i in range(len(bin_edges)): outline = str(bin_edges[i])+','+str(histAll[i])+','+str(histObs[i]) for f in filters: outline += ','+str(histRec[f][i]) outline += '\n' fl.write(outline) if __name__ == "__main__": filters = ['u_', 'g_', 'r_', 'i_', 'z_', 'y_', 'all'] #get the Raghavan binary fraction fit fbFit= fitRagfb() print(fbFit) #to normalize intAll, err = quad(RagNormal, -20, 20) intCut, err = quad(RagNormal, -20, np.log10(365*10.)) intNorm = intCut/intAll #cutoff in percent error for "recovered" Pcut = 0.1 #assumed mean stellar mass mMean = 0.5 #minimum number of lines to consider in file Nlim = 3 if (doIndividualPlots): fmass, axmass = plt.subplots() fqrat, axqrat = plt.subplots() fecc, axecc = plt.subplots() flper, axlper = plt.subplots() fdist, axdist = plt.subplots() fmag, axmag = plt.subplots() frad, axrad = plt.subplots() #bins for all the histograms Nbins = 25 mbins = np.arange(0,10, 0.1, dtype='float') qbins = np.arange(0,1, 0.1, dtype='float') ebins = np.arange(0, 1.05, 0.05, dtype='float') lpbins = np.arange(-2, 10, 0.5, dtype='float') dbins = np.arange(0, 40, 1, dtype='float') magbins = np.arange(11, 25, 1, dtype='float') rbins = np.arange(0, 100, 0.2, dtype='float') #blanks for the histograms #All m1hAll = np.zeros_like(mbins)[1:] qhAll = np.zeros_like(qbins)[1:] ehAll = np.zeros_like(ebins)[1:] lphAll = np.zeros_like(lpbins)[1:] dhAll = np.zeros_like(dbins)[1:] maghAll = np.zeros_like(magbins)[1:] rhAll = np.zeros_like(rbins)[1:] #Observable m1hObs = np.zeros_like(mbins)[1:] qhObs = np.zeros_like(qbins)[1:] ehObs = np.zeros_like(ebins)[1:] lphObs = np.zeros_like(lpbins)[1:] dhObs = np.zeros_like(dbins)[1:] maghObs = np.zeros_like(magbins)[1:] rhObs = np.zeros_like(rbins)[1:] #Recovered m1hRec = dict() qhRec = dict() ehRec = dict() lphRec = dict() dhRec = dict() maghRec = dict() rhRec = dict() for f in filters: m1hRec[f] = np.zeros_like(mbins)[1:] qhRec[f] = np.zeros_like(qbins)[1:] ehRec[f] = np.zeros_like(ebins)[1:] lphRec[f] = np.zeros_like(lpbins)[1:] dhRec[f] = np.zeros_like(dbins)[1:] maghRec[f] = np.zeros_like(magbins)[1:] rhRec[f] = np.zeros_like(rbins)[1:] RA = [] Dec = [] recFrac = [] recN = [] rawN = [] obsN = [] fileN = [] fileObsN = [] fileRecN = [] allNPrsa = [] obsNPrsa = [] recNPrsa = [] # Lists for period and eccentricity for Andrew's circularization plots eccAll = [] eccObs = [] eccRec = [] pAll = [] pObs = [] pRec = [] # Using prsa dataframes for these lists because of period cutoff at 1000 days # Dataframes to write to files later; 3 files for each sub-population - append everything to these peccAll = pd.DataFrame(columns = ['e', 'p']) peccObs = pd.DataFrame(columns = ['e', 'p']) peccRec = pd.DataFrame(columns = ['e', 'p']) #Read in all the data and make the histograms d = "./input_files/" files = os.listdir(d) IDs = [] for i, f in enumerate(files): print(round(i/len(files),4), f) fl = file_len(d+f) if (fl >= 4): #read in the header header = pd.read_csv(d+f, nrows=1) ###################### #NEED TO ACCOUNT FOR THE BINARY FRACTION when combining histograms ##################### Nmult = header['clusterMass'][0]/mMean #Nmult = 1. RA.append(header['OpSimRA']) Dec.append(header['OpSimDec']) #read in rest of the file data = pd.read_csv(d+f, header = 2).fillna(-999) rF = 0. rN = 0. Nrec = 0. Nobs = 0. raN = 0. obN = 0. fiN = 0. fioN = 0. firN = 0. NallPrsa = 0. NobsPrsa = 0. NrecPrsa = 0. Nall = len(data.index)/intNorm ###is this correct? (and the only place I need to normalize?) prsa = data.loc[(data['appMagMean_r'] <= 19.5) & (data['appMagMean_r'] > 15.8) & (data['p'] < 1000) & (data['p'] > 0.5)] # Appending for Andrew eccAll.append(prsa['e'].values) pAll.append(prsa['p'].values) NallPrsa = len(prsa.index) if (Nall >= Nlim): #create histograms #All m1hAll0, m1b = np.histogram(data["m1"], bins=mbins) qhAll0, qb = np.histogram(data["m2"]/data["m1"], bins=qbins) ehAll0, eb = np.histogram(data["e"], bins=ebins) lphAll0, lpb = np.histogram(np.ma.log10(data["p"].values).filled(-999), bins=lpbins) dhAll0, db = np.histogram(data["d"], bins=dbins) maghAll0, magb = np.histogram(data["appMagMean_r"], bins=magbins) rhAll0, rb = np.histogram(data["r2"]/data["r1"], bins=rbins) if (doIndividualPlots): axmass.step(m1b[0:-1], m1hAll0/np.sum(m1hAll0), color='black', alpha=0.1) axqrat.step(qb[0:-1], qhAll0/np.sum(qhAll0), color='black', alpha=0.1) axecc.step(eb[0:-1], ehAll0/np.sum(ehAll0), color='black', alpha=0.1) axlper.step(lpb[0:-1], lphAll0/np.sum(lphAll0), color='black', alpha=0.1) axdist.step(db[0:-1], dhAll0/np.sum(dhAll0), color='black', alpha=0.1) axmag.step(magb[0:-1], maghAll0/np.sum(maghAll0), color='black', alpha=0.1) axrad.step(rb[0:-1], rhAll0/np.sum(rhAll0), color='black', alpha=0.1) #account for the binary fraction, as a function of mass dm1 = np.diff(m1b) m1val = m1b[:-1] + dm1/2. fb = np.sum(m1hAll0/len(data.index)*fbFit(m1val)) #account for the hard-soft boundary Phs = getPhs(header['clusterVdisp'].iloc[0]*units.km/units.s).to(units.day).value fb *= RagNormal(np.log10(Phs), cdf = True) print("fb, Phs = ", fb, Phs) Nmult *= fb m1hAll += m1hAll0/Nall*Nmult qhAll += qhAll0/Nall*Nmult ehAll += ehAll0/Nall*Nmult lphAll += lphAll0/Nall*Nmult dhAll += dhAll0/Nall*Nmult maghAll += maghAll0/Nall*Nmult rhAll += rhAll0/Nall*Nmult #Obs obs = data.loc[data['LSM_PERIOD'] != -999] Nobs = len(obs.index) prsaObs = data.loc[(data['appMagMean_r'] <= 19.5) & (data['appMagMean_r'] > 15.8) & (data['p'] < 1000) & (data['p'] >0.5) & (data['LSM_PERIOD'] != -999)] NobsPrsa = len(prsaObs.index) # Appending for Andrew's files eccObs.append(prsaObs['e'].values) pObs.append(prsaObs['p'].values) if (Nobs >= Nlim): m1hObs0, m1b = np.histogram(obs["m1"], bins=mbins) qhObs0, qb = np.histogram(obs["m2"]/obs["m1"], bins=qbins) ehObs0, eb = np.histogram(obs["e"], bins=ebins) lphObs0, lpb = np.histogram(np.ma.log10(obs["p"].values).filled(-999), bins=lpbins) dhObs0, db = np.histogram(obs["d"], bins=dbins) maghObs0, magb = np.histogram(obs["appMagMean_r"], bins=magbins) rhObs0, rb = np.histogram(obs["r2"]/obs["r1"], bins=rbins) m1hObs += m1hObs0/Nall*Nmult qhObs += qhObs0/Nall*Nmult ehObs += ehObs0/Nall*Nmult lphObs += lphObs0/Nall*Nmult dhObs += dhObs0/Nall*Nmult maghObs += maghObs0/Nall*Nmult rhObs += rhObs0/Nall*Nmult #Rec recCombined = pd.DataFrame() prsaRecCombined = pd.DataFrame() for filt in filters: key = filt+'LSS_PERIOD' if (filt == 'all'): key = 'LSM_PERIOD' fullP = abs(data[key] - data['p'])/data['p'] halfP = abs(data[key] - 0.5*data['p'])/(0.5*data['p']) twiceP = abs(data[key] - 2.*data['p'])/(2.*data['p']) rec = data.loc[(data[key] != -999) & ( (fullP < Pcut) | (halfP < Pcut) | (twiceP < Pcut))] prsaRec = data.loc[(data['appMagMean_r'] <= 19.5) & (data['appMagMean_r'] >15.8) & (data['p'] < 1000) & (data['p'] >0.5) & (data['LSM_PERIOD'] != -999) & ( (fullP < Pcut) | (halfP < Pcut) | (twiceP < Pcut))] Nrec = len(rec.index) #I'd like to account for all filters here to have more accurate numbers recCombined = recCombined.append(rec) prsaRecCombined = prsaRecCombined.append(prsaRec) # Going to use prsaRecCombined for ecc-p plots to account for all filters eccRec.append(prsaRec['e'].values) pRec.append(prsaRec['p'].values) if (filt == 'all'): recCombined.drop_duplicates(inplace=True) prsaRecCombined.drop_duplicates(inplace=True) if (Nrec >= Nlim): m1hRec0, m1b = np.histogram(rec["m1"], bins=mbins) qhRec0, qb = np.histogram(rec["m2"]/rec["m1"], bins=qbins) ehRec0, eb = np.histogram(rec["e"], bins=ebins) lphRec0, lpb = np.histogram(np.ma.log10(rec["p"].values).filled(-999), bins=lpbins) dhRec0, db = np.histogram(rec["d"], bins=dbins) maghRec0, magb = np.histogram(rec["appMagMean_r"], bins=magbins) rhRec0, rb = np.histogram(rec["r2"]/rec["r1"], bins=rbins) m1hRec[filt] += m1hRec0/Nall*Nmult qhRec[filt] += qhRec0/Nall*Nmult ehRec[filt] += ehRec0/Nall*Nmult lphRec[filt] += lphRec0/Nall*Nmult dhRec[filt] += dhRec0/Nall*Nmult maghRec[filt] += maghRec0/Nall*Nmult rhRec[filt] += rhRec0/Nall*Nmult #for the mollweide if (filt == 'all'): Nrec = len(recCombined.index) rF = Nrec/Nall rN = Nrec/Nall*Nmult raN = Nmult obN = Nobs/Nall*Nmult fiN = Nall fioN = Nobs firN = Nrec NrecPrsa = len(prsaRecCombined.index) NrecPrsa = NrecPrsa/Nall*Nmult NobsPrsa = NobsPrsa/Nall*Nmult NallPrsa = NallPrsa/Nall*Nmult recFrac.append(rF) recN.append(rN) rawN.append(raN) obsN.append(obN) fileN.append(fiN) fileObsN.append(fioN) fileRecN.append(firN) allNPrsa.append(NallPrsa) obsNPrsa.append(NobsPrsa) recNPrsa.append(NrecPrsa) #print(np.sum(lphRec), np.sum(recN), np.sum(lphRec)/np.sum(recN), np.sum(lphRec0), Nrec, np.sum(lphRec0)/Nrec, np.sum(lphObs), np.sum(obsN), np.sum(lphObs)/np.sum(obsN)) # Concatenating p and ecc lists eccAll = np.concatenate(eccAll) eccObs = np.concatenate(eccObs) eccRec = np.concatenate(eccRec) pAll = np.concatenate(pAll) pObs = np.concatenate(pObs) pRec = np.concatenate(pRec) # print('Ecc lists:', eccAll, eccObs, eccRec) # print('P lists:', pAll, pObs, pRec) # Appending lists with all the p/ecc values to our dataframes # All dataframe peccAll['e'] = eccAll peccAll['p'] = pAll # Observable dataframe peccObs['e'] = eccObs peccObs['p'] = pObs # Recovered dataframe peccRec['e'] = eccRec peccRec['p'] = pRec # print('Final Dataframes:', peccAll, peccObs, peccRec) # print(peccRec.columns) # 3 letter code corresponds to scenario (OC/GC, baseline/colossus, crowding/no crowding) peccAll.to_csv('./pecc/all-M67BN-ecc-p.csv', header = ['e', 'p']) peccObs.to_csv('./pecc/obs-M67BN-ecc-p.csv', header = ['e', 'p']) peccRec.to_csv('./pecc/rec-M67BN-ecc-p.csv', header = ['e', 'p']) #plot and save the histograms saveHist(m1hAll, m1hObs, m1hRec, m1b, 'm1 (Msolar)', 'EBLSST_m1hist') saveHist(qhAll, qhObs, qhRec, qb, 'q (m2/m1)', 'EBLSST_qhist') saveHist(ehAll, ehObs, ehRec, eb, 'e', 'EBLSST_ehist') saveHist(lphAll, lphObs, lphRec, lpb, 'log(P [days])', 'EBLSST_lphist') saveHist(dhAll, dhObs, dhRec, db, 'd (kpc)', 'EBLSST_dhist') saveHist(maghAll, maghObs, maghRec, magb, 'mag', 'EBLSST_maghist') saveHist(rhAll, rhObs, rhRec, rb, 'r2/r1', 'EBLSST_rhist') #make the mollweide coords = SkyCoord(RA, Dec, unit=(units.degree, units.degree),frame='icrs') lGal = coords.galactic.l.wrap_at(180.*units.degree).degree bGal = coords.galactic.b.wrap_at(180.*units.degree).degree RAwrap = coords.ra.wrap_at(180.*units.degree).degree Decwrap = coords.dec.wrap_at(180.*units.degree).degree f, ax = plt.subplots(subplot_kw={'projection': "mollweide"}, figsize=(8,5)) ax.grid(True) #ax.set_xlabel(r"$l$",fontsize=16) #ax.set_ylabel(r"$b$",fontsize=16) #mlw = ax.scatter(lGal.ravel()*np.pi/180., bGal.ravel()*np.pi/180., c=np.log10(np.array(recFrac)*100.), cmap='viridis_r', s = 4) ax.set_xlabel("RA",fontsize=16) ax.set_ylabel("Dec",fontsize=16) mlw = ax.scatter(np.array(RAwrap).ravel()*np.pi/180., np.array(Decwrap).ravel()*np.pi/180., c=np.array(recFrac)*100., cmap='viridis_r', s = 4) cbar = f.colorbar(mlw, shrink=0.7) cbar.set_label(r'% recovered') f.savefig('./plots/' + 'mollweide_pct.pdf',format='pdf', bbox_inches = 'tight') f, ax = plt.subplots(subplot_kw={'projection': "mollweide"}, figsize=(8,5)) ax.grid(True) #ax.set_xlabel(r"$l$",fontsize=16) #ax.set_ylabel(r"$b$",fontsize=16) #mlw = ax.scatter(lGal.ravel()*np.pi/180., bGal.ravel()*np.pi/180., c=np.log10(np.array(recN)), cmap='viridis_r', s = 4) ax.set_xlabel("RA",fontsize=16) ax.set_ylabel("Dec",fontsize=16) mlw = ax.scatter(np.array(RAwrap).ravel()*np.pi/180., np.array(Decwrap).ravel()*np.pi/180., c=np.log10(np.array(recN)), cmap='viridis_r', s = 4) cbar = f.colorbar(mlw, shrink=0.7) cbar.set_label(r'log10(N) recovered') f.savefig('./plots/' + 'mollweide_N.pdf',format='pdf', bbox_inches = 'tight') if (doIndividualPlots): fmass.savefig('./plots/' + 'massPDFall.pdf',format='pdf', bbox_inches = 'tight') fqrat.savefig('./plots/' + 'qPDFall.pdf',format='pdf', bbox_inches = 'tight') fecc.savefig('./plots/' + 'eccPDFall.pdf',format='pdf', bbox_inches = 'tight') flper.savefig('./plots/' + 'lperPDFall.pdf',format='pdf', bbox_inches = 'tight') fdist.savefig('./plots/' + 'distPDFall.pdf',format='pdf', bbox_inches = 'tight') fmag.savefig('./plots/' + 'magPDFall.pdf',format='pdf', bbox_inches = 'tight') frad.savefig('./plots/' + 'radPDFall.pdf',format='pdf', bbox_inches = 'tight') print("###################") print("number of binaries in input files (raw, log):",np.sum(fileN), np.log10(np.sum(fileN))) print("number of binaries in tested with gatspy (raw, log):",np.sum(fileObsN), np.log10(np.sum(fileObsN))) print("number of binaries in recovered with gatspy (raw, log):",np.sum(fileRecN), np.log10(np.sum(fileRecN))) print("recovered/observable*100 with gatspy:",np.sum(fileRecN)/np.sum(fileObsN)*100.) print("###################") print("total in sample (raw, log):",np.sum(rawN), np.log10(np.sum(rawN))) print("total observable (raw, log):",np.sum(obsN), np.log10(np.sum(obsN))) print("total recovered (raw, log):",np.sum(recN), np.log10(np.sum(recN))) print("recovered/observable*100:",np.sum(recN)/np.sum(obsN)*100.) print("###################") print("total in Prsa 15.8<r<19.5 P<1000d sample (raw, log):",np.sum(allNPrsa), np.log10(np.sum(allNPrsa))) print("total observable in Prsa 15.8<r<19.5 P<1000d sample (raw, log):",np.sum(obsNPrsa), np.log10(np.sum(obsNPrsa))) print("total recovered in Prsa 15.8<r<19.5 P<1000d sample (raw, log):",np.sum(recNPrsa), np.log10(np.sum(recNPrsa))) print("Prsa 15.8<r<19.5 P<1000d rec/obs*100:",np.sum(recNPrsa)/np.sum(obsNPrsa)*100.)
2.046875
2
CondTools/BeamSpot/test/BeamSpotRcdPrinter_cfg.py
ckamtsikis/cmssw
13
2430
<filename>CondTools/BeamSpot/test/BeamSpotRcdPrinter_cfg.py import FWCore.ParameterSet.Config as cms import os process = cms.Process("summary") process.MessageLogger = cms.Service( "MessageLogger", debugModules = cms.untracked.vstring( "*" ), cout = cms.untracked.PSet( threshold = cms.untracked.string( "DEBUG" ) ), destinations = cms.untracked.vstring( "cout" ) ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(1) ) process.source = cms.Source("EmptySource", numberEventsInRun = cms.untracked.uint32(1), firstRun = cms.untracked.uint32(1) ) process.load("CondCore.CondDB.CondDB_cfi") process.load("CondTools.BeamSpot.BeamSpotRcdPrinter_cfi") ### 2018 Prompt process.BeamSpotRcdPrinter.tagName = "BeamSpotObjects_PCL_byLumi_v0_prompt" process.BeamSpotRcdPrinter.startIOV = 1350646955507767 process.BeamSpotRcdPrinter.endIOV = 1406876667347162 process.BeamSpotRcdPrinter.output = "summary2018_Prompt.txt" ### 2017 ReReco #process.BeamSpotRcdPrinter.tagName = "BeamSpotObjects_LumiBased_v4_offline" #process.BeamSpotRcdPrinter.startIOV = 1275820035276801 #process.BeamSpotRcdPrinter.endIOV = 1316235677532161 ### 2018 ABC ReReco #process.BeamSpotRcdPrinter.tagName = "BeamSpotObjects_LumiBased_v4_offline" #process.BeamSpotRcdPrinter.startIOV = 1354018504835073 #process.BeamSpotRcdPrinter.endIOV = 1374668707594734 ### 2018D Prompt #process.BeamSpotRcdPrinter.tagName = "BeamSpotObjects_PCL_byLumi_v0_prompt" #process.BeamSpotRcdPrinter.startIOV = 1377280047710242 #process.BeamSpotRcdPrinter.endIOV = 1406876667347162 process.p = cms.Path(process.BeamSpotRcdPrinter)
1.453125
1
django/authentication/api/urls.py
NAVANEETHA-BS/Django-Reactjs-Redux-Register-login-logout-Homepage--Project
2
2431
from django.urls import path from rest_framework_simplejwt.views import ( TokenObtainPairView, TokenRefreshView, TokenVerifyView ) urlpatterns = [ path('obtain/', TokenObtainPairView.as_view(), name='token_obtain_pair'), path('refresh/', TokenRefreshView.as_view(), name='token_refresh'), path('verify/', TokenVerifyView.as_view(), name='token_verify'), ]
1.804688
2
yue/core/explorer/ftpsource.py
nsetzer/YueMusicPlayer
0
2432
<filename>yue/core/explorer/ftpsource.py from ftplib import FTP,error_perm, all_errors import posixpath from io import BytesIO,SEEK_SET from .source import DataSource import sys import re reftp = re.compile('(ssh|ftp)\:\/\/(([^@:]+)?:?([^@]+)?@)?([^:]+)(:[0-9]+)?\/(.*)') def parseFTPurl( url ): m = reftp.match( url ) if m: g = m.groups() result = { "mode" : g[0], "username" : g[2] or "", "password" : g[3] or "", "hostname" : g[4] or "", "port" : int(g[5][1:]) if g[5] else 0, "path" : g[6] or "/", } if result['port'] == 0: if result['mode'] == ssh: result['port'] = 22 else: result['port'] = 21 # ftp port default return result raise ValueError("invalid: %s"%url) def utf8_fix(s): return ''.join([ a if ord(a)<128 else "%02X"%ord(a) for a in s]) class FTPWriter(object): """docstring for FTPWriter""" def __init__(self, ftp, path): super(FTPWriter, self).__init__() self.ftp = ftp self.path = path self.file = BytesIO() def write(self,data): return self.file.write(data) def seek(self,pos,whence=SEEK_SET): return self.file.seek(pos,whence) def tell(self): return self.file.tell() def close(self): self.file.seek(0) text = "STOR " + utf8_fix(self.path) self.ftp.storbinary(text, self.file) def __enter__(self): return self def __exit__(self,typ,val,tb): if typ is None: self.close() class FTPReader(object): """docstring for FTPWriter""" def __init__(self, ftp, path): super(FTPReader, self).__init__() self.ftp = ftp self.path = path self.file = BytesIO() # open the file text = "RETR " + utf8_fix(self.path) self.ftp.retrbinary(text, self.file.write) self.file.seek(0) def read(self,n=None): return self.file.read(n) def seek(self,pos,whence=SEEK_SET): return self.file.seek(pos,whence) def tell(self): return self.file.tell() def close(self): self.file.close() def __enter__(self): return self def __exit__(self,typ,val,tb): if typ is None: self.close() class FTPSource(DataSource): """ there is some sort of problem with utf-8/latin-1 and ftplib storbinary must accepts a STRING, since it builds a cmd and add the CRLF to the input argument using the plus operator. the command fails when given unicode text (ord > 127) and also fails whenm given a byte string. """ # TODO: turn this into a directory generator # which first loads the directory, then loops over # loaded items. # TODO: on windows we need a way to view available # drive letters def __init__(self, host, port, username="", password=""): super(FTPSource, self).__init__() self.ftp = FTP() self.ftp.connect(host,port) self.ftp.login(username,password) self.hostname = "%s:%d"%(host,port) def root(self): return "/" def close(self): try: self.ftp.quit() except all_errors as e: sys.stderr.write("Error Closing FTP connection\n") sys.stderr.write("%s\n"%e) super().close() def fix(self, path): return utf8_fix(path) def join(self,*args): return posixpath.join(*args) def breakpath(self,path): return [ x for x in path.replace("/","\\").split("\\") if x ] def relpath(self,path,base): return posixpath.relpath(path,base) def normpath(self,path,root=None): if root and not path.startswith("/"): path = posixpath.join(root,path) return posixpath.normpath( path ) def listdir(self,path): return self.ftp.nlst(path) def parent(self,path): # TODO: if path is C:\\ return empty string ? # empty string returns drives p,_ = posixpath.split(path) return p def move(self,oldpath,newpath): self.ftp.rename(oldpath,newpath) def delete(self,path): # todo support removing directory rmdir() path = utf8_fix(path) if self.exists( path ): if self.isdir(path): try: self.ftp.rmd(path) except Exception as e: print("ftp delete error: %s"%e) else: try: self.ftp.delete(path) except Exception as e: print("ftp delete error: %s"%e) def open(self,path,mode): if mode=="wb": return FTPWriter(self.ftp,path) elif mode=="rb": return FTPReader(self.ftp,path) raise NotImplementedError(mode) def exists(self,path): path = utf8_fix(path) p,n=posixpath.split(path) lst = set(self.listdir(p)) return n in lst def isdir(self,path): path = utf8_fix(path) try: return self.ftp.size(path) is None except error_perm: # TODO: to think about more later, # under my use-case, I'm only asking if a path is a directory # if I Already think it exists. Under the current FTP impl # ftp.size() fails for various reasons unless the file exists # and is an accessable file. I can infer that a failure to # determine the size means that the path is a directory, # but this does not hold true under other use cases. # I can't cache listdir calls, but if I could, then I could # use that to determine if the file exists return True#self.exists( path ) def mkdir(self,path): # this is a really ugly quick and dirty solution path = utf8_fix(path) if not self.exists(path): p = self.parent( path ) try: if not self.exists(p): self.ftp.mkd( p ) self.ftp.mkd(path) except Exception as e: print("ftp mkd error: %s"%e) def split(self,path): return posixpath.split(path) def splitext(self,path): return posixpath.splitext(path) def stat(self,path): try: size = self.ftp.size(path) except error_perm: size = None result = { "isDir" : size is None, "isLink": False, "mtime" : 0, "ctime" : 0, "size" : size or 0, "name" : self.split(path)[1], "mode" : 0 } return result def stat_fast(self,path): # not fast for thus file system :( try: size = self.ftp.size(path) except error_perm: size = None result = { "name" : self.split(path)[1], "size" : size or 0, "isDir" : size is None, "isLink" : False, } return result def chmod(self,path,mode): print("chmod not implemented") def getExportPath(self,path): return self.hostname+path
2.578125
3
tests/engine/knowledge_base.py
roshanmaskey/plaso
1,253
2433
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Tests for the knowledge base.""" import unittest from plaso.containers import artifacts from plaso.engine import knowledge_base from tests import test_lib as shared_test_lib class KnowledgeBaseTest(shared_test_lib.BaseTestCase): """Tests for the knowledge base.""" # pylint: disable=protected-access _MACOS_PATHS = [ '/Users/dude/Library/Application Data/Google/Chrome/Default/Extensions', ('/Users/dude/Library/Application Data/Google/Chrome/Default/Extensions/' 'apdfllckaahabafndbhieahigkjlhalf'), '/private/var/log/system.log', '/Users/frank/Library/Application Data/Google/Chrome/Default', '/Users/hans/Library/Application Data/Google/Chrome/Default', ('/Users/frank/Library/Application Data/Google/Chrome/Default/' 'Extensions/pjkljhegncpnkpknbcohdijeoejaedia'), '/Users/frank/Library/Application Data/Google/Chrome/Default/Extensions'] _MACOS_USERS = [ {'name': 'root', 'path': '/var/root', 'sid': '0'}, {'name': 'frank', 'path': '/Users/frank', 'sid': '4052'}, {'name': 'hans', 'path': '/Users/hans', 'sid': '4352'}, {'name': 'dude', 'path': '/Users/dude', 'sid': '1123'}] _WINDOWS_PATHS = [ 'C:\\Users\\Dude\\SomeFolder\\Chrome\\Default\\Extensions', ('C:\\Users\\Dude\\SomeNoneStandardFolder\\Chrome\\Default\\Extensions\\' 'hmjkmjkepdijhoojdojkdfohbdgmmhki'), ('C:\\Users\\frank\\AppData\\Local\\Google\\Chrome\\Extensions\\' 'blpcfgokakmgnkcojhhkbfbldkacnbeo'), 'C:\\Users\\frank\\AppData\\Local\\Google\\Chrome\\Extensions', ('C:\\Users\\frank\\AppData\\Local\\Google\\Chrome\\Extensions\\' 'icppfcnhkcmnfdhfhphakoifcfokfdhg'), 'C:\\Windows\\System32', 'C:\\Stuff/with path separator\\Folder'] _WINDOWS_USERS = [ {'name': 'dude', 'path': 'C:\\Users\\dude', 'sid': 'S-1'}, {'name': 'frank', 'path': 'C:\\Users\\frank', 'sid': 'S-2'}] def _SetUserAccounts(self, knowledge_base_object, users): """Sets the user accounts in the knowledge base. Args: knowledge_base_object (KnowledgeBase): knowledge base. users (list[dict[str,str])): users. """ for user in users: identifier = user.get('sid', user.get('uid', None)) if not identifier: continue user_account = artifacts.UserAccountArtifact( identifier=identifier, user_directory=user.get('path', None), username=user.get('name', None)) knowledge_base_object.AddUserAccount(user_account) def testCodepageProperty(self): """Tests the codepage property.""" knowledge_base_object = knowledge_base.KnowledgeBase() self.assertEqual(knowledge_base_object.codepage, 'cp1252') def testHostnameProperty(self): """Tests the hostname property.""" knowledge_base_object = knowledge_base.KnowledgeBase() self.assertEqual(knowledge_base_object.hostname, '') def testOperatingSystemProperty(self): """Tests the operating_system property.""" knowledge_base_object = knowledge_base.KnowledgeBase() operating_system = knowledge_base_object.GetValue('operating_system') self.assertIsNone(operating_system) knowledge_base_object.SetValue('operating_system', 'Windows') operating_system = knowledge_base_object.GetValue('operating_system') self.assertEqual(operating_system, 'Windows') def testTimezoneProperty(self): """Tests the timezone property.""" knowledge_base_object = knowledge_base.KnowledgeBase() self.assertEqual(knowledge_base_object.timezone.zone, 'UTC') def testUserAccountsProperty(self): """Tests the user accounts property.""" knowledge_base_object = knowledge_base.KnowledgeBase() self.assertEqual(len(knowledge_base_object.user_accounts), 0) user_account = artifacts.UserAccountArtifact( identifier='1000', user_directory='/home/testuser', username='testuser') knowledge_base_object.AddUserAccount(user_account) self.assertEqual(len(knowledge_base_object.user_accounts), 1) def testYearProperty(self): """Tests the year property.""" knowledge_base_object = knowledge_base.KnowledgeBase() self.assertEqual(knowledge_base_object.year, 0) def testAddUserAccount(self): """Tests the AddUserAccount function.""" knowledge_base_object = knowledge_base.KnowledgeBase() user_account = artifacts.UserAccountArtifact( identifier='1000', user_directory='/home/testuser', username='testuser') knowledge_base_object.AddUserAccount(user_account) with self.assertRaises(KeyError): knowledge_base_object.AddUserAccount(user_account) def testAddEnvironmentVariable(self): """Tests the AddEnvironmentVariable function.""" knowledge_base_object = knowledge_base.KnowledgeBase() environment_variable = artifacts.EnvironmentVariableArtifact( case_sensitive=False, name='SystemRoot', value='C:\\Windows') knowledge_base_object.AddEnvironmentVariable(environment_variable) with self.assertRaises(KeyError): knowledge_base_object.AddEnvironmentVariable(environment_variable) def testGetEnvironmentVariable(self): """Tests the GetEnvironmentVariable functions.""" knowledge_base_object = knowledge_base.KnowledgeBase() environment_variable = artifacts.EnvironmentVariableArtifact( case_sensitive=False, name='SystemRoot', value='C:\\Windows') knowledge_base_object.AddEnvironmentVariable(environment_variable) test_environment_variable = knowledge_base_object.GetEnvironmentVariable( 'SystemRoot') self.assertIsNotNone(test_environment_variable) test_environment_variable = knowledge_base_object.GetEnvironmentVariable( 'sYsTeMrOoT') self.assertIsNotNone(test_environment_variable) test_environment_variable = knowledge_base_object.GetEnvironmentVariable( 'Bogus') self.assertIsNone(test_environment_variable) def testGetEnvironmentVariables(self): """Tests the GetEnvironmentVariables function.""" knowledge_base_object = knowledge_base.KnowledgeBase() environment_variable = artifacts.EnvironmentVariableArtifact( case_sensitive=False, name='SystemRoot', value='C:\\Windows') knowledge_base_object.AddEnvironmentVariable(environment_variable) environment_variable = artifacts.EnvironmentVariableArtifact( case_sensitive=False, name='WinDir', value='C:\\Windows') knowledge_base_object.AddEnvironmentVariable(environment_variable) environment_variables = knowledge_base_object.GetEnvironmentVariables() self.assertEqual(len(environment_variables), 2) def testGetHostname(self): """Tests the GetHostname function.""" knowledge_base_object = knowledge_base.KnowledgeBase() hostname = knowledge_base_object.GetHostname() self.assertEqual(hostname, '') # TODO: add tests for GetMountPoint. def testGetSourceConfigurationArtifacts(self): """Tests the GetSourceConfigurationArtifacts function.""" knowledge_base_object = knowledge_base.KnowledgeBase() hostname_artifact = artifacts.HostnameArtifact(name='myhost.mydomain') knowledge_base_object.SetHostname(hostname_artifact) user_account = artifacts.UserAccountArtifact( identifier='1000', user_directory='/home/testuser', username='testuser') knowledge_base_object.AddUserAccount(user_account) source_configurations = ( knowledge_base_object.GetSourceConfigurationArtifacts()) self.assertEqual(len(source_configurations), 1) self.assertIsNotNone(source_configurations[0]) system_configuration = source_configurations[0].system_configuration self.assertIsNotNone(system_configuration) self.assertIsNotNone(system_configuration.hostname) self.assertEqual(system_configuration.hostname.name, 'myhost.mydomain') def testGetSystemConfigurationArtifact(self): """Tests the _GetSystemConfigurationArtifact function.""" knowledge_base_object = knowledge_base.KnowledgeBase() hostname_artifact = artifacts.HostnameArtifact(name='myhost.mydomain') knowledge_base_object.SetHostname(hostname_artifact) user_account = artifacts.UserAccountArtifact( identifier='1000', user_directory='/home/testuser', username='testuser') knowledge_base_object.AddUserAccount(user_account) system_configuration = ( knowledge_base_object._GetSystemConfigurationArtifact()) self.assertIsNotNone(system_configuration) self.assertIsNotNone(system_configuration.hostname) self.assertEqual(system_configuration.hostname.name, 'myhost.mydomain') # TODO: add tests for GetTextPrepend. def testGetUsernameByIdentifier(self): """Tests the GetUsernameByIdentifier function.""" knowledge_base_object = knowledge_base.KnowledgeBase() user_account = artifacts.UserAccountArtifact( identifier='1000', user_directory='/home/testuser', username='testuser') knowledge_base_object.AddUserAccount(user_account) usename = knowledge_base_object.GetUsernameByIdentifier('1000') self.assertEqual(usename, 'testuser') usename = knowledge_base_object.GetUsernameByIdentifier(1000) self.assertEqual(usename, '') usename = knowledge_base_object.GetUsernameByIdentifier('1001') self.assertEqual(usename, '') def testGetUsernameForPath(self): """Tests the GetUsernameForPath function.""" knowledge_base_object = knowledge_base.KnowledgeBase() self._SetUserAccounts(knowledge_base_object, self._MACOS_USERS) username = knowledge_base_object.GetUsernameForPath( self._MACOS_PATHS[0]) self.assertEqual(username, 'dude') username = knowledge_base_object.GetUsernameForPath( self._MACOS_PATHS[4]) self.assertEqual(username, 'hans') username = knowledge_base_object.GetUsernameForPath( self._WINDOWS_PATHS[0]) self.assertIsNone(username) knowledge_base_object = knowledge_base.KnowledgeBase() self._SetUserAccounts(knowledge_base_object, self._WINDOWS_USERS) username = knowledge_base_object.GetUsernameForPath( self._WINDOWS_PATHS[0]) self.assertEqual(username, 'dude') username = knowledge_base_object.GetUsernameForPath( self._WINDOWS_PATHS[2]) self.assertEqual(username, 'frank') username = knowledge_base_object.GetUsernameForPath( self._MACOS_PATHS[2]) self.assertIsNone(username) def testGetSetValue(self): """Tests the Get and SetValue functions.""" knowledge_base_object = knowledge_base.KnowledgeBase() expected_value = 'test value' knowledge_base_object.SetValue('Test', expected_value) value = knowledge_base_object.GetValue('Test') self.assertEqual(value, expected_value) value = knowledge_base_object.GetValue('tEsT') self.assertEqual(value, expected_value) value = knowledge_base_object.GetValue('Bogus') self.assertIsNone(value) def testHasUserAccounts(self): """Tests the HasUserAccounts function.""" knowledge_base_object = knowledge_base.KnowledgeBase() self.assertFalse(knowledge_base_object.HasUserAccounts()) user_account = artifacts.UserAccountArtifact( identifier='1000', user_directory='/home/testuser', username='testuser') knowledge_base_object.AddUserAccount(user_account) self.assertTrue(knowledge_base_object.HasUserAccounts()) def testReadSystemConfigurationArtifact(self): """Tests the ReadSystemConfigurationArtifact function.""" knowledge_base_object = knowledge_base.KnowledgeBase() system_configuration = artifacts.SystemConfigurationArtifact() system_configuration.hostname = artifacts.HostnameArtifact( name='myhost.mydomain') user_account = artifacts.UserAccountArtifact( identifier='1000', user_directory='/home/testuser', username='testuser') system_configuration.user_accounts.append(user_account) knowledge_base_object.ReadSystemConfigurationArtifact(system_configuration) hostname = knowledge_base_object.GetHostname() self.assertEqual(hostname, 'myhost.mydomain') def testSetActiveSession(self): """Tests the SetActiveSession function.""" knowledge_base_object = knowledge_base.KnowledgeBase() knowledge_base_object.SetActiveSession('ddda05bedf324cbd99fa8c24b8a0037a') self.assertEqual( knowledge_base_object._active_session, 'ddda05bedf324cbd99fa8c24b8a0037a') knowledge_base_object.SetActiveSession( knowledge_base_object._DEFAULT_ACTIVE_SESSION) self.assertEqual( knowledge_base_object._active_session, knowledge_base_object._DEFAULT_ACTIVE_SESSION) def testSetCodepage(self): """Tests the SetCodepage function.""" knowledge_base_object = knowledge_base.KnowledgeBase() knowledge_base_object.SetCodepage('cp1252') with self.assertRaises(ValueError): knowledge_base_object.SetCodepage('bogus') def testSetHostname(self): """Tests the SetHostname function.""" knowledge_base_object = knowledge_base.KnowledgeBase() hostname_artifact = artifacts.HostnameArtifact(name='myhost.mydomain') knowledge_base_object.SetHostname(hostname_artifact) # TODO: add tests for SetMountPoint. # TODO: add tests for SetTextPrepend. def testSetTimeZone(self): """Tests the SetTimeZone function.""" knowledge_base_object = knowledge_base.KnowledgeBase() time_zone_artifact = artifacts.TimeZoneArtifact( localized_name='Eastern (standaardtijd)', mui_form='@tzres.dll,-112', name='Eastern Standard Time') knowledge_base_object.AddAvailableTimeZone(time_zone_artifact) # Set an IANA time zone name. knowledge_base_object.SetTimeZone('Europe/Zurich') self.assertEqual(knowledge_base_object._time_zone.zone, 'Europe/Zurich') # Set a Windows time zone name. knowledge_base_object.SetTimeZone('Eastern Standard Time') self.assertEqual(knowledge_base_object._time_zone.zone, 'America/New_York') # Set a localized Windows time zone name. knowledge_base_object.SetTimeZone('Eastern (standaardtijd)') self.assertEqual(knowledge_base_object._time_zone.zone, 'America/New_York') # Set a MUI form Windows time zone name. knowledge_base_object.SetTimeZone('@tzres.dll,-112') self.assertEqual(knowledge_base_object._time_zone.zone, 'America/New_York') with self.assertRaises(ValueError): knowledge_base_object.SetTimeZone('Bogus') if __name__ == '__main__': unittest.main()
1.921875
2
Problems/Dynamic Programming/140. Word Break II.py
BYJRK/LeetCode-Solutions
0
2434
<filename>Problems/Dynamic Programming/140. Word Break II.py # https://leetcode.com/problems/word-break-ii/ from typing import List class Solution: def wordBreak(self, s: str, wordDict: List[str]) -> List[str]: # 做一个快速的检查,如果 s 中存在所有 word 都不包含的字母,则直接退出 set1 = set(s) set2 = set(''.join(wordDict)) if not set1.issubset(set2): return [] # dp[i] 的意思是,子字符串 s[:i] 能以怎样的方式进行分割 # 如果是 [[]] 则表示开头 # 如果是 [None],则表示还没有访问到,或没有办法进行分割 # 如果是 [['a', 'b'], ['ab']] 则表示目前已经有两种方式拼出这个子字符串 dp = [None] * (len(s) + 1) dp[0] = [[]] for i in range(len(s) + 1): # 如果当前子字符串无法分割,则跳过 if dp[i] is None: continue tmp = s[i:] for w in wordDict: idx = len(w) + i if idx > len(s): continue if tmp.startswith(w): if dp[idx] is None: dp[idx] = [] # 将目前的所有方式全部添加到新的位置,并在每个的最后追加当前的单词 for dic in dp[i]: dp[idx].append(dic + [w]) if dp[-1] is None: return [] return [' '.join(res) for res in dp[-1]] def wordBreak_dfs(self, s: str, wordDict: List[str]) -> List[str]: def dfs(s: str, memo={}): if s in memo: return memo[s] if len(s) == 0: return [[]] res = [] for w in wordDict: if s.startswith(w): tmp = s[len(w):] combos = dfs(tmp, memo) for combo in combos: res.append([w] + combo) memo[s] = res return res return dfs(s) s = Solution() print(s.wordBreak_dfs('catsanddog', ["cat", "cats", "and", "sand", "dog"])) print(s.wordBreak_dfs('pineapplepenapple', [ "apple", "pen", "applepen", "pine", "pineapple"])) # text = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" # words = ["a", "aa", "aaa", "aaaa", "aaaaa", "aaaaaa", # "aaaaaaa", "aaaaaaaa", "aaaaaaaaa", "aaaaaaaaaa"] # print(s.wordBreak(text, words))
3.640625
4
neutron/tests/unit/db/test_migration.py
banhr/neutron
1
2435
<filename>neutron/tests/unit/db/test_migration.py # Copyright 2012 New Dream Network, LLC (DreamHost) # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy import os import re import sys import textwrap from alembic.autogenerate import api as alembic_ag_api from alembic import config as alembic_config from alembic.operations import ops as alembic_ops from alembic import script as alembic_script import fixtures import mock from neutron_lib.utils import helpers from oslo_utils import fileutils import pkg_resources import sqlalchemy as sa from testtools import matchers from neutron.conf.db import migration_cli from neutron.db import migration from neutron.db.migration import autogen from neutron.db.migration import cli from neutron.tests import base from neutron.tests import tools from neutron.tests.unit import testlib_api class FakeConfig(object): service = '' class FakeRevision(object): path = 'fakepath' def __init__(self, labels=None, down_revision=None, is_branch_point=False): if not labels: labels = set() self.branch_labels = labels self.down_revision = down_revision self.is_branch_point = is_branch_point self.revision = helpers.get_random_string(10) self.module = mock.MagicMock() class MigrationEntrypointsMemento(fixtures.Fixture): '''Create a copy of the migration entrypoints map so it can be restored during test cleanup. ''' def _setUp(self): self.ep_backup = {} for proj, ep in migration_cli.migration_entrypoints.items(): self.ep_backup[proj] = copy.copy(ep) self.addCleanup(self.restore) def restore(self): migration_cli.migration_entrypoints = self.ep_backup class TestDbMigration(base.BaseTestCase): def setUp(self): super(TestDbMigration, self).setUp() mock.patch('alembic.op.get_bind').start() self.mock_alembic_is_offline = mock.patch( 'alembic.context.is_offline_mode', return_value=False).start() self.mock_alembic_is_offline.return_value = False self.mock_sa_inspector = mock.patch( 'sqlalchemy.engine.reflection.Inspector').start() def _prepare_mocked_sqlalchemy_inspector(self): mock_inspector = mock.MagicMock() mock_inspector.get_table_names.return_value = ['foo', 'bar'] mock_inspector.get_columns.return_value = [{'name': 'foo_column'}, {'name': 'bar_column'}] self.mock_sa_inspector.from_engine.return_value = mock_inspector def test_schema_has_table(self): self._prepare_mocked_sqlalchemy_inspector() self.assertTrue(migration.schema_has_table('foo')) def test_schema_has_table_raises_if_offline(self): self.mock_alembic_is_offline.return_value = True self.assertRaises(RuntimeError, migration.schema_has_table, 'foo') def test_schema_has_column_missing_table(self): self._prepare_mocked_sqlalchemy_inspector() self.assertFalse(migration.schema_has_column('meh', 'meh')) def test_schema_has_column(self): self._prepare_mocked_sqlalchemy_inspector() self.assertTrue(migration.schema_has_column('foo', 'foo_column')) def test_schema_has_column_raises_if_offline(self): self.mock_alembic_is_offline.return_value = True self.assertRaises(RuntimeError, migration.schema_has_column, 'foo', 'foo_col') def test_schema_has_column_missing_column(self): self._prepare_mocked_sqlalchemy_inspector() self.assertFalse(migration.schema_has_column( 'foo', column_name='meh')) class TestCli(base.BaseTestCase): def setUp(self): super(TestCli, self).setUp() self.do_alembic_cmd_p = mock.patch.object(cli, 'do_alembic_command') self.do_alembic_cmd = self.do_alembic_cmd_p.start() self.mock_alembic_err = mock.patch('alembic.util.err').start() self.mock_alembic_warn = mock.patch('alembic.util.warn').start() self.mock_alembic_err.side_effect = SystemExit def mocked_root_dir(cfg): return os.path.join('/fake/dir', cli._get_project_base(cfg)) mock_root = mock.patch.object(cli, '_get_package_root_dir').start() mock_root.side_effect = mocked_root_dir # Avoid creating fake directories mock.patch('oslo_utils.fileutils.ensure_tree').start() # Set up some configs and entrypoints for tests to chew on self.configs = [] self.projects = ('neutron', 'networking-foo', 'neutron-fwaas') ini = os.path.join(os.path.dirname(cli.__file__), 'alembic.ini') self.useFixture(MigrationEntrypointsMemento()) migration_cli.migration_entrypoints = {} for project in self.projects: config = alembic_config.Config(ini) config.set_main_option('neutron_project', project) module_name = project.replace('-', '_') + '.db.migration' attrs = ('alembic_migrations',) script_location = ':'.join([module_name, attrs[0]]) config.set_main_option('script_location', script_location) self.configs.append(config) entrypoint = pkg_resources.EntryPoint(project, module_name, attrs=attrs) migration_cli.migration_entrypoints[project] = entrypoint def _main_test_helper(self, argv, func_name, exp_kwargs=[{}]): with mock.patch.object(sys, 'argv', argv),\ mock.patch.object(cli, 'run_sanity_checks'),\ mock.patch.object(cli, 'validate_revisions'): cli.main() def _append_version_path(args): args = copy.copy(args) if 'autogenerate' in args and not args['autogenerate']: args['version_path'] = mock.ANY return args self.do_alembic_cmd.assert_has_calls( [mock.call(mock.ANY, func_name, **_append_version_path(kwargs)) for kwargs in exp_kwargs] ) def test_stamp(self): self._main_test_helper( ['prog', 'stamp', 'foo'], 'stamp', [{'revision': 'foo', 'sql': False}] ) self._main_test_helper( ['prog', 'stamp', 'foo', '--sql'], 'stamp', [{'revision': 'foo', 'sql': True}] ) def _validate_cmd(self, cmd): self._main_test_helper( ['prog', cmd], cmd, [{'verbose': False}]) self._main_test_helper( ['prog', cmd, '--verbose'], cmd, [{'verbose': True}]) def test_branches(self): self._validate_cmd('branches') def test_current(self): self._validate_cmd('current') def test_history(self): self._validate_cmd('history') def test_heads(self): self._validate_cmd('heads') def test_check_migration(self): with mock.patch.object(cli, 'validate_head_files') as validate: self._main_test_helper(['prog', 'check_migration'], 'branches') self.assertEqual(len(self.projects), validate.call_count) def _test_database_sync_revision(self, separate_branches=True): with mock.patch.object(cli, 'update_head_files') as update: if separate_branches: mock.patch('os.path.exists').start() expected_kwargs = [{ 'message': 'message', 'sql': False, 'autogenerate': True, }] self._main_test_helper( ['prog', 'revision', '--autogenerate', '-m', 'message'], 'revision', expected_kwargs ) self.assertEqual(len(self.projects), update.call_count) update.reset_mock() expected_kwargs = [{ 'message': 'message', 'sql': True, 'autogenerate': False, 'head': cli._get_branch_head(branch) } for branch in cli.MIGRATION_BRANCHES] for kwarg in expected_kwargs: kwarg['autogenerate'] = False kwarg['sql'] = True self._main_test_helper( ['prog', 'revision', '--sql', '-m', 'message'], 'revision', expected_kwargs ) self.assertEqual(len(self.projects), update.call_count) update.reset_mock() expected_kwargs = [{ 'message': 'message', 'sql': False, 'autogenerate': False, 'head': 'expand@head' }] self._main_test_helper( ['prog', 'revision', '-m', 'message', '--expand'], 'revision', expected_kwargs ) self.assertEqual(len(self.projects), update.call_count) update.reset_mock() for kwarg in expected_kwargs: kwarg['head'] = 'contract@head' self._main_test_helper( ['prog', 'revision', '-m', 'message', '--contract'], 'revision', expected_kwargs ) self.assertEqual(len(self.projects), update.call_count) def test_database_sync_revision(self): self._test_database_sync_revision() def test_database_sync_revision_no_branches(self): # Test that old branchless approach is still supported self._test_database_sync_revision(separate_branches=False) def test_upgrade_revision(self): self._main_test_helper( ['prog', 'upgrade', '--sql', 'head'], 'upgrade', [{'desc': None, 'revision': 'heads', 'sql': True}] ) def test_upgrade_delta(self): self._main_test_helper( ['prog', 'upgrade', '--delta', '3'], 'upgrade', [{'desc': None, 'revision': '+3', 'sql': False}] ) def test_upgrade_revision_delta(self): self._main_test_helper( ['prog', 'upgrade', 'kilo', '--delta', '3'], 'upgrade', [{'desc': None, 'revision': 'kilo+3', 'sql': False}] ) def test_upgrade_expand(self): self._main_test_helper( ['prog', 'upgrade', '--expand'], 'upgrade', [{'desc': cli.EXPAND_BRANCH, 'revision': 'expand@head', 'sql': False}] ) def test_upgrade_expand_contract_are_mutually_exclusive(self): with testlib_api.ExpectedException(SystemExit): self._main_test_helper( ['prog', 'upgrade', '--expand --contract'], 'upgrade') def _test_upgrade_conflicts_with_revision(self, mode): with testlib_api.ExpectedException(SystemExit): self._main_test_helper( ['prog', 'upgrade', '--%s revision1' % mode], 'upgrade') def _test_upgrade_conflicts_with_delta(self, mode): with testlib_api.ExpectedException(SystemExit): self._main_test_helper( ['prog', 'upgrade', '--%s +3' % mode], 'upgrade') def _test_revision_autogenerate_conflicts_with_branch(self, branch): with testlib_api.ExpectedException(SystemExit): self._main_test_helper( ['prog', 'revision', '--autogenerate', '--%s' % branch], 'revision') def test_revision_autogenerate_conflicts_with_expand(self): self._test_revision_autogenerate_conflicts_with_branch( cli.EXPAND_BRANCH) def test_revision_autogenerate_conflicts_with_contract(self): self._test_revision_autogenerate_conflicts_with_branch( cli.CONTRACT_BRANCH) def test_upgrade_expand_conflicts_with_revision(self): self._test_upgrade_conflicts_with_revision('expand') def test_upgrade_contract_conflicts_with_revision(self): self._test_upgrade_conflicts_with_revision('contract') def test_upgrade_expand_conflicts_with_delta(self): self._test_upgrade_conflicts_with_delta('expand') def test_upgrade_contract_conflicts_with_delta(self): self._test_upgrade_conflicts_with_delta('contract') def test_upgrade_contract(self): self._main_test_helper( ['prog', 'upgrade', '--contract'], 'upgrade', [{'desc': cli.CONTRACT_BRANCH, 'revision': 'contract@head', 'sql': False}] ) @mock.patch('alembic.script.ScriptDirectory.walk_revisions') def test_upgrade_milestone_expand_before_contract(self, walk_mock): c_revs = [FakeRevision(labels={cli.CONTRACT_BRANCH}) for r in range(5)] c_revs[1].module.neutron_milestone = [migration.LIBERTY] e_revs = [FakeRevision(labels={cli.EXPAND_BRANCH}) for r in range(5)] e_revs[3].module.neutron_milestone = [migration.LIBERTY] walk_mock.return_value = c_revs + e_revs self._main_test_helper( ['prog', '--subproject', 'neutron', 'upgrade', 'liberty'], 'upgrade', [{'desc': cli.EXPAND_BRANCH, 'revision': e_revs[3].revision, 'sql': False}, {'desc': cli.CONTRACT_BRANCH, 'revision': c_revs[1].revision, 'sql': False}] ) def assert_command_fails(self, command): # Avoid cluttering stdout with argparse error messages mock.patch('argparse.ArgumentParser._print_message').start() with mock.patch.object(sys, 'argv', command), mock.patch.object( cli, 'run_sanity_checks'): self.assertRaises(SystemExit, cli.main) def test_downgrade_fails(self): self.assert_command_fails(['prog', 'downgrade', '--sql', 'juno']) def test_upgrade_negative_relative_revision_fails(self): self.assert_command_fails(['prog', 'upgrade', '-2']) def test_upgrade_negative_delta_fails(self): self.assert_command_fails(['prog', 'upgrade', '--delta', '-2']) def test_upgrade_rejects_delta_with_relative_revision(self): self.assert_command_fails(['prog', 'upgrade', '+2', '--delta', '3']) def _test_validate_head_files_helper(self, heads, contract_head='', expand_head=''): fake_config = self.configs[0] head_files_not_exist = (contract_head == expand_head == '') with mock.patch('alembic.script.ScriptDirectory.from_config') as fc,\ mock.patch('os.path.exists') as os_mock: if head_files_not_exist: os_mock.return_value = False else: os_mock.return_value = True fc.return_value.get_heads.return_value = heads revs = {heads[0]: FakeRevision(labels=cli.CONTRACT_BRANCH), heads[1]: FakeRevision(labels=cli.EXPAND_BRANCH)} fc.return_value.get_revision.side_effect = revs.__getitem__ mock_open_con = self.useFixture( tools.OpenFixture(cli._get_contract_head_file_path( fake_config), contract_head + '\n')).mock_open mock_open_ex = self.useFixture( tools.OpenFixture(cli._get_expand_head_file_path( fake_config), expand_head + '\n')).mock_open if contract_head in heads and expand_head in heads: cli.validate_head_files(fake_config) elif head_files_not_exist: cli.validate_head_files(fake_config) self.assertTrue(self.mock_alembic_warn.called) else: self.assertRaises( SystemExit, cli.validate_head_files, fake_config ) self.assertTrue(self.mock_alembic_err.called) if contract_head in heads and expand_head in heads: mock_open_ex.assert_called_with( cli._get_expand_head_file_path(fake_config)) mock_open_con.assert_called_with( cli._get_contract_head_file_path(fake_config)) if not head_files_not_exist: fc.assert_called_once_with(fake_config) def test_validate_head_files_success(self): self._test_validate_head_files_helper(['a', 'b'], contract_head='a', expand_head='b') def test_validate_head_files_missing_file(self): self._test_validate_head_files_helper(['a', 'b']) def test_validate_head_files_wrong_contents(self): self._test_validate_head_files_helper(['a', 'b'], contract_head='c', expand_head='d') @mock.patch.object(fileutils, 'delete_if_exists') def test_update_head_files_success(self, *mocks): heads = ['a', 'b'] mock_open_con = self.useFixture( tools.OpenFixture(cli._get_contract_head_file_path( self.configs[0]))).mock_open mock_open_ex = self.useFixture( tools.OpenFixture(cli._get_expand_head_file_path( self.configs[0]))).mock_open with mock.patch('alembic.script.ScriptDirectory.from_config') as fc: fc.return_value.get_heads.return_value = heads revs = {heads[0]: FakeRevision(labels=cli.CONTRACT_BRANCH), heads[1]: FakeRevision(labels=cli.EXPAND_BRANCH)} fc.return_value.get_revision.side_effect = revs.__getitem__ cli.update_head_files(self.configs[0]) mock_open_con.return_value.write.assert_called_with( heads[0] + '\n') mock_open_ex.return_value.write.assert_called_with(heads[1] + '\n') old_head_file = cli._get_head_file_path( self.configs[0]) old_heads_file = cli._get_heads_file_path( self.configs[0]) delete_if_exists = mocks[0] self.assertIn(mock.call(old_head_file), delete_if_exists.call_args_list) self.assertIn(mock.call(old_heads_file), delete_if_exists.call_args_list) def test_get_project_base(self): config = alembic_config.Config() config.set_main_option('script_location', 'a.b.c:d') proj_base = cli._get_project_base(config) self.assertEqual('a', proj_base) def test_get_root_versions_dir(self): config = alembic_config.Config() config.set_main_option('script_location', 'a.b.c:d') versions_dir = cli._get_root_versions_dir(config) self.assertEqual('/fake/dir/a/a/b/c/d/versions', versions_dir) def test_get_subproject_script_location(self): foo_ep = cli._get_subproject_script_location('networking-foo') expected = 'networking_foo.db.migration:alembic_migrations' self.assertEqual(expected, foo_ep) def test_get_subproject_script_location_not_installed(self): self.assertRaises( SystemExit, cli._get_subproject_script_location, 'not-installed') def test_get_subproject_base_not_installed(self): self.assertRaises( SystemExit, cli._get_subproject_base, 'not-installed') def test__compare_labels_ok(self): labels = {'label1', 'label2'} fake_revision = FakeRevision(labels) cli._compare_labels(fake_revision, {'label1', 'label2'}) def test__compare_labels_fail_unexpected_labels(self): labels = {'label1', 'label2', 'label3'} fake_revision = FakeRevision(labels) self.assertRaises( SystemExit, cli._compare_labels, fake_revision, {'label1', 'label2'}) @mock.patch.object(cli, '_compare_labels') def test__validate_single_revision_labels_branchless_fail_different_labels( self, compare_mock): fake_down_revision = FakeRevision() fake_revision = FakeRevision(down_revision=fake_down_revision) script_dir = mock.Mock() script_dir.get_revision.return_value = fake_down_revision cli._validate_single_revision_labels(script_dir, fake_revision, label=None) expected_labels = set() compare_mock.assert_has_calls( [mock.call(revision, expected_labels) for revision in (fake_revision, fake_down_revision)] ) @mock.patch.object(cli, '_compare_labels') def test__validate_single_revision_labels_branches_fail_different_labels( self, compare_mock): fake_down_revision = FakeRevision() fake_revision = FakeRevision(down_revision=fake_down_revision) script_dir = mock.Mock() script_dir.get_revision.return_value = fake_down_revision cli._validate_single_revision_labels( script_dir, fake_revision, label='fakebranch') expected_labels = {'fakebranch'} compare_mock.assert_has_calls( [mock.call(revision, expected_labels) for revision in (fake_revision, fake_down_revision)] ) @mock.patch.object(cli, '_validate_single_revision_labels') def test__validate_revision_validates_branches(self, validate_mock): script_dir = mock.Mock() fake_revision = FakeRevision() branch = cli.MIGRATION_BRANCHES[0] fake_revision.path = os.path.join('/fake/path', branch) cli._validate_revision(script_dir, fake_revision) validate_mock.assert_called_with( script_dir, fake_revision, label=branch) @mock.patch.object(cli, '_validate_single_revision_labels') def test__validate_revision_validates_branchless_migrations( self, validate_mock): script_dir = mock.Mock() fake_revision = FakeRevision() cli._validate_revision(script_dir, fake_revision) validate_mock.assert_called_with(script_dir, fake_revision) @mock.patch.object(cli, '_validate_revision') @mock.patch('alembic.script.ScriptDirectory.walk_revisions') def test_validate_revisions_walks_thru_all_revisions( self, walk_mock, validate_mock): revisions = [FakeRevision() for i in range(10)] walk_mock.return_value = revisions cli.validate_revisions(self.configs[0]) validate_mock.assert_has_calls( [mock.call(mock.ANY, revision) for revision in revisions] ) @mock.patch.object(cli, '_validate_revision') @mock.patch('alembic.script.ScriptDirectory.walk_revisions') def test_validate_revisions_fails_on_multiple_branch_points( self, walk_mock, validate_mock): revisions = [FakeRevision(is_branch_point=True) for i in range(2)] walk_mock.return_value = revisions self.assertRaises( SystemExit, cli.validate_revisions, self.configs[0]) @mock.patch('alembic.script.ScriptDirectory.walk_revisions') def test__get_branch_points(self, walk_mock): revisions = [FakeRevision(is_branch_point=tools.get_random_boolean) for i in range(50)] walk_mock.return_value = revisions script_dir = alembic_script.ScriptDirectory.from_config( self.configs[0]) self.assertEqual(set(rev for rev in revisions if rev.is_branch_point), set(cli._get_branch_points(script_dir))) @mock.patch.object(cli, '_get_version_branch_path') def test_autogen_process_directives(self, get_version_branch_path): get_version_branch_path.side_effect = lambda cfg, release, branch: ( "/foo/expand" if branch == 'expand' else "/foo/contract") migration_script = alembic_ops.MigrationScript( 'eced083f5df', # these directives will be split into separate # expand/contract scripts alembic_ops.UpgradeOps( ops=[ alembic_ops.CreateTableOp( 'organization', [ sa.Column('id', sa.Integer(), primary_key=True), sa.Column('name', sa.String(50), nullable=False) ] ), alembic_ops.ModifyTableOps( 'user', ops=[ alembic_ops.AddColumnOp( 'user', sa.Column('organization_id', sa.Integer()) ), alembic_ops.CreateForeignKeyOp( 'org_fk', 'user', 'organization', ['organization_id'], ['id'] ), alembic_ops.DropConstraintOp( 'user', 'uq_user_org' ), alembic_ops.DropColumnOp( 'user', 'organization_name' ) ] ) ] ), # these will be discarded alembic_ops.DowngradeOps( ops=[ alembic_ops.AddColumnOp( 'user', sa.Column( 'organization_name', sa.String(50), nullable=True) ), alembic_ops.CreateUniqueConstraintOp( 'uq_user_org', 'user', ['user_name', 'organization_name'] ), alembic_ops.ModifyTableOps( 'user', ops=[ alembic_ops.DropConstraintOp('org_fk', 'user'), alembic_ops.DropColumnOp('user', 'organization_id') ] ), alembic_ops.DropTableOp('organization') ] ), message='create the organization table and ' 'replace user.organization_name' ) directives = [migration_script] autogen.process_revision_directives( mock.Mock(), mock.Mock(), directives ) expand = directives[0] contract = directives[1] self.assertEqual("/foo/expand", expand.version_path) self.assertEqual("/foo/contract", contract.version_path) self.assertTrue(expand.downgrade_ops.is_empty()) self.assertTrue(contract.downgrade_ops.is_empty()) def _get_regex(s): s = textwrap.dedent(s) s = re.escape(s) # alembic 0.8.9 added additional leading '# ' before comments return s.replace('\\#\\#\\#\\ ', '(# )?### ') expected_regex = ("""\ ### commands auto generated by Alembic - please adjust! ### op.create_table('organization', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=50), nullable=False), sa.PrimaryKeyConstraint('id') ) op.add_column('user', """ """sa.Column('organization_id', sa.Integer(), nullable=True)) op.create_foreign_key('org_fk', 'user', """ """'organization', ['organization_id'], ['id']) ### end Alembic commands ###""") self.assertThat( alembic_ag_api.render_python_code(expand.upgrade_ops), matchers.MatchesRegex(_get_regex(expected_regex))) expected_regex = ("""\ ### commands auto generated by Alembic - please adjust! ### op.drop_constraint('user', 'uq_user_org', type_=None) op.drop_column('user', 'organization_name') ### end Alembic commands ###""") self.assertThat( alembic_ag_api.render_python_code(contract.upgrade_ops), matchers.MatchesRegex(_get_regex(expected_regex))) @mock.patch('alembic.script.ScriptDirectory.walk_revisions') def test__find_milestone_revisions_one_branch(self, walk_mock): c_revs = [FakeRevision(labels={cli.CONTRACT_BRANCH}) for r in range(5)] c_revs[1].module.neutron_milestone = [migration.LIBERTY] walk_mock.return_value = c_revs m = cli._find_milestone_revisions(self.configs[0], 'liberty', cli.CONTRACT_BRANCH) self.assertEqual(1, len(m)) m = cli._find_milestone_revisions(self.configs[0], 'liberty', cli.EXPAND_BRANCH) self.assertEqual(0, len(m)) @mock.patch('alembic.script.ScriptDirectory.walk_revisions') def test__find_milestone_revisions_two_branches(self, walk_mock): c_revs = [FakeRevision(labels={cli.CONTRACT_BRANCH}) for r in range(5)] c_revs[1].module.neutron_milestone = [migration.LIBERTY] e_revs = [FakeRevision(labels={cli.EXPAND_BRANCH}) for r in range(5)] e_revs[3].module.neutron_milestone = [migration.LIBERTY] walk_mock.return_value = c_revs + e_revs m = cli._find_milestone_revisions(self.configs[0], 'liberty') self.assertEqual(2, len(m)) m = cli._find_milestone_revisions(self.configs[0], 'mitaka') self.assertEqual(0, len(m)) @mock.patch('alembic.script.ScriptDirectory.walk_revisions') def test__find_milestone_revisions_branchless(self, walk_mock): revisions = [FakeRevision() for r in range(5)] revisions[2].module.neutron_milestone = [migration.LIBERTY] walk_mock.return_value = revisions m = cli._find_milestone_revisions(self.configs[0], 'liberty') self.assertEqual(1, len(m)) m = cli._find_milestone_revisions(self.configs[0], 'mitaka') self.assertEqual(0, len(m)) class TestSafetyChecks(base.BaseTestCase): def test_validate_revisions(self, *mocks): cli.validate_revisions(cli.get_neutron_config())
1.789063
2
withdrawal/floor_ceiling.py
hoostus/prime-harvesting
23
2436
<filename>withdrawal/floor_ceiling.py<gh_stars>10-100 from decimal import Decimal from .abc import WithdrawalStrategy # Bengen's Floor-to-Ceiling, as described in McClung's Living Off Your Money class FloorCeiling(WithdrawalStrategy): def __init__(self, portfolio, harvest_strategy, rate=.05, floor=.9, ceiling=1.25): super().__init__(portfolio, harvest_strategy) self.floor = Decimal(floor) self.ceiling = Decimal(ceiling) self.rate = Decimal(rate) def start(self): amount = self.rate * self.portfolio.value self.initial_amount = amount return amount def next(self): amount = self.rate * self.portfolio.value initial_amount_inflation_adjusted = self.initial_amount * self.cumulative_inflation floor = initial_amount_inflation_adjusted * self.floor ceiling = initial_amount_inflation_adjusted * self.ceiling amount = max(amount, floor) amount = min(amount, ceiling) return amount
2.9375
3
20190426/6_BME280_WiFi/bme280.py
rcolistete/MicroPython_MiniCurso_ProjOrientado
0
2437
<reponame>rcolistete/MicroPython_MiniCurso_ProjOrientado """ MicroPython driver for Bosh BME280 temperature, pressure and humidity I2C sensor: https://www.bosch-sensortec.com/bst/products/all_products/bme280 Authors: <NAME>, <NAME> Version: 3.1.2 @ 2018/04 License: MIT License (https://opensource.org/licenses/MIT) """ import time from ustruct import unpack, unpack_from from array import array # BME280 default address BME280_I2CADDR = 0x76 # BME280_I2CADDR = 0x77 OSAMPLE_0 = 0 OSAMPLE_1 = 1 OSAMPLE_2 = 2 OSAMPLE_4 = 3 OSAMPLE_8 = 4 OSAMPLE_16 = 5 BME280_REGISTER_STATUS = 0xF3 BME280_REGISTER_CONTROL_HUM = 0xF2 BME280_REGISTER_CONTROL = 0xF4 BME280_REGISTER_CONTROL_IIR = 0xF5 FILTER_OFF = 0 FILTER_2 = 1 FILTER_4 = 2 FILTER_8 = 3 FILTER_16 = 4 CELSIUS = 'C' FAHRENHEIT = 'F' KELVIN = 'K' class BME280(object): def __init__(self, temperature_mode=OSAMPLE_2, pressure_mode=OSAMPLE_16, humidity_mode=OSAMPLE_1, temperature_scale=CELSIUS, iir=FILTER_16, address=BME280_I2CADDR, i2c=None): osamples = [ OSAMPLE_0, OSAMPLE_1, OSAMPLE_2, OSAMPLE_4, OSAMPLE_8, OSAMPLE_16] msg_error = 'Unexpected {} operating mode value {0}.' if temperature_mode not in osamples: raise ValueError(msg_error.format("temperature", temperature_mode)) self.temperature_mode = temperature_mode if pressure_mode not in osamples: raise ValueError(msg_error.format("pressure", pressure_mode)) self.pressure_mode = pressure_mode if humidity_mode not in osamples: raise ValueError(msg_error.format("humidity", humidity_mode)) self.humidity_mode = humidity_mode msg_error = 'Unexpected low pass IIR filter setting value {0}.' if iir not in [FILTER_OFF, FILTER_2, FILTER_4, FILTER_8, FILTER_16]: raise ValueError(msg_error.format(iir)) self.iir = iir msg_error = 'Unexpected temperature scale value {0}.' if temperature_scale not in [CELSIUS, FAHRENHEIT, KELVIN]: raise ValueError(msg_error.format(temperature_scale)) self.temperature_scale = temperature_scale del msg_error self.address = address if i2c is None: raise ValueError('An I2C object is required.') self.i2c = i2c dig_88_a1 = self.i2c.readfrom_mem(self.address, 0x88, 26) dig_e1_e7 = self.i2c.readfrom_mem(self.address, 0xE1, 7) self.dig_T1, self.dig_T2, self.dig_T3, self.dig_P1, \ self.dig_P2, self.dig_P3, self.dig_P4, self.dig_P5, \ self.dig_P6, self.dig_P7, self.dig_P8, self.dig_P9, \ _, self.dig_H1 = unpack("<HhhHhhhhhhhhBB", dig_88_a1) self.dig_H2, self.dig_H3 = unpack("<hB", dig_e1_e7) e4_sign = unpack_from("<b", dig_e1_e7, 3)[0] self.dig_H4 = (e4_sign << 4) | (dig_e1_e7[4] & 0xF) e6_sign = unpack_from("<b", dig_e1_e7, 5)[0] self.dig_H5 = (e6_sign << 4) | (dig_e1_e7[4] >> 4) self.dig_H6 = unpack_from("<b", dig_e1_e7, 6)[0] self.i2c.writeto_mem( self.address, BME280_REGISTER_CONTROL, bytearray([0x24])) time.sleep(0.002) self.t_fine = 0 self._l1_barray = bytearray(1) self._l8_barray = bytearray(8) self._l3_resultarray = array("i", [0, 0, 0]) self._l1_barray[0] = self.iir << 2 self.i2c.writeto_mem( self.address, BME280_REGISTER_CONTROL_IIR, self._l1_barray) time.sleep(0.002) self._l1_barray[0] = self.humidity_mode self.i2c.writeto_mem( self.address, BME280_REGISTER_CONTROL_HUM, self._l1_barray) def read_raw_data(self, result): self._l1_barray[0] = ( self.pressure_mode << 5 | self.temperature_mode << 2 | 1) self.i2c.writeto_mem( self.address, BME280_REGISTER_CONTROL, self._l1_barray) osamples_1_16 = [ OSAMPLE_1, OSAMPLE_2, OSAMPLE_4, OSAMPLE_8, OSAMPLE_16] sleep_time = 1250 if self.temperature_mode in osamples_1_16: sleep_time += 2300*(1 << self.temperature_mode) if self.pressure_mode in osamples_1_16: sleep_time += 575 + (2300*(1 << self.pressure_mode)) if self.humidity_mode in osamples_1_16: sleep_time += 575 + (2300*(1 << self.humidity_mode)) time.sleep_us(sleep_time) while (unpack('<H', self.i2c.readfrom_mem( self.address, BME280_REGISTER_STATUS, 2))[0] & 0x08): time.sleep(0.001) self.i2c.readfrom_mem_into(self.address, 0xF7, self._l8_barray) readout = self._l8_barray raw_press = ((readout[0] << 16) | (readout[1] << 8) | readout[2]) >> 4 raw_temp = ((readout[3] << 16) | (readout[4] << 8) | readout[5]) >> 4 raw_hum = (readout[6] << 8) | readout[7] result[0] = raw_temp result[1] = raw_press result[2] = raw_hum def read_compensated_data(self, result=None): """ Get raw data and compensa the same """ self.read_raw_data(self._l3_resultarray) raw_temp, raw_press, raw_hum = self._l3_resultarray var1 = ((raw_temp >> 3) - (self.dig_T1 << 1)) * (self.dig_T2 >> 11) var2 = (raw_temp >> 4) - self.dig_T1 var2 = var2 * ((raw_temp >> 4) - self.dig_T1) var2 = ((var2 >> 12) * self.dig_T3) >> 14 self.t_fine = var1 + var2 temp = (self.t_fine * 5 + 128) >> 8 var1 = self.t_fine - 128000 var2 = var1 * var1 * self.dig_P6 var2 = var2 + ((var1 * self.dig_P5) << 17) var2 = var2 + (self.dig_P4 << 35) var1 = (((var1 * var1 * self.dig_P3) >> 8) + ((var1 * self.dig_P2) << 12)) var1 = (((1 << 47) + var1) * self.dig_P1) >> 33 if var1 == 0: pressure = 0 else: p = 1048576 - raw_press p = (((p << 31) - var2) * 3125) // var1 var1 = (self.dig_P9 * (p >> 13) * (p >> 13)) >> 25 var2 = (self.dig_P8 * p) >> 19 pressure = ((p + var1 + var2) >> 8) + (self.dig_P7 << 4) h = self.t_fine - 76800 h = (((((raw_hum << 14) - (self.dig_H4 << 20) - (self.dig_H5 * h)) + 16384) >> 15) * (((((((h * self.dig_H6) >> 10) * (((h * self.dig_H3) >> 11) + 32768)) >> 10) + 2097152) * self.dig_H2 + 8192) >> 14)) h = h - (((((h >> 15) * (h >> 15)) >> 7) * self.dig_H1) >> 4) h = 0 if h < 0 else h h = 419430400 if h > 419430400 else h humidity = h >> 12 if result: result[0] = temp result[1] = pressure result[2] = humidity return result return array("i", (temp, pressure, humidity)) @property def values(self): temp, pres, humi = self.read_compensated_data() temp = temp/100 if self.temperature_scale == 'F': temp = 32 + (temp*1.8) elif self.temperature_scale == 'K': temp = temp + 273.15 pres = pres/256 humi = humi/1024 return (temp, pres, humi) @property def formated_values(self): t, p, h = self.values temp = "{} "+self.temperature_scale return (temp.format(t), "{} Pa".format(p), "{} %".format(h)) @property def temperature(self): t, _, _ = self.values return t @property def pressure(self): _, p, _ = self.values return p @property def pressure_precision(self): _, p, _ = self.read_compensated_data() pi = float(p // 256) pd = (p % 256)/256 return (pi, pd) @property def humidity(self): _, _, h = self.values return h def altitude(self, pressure_sea_level=1013.25): pi, pd = self.pressure_precision() return 44330*(1-((float(pi+pd)/100)/pressure_sea_level)**(1/5.255))
2.65625
3
airflow/contrib/secrets/hashicorp_vault.py
colpal/airfloss
0
2438
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ Objects relating to sourcing connections & variables from Hashicorp Vault """ from typing import Optional import hvac from cached_property import cached_property from hvac.exceptions import InvalidPath, VaultError from airflow.exceptions import AirflowException from airflow.secrets import BaseSecretsBackend from airflow.utils.log.logging_mixin import LoggingMixin class VaultBackend(BaseSecretsBackend, LoggingMixin): """ Retrieves Connections and Variables from Hashicorp Vault Configurable via ``airflow.cfg`` as follows: .. code-block:: ini [secrets] backend = airflow.contrib.secrets.hashicorp_vault.VaultBackend backend_kwargs = { "connections_path": "connections", "url": "http://127.0.0.1:8200", "mount_point": "airflow" } For example, if your keys are under ``connections`` path in ``airflow`` mount_point, this would be accessible if you provide ``{"connections_path": "connections"}`` and request conn_id ``smtp_default``. :param connections_path: Specifies the path of the secret to read to get Connections. (default: 'connections') :type connections_path: str :param variables_path: Specifies the path of the secret to read to get Variables. (default: 'variables') :type variables_path: str :param config_path: Specifies the path of the secret to read Airflow Configurations (default: 'configs'). :type config_path: str :param url: Base URL for the Vault instance being addressed. :type url: str :param auth_type: Authentication Type for Vault (one of 'token', 'ldap', 'userpass', 'approle', 'github', 'gcp', 'kubernetes'). Default is ``token``. :type auth_type: str :param mount_point: The "path" the secret engine was mounted on. (Default: ``secret``) :type mount_point: str :param token: Authentication token to include in requests sent to Vault. (for ``token`` and ``github`` auth_type) :type token: str :param kv_engine_version: Select the version of the engine to run (``1`` or ``2``, default: ``2``) :type kv_engine_version: int :param username: Username for Authentication (for ``ldap`` and ``userpass`` auth_type) :type username: str :param password: Password for Authentication (for ``ldap`` and ``userpass`` auth_type) :type password: str :param role_id: Role ID for Authentication (for ``approle`` auth_type) :type role_id: str :param kubernetes_role: Role for Authentication (for ``kubernetes`` auth_type) :type kubernetes_role: str :param kubernetes_jwt_path: Path for kubernetes jwt token (for ``kubernetes`` auth_type, deafult: ``/var/run/secrets/kubernetes.io/serviceaccount/token``) :type kubernetes_jwt_path: str :param secret_id: Secret ID for Authentication (for ``approle`` auth_type) :type secret_id: str :param gcp_key_path: Path to GCP Credential JSON file (for ``gcp`` auth_type) :type gcp_key_path: str :param gcp_scopes: Comma-separated string containing GCP scopes (for ``gcp`` auth_type) :type gcp_scopes: str """ def __init__( # pylint: disable=too-many-arguments self, connections_path='connections', # type: str variables_path='variables', # type: str config_path='config', # type: str url=None, # type: Optional[str] auth_type='token', # type: str mount_point='secret', # type: str kv_engine_version=2, # type: int token=None, # type: Optional[str] username=None, # type: Optional[str] password=<PASSWORD>, # type: Optional[str] role_id=None, # type: Optional[str] kubernetes_role=None, # type: Optional[str] kubernetes_jwt_path='/var/run/secrets/kubernetes.io/serviceaccount/token', # type: str secret_id=None, # type: Optional[str] gcp_key_path=None, # type: Optional[str] gcp_scopes=None, # type: Optional[str] **kwargs ): super(VaultBackend, self).__init__() self.connections_path = connections_path.rstrip('/') if variables_path != None: self.variables_path = variables_path.rstrip('/') else: self.variables_path = variables_path self.config_path = config_path.rstrip('/') self.url = url self.auth_type = auth_type self.kwargs = kwargs self.token = token self.username = username self.password = password self.role_id = role_id self.kubernetes_role = kubernetes_role self.kubernetes_jwt_path = kubernetes_jwt_path self.secret_id = secret_id self.mount_point = mount_point self.kv_engine_version = kv_engine_version self.gcp_key_path = gcp_key_path self.gcp_scopes = gcp_scopes @cached_property def client(self): # type: () -> hvac.Client """ Return an authenticated Hashicorp Vault client """ _client = hvac.Client(url=self.url, **self.kwargs) if self.auth_type == "token": if not self.token: raise VaultError("token cannot be None for auth_type='token'") _client.token = self.token elif self.auth_type == "ldap": _client.auth.ldap.login( username=self.username, password=self.password) elif self.auth_type == "userpass": _client.auth_userpass(username=self.username, password=self.password) elif self.auth_type == "approle": _client.auth_approle(role_id=self.role_id, secret_id=self.secret_id) elif self.auth_type == "kubernetes": if not self.kubernetes_role: raise VaultError("kubernetes_role cannot be None for auth_type='kubernetes'") with open(self.kubernetes_jwt_path) as f: jwt = f.read() _client.auth_kubernetes(role=self.kubernetes_role, jwt=jwt) elif self.auth_type == "github": _client.auth.github.login(token=self.token) elif self.auth_type == "gcp": from airflow.contrib.utils.gcp_credentials_provider import ( get_credentials_and_project_id, _get_scopes ) scopes = _get_scopes(self.gcp_scopes) credentials, _ = get_credentials_and_project_id(key_path=self.gcp_key_path, scopes=scopes) _client.auth.gcp.configure(credentials=credentials) else: raise AirflowException("Authentication type '{}' not supported".format(self.auth_type)) if _client.is_authenticated(): return _client else: raise VaultError("Vault Authentication Error!") def get_conn_uri(self, conn_id): # type: (str) -> Optional[str] """ Get secret value from Vault. Store the secret in the form of URI :param conn_id: connection id :type conn_id: str """ response = self._get_secret(self.connections_path, conn_id) return response.get("conn_uri") if response else None def get_variable(self, key): # type: (str) -> Optional[str] """ Get Airflow Variable :param key: Variable Key :return: Variable Value """ if self.variables_path == None: return None else: response = self._get_secret(self.variables_path, key) return response.get("value") if response else None def _get_secret(self, path_prefix, secret_id): # type: (str, str) -> Optional[dict] """ Get secret value from Vault. :param path_prefix: Prefix for the Path to get Secret :type path_prefix: str :param secret_id: Secret Key :type secret_id: str """ secret_path = self.build_path(path_prefix, secret_id) try: if self.kv_engine_version == 1: response = self.client.secrets.kv.v1.read_secret( path=secret_path, mount_point=self.mount_point ) else: response = self.client.secrets.kv.v2.read_secret_version( path=secret_path, mount_point=self.mount_point) except InvalidPath: self.log.info("Secret %s not found in Path: %s", secret_id, secret_path) return None return_data = response["data"] if self.kv_engine_version == 1 else response["data"]["data"] return return_data def get_config(self, key): # type: (str) -> Optional[str] """ Get Airflow Configuration :param key: Configuration Option Key :type key: str :rtype: str :return: Configuration Option Value retrieved from the vault """ response = self._get_secret(self.config_path, key) return response.get("value") if response else None
1.976563
2
Trajectory_Mining/Bag_of_Words/Comp_Corr_KD_CosDist/comp_dist_partialKD.py
AdamCoscia/eve-trajectory-mining
0
2439
<filename>Trajectory_Mining/Bag_of_Words/Comp_Corr_KD_CosDist/comp_dist_partialKD.py # -*- coding: utf-8 -*- """Computes distance between killmails by text similarity. Edit Distance Metrics - Levenshtein Distance - Damerau-Levenshtein Distance - Jaro Distance - Jaro-Winkler Distance - Match Rating Approach Comparison - Hamming Distance Vector Distance Metrics - Jaccard Similarity - Cosine Distance Written By: <NAME> Updated On: 11/09/2019 """ # Start timing import time start = time.time() total = 0 def lap(msg): """Records time elapsed.""" global start, total elapsed = (time.time() - start) - total total = time.time() - start if elapsed > 3600: print(f'(+{elapsed/3600:.2f}h|t:{total/3600:.2f}h) {msg}') elif elapsed > 60: if total > 3600: print(f'(+{elapsed/60:.2f}m|t:{total/3600:.2f}h) {msg}') else: print(f'(+{elapsed/60:.2f}m|t:{total/60:.2f}m) {msg}') else: if total > 3600: print(f'(+{elapsed:.3f}s|t:{total/3600:.2f}h) {msg}') elif total > 60: print(f'(+{elapsed:.3f}s|t:{total/60:.2f}m) {msg}') else: print(f'(+{elapsed:.3f}s|t:{total:.3f}s) {msg}') lap("Importing modules...") from ast import literal_eval from functools import reduce import os import sys import numpy as np import pandas as pd from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import linear_kernel def get_long_text_cosine_distance(los1, los2): """Calculates cosine distance between two killmails' item lists. 1. Converts collection of long text items to raw document representation. 2. Converts the collection of raw documents to a matrix of TF-IDF features using TfidfVectorizer (combines vector counting and TF-IDF calculator). 3. Computes cosine similarity between feature vectors. Uses linear kernel since TF-IDF matrix will be normalized already. Arguments: los1: First document, a list of raw strings. los2: Second document, a list of raw strings. Returns: cosine distance as a value between 0-1, with 1 being identical. """ if type(los1) == float or type(los2) == float: return 0 if len(los1) == 0 or len(los2) == 0: return 0 doc1 = reduce(lambda x, y: f'{x} {y}', [x[0] for x in los1]) # Create bag of words doc2 = reduce(lambda x, y: f'{x} {y}', [x[0] for x in los2]) # Create bag of words tfidf = TfidfVectorizer().fit_transform([doc1, doc2]) # Vectorize the bag of words cos_dist = linear_kernel(tfidf[0:1], tfidf[1:2]).flatten()[0] # Compute cosine distance return cos_dist def get_short_text_cosine_distance(los1, los2): """Calculates cosine distance between two killmails' item lists. 1. Converts collection of short text items to raw document representation. 2. Converts the collection of raw documents to a matrix of TF-IDF features using TfidfVectorizer (combines vector counting and TF-IDF calculator). 3. Computes cosine similarity between feature vectors. Uses linear kernel since TF-IDF matrix will be normalized already. Arguments: los1: First document, a list of raw strings. los2: Second document, a list of raw strings. Returns: cosine distance as a value between 0-1, with 1 being identical and 0 being complete different. """ if type(los1) == float or type(los2) == float: return 0 if len(los1) == 0 or len(los2) == 0: return 0 doc1 = reduce(lambda x, y: f'{x} {y}', [x[1] for x in los1]) # Create bag of words doc2 = reduce(lambda x, y: f'{x} {y}', [x[1] for x in los2]) # Create bag of words tfidf = TfidfVectorizer().fit_transform([doc1, doc2]) # Vectorize the bag of words cos_dist = linear_kernel(tfidf[0:1], tfidf[1:2]).flatten()[0] # Compute cosine distance return cos_dist # Load CSV from local file lap("Loading CSV data from local file...") df = pd.read_csv(f'data/all_victims_complete_partialKD.csv', encoding='utf-8') df = df.drop(columns=['HighSlotISK', 'MidSlotISK', 'LowSlotISK', 'type', 'fill']) df = df.dropna() # Convert items column to correct data type lap("Converting 'item' column value types...") df['items'] = df['items'].apply(literal_eval) # Group DataFrame by character_id and compute distance series for each group lap("Computing cosine distances and change in kd by grouping character_id's...") groupby = df.groupby('character_id') # group dataframe by character_id num_groups = len(groupby) # get number of groups count = 0 # current group number out of number of groups groups = [] # list to append modified group dataframes to for name, gp in groupby: # Order the observations and prepare the dataframe gp = (gp.sort_values(by=['killmail_id']) .reset_index() .drop('index', axis=1)) # Generate change in kills over change in deaths and change in kd ratio kills1 = gp['k_count'] kills2 = gp['k_count'].shift() deaths1 = gp['d_count'] deaths2 = gp['d_count'].shift() idx = len(gp.columns) gp.insert(idx, 'del_kdratio', (kills2 - kills1) / (deaths2 - deaths1)) gp.insert(idx+1, 'kd_ratio_diff', gp['kd_ratio']-gp['kd_ratio'].shift()) # Generate pairs of observations sequentially to compare pairs = [] items1 = gp['items'] items2 = gp['items'].shift() for i in range(1, len(gp)): # Start from 1 to avoid adding nan pair los1 = items1.iloc[i] los2 = items2.iloc[i] pairs.append((los2, los1)) # Generate distance series using pairs list and different metrics # start distance series with nan due to starting range at 1 cos_dist_lt = [np.nan] # cosine distance b/w long text BoW cos_dist_st = [np.nan] # cosine distance b/w short text BoW for pair in pairs: cos_dist_lt.append(get_long_text_cosine_distance(pair[0], pair[1])) cos_dist_st.append(get_short_text_cosine_distance(pair[0], pair[1])) idx = len(gp.columns) gp.insert(idx, 'cos_dist_lt', cos_dist_lt) gp.insert(idx, 'cos_dist_st', cos_dist_st) groups.append(gp) # Record progress count += 1 print(f"Progress {count/num_groups:2.1%}", end="\r") lap("Concatenating resulting groups and writing to file...") df_res = pd.concat(groups) df_res.to_csv(f'data/useable_victims_distancesAndKD.csv') lap("Exit")
2.328125
2
src/chess/utils.py
Dalkio/custom-alphazero
0
2440
import numpy as np from itertools import product from typing import List from src.config import ConfigChess from src.chess.board import Board from src.chess.move import Move def get_all_possible_moves() -> List[Move]: all_possible_moves = set() array = np.zeros((ConfigChess.board_size, ConfigChess.board_size)).astype("int8") for i, j, piece in product( range(ConfigChess.board_size), range(ConfigChess.board_size), ["Q", "N"] ): array[i][j] = Board.piece_symbol_to_int(piece) all_possible_moves.update( set(map(lambda move: Move(uci=move.uci()), Board(array=array).legal_moves)) ) array[i][j] = 0 # underpromotion moves array[1, :] = Board.piece_symbol_to_int("P") all_possible_moves.update( set(map(lambda move: Move(uci=move.uci()), Board(array=array).legal_moves)) ) array[0, :] = Board.piece_symbol_to_int("p") all_possible_moves.update( set(map(lambda move: Move(uci=move.uci()), Board(array=array).legal_moves)) ) # no need to add castling moves: they have already be added with queen moves under UCI notation return sorted(list(all_possible_moves))
2.828125
3
multirotor.py
christymarc/mfac
0
2441
from random import gauss class MultiRotor: """Simple vertical dynamics for a multirotor vehicle.""" GRAVITY = -9.81 def __init__( self, altitude=10, velocity=0, mass=1.54, emc=10.0, dt=0.05, noise=0.1 ): """ Args: altitude (float): initial altitude of the vehicle velocity (float): initial velocity of the vehicle mass (float): mass of the vehicle emc (float): electromechanical constant for the vehicle dt (float): simulation time step noise (float): standard deviation of normally distributed simulation noise """ self.y0 = altitude self.y1 = velocity self.mass = mass self.emc = emc self.dt = dt self.noise = noise def step(self, effort): """Advance the multirotor simulation and apply motor forces. Args: effort (float): related to the upward thrust of the vehicle, it must be >= 0 Return: The current state (altitude, velocity) of the vehicle. """ effort = max(0, effort) scaled_effort = self.emc / self.mass * effort net_acceleration = MultiRotor.GRAVITY - 0.75 * self.y1 + scaled_effort # Don't let the vehcicle fall through the ground if self.y0 <= 0 and net_acceleration < 0: y0dot = 0 y1dot = 0 else: y0dot = self.y1 y1dot = net_acceleration self.y0 += y0dot * self.dt self.y1 += y1dot * self.dt self.y0 += gauss(0, self.noise) return self.y0, self.y1 def get_altitude(self): """Return the current altitude.""" return self.y0 def get_delta_time(self): """Return the simulation time step.""" return self.dt
3.59375
4
stpmex/client.py
cuenca-mx/stpmex-python
37
2442
<reponame>cuenca-mx/stpmex-python import re from typing import Any, ClassVar, Dict, List, NoReturn, Union from cryptography.exceptions import UnsupportedAlgorithm from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import serialization from requests import Response, Session from .exc import ( AccountDoesNotExist, BankCodeClabeMismatch, ClaveRastreoAlreadyInUse, DuplicatedAccount, InvalidAccountType, InvalidAmount, InvalidField, InvalidInstitution, InvalidPassphrase, InvalidRfcOrCurp, InvalidTrackingKey, MandatoryField, NoOrdenesEncontradas, NoServiceResponse, PldRejected, SameAccount, SignatureValidationError, StpmexException, ) from .resources import CuentaFisica, Orden, Resource, Saldo from .version import __version__ as client_version DEMO_HOST = 'https://demo.stpmex.com:7024' PROD_HOST = 'https://prod.stpmex.com' class Client: base_url: str soap_url: str session: Session # resources cuentas: ClassVar = CuentaFisica ordenes: ClassVar = Orden saldos: ClassVar = Saldo def __init__( self, empresa: str, priv_key: str, priv_key_passphrase: str, demo: bool = False, base_url: str = None, soap_url: str = None, timeout: tuple = None, ): self.timeout = timeout self.session = Session() self.session.headers['User-Agent'] = f'stpmex-python/{client_version}' if demo: host_url = DEMO_HOST self.session.verify = False else: host_url = PROD_HOST self.session.verify = True self.base_url = base_url or f'{host_url}/speiws/rest' self.soap_url = ( soap_url or f'{host_url}/spei/webservices/SpeiConsultaServices' ) try: self.pkey = serialization.load_pem_private_key( priv_key.encode('utf-8'), priv_key_passphrase.encode('ascii'), default_backend(), ) except (ValueError, TypeError, UnsupportedAlgorithm): raise InvalidPassphrase Resource.empresa = empresa Resource._client = self def post( self, endpoint: str, data: Dict[str, Any] ) -> Union[Dict[str, Any], List[Any]]: return self.request('post', endpoint, data) def put( self, endpoint: str, data: Dict[str, Any] ) -> Union[Dict[str, Any], List[Any]]: return self.request('put', endpoint, data) def delete( self, endpoint: str, data: Dict[str, Any] ) -> Union[Dict[str, Any], List[Any]]: return self.request('delete', endpoint, data) def request( self, method: str, endpoint: str, data: Dict[str, Any], **kwargs: Any ) -> Union[Dict[str, Any], List[Any]]: url = self.base_url + endpoint response = self.session.request( method, url, json=data, timeout=self.timeout, **kwargs, ) self._check_response(response) resultado = response.json() if 'resultado' in resultado: # Some responses are enveloped resultado = resultado['resultado'] return resultado @staticmethod def _check_response(response: Response) -> None: if not response.ok: response.raise_for_status() resp = response.json() if isinstance(resp, dict): try: _raise_description_error_exc(resp) except KeyError: ... try: assert resp['descripcion'] _raise_description_exc(resp) except (AssertionError, KeyError): ... response.raise_for_status() def _raise_description_error_exc(resp: Dict) -> NoReturn: id = resp['resultado']['id'] error = resp['resultado']['descripcionError'] if id == 0 and error == 'No se recibió respuesta del servicio': raise NoServiceResponse(**resp['resultado']) elif id == 0 and error == 'Error validando la firma': raise SignatureValidationError(**resp['resultado']) elif id == 0 and re.match(r'El campo .+ es obligatorio', error): raise MandatoryField(**resp['resultado']) elif id == -1 and re.match( r'La clave de rastreo .+ ya fue utilizada', error ): raise ClaveRastreoAlreadyInUse(**resp['resultado']) elif id == -7 and re.match(r'La cuenta .+ no existe', error): raise AccountDoesNotExist(**resp['resultado']) elif id == -9 and re.match(r'La Institucion \d+ no es valida', error): raise InvalidInstitution(**resp['resultado']) elif id == -11 and re.match(r'El tipo de cuenta \d+ es invalido', error): raise InvalidAccountType(**resp['resultado']) elif id == -20 and re.match(r'El monto {.+} no es válido', error): raise InvalidAmount(**resp['resultado']) elif id == -22 and 'no coincide para la institucion operante' in error: raise BankCodeClabeMismatch(**resp['resultado']) elif id == -24 and re.match(r'Cuenta {\d+} - {MISMA_CUENTA}', error): raise SameAccount(**resp['resultado']) elif id == -34 and 'Clave rastreo invalida' in error: raise InvalidTrackingKey(**resp['resultado']) elif id == -100 and error.startswith('No se encontr'): raise NoOrdenesEncontradas elif id == -200 and 'Se rechaza por PLD' in error: raise PldRejected(**resp['resultado']) else: raise StpmexException(**resp['resultado']) def _raise_description_exc(resp: Dict) -> NoReturn: id = resp['id'] desc = resp['descripcion'] if id == 0 and 'Cuenta en revisión' in desc: # STP regresa esta respuesta cuando se registra # una cuenta. No se levanta excepción porque # todas las cuentas pasan por este status. ... elif id == 1 and desc == 'rfc/curp invalido': raise InvalidRfcOrCurp(**resp) elif id == 1 and re.match(r'El campo \w+ es invalido', desc): raise InvalidField(**resp) elif id == 3 and desc == 'Cuenta Duplicada': raise DuplicatedAccount(**resp) elif id == 5 and re.match(r'El campo .* obligatorio \w+', desc): raise MandatoryField(**resp) else: raise StpmexException(**resp)
2.0625
2
aql/tests/types/aql_test_list_types.py
menify/sandbox
0
2443
import sys import os.path import timeit sys.path.insert( 0, os.path.normpath(os.path.join( os.path.dirname( __file__ ), '..') )) from aql_tests import skip, AqlTestCase, runLocalTests from aql.util_types import UniqueList, SplitListType, List, ValueListType #//===========================================================================// class TestListTypes( AqlTestCase ): def test_unique_list(self): ul = UniqueList( [1,2,3,2,1,3] ); ul.selfTest() self.assertEqual( ul, [2,3,1]) self.assertEqual( list(ul), [1,2,3]) ul = UniqueList() ul.append( 1 ); ul.selfTest() ul.append( 3 ); ul.selfTest() ul.append( 1 ); ul.selfTest() ul.append( 2 ); ul.selfTest() ul.append( 3 ); ul.selfTest() ul.append( 1 ); ul.selfTest() self.assertEqual( list(ul), [1,3,2]) ul.append_front( 2 ); ul.selfTest() self.assertEqual( list(ul), [2,1,3]) ul.extend( [4,1,2,2,5] ); ul.selfTest() self.assertEqual( list(ul), [2,1,3,4,5]) ul.extend_front( [1,2,2,3,1,1,5,5] ); ul.selfTest() self.assertEqual( list(ul), [1,2,3,5,4]) self.assertEqual( list(ul), [1,2,3,5,4]) ul.remove( 1 ); ul.selfTest() self.assertEqual( list(ul), [2,3,5,4]) ul.remove( 5 ); ul.selfTest() self.assertEqual( list(ul), [2,3,4]) ul.remove( 55 ); ul.selfTest() self.assertEqual( list(ul), [2,3,4]) self.assertEqual( ul.pop(), 4 ); ul.selfTest() self.assertEqual( ul.pop_front(), 2 ); ul.selfTest() self.assertEqual( ul.pop_front(), 3 ); ul.selfTest() ul += [1,2,2,2,3,1,2,4,3,3,5,4,5,5]; ul.selfTest() self.assertEqual( list(ul), [1,2,3,4,5]) ul -= [2,2,2,4,33]; ul.selfTest() self.assertEqual( list(ul), [1,3,5]) self.assertEqual( ul[0], 1) self.assertEqual( ul[2], 5) self.assertEqual( ul[1], 3) self.assertIn( 1, ul) self.assertEqual( list(reversed(ul)), [5,3,1]) ul.reverse(); ul.selfTest() self.assertEqual( ul, [5,3,1] ) ul.reverse(); ul.selfTest() self.assertEqual( str(ul), "[1, 3, 5]" ) self.assertEqual( ul, UniqueList([1, 3, 5]) ) self.assertEqual( ul, UniqueList(ul) ) self.assertLess( UniqueList([1,2,2,2,3]), UniqueList([1,2,1,1,1,4]) ) self.assertLess( UniqueList([1,2,2,2,3]), [1,2,1,1,1,4] ) #//===========================================================================// def test_splitlist(self): l = SplitListType( List, ", \t\n\r" )("1,2, 3,,, \n\r\t4") self.assertEqual( l, ['1','2','3','4'] ) self.assertEqual( l, "1,2,3,4" ) self.assertEqual( l, "1 2 3 4" ) self.assertEqual( str(l), "1,2,3,4" ) l += "7, 8" self.assertEqual( l, ['1','2','3','4','7','8'] ) l -= "2, 3" self.assertEqual( l, ['1','4','7','8'] ) l -= "5" self.assertEqual( l, ['1','4','7','8'] ) l.extend_front( "10,12" ) self.assertEqual( l, ['10','12','1','4','7','8'] ) l.extend( "0,-1" ) self.assertEqual( l, ['10','12','1','4','7','8', '0', '-1'] ) #//===========================================================================// def test_valuelist(self): l = SplitListType( ValueListType( List, int ), ", \t\n\r" )("1,2, 3,,, \n\r\t4") self.assertEqual( l, [1,2,3,4] ) self.assertEqual( l, "1,2,3,4" ) self.assertEqual( l, "1 2 3 4" ) self.assertEqual( str(l), "1,2,3,4" ) l += [7, 8] self.assertEqual( l, ['1','2','3','4','7','8'] ) l += 78 self.assertEqual( l, ['1','2','3','4','7','8', 78] ) l -= 78 self.assertEqual( l, ['1','2','3','4','7','8'] ) l -= "2, 3" self.assertEqual( l, ['1','4','7','8'] ) l -= "5" self.assertEqual( l, ['1','4','7','8'] ) l.extend_front( "10,12" ) self.assertEqual( l, ['10','12','1','4','7','8'] ) l.extend( "0,-1" ) self.assertEqual( l, [10,12,1,4,7,8,0,-1] ) l[0] = "5" self.assertEqual( l, [5,12,1,4,7,8,0,-1] ) #//===========================================================================// def test_list(self): l = List([1,2,3,4]) self.assertEqual( l, [1,2,3,4] ) l += [7, 8] self.assertEqual( l, [1,2,3,4,7,8] ) l += 78 self.assertEqual( l, [1,2,3,4,7,8,78] ) l -= 78 self.assertEqual( l, [1,2,3,4,7,8] ) l -= [2, 3] self.assertEqual( l, [1,4,7,8] ) l -= 5 self.assertEqual( l, [1,4,7,8] ) l.extend_front( [10,12] ) self.assertEqual( l, [10,12,1,4,7,8] ) l.extend( [0,-1] ) self.assertEqual( l, [10,12,1,4,7,8, 0, -1] ) #//===========================================================================// if __name__ == "__main__": runLocalTests()
2.4375
2
logger_application/logger.py
swatishayna/OnlineEDAAutomation
1
2444
<reponame>swatishayna/OnlineEDAAutomation<filename>logger_application/logger.py from datetime import datetime from src.utils import uploaded_file import os class App_Logger: def __init__(self): pass def log(self, file_object, email, log_message, log_writer_id): self.now = datetime.now() self.date = self.now.date() self.current_time = self.now.strftime("%H:%M:%S") file_object.write( email+ "_eda_" + log_writer_id + "\t\t" +str(self.date) + "/" + str(self.current_time) + "\t\t" +email+ "\t\t" +log_message +"\n")
2.8125
3
metasync/params.py
dstarikov/metavault
1
2445
# config params KB = 1024 MB = 1024*KB GB = 1024*MB # name of meta root dir META_DIR = ".metasync" # batching time for daemon SYNC_WAIT = 3 # blob size BLOB_UNIT = 32*MB # Increase of Paxos proposal number PAXOS_PNUM_INC = 10 # authentication directory import os AUTH_DIR = os.path.join(os.path.expanduser("~"), ".metasync")
1.429688
1
py/tests/test_valid_parentheses.py
Dragonway/LeetCode
0
2446
import unittest from py.tests.utils import test from py import valid_parentheses as vp class TestValidParentheses(unittest.TestCase): @test(vp.Solution.is_valid) def test_valid_parentheses(self) -> None: test("()", result=True) test("()[]{}", result=True) test("(]", result=False) test("([)]", result=False) test("{[]}", result=True) test("", result=True) test(")()", result=False) test("(())((())))", result=False)
3.15625
3
hitnet/hitnet.py
AchintyaSrivastava/HITNET-Stereo-Depth-estimation
38
2447
<reponame>AchintyaSrivastava/HITNET-Stereo-Depth-estimation import tensorflow as tf import numpy as np import time import cv2 from hitnet.utils_hitnet import * drivingStereo_config = CameraConfig(0.546, 1000) class HitNet(): def __init__(self, model_path, model_type=ModelType.eth3d, camera_config=drivingStereo_config): self.fps = 0 self.timeLastPrediction = time.time() self.frameCounter = 0 self.camera_config = camera_config # Initialize model self.model = self.initialize_model(model_path, model_type) def __call__(self, left_img, right_img): return self.estimate_disparity(left_img, right_img) def initialize_model(self, model_path, model_type): self.model_type = model_type with tf.io.gfile.GFile(model_path, "rb") as f: graph_def = tf.compat.v1.GraphDef() loaded = graph_def.ParseFromString(f.read()) # Wrap frozen graph to ConcreteFunctions if self.model_type == ModelType.flyingthings: model = wrap_frozen_graph(graph_def=graph_def, inputs="input:0", outputs=["reference_output_disparity:0","secondary_output_disparity:0"]) else: model = wrap_frozen_graph(graph_def=graph_def, inputs="input:0", outputs="reference_output_disparity:0") return model def estimate_disparity(self, left_img, right_img): input_tensor = self.prepare_input(left_img, right_img) # Perform inference on the image if self.model_type == ModelType.flyingthings: left_disparity, right_disparity = self.inference(input_tensor) self.disparity_map = left_disparity else: self.disparity_map = self.inference(input_tensor) return self.disparity_map def get_depth(self): return self.camera_config.f*self.camera_config.baseline/self.disparity_map def prepare_input(self, left_img, right_img): if (self.model_type == ModelType.eth3d): # Shape (1, None, None, 2) left_img = cv2.cvtColor(left_img, cv2.COLOR_BGR2GRAY) right_img = cv2.cvtColor(right_img, cv2.COLOR_BGR2GRAY) left_img = np.expand_dims(left_img,2) right_img = np.expand_dims(right_img,2) combined_img = np.concatenate((left_img, right_img), axis=-1) / 255.0 else: # Shape (1, None, None, 6) left_img = cv2.cvtColor(left_img, cv2.COLOR_BGR2RGB) right_img = cv2.cvtColor(right_img, cv2.COLOR_BGR2RGB) combined_img = np.concatenate((left_img, right_img), axis=-1) / 255.0 return tf.convert_to_tensor(np.expand_dims(combined_img, 0), dtype=tf.float32) def inference(self, input_tensor): output = self.model(input_tensor) return np.squeeze(output)
2.359375
2
fobi_custom/plugins/form_elements/fields/intercept/household_tenure/fobi_form_elements.py
datamade/just-spaces
6
2448
from django import forms from fobi.base import FormFieldPlugin, form_element_plugin_registry from .forms import HouseholdTenureForm class HouseholdTenurePlugin(FormFieldPlugin): """HouseholdTenurePlugin.""" uid = "household_tenure" name = "What year did you move into your current address?" form = HouseholdTenureForm group = "Intercept" # Group to which the plugin belongs to def get_form_field_instances(self, request=None, form_entry=None, form_element_entries=None, **kwargs): field_kwargs = { 'required': self.data.required, 'label': self.data.label, 'widget': forms.widgets.NumberInput(attrs={}), } return [(self.data.name, forms.IntegerField, field_kwargs)] form_element_plugin_registry.register(HouseholdTenurePlugin)
2.15625
2
utils/scripts/OOOlevelGen/src/sprites/__init__.py
fullscreennl/monkeyswipe
0
2449
<gh_stars>0 __all__ = ['EnemyBucketWithStar', 'Nut', 'Beam', 'Enemy', 'Friend', 'Hero', 'Launcher', 'Rotor', 'SpikeyBuddy', 'Star', 'Wizard', 'EnemyEquipedRotor', 'CyclingEnemyObject', 'Joints', 'Bomb', 'Contacts']
1.1875
1
code/trainer.py
mazzaAnt/StackGAN-v2
1
2450
<reponame>mazzaAnt/StackGAN-v2<gh_stars>1-10 from __future__ import print_function from six.moves import range import torchvision.transforms as transforms import torch.backends.cudnn as cudnn import torch import torch.nn as nn from torch.autograd import Variable import torch.optim as optim import torchvision.utils as vutils import numpy as np import os import time from PIL import Image, ImageFont, ImageDraw from copy import deepcopy from miscc.config import cfg from miscc.utils import mkdir_p from CaptionDatasets import * from tensorboard import summary from tensorboard import FileWriter from model import G_NET, D_NET64, D_NET128, D_NET256, D_NET512, D_NET1024, INCEPTION_V3 # ################## Shared functions ################### def compute_mean_covariance(img): batch_size = img.size(0) channel_num = img.size(1) height = img.size(2) width = img.size(3) num_pixels = height * width # batch_size * channel_num * 1 * 1 mu = img.mean(2, keepdim=True).mean(3, keepdim=True) # batch_size * channel_num * num_pixels img_hat = img - mu.expand_as(img) img_hat = img_hat.view(batch_size, channel_num, num_pixels) # batch_size * num_pixels * channel_num img_hat_transpose = img_hat.transpose(1, 2) # batch_size * channel_num * channel_num covariance = torch.bmm(img_hat, img_hat_transpose) covariance = covariance / num_pixels return mu, covariance def KL_loss(mu, logvar): # -0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar) KLD = torch.mean(KLD_element).mul_(-0.5) return KLD def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: nn.init.orthogonal(m.weight.data, 1.0) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) elif classname.find('Linear') != -1: nn.init.orthogonal(m.weight.data, 1.0) if m.bias is not None: m.bias.data.fill_(0.0) def load_params(model, new_param): for p, new_p in zip(model.parameters(), new_param): p.data.copy_(new_p) def copy_G_params(model): flatten = deepcopy(list(p.data for p in model.parameters())) return flatten def compute_inception_score(predictions, num_splits=1): # print('predictions', predictions.shape) scores = [] for i in range(num_splits): istart = i * predictions.shape[0] // num_splits iend = (i + 1) * predictions.shape[0] // num_splits part = predictions[istart:iend, :] kl = part * \ (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0))) kl = np.mean(np.sum(kl, 1)) scores.append(np.exp(kl)) return np.mean(scores), np.std(scores) def negative_log_posterior_probability(predictions, num_splits=1): # print('predictions', predictions.shape) scores = [] for i in range(num_splits): istart = i * predictions.shape[0] // num_splits iend = (i + 1) * predictions.shape[0] // num_splits part = predictions[istart:iend, :] result = -1. * np.log(np.max(part, 1)) result = np.mean(result) scores.append(result) return np.mean(scores), np.std(scores) def load_network(gpus): netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=gpus) print(netG) netsD = [] if cfg.TREE.BRANCH_NUM > 0: netsD.append(D_NET64()) if cfg.TREE.BRANCH_NUM > 1: netsD.append(D_NET128()) if cfg.TREE.BRANCH_NUM > 2: netsD.append(D_NET256()) if cfg.TREE.BRANCH_NUM > 3: netsD.append(D_NET512()) if cfg.TREE.BRANCH_NUM > 4: netsD.append(D_NET1024()) # TODO: if cfg.TREE.BRANCH_NUM > 5: for i in range(len(netsD)): netsD[i].apply(weights_init) netsD[i] = torch.nn.DataParallel(netsD[i], device_ids=gpus) # print(netsD[i]) print('# of netsD', len(netsD)) count = 0 if cfg.TRAIN.NET_G != '': state_dict = torch.load(cfg.TRAIN.NET_G) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) istart = cfg.TRAIN.NET_G.rfind('_') + 1 iend = cfg.TRAIN.NET_G.rfind('.') count = cfg.TRAIN.NET_G[istart:iend] count = int(count) + 1 if cfg.TRAIN.NET_D != '': for i in range(len(netsD)): print('Load %s_%d.pth' % (cfg.TRAIN.NET_D, i)) state_dict = torch.load('%s%d.pth' % (cfg.TRAIN.NET_D, i)) netsD[i].load_state_dict(state_dict) inception_model = INCEPTION_V3() if cfg.CUDA: netG.cuda() for i in range(len(netsD)): netsD[i].cuda() inception_model = inception_model.cuda() inception_model.eval() return netG, netsD, len(netsD), inception_model, count def define_optimizers(netG, netsD): optimizersD = [] num_Ds = len(netsD) for i in range(num_Ds): opt = optim.Adam(netsD[i].parameters(), lr=cfg.TRAIN.DISCRIMINATOR_LR, betas=(0.5, 0.999)) optimizersD.append(opt) # G_opt_paras = [] # for p in netG.parameters(): # if p.requires_grad: # G_opt_paras.append(p) optimizerG = optim.Adam(netG.parameters(), lr=cfg.TRAIN.GENERATOR_LR, betas=(0.5, 0.999)) return optimizerG, optimizersD def save_model(netG, avg_param_G, netsD, epoch, model_dir): load_params(netG, avg_param_G) torch.save( netG.state_dict(), '%s/netG_%d.pth' % (model_dir, epoch)) for i in range(len(netsD)): netD = netsD[i] torch.save( netD.state_dict(), '%s/netD%d.pth' % (model_dir, i)) print('Save G/Ds models.') def save_real(imgs_tcpu, image_dir): num = cfg.TRAIN.VIS_COUNT # The range of real_img (i.e., self.imgs_tcpu[i][0:num]) # is changed to [0, 1] by function vutils.save_image real_img = imgs_tcpu[-1][0:num] vutils.save_image( real_img, '%s/real_samples.png' % (image_dir), normalize=True) real_img_set = vutils.make_grid(real_img).numpy() real_img_set = np.transpose(real_img_set, (1, 2, 0)) real_img_set = real_img_set * 255 real_img_set = real_img_set.astype(np.uint8) sup_real_img = summary.image('real_img', real_img_set) def save_img_results(imgs_tcpu, fake_imgs, num_imgs, count, image_dir, summary_writer): num = cfg.TRAIN.VIS_COUNT # The range of real_img (i.e., self.imgs_tcpu[i][0:num]) # is changed to [0, 1] by function vutils.save_image real_img = imgs_tcpu[-1][0:num] vutils.save_image( real_img, '%s/real_samples.png' % (image_dir), normalize=True) real_img_set = vutils.make_grid(real_img).numpy() real_img_set = np.transpose(real_img_set, (1, 2, 0)) real_img_set = real_img_set * 255 real_img_set = real_img_set.astype(np.uint8) sup_real_img = summary.image('real_img', real_img_set) summary_writer.add_summary(sup_real_img, count) for i in range(num_imgs): fake_img = fake_imgs[i][0:num] # The range of fake_img.data (i.e., self.fake_imgs[i][0:num]) # is still [-1. 1]... vutils.save_image( fake_img.data, '%s/count_%09d_fake_samples_%d.png' % (image_dir, count, i), normalize=True) fake_img_set = vutils.make_grid(fake_img.data).cpu().numpy() fake_img_set = np.transpose(fake_img_set, (1, 2, 0)) fake_img_set = (fake_img_set + 1) * 255 / 2 fake_img_set = fake_img_set.astype(np.uint8) sup_fake_img = summary.image('fake_img%d' % i, fake_img_set) summary_writer.add_summary(sup_fake_img, count) summary_writer.flush() # ################# Text to image task############################ # class condGANTrainer(object): def __init__(self, output_dir, data_loader, imsize): if cfg.TRAIN.FLAG: self.model_dir = os.path.join(output_dir, 'Model') self.image_dir = os.path.join(output_dir, 'Image') self.log_dir = os.path.join(output_dir, 'Log') mkdir_p(self.model_dir) mkdir_p(self.image_dir) mkdir_p(self.log_dir) self.summary_writer = FileWriter(self.log_dir) s_gpus = cfg.GPU_ID.split(',') self.gpus = [int(ix) for ix in s_gpus] self.num_gpus = len(self.gpus) torch.cuda.set_device(self.gpus[0]) cudnn.benchmark = True self.batch_size = cfg.TRAIN.BATCH_SIZE * self.num_gpus self.max_epoch = cfg.TRAIN.MAX_EPOCH self.snapshot_interval = cfg.TRAIN.SNAPSHOT_INTERVAL self.data_loader = data_loader self.num_batches = len(self.data_loader) def prepare_data(self, data): imgs, w_imgs, t_embedding, _ = data real_vimgs, wrong_vimgs = [], [] if cfg.CUDA: vembedding = Variable(t_embedding).cuda() else: vembedding = Variable(t_embedding) for i in range(self.num_Ds): if cfg.CUDA: real_vimgs.append(Variable(imgs[i]).cuda()) wrong_vimgs.append(Variable(w_imgs[i]).cuda()) else: real_vimgs.append(Variable(imgs[i])) wrong_vimgs.append(Variable(w_imgs[i])) return imgs, real_vimgs, wrong_vimgs, vembedding def train_Dnet(self, idx, count): flag = count % 100 batch_size = self.real_imgs[0].size(0) criterion, mu = self.criterion, self.mu netD, optD = self.netsD[idx], self.optimizersD[idx] real_imgs = self.real_imgs[idx] wrong_imgs = self.wrong_imgs[idx] fake_imgs = self.fake_imgs[idx] # netD.zero_grad() # Forward real_labels = self.real_labels[:batch_size] fake_labels = self.fake_labels[:batch_size] # for real real_logits = netD(real_imgs, mu.detach()) wrong_logits = netD(wrong_imgs, mu.detach()) fake_logits = netD(fake_imgs.detach(), mu.detach()) # errD_real = criterion(real_logits[0], real_labels) errD_wrong = criterion(wrong_logits[0], fake_labels) errD_fake = criterion(fake_logits[0], fake_labels) if len(real_logits) > 1 and cfg.TRAIN.COEFF.UNCOND_LOSS > 0: errD_real_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \ criterion(real_logits[1], real_labels) errD_wrong_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \ criterion(wrong_logits[1], real_labels) errD_fake_uncond = cfg.TRAIN.COEFF.UNCOND_LOSS * \ criterion(fake_logits[1], fake_labels) # errD_real = errD_real + errD_real_uncond errD_wrong = errD_wrong + errD_wrong_uncond errD_fake = errD_fake + errD_fake_uncond # errD = errD_real + errD_wrong + errD_fake else: errD = errD_real + 0.5 * (errD_wrong + errD_fake) # backward errD.backward() # update parameters optD.step() # log if flag == 0: summary_D = summary.scalar('D_loss%d' % idx, errD.item()) self.summary_writer.add_summary(summary_D, count) return errD def train_Gnet(self, count): self.netG.zero_grad() errG_total = 0 flag = count % 100 batch_size = self.real_imgs[0].size(0) criterion, mu, logvar = self.criterion, self.mu, self.logvar real_labels = self.real_labels[:batch_size] for i in range(self.num_Ds): outputs = self.netsD[i](self.fake_imgs[i], mu) errG = criterion(outputs[0], real_labels) if len(outputs) > 1 and cfg.TRAIN.COEFF.UNCOND_LOSS > 0: errG_patch = cfg.TRAIN.COEFF.UNCOND_LOSS *\ criterion(outputs[1], real_labels) errG = errG + errG_patch errG_total = errG_total + errG if flag == 0: summary_D = summary.scalar('G_loss%d' % i, errG.item()) self.summary_writer.add_summary(summary_D, count) # Compute color consistency losses if cfg.TRAIN.COEFF.COLOR_LOSS > 0: if self.num_Ds > 1: mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-1]) mu2, covariance2 = \ compute_mean_covariance(self.fake_imgs[-2].detach()) like_mu2 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2) like_cov2 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \ nn.MSELoss()(covariance1, covariance2) errG_total = errG_total + like_mu2 + like_cov2 if flag == 0: sum_mu = summary.scalar('G_like_mu2', like_mu2.item()) self.summary_writer.add_summary(sum_mu, count) sum_cov = summary.scalar('G_like_cov2', like_cov2.item()) self.summary_writer.add_summary(sum_cov, count) if self.num_Ds > 2: mu1, covariance1 = compute_mean_covariance(self.fake_imgs[-2]) mu2, covariance2 = \ compute_mean_covariance(self.fake_imgs[-3].detach()) like_mu1 = cfg.TRAIN.COEFF.COLOR_LOSS * nn.MSELoss()(mu1, mu2) like_cov1 = cfg.TRAIN.COEFF.COLOR_LOSS * 5 * \ nn.MSELoss()(covariance1, covariance2) errG_total = errG_total + like_mu1 + like_cov1 if flag == 0: sum_mu = summary.scalar('G_like_mu1', like_mu1.item()) self.summary_writer.add_summary(sum_mu, count) sum_cov = summary.scalar('G_like_cov1', like_cov1.item()) self.summary_writer.add_summary(sum_cov, count) kl_loss = KL_loss(mu, logvar) * cfg.TRAIN.COEFF.KL errG_total = errG_total + kl_loss # Postpone the backward propagation # errG_total.backward() # self.optimizerG.step() return kl_loss, errG_total def train(self): self.netG, self.netsD, self.num_Ds,\ self.inception_model, start_count = load_network(self.gpus) avg_param_G = copy_G_params(self.netG) self.optimizerG, self.optimizersD = \ define_optimizers(self.netG, self.netsD) self.criterion = nn.BCELoss() self.SATcriterion = nn.CrossEntropyLoss() self.real_labels = Variable(torch.FloatTensor(self.batch_size).fill_(1)) self.fake_labels = Variable(torch.FloatTensor(self.batch_size).fill_(0)) self.gradient_one = torch.FloatTensor([1.0]) self.gradient_half = torch.FloatTensor([0.5]) nz = cfg.GAN.Z_DIM noise = Variable(torch.FloatTensor(self.batch_size, nz)) fixed_noise = Variable(torch.FloatTensor(self.batch_size, nz).normal_(0, 1)) # Data parameters data_folder = 'birds_output' # folder with data files saved by create_input_files.py data_name = 'CUB_5_cap_per_img_5_min_word_freq' # base name shared by data files normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # Show, Attend, and Tell Dataloader train_loader = torch.utils.data.DataLoader( CaptionDataset(data_folder, data_name, 'TRAIN', transform=transforms.Compose([normalize])), batch_size=self.batch_size, shuffle=True, num_workers=int(cfg.WORKERS), pin_memory=True) if cfg.CUDA: self.criterion.cuda() self.SATcriterion.cuda() # Compute SATloss self.real_labels = self.real_labels.cuda() self.fake_labels = self.fake_labels.cuda() self.gradient_one = self.gradient_one.cuda() self.gradient_half = self.gradient_half.cuda() noise, fixed_noise = noise.cuda(), fixed_noise.cuda() predictions = [] count = start_count start_epoch = start_count // (self.num_batches) for epoch in range(start_epoch, self.max_epoch): start_t = time.time() # for step, data in enumerate(self.data_loader, 0): for step, data in enumerate(zip(self.data_loader, train_loader), 0): data_1 = data[0] _, caps, caplens = data[1] data = data_1 ####################################################### # (0) Prepare training data ###################################################### self.imgs_tcpu, self.real_imgs, self.wrong_imgs, \ self.txt_embedding = self.prepare_data(data) # Testing line for real samples if epoch == start_epoch and step == 0: print ('Checking real samples at first...') save_real(self.imgs_tcpu, self.image_dir) ####################################################### # (1) Generate fake images ###################################################### noise.data.normal_(0, 1) self.fake_imgs, self.mu, self.logvar = \ self.netG(noise, self.txt_embedding) # len(self.fake_imgs) = NUM_BRANCHES # self.fake_imgs[0].shape = [batch_size, 3, 64, 64] # self.fake_imgs[1].shape = [batch_size, 3, 128, 128] # self.fake_imgs[2].shape = [batch_size, 3, 256, 256] ####################################################### # (*) Forward fake images to SAT ###################################################### from SATmodels import Encoder, DecoderWithAttention from torch.nn.utils.rnn import pack_padded_sequence fine_tune_encoder = False # Read word map word_map_file = os.path.join(data_folder, 'WORDMAP_' + data_name + '.json') with open(word_map_file, 'r') as j: word_map = json.load(j) # Define the encoder/decoder structure for SAT model decoder = DecoderWithAttention(attention_dim=512, embed_dim=512, decoder_dim=512, vocab_size=len(word_map), dropout=0.5).cuda() decoder_optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad, decoder.parameters()), lr=4e-4) encoder = Encoder().cuda() encoder.fine_tune(fine_tune_encoder) encoder_optimizer = torch.optim.Adam(params=filter(lambda p: p.requires_grad, encoder.parameters()), lr=1e-4) if fine_tune_encoder else None SATloss = 0 # Compute the SAT loss after forwarding the SAT model for idx in range(len(self.fake_imgs)): img = encoder(self.fake_imgs[idx]) scores, caps_sorted, decode_lengths, alphas, sort_ind = decoder(img, caps, caplens) targets = caps_sorted[:, 1:] scores, _ = pack_padded_sequence(scores, decode_lengths, batch_first=True).cuda() targets, _ = pack_padded_sequence(targets, decode_lengths, batch_first=True).cuda() SATloss += self.SATcriterion(scores, targets) + 1 * ((1. - alphas.sum(dim=1)) ** 2).mean() # Set zero_grad for encoder/decoder decoder_optimizer.zero_grad() if encoder_optimizer is not None: encoder_optimizer.zero_grad() ####################################################### # (2) Update D network ###################################################### errD_total = 0 for i in range(self.num_Ds): errD = self.train_Dnet(i, count) errD_total += errD ####################################################### # (3) Update G network: maximize log(D(G(z))) ###################################################### kl_loss, errG_total = self.train_Gnet(count) for p, avg_p in zip(self.netG.parameters(), avg_param_G): avg_p.mul_(0.999).add_(0.001, p.data) # Combine with G and SAT first, then back propagation errG_total += SATloss errG_total.backward() self.optimizerG.step() ####################################################### # (*) Update SAT network: ###################################################### # Update weights decoder_optimizer.step() if encoder_optimizer is not None: encoder_optimizer.step() ####################################################### # (*) Prediction and Inception score: ###################################################### pred = self.inception_model(self.fake_imgs[-1].detach()) predictions.append(pred.data.cpu().numpy()) if count % 100 == 0: summary_D = summary.scalar('D_loss', errD_total.item()) summary_G = summary.scalar('G_loss', errG_total.item()) summary_KL = summary.scalar('KL_loss', kl_loss.item()) self.summary_writer.add_summary(summary_D, count) self.summary_writer.add_summary(summary_G, count) self.summary_writer.add_summary(summary_KL, count) count += 1 ####################################################### # (*) Save Images/Log/Model per SNAPSHOT_INTERVAL: ###################################################### if count % cfg.TRAIN.SNAPSHOT_INTERVAL == 0: save_model(self.netG, avg_param_G, self.netsD, count, self.model_dir) # Save images backup_para = copy_G_params(self.netG) load_params(self.netG, avg_param_G) # self.fake_imgs, _, _ = self.netG(fixed_noise, self.txt_embedding) save_img_results(self.imgs_tcpu, self.fake_imgs, self.num_Ds, count, self.image_dir, self.summary_writer) # load_params(self.netG, backup_para) # Compute inception score if len(predictions) > 500: predictions = np.concatenate(predictions, 0) mean, std = compute_inception_score(predictions, 10) # print('mean:', mean, 'std', std) m_incep = summary.scalar('Inception_mean', mean) self.summary_writer.add_summary(m_incep, count) # mean_nlpp, std_nlpp = negative_log_posterior_probability(predictions, 10) m_nlpp = summary.scalar('NLPP_mean', mean_nlpp) self.summary_writer.add_summary(m_nlpp, count) # predictions = [] end_t = time.time() print('''[%d/%d][%d] Loss_D: %.2f Loss_G: %.2f Loss_KL: %.2f Time: %.2fs ''' # D(real): %.4f D(wrong):%.4f D(fake) %.4f % (epoch, self.max_epoch, self.num_batches, errD_total.item(), errG_total.item(), kl_loss.item(), end_t - start_t)) save_model(self.netG, avg_param_G, self.netsD, count, self.model_dir) self.summary_writer.close() def save_superimages(self, images_list, filenames, save_dir, split_dir, imsize): batch_size = images_list[0].size(0) num_sentences = len(images_list) for i in range(batch_size): s_tmp = '%s/super/%s/%s' %\ (save_dir, split_dir, filenames[i]) folder = s_tmp[:s_tmp.rfind('/')] if not os.path.isdir(folder): print('Make a new folder: ', folder) mkdir_p(folder) # savename = '%s_%d.png' % (s_tmp, imsize) super_img = [] for j in range(num_sentences): img = images_list[j][i] # print(img.size()) img = img.view(1, 3, imsize, imsize) # print(img.size()) super_img.append(img) # break super_img = torch.cat(super_img, 0) vutils.save_image(super_img, savename, nrow=10, normalize=True) def save_singleimages(self, images, filenames, save_dir, split_dir, sentenceID, imsize): for i in range(images.size(0)): s_tmp = '%s/single_samples/%s/%s' %\ (save_dir, split_dir, filenames[i]) folder = s_tmp[:s_tmp.rfind('/')] if not os.path.isdir(folder): print('Make a new folder: ', folder) mkdir_p(folder) fullpath = '%s_%d_sentence%d.png' % (s_tmp, imsize, sentenceID) # range from [-1, 1] to [0, 255] img = images[i].add(1).div(2).mul(255).clamp(0, 255).byte() ndarr = img.permute(1, 2, 0).data.cpu().numpy() im = Image.fromarray(ndarr) im.save(fullpath) def evaluate(self, split_dir): if cfg.TRAIN.NET_G == '': print('Error: the path for morels is not found!') else: # Build and load the generator if split_dir == 'test': split_dir = 'valid' netG = G_NET() netG.apply(weights_init) netG = torch.nn.DataParallel(netG, device_ids=self.gpus) print(netG) # state_dict = torch.load(cfg.TRAIN.NET_G) state_dict = \ torch.load(cfg.TRAIN.NET_G, map_location=lambda storage, loc: storage) netG.load_state_dict(state_dict) print('Load ', cfg.TRAIN.NET_G) # the path to save generated images s_tmp = cfg.TRAIN.NET_G istart = s_tmp.rfind('_') + 1 iend = s_tmp.rfind('.') iteration = int(s_tmp[istart:iend]) s_tmp = s_tmp[:s_tmp.rfind('/')] save_dir = '%s/iteration%d' % (s_tmp, iteration) nz = cfg.GAN.Z_DIM noise = Variable(torch.FloatTensor(self.batch_size, nz)) if cfg.CUDA: netG.cuda() noise = noise.cuda() # switch to evaluate mode netG.eval() for step, data in enumerate(self.data_loader, 0): imgs, t_embeddings, filenames = data if cfg.CUDA: t_embeddings = Variable(t_embeddings).cuda() else: t_embeddings = Variable(t_embeddings) # print(t_embeddings[:, 0, :], t_embeddings.size(1)) embedding_dim = t_embeddings.size(1) batch_size = imgs[0].size(0) noise.data.resize_(batch_size, nz) noise.data.normal_(0, 1) fake_img_list = [] for i in range(embedding_dim): fake_imgs, _, _ = netG(noise, t_embeddings[:, i, :]) if cfg.TEST.B_EXAMPLE: # fake_img_list.append(fake_imgs[0].data.cpu()) # fake_img_list.append(fake_imgs[1].data.cpu()) fake_img_list.append(fake_imgs[2].data.cpu()) else: self.save_singleimages(fake_imgs[-1], filenames, save_dir, split_dir, i, 256) # self.save_singleimages(fake_imgs[-2], filenames, # save_dir, split_dir, i, 128) # self.save_singleimages(fake_imgs[-3], filenames, # save_dir, split_dir, i, 64) # break if cfg.TEST.B_EXAMPLE: # self.save_superimages(fake_img_list, filenames, # save_dir, split_dir, 64) # self.save_superimages(fake_img_list, filenames, # save_dir, split_dir, 128) self.save_superimages(fake_img_list, filenames, save_dir, split_dir, 256)
1.789063
2
spletni_vmesnik.py
LeaHolc/recepcija
1
2451
from bottle import TEMPLATE_PATH, route, run, template, redirect, get, post, request, response, auth_basic, Bottle, abort, error, static_file import bottle import controller from controller import dobi_parcele_za_prikaz, dobi_info_parcele, dodaj_gosta_na_rezervacijo, naredi_rezervacijo, dobi_rezervacijo_po_id, zakljuci_na_datum_in_placaj, dobi_postavke_racuna import datetime as dt @bottle.get('/') def root(): redirect('/domov') @bottle.get('/domov') def index(): parcele = dobi_parcele_za_prikaz(dt.date.today()) return template("domov", parcele=parcele, hide_header_back=True) @bottle.get("/parcela/<id_parcele>") def parcela(id_parcele): 'Preverimo stanje parcele' rez, gostje = dobi_info_parcele(id_parcele, dt.date.today()) if rez is not None: stanje = "Parcela je trenutno zasedena" else: stanje = "Parcela je trenutno na voljo" return template('parcela', id_parcela=id_parcele, rezervacija=rez, stanje=stanje, gostje=gostje) @bottle.get("/naredi-rezervacijo/<id_parcele>") def nova_rezervacija(id_parcele=None): print(id_parcele) today = dt.date.today() tomorrow = today + dt.timedelta(days=1) return template('nova_rezervacija', id_parcele=id_parcele, today=today, tomorrow=tomorrow) @bottle.post("/naredi-rezervacijo") def naredi_novo_rezervacijo(): " V modelu naredi novo rezervacijo in ji doda prvega gosta" # Preberemo lastnosti iz forme ime = request.forms.ime#get("") priimek = request.forms.priimek#get("") emso = request.forms.emso#get("") drzava = request.forms.drzava#get("") id_parcele = request.forms.id_parcele#get("") od = request.forms.zacetek#get("") do = request.forms.konec#get("") print(ime, priimek) try: datum_od = dt.datetime.fromisoformat(od).date() datum_do = dt.datetime.fromisoformat(do).date() except Exception as e: print(e) print("Napaka pri pretvorbi datumov") return redirect("/naredi-rezervacijo") rezervacija = naredi_rezervacijo(id_parcele) dodaj_gosta_na_rezervacijo(rezervacija.id_rezervacije, { "EMSO":emso, "ime":ime, "priimek":priimek, "drzava":drzava, }, datum_od, datum_do) return redirect(f"/parcela/{id_parcele}") @bottle.get("/dodaj-gosta/<id_rezervacije>") def get_dodaj_gosta_na_rezervacijo(id_rezervacije): today = dt.date.today() tomorrow = today + dt.timedelta(days=1) rezervacija = dobi_rezervacijo_po_id(id_rezervacije) if not rezervacija: return template("error", sporocilo="Rezervacija ne obstaja!", naslov="Napaka") return template("dodajanje_gosta", id_rezervacije=id_rezervacije, today=today, tomorrow=tomorrow) @bottle.post("/dodaj-gosta-na-rezervacijo") def post_dodaj_gosta_na_rezervacijo(): " V modelu rezervaciji doda gosta" # Preberemo lastnosti iz forme ime = request.forms.ime priimek = request.forms.priimek emso = request.forms.emso#get("") drzava = request.forms.drzava#get("") id_rezervacije = request.forms.rez#get("") od = request.forms.zacetek#get("") do = request.forms.konec#get("") try: datum_od = dt.datetime.fromisoformat(od).date() datum_do = dt.datetime.fromisoformat(do).date() except Exception as e: print(e) print("Napaka pri pretvorbi datumov") return redirect("/dodaj-gosta") rezervacija = dobi_rezervacijo_po_id(id_rezervacije) if not rezervacija: return template("error", sporocilo="Rezervacija ne obstaja!", naslov="Napaka") dodaj_gosta_na_rezervacijo(rezervacija.id_rezervacije, { "EMSO":emso, "ime":ime, "priimek":priimek, "drzava":drzava, },datum_od,datum_do) print(id_rezervacije) return redirect(f"/parcela/{rezervacija.id_parcele}") @bottle.get("/predracun/<id_rezervacije>") def predracun(id_rezervacije): rezervacija = dobi_rezervacijo_po_id(id_rezervacije) if not rezervacija: return template("error", sporocilo="Rezervacija ne obstaja!", naslov="Napaka") today = dt.date.today() gostje = rezervacija.gostje sestevek, postavke = dobi_postavke_racuna(rezervacija) slovar_cen = {} slovar_kolicin = {} for gost in gostje: slovar_kolicin[gost] = len(gost.nocitve) slovar_cen[gost] = format(gost.cena_nocitve() * slovar_kolicin.get(gost), '.2f') return template("racun", id_rezervacije=id_rezervacije, sestevek=format(sestevek, '.2f'), gostje=gostje, today=today.strftime("%d/%m/%Y"), slovar_cen=slovar_cen, slovar_kolicin=slovar_kolicin) @bottle.get("/zakljuci/<id_rezervacije>") def racun(id_rezervacije): rezervacija = dobi_rezervacijo_po_id(id_rezervacije) if not rezervacija: return template("error", sporocilo="Rezervacija ne obstaja!", naslov="Napaka") today = dt.date.today() gostje = rezervacija.gostje sestevek, postavke = zakljuci_na_datum_in_placaj(rezervacija, dt.date.today()) slovar_cen = {} slovar_kolicin = {} for gost in gostje: slovar_kolicin[gost] = len(gost.nocitve) slovar_cen[gost] = format(gost.cena_nocitve() * slovar_kolicin.get(gost), '.2f') return template("racun", id_rezervacije=id_rezervacije, sestevek=format(sestevek, '.2f'), gostje=gostje, today=today.strftime("%d/%m/%Y"), slovar_cen=slovar_cen, slovar_kolicin=slovar_kolicin) @bottle.error(404) def napaka404(a): return template("error", sporocilo="Stran ne obstaja!", naslov="404") @bottle.error(500) def napaka500(a): return template("error", sporocilo="Napaka streznika!", naslov="500") bottle.run(reloader=True, debug=True)
2.40625
2
espnet/nets/pytorch_backend/transducer/initializer.py
magictron/espnet
2
2452
<filename>espnet/nets/pytorch_backend/transducer/initializer.py<gh_stars>1-10 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """Parameter initialization for transducer RNN/Transformer parts.""" import six from espnet.nets.pytorch_backend.initialization import lecun_normal_init_parameters from espnet.nets.pytorch_backend.initialization import set_forget_bias_to_one from espnet.nets.pytorch_backend.transformer.initializer import initialize def initializer(model, args): """Initialize transducer model. Args: model (torch.nn.Module): transducer instance args (Namespace): argument Namespace containing options """ if args.dtype != "transformer": if args.etype == "transformer": initialize(model.encoder, args.transformer_init) lecun_normal_init_parameters(model.dec) else: lecun_normal_init_parameters(model) model.dec.embed.weight.data.normal_(0, 1) for l in six.moves.range(len(model.dec.decoder)): set_forget_bias_to_one(model.dec.decoder[l].bias_ih) else: if args.etype == "transformer": initialize(model, args.transformer_init) else: lecun_normal_init_parameters(model.encoder) initialize(model.decoder, args.transformer_init)
2.40625
2
evaluate.py
adelmassimo/EM-Algorithm-for-MMPP
0
2453
<filename>evaluate.py import model import numpy as np import datasetReader as df import main # Number of traces loaded T T = 1 # Generate traces traces_factory = df.DatasetFactory() traces_factory.createDataset(T) traces = traces_factory.traces P0 = np.matrix("[ .02 0;" "0 0 0.5;" "0 0 0]") P1 = np.matrix("[0.1 0 0;" "0 0.5 0;" "0 0 0.9]") M = np.matrix("[0.25 0 0;" "0 0.23 0;" "0 0 0.85]") def backward_likelihood(i, trace): N = model.N M = len( trace ) likelihoods = np.ones((N, 1)) if i < M: P = main.randomization(P0, model.uniformization_rate, trace[i][0]) # P = stored_p_values[i, :, :] likelihoods = np.multiply( P.dot( model.P1 ).dot( backward_likelihood(i+1, trace) ), model.M[:, trace[i][1]] ) if likelihoods.sum() != 0: likelihoods = likelihoods / likelihoods.sum() return likelihoods
2.6875
3
Imaging/Core/Testing/Python/TestHSVToRGB.py
forestGzh/VTK
1,755
2454
#!/usr/bin/env python import vtk from vtk.util.misc import vtkGetDataRoot VTK_DATA_ROOT = vtkGetDataRoot() # Use the painter to draw using colors. # This is not a pipeline object. It will support pipeline objects. # Please do not use this object directly. imageCanvas = vtk.vtkImageCanvasSource2D() imageCanvas.SetNumberOfScalarComponents(3) imageCanvas.SetScalarTypeToUnsignedChar() imageCanvas.SetExtent(0,320,0,320,0,0) imageCanvas.SetDrawColor(0,0,0) imageCanvas.FillBox(0,511,0,511) # r, g, b imageCanvas.SetDrawColor(255,0,0) imageCanvas.FillBox(0,50,0,100) imageCanvas.SetDrawColor(128,128,0) imageCanvas.FillBox(50,100,0,100) imageCanvas.SetDrawColor(0,255,0) imageCanvas.FillBox(100,150,0,100) imageCanvas.SetDrawColor(0,128,128) imageCanvas.FillBox(150,200,0,100) imageCanvas.SetDrawColor(0,0,255) imageCanvas.FillBox(200,250,0,100) imageCanvas.SetDrawColor(128,0,128) imageCanvas.FillBox(250,300,0,100) # intensity scale imageCanvas.SetDrawColor(5,5,5) imageCanvas.FillBox(0,50,110,210) imageCanvas.SetDrawColor(55,55,55) imageCanvas.FillBox(50,100,110,210) imageCanvas.SetDrawColor(105,105,105) imageCanvas.FillBox(100,150,110,210) imageCanvas.SetDrawColor(155,155,155) imageCanvas.FillBox(150,200,110,210) imageCanvas.SetDrawColor(205,205,205) imageCanvas.FillBox(200,250,110,210) imageCanvas.SetDrawColor(255,255,255) imageCanvas.FillBox(250,300,110,210) # saturation scale imageCanvas.SetDrawColor(245,0,0) imageCanvas.FillBox(0,50,220,320) imageCanvas.SetDrawColor(213,16,16) imageCanvas.FillBox(50,100,220,320) imageCanvas.SetDrawColor(181,32,32) imageCanvas.FillBox(100,150,220,320) imageCanvas.SetDrawColor(149,48,48) imageCanvas.FillBox(150,200,220,320) imageCanvas.SetDrawColor(117,64,64) imageCanvas.FillBox(200,250,220,320) imageCanvas.SetDrawColor(85,80,80) imageCanvas.FillBox(250,300,220,320) convert = vtk.vtkImageRGBToHSV() convert.SetInputConnection(imageCanvas.GetOutputPort()) convertBack = vtk.vtkImageHSVToRGB() convertBack.SetInputConnection(convert.GetOutputPort()) cast = vtk.vtkImageCast() cast.SetInputConnection(convertBack.GetOutputPort()) cast.SetOutputScalarTypeToFloat() cast.ReleaseDataFlagOff() viewer = vtk.vtkImageViewer() viewer.SetInputConnection(convertBack.GetOutputPort()) #viewer SetInputConnection [imageCanvas GetOutputPort] viewer.SetColorWindow(256) viewer.SetColorLevel(127.5) viewer.SetSize(320,320) viewer.Render() # --- end of script --
2.21875
2
kelas_2b/echa.py
barizraihan/belajarpython
0
2455
<reponame>barizraihan/belajarpython import csv class echa: def werehousing(self): with open('kelas_2b/echa.csv', 'r') as csvfile: csv_reader = csv.reader(csvfile, delimiter=',') for row in csv_reader: print("menampilkan data barang:", row[0], row[1], row[2], row[3], row[4])
3.1875
3
tests/test_handler_surface_distance.py
dyollb/MONAI
2,971
2456
# Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from typing import Tuple import numpy as np import torch from ignite.engine import Engine from monai.handlers import SurfaceDistance def create_spherical_seg_3d( radius: float = 20.0, centre: Tuple[int, int, int] = (49, 49, 49), im_shape: Tuple[int, int, int] = (99, 99, 99) ) -> np.ndarray: """ Return a 3D image with a sphere inside. Voxel values will be 1 inside the sphere, and 0 elsewhere. Args: radius: radius of sphere (in terms of number of voxels, can be partial) centre: location of sphere centre. im_shape: shape of image to create See also: :py:meth:`~create_test_image_3d` """ # Create image image = np.zeros(im_shape, dtype=np.int32) spy, spx, spz = np.ogrid[ -centre[0] : im_shape[0] - centre[0], -centre[1] : im_shape[1] - centre[1], -centre[2] : im_shape[2] - centre[2] ] circle = (spx * spx + spy * spy + spz * spz) <= radius * radius image[circle] = 1 image[~circle] = 0 return image sampler_sphere = torch.Tensor(create_spherical_seg_3d(radius=20, centre=(20, 20, 20))).unsqueeze(0).unsqueeze(0) # test input a list of channel-first tensor sampler_sphere_gt = [torch.Tensor(create_spherical_seg_3d(radius=20, centre=(10, 20, 20))).unsqueeze(0)] sampler_sphere_zeros = torch.zeros_like(sampler_sphere) TEST_SAMPLE_1 = [sampler_sphere, sampler_sphere_gt] TEST_SAMPLE_2 = [sampler_sphere_gt, sampler_sphere_gt] TEST_SAMPLE_3 = [sampler_sphere_zeros, sampler_sphere_gt] TEST_SAMPLE_4 = [sampler_sphere_zeros, sampler_sphere_zeros] class TestHandlerSurfaceDistance(unittest.TestCase): # TODO test multi node Surface Distance def test_compute(self): sur_metric = SurfaceDistance(include_background=True) def _val_func(engine, batch): pass engine = Engine(_val_func) sur_metric.attach(engine, "surface_distance") y_pred, y = TEST_SAMPLE_1 sur_metric.update([y_pred, y]) self.assertAlmostEqual(sur_metric.compute(), 4.17133, places=4) y_pred, y = TEST_SAMPLE_2 sur_metric.update([y_pred, y]) self.assertAlmostEqual(sur_metric.compute(), 2.08566, places=4) y_pred, y = TEST_SAMPLE_3 sur_metric.update([y_pred, y]) self.assertAlmostEqual(sur_metric.compute(), float("inf")) y_pred, y = TEST_SAMPLE_4 sur_metric.update([y_pred, y]) self.assertAlmostEqual(sur_metric.compute(), float("inf")) def test_shape_mismatch(self): sur_metric = SurfaceDistance(include_background=True) with self.assertRaises((AssertionError, ValueError)): y_pred = TEST_SAMPLE_1[0] y = torch.ones((1, 1, 10, 10, 10)) sur_metric.update([y_pred, y]) if __name__ == "__main__": unittest.main()
2.078125
2
benchmarks/eval.py
rom1mouret/anoflows
0
2457
#!/usr/bin/env python3 import sys import logging import yaml import pandas as pd import numpy as np from collections import defaultdict from sklearn.model_selection import train_test_split from sklearn.ensemble import IsolationForest from sklearn.impute import SimpleImputer from anoflows.hpo import find_best_flows from data_loading import load_data logging.getLogger().setLevel(logging.INFO) if len(sys.argv) == 1: logging.error("YAML data specification missing from the command line arguments") exit(1) spec_file = sys.argv[1] df, spec = load_data(spec_file) max_rows = min(len(df), spec.get("max_rows", 40000)) novelty_detection = spec.get("novelty", True) normal_classes = spec["normal_classes"] precision = defaultdict(list) for rounds in range(spec.get("rounds", 1)): # random sampling df = df.sample(n=max_rows, replace=False) label_col = spec["label_column"] y = df[label_col].values other = df.drop(label_col, inplace=False, axis=1) X = other.values # imputing X = SimpleImputer(copy=False).fit_transform(X) # train/test split X_train, X_test, y_train, y_test = \ train_test_split(X, y, shuffle=False, test_size=0.5) if novelty_detection: keep = np.where(np.isin(y_train, normal_classes))[0] X_train = X_train[keep, :] y_train = y_train[keep] # training #flows, loss = find_best_flows(X_train, device='cpu', n_trials=1) from anoflows.anoflow_bagging import AnoFlowBagging flows = AnoFlowBagging() flows.fit(X_train) iforest = IsolationForest().fit(X_train) # prediction pred = { "anoflows": flows.likelihood(X_test), "iforest": iforest.decision_function(X_test) } # evaluation y_true = np.where(np.isin(y_test, spec["anomaly_classes"]))[0] ref = np.zeros(len(y_test)) ref[y_true] = 1 k = len(y_true) for name, y_pred in pred.items(): anomaly_indices = y_pred.argsort()[:k] prec = ref[anomaly_indices].sum() / k logging.info("%s: %.1f%% (%d anomalies / %d rows)" % (name, 100*prec, k, len(y_test))) precision[name].append(prec) logging.info("* SUMMARY %s", spec_file) for name, prec in precision.items(): prec = 100 * np.array(prec) mean = np.mean(prec) std = np.std(prec) logging.info("%s; mean=%.1f%% std=%.1f%%" % (name, mean, std))
2.40625
2
pydantic/version.py
jamescurtin/pydantic
1
2458
<reponame>jamescurtin/pydantic __all__ = ['VERSION', 'version_info'] VERSION = '1.4a1' def version_info() -> str: import platform import sys from importlib import import_module from pathlib import Path from .main import compiled optional_deps = [] for p in ('typing-extensions', 'email-validator', 'devtools'): try: import_module(p.replace('-', '_')) except ImportError: continue optional_deps.append(p) info = { 'pydantic version': VERSION, 'pydantic compiled': compiled, 'install path': Path(__file__).resolve().parent, 'python version': sys.version, 'platform': platform.platform(), 'optional deps. installed': optional_deps, } return '\n'.join('{:>30} {}'.format(k + ':', str(v).replace('\n', ' ')) for k, v in info.items())
2.125
2
spire/core/registry.py
siq/spire
0
2459
<filename>spire/core/registry.py from scheme import Structure __all__ = ('Configurable', 'Registry') class Configurable(object): """A sentry class which indicates that subclasses can establish a configuration chain.""" class Registry(object): """The unit registry.""" dependencies = {} schemas = {} units = {} @classmethod def is_configurable(cls, obj): return (obj is not Configurable and issubclass(obj, Configurable) and Configurable not in obj.__bases__) @classmethod def purge(cls): cls.schemas = {} cls.units = {} @classmethod def register_dependency(cls, dependency): token = dependency.token if not token: return if token not in cls.dependencies: cls.dependencies[token] = type(dependency) if not dependency.configurable: return configuration = dependency.unit.configuration if token in cls.schemas: structure = cls.schemas[token] if configuration.required and not dependency.optional and not structure.required: structure.required = True else: schema = dependency.construct_schema(generic=True, name=token) if dependency.optional: schema = schema.clone(required=False) cls.schemas[token] = schema @classmethod def register_unit(cls, unit): cls.units[unit.identity] = unit if cls.is_configurable(unit): queue = [(unit, [unit.identity], None)] while queue: subject, tokens, dependency = queue.pop(0) if subject.configuration: token = '/'.join(tokens) if dependency: structure = dependency.construct_schema(name=token) if dependency.token and structure.required: structure = structure.clone(required=False) else: structure = subject.configuration.schema.clone(required=False, name=token) cls.schemas[token] = structure for attr, subdependency in subject.dependencies.iteritems(): queue.append((subdependency.unit, tokens + [attr], subdependency))
2.515625
3
oslo_devsupport/model/__init__.py
berrange/oslo.devsupport
0
2460
<filename>oslo_devsupport/model/__init__.py from .command import * from .database import * from .entrypoint import * from .group import * from .http import * from .messaging import * from .method import * from .operation import * from .stack import * from .threads import *
1.1875
1
scripts/extract.py
nng555/fairseq
2
2461
#!/usr/bin/env python3 # # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """Extracts random constraints from reference files.""" import argparse import random import sys from sacrebleu import extract_ngrams def get_phrase(words, index, length): assert index < len(words) - length + 1 phr = " ".join(words[index : index + length]) for i in range(index, index + length): words.pop(index) return phr def main(args): if args.seed: random.seed(args.seed) for line in sys.stdin: constraints = [] def add_constraint(constraint): constraints.append(constraint) source = line.rstrip() if "\t" in line: source, target = line.split("\t") if args.add_sos: target = f"<s> {target}" if args.add_eos: target = f"{target} </s>" if len(target.split()) >= args.len: words = [target] num = args.number choices = {} for i in range(num): if len(words) == 0: break segmentno = random.choice(range(len(words))) segment = words.pop(segmentno) tokens = segment.split() phrase_index = random.choice(range(len(tokens))) choice = " ".join( tokens[phrase_index : min(len(tokens), phrase_index + args.len)] ) for j in range( phrase_index, min(len(tokens), phrase_index + args.len) ): tokens.pop(phrase_index) if phrase_index > 0: words.append(" ".join(tokens[0:phrase_index])) if phrase_index + 1 < len(tokens): words.append(" ".join(tokens[phrase_index:])) choices[target.find(choice)] = choice # mask out with spaces target = target.replace(choice, " " * len(choice), 1) for key in sorted(choices.keys()): add_constraint(choices[key]) print(source, *constraints, sep="\t") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--number", "-n", type=int, default=1, help="number of phrases") parser.add_argument("--len", "-l", type=int, default=1, help="phrase length") parser.add_argument( "--add-sos", default=False, action="store_true", help="add <s> token" ) parser.add_argument( "--add-eos", default=False, action="store_true", help="add </s> token" ) parser.add_argument("--seed", "-s", default=0, type=int) args = parser.parse_args() Main(args)
2.890625
3
AppImageBuilder/commands/file.py
gouchi/appimage-builder
0
2462
<filename>AppImageBuilder/commands/file.py # Copyright 2020 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. import os from .command import Command class FileError(RuntimeError): pass class File(Command): def __init__(self): super().__init__('file') self.log_stdout = False self.log_command = False def query(self, path): self._run(['file', '-b', '--exclude', 'ascii', path]) if self.return_code != 0: raise FileError('\n'.join(self.stderr)) return '\n'.join(self.stdout) def is_executable_elf(self, path): output = self.query(path) result = ('ELF' in output) and ('executable' in output) return result
2.40625
2
text_selection/analyse_zenon_scrape.py
dainst/chronoi-corpus-processing
0
2463
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import argparse import csv import furl import json import re import sys from collections import defaultdict def filter_records_without_url(records: []) -> []: return [r for r in records if any(r.get("urls"))] def build_furl(url: str) -> furl.furl: try: furl_obj = furl.furl(url) if not furl_obj.host: furl_obj = furl.furl("http://" + url) return furl_obj except ValueError: return furl.furl("https://invalid-url.xyz") def determine_host(url: str) -> str: furl_obj = build_furl(url) return re.sub(r"^www[0-9]*\.", "", furl_obj.host) def build_hosts_to_urls(records: []) -> {str: {str}}: result = defaultdict(set) for record in records: for url in record.get("urls"): host = determine_host(url.get("url")) result[host].add(url.get("url")) return result def print_most_common_url_hosts(hosts_to_urls: {}, n: int): hosts = [h for h in hosts_to_urls.keys() if len(hosts_to_urls[h]) > n] hosts = sorted(hosts, key=lambda h: len(hosts_to_urls[h])) for host in hosts: print("% 6d\t%s" % (len(hosts_to_urls[host]), host)) def print_urls_for_host(hosts_to_urls: {}, host: str): urls = hosts_to_urls.get(host, []) for url in urls: print(url) if not any(urls): print(f"No urls for host: '{host}'", file=sys.stderr) def print_how_often_url_patterns_cooccur(records: [{}], pattern1: str, pattern2: str): # It should be ok, to only pattern match the hosts here... ids1 = {r.get("id") for r in records if record_has_matching_url(r, pattern1)} ids2 = {r.get("id") for r in records if record_has_matching_url(r, pattern2)} ids_both = ids1.intersection(ids2) for host, number in {pattern1: len(ids1), pattern2: len(ids2), "both": len(ids_both)}.items(): print(f"{host}: {number}") def record_has_matching_url(record: {}, pattern: str) -> bool: return any(record_get_urls_matching(record, pattern)) def record_get_urls_matching(record: {}, pattern: str) -> [{}]: result = [] for url in record.get("urls"): if any(re.findall(pattern, url.get("url"))): result.append(url) return result def record_remove_urls_not_matching(record: {}, pattern: str): record["urls"] = record_get_urls_matching(record, pattern) def earliest_year(year_strings: [str]) -> str: years = [] for year_s in year_strings: try: years.append(int(year_s)) except ValueError: print(f"Not a string that is a year: '{year_s}'", file=sys.stderr) continue return str(sorted(years)[0]) if any(years) else "" def main(args: argparse.Namespace): with open(args.scrape_file, "r") as file: records = json.load(file) records = filter_records_without_url(records) # filter urls by the user-provided filter list if args.desc_filters: with open(args.desc_filters, "r") as file: filters = file.read().splitlines() for record in records: record["urls"] = [url for url in record.get("urls") if url.get("desc") not in filters] records = filter_records_without_url(records) # print unique hosts or urls, then exit if args.print_host_urls or args.print_common_hosts >= 0: hosts_to_urls = build_hosts_to_urls(records) if args.print_common_hosts >= 0: print_most_common_url_hosts(hosts_to_urls, n=args.print_common_hosts) elif args.print_host_urls: print_urls_for_host(hosts_to_urls, host=args.print_host_urls) exit(0) # check in how many records the two given hosts co-occur, then exit if args.patterns_cooccur: host1, host2 = args.patterns_cooccur.split(",") print_how_often_url_patterns_cooccur(records, host1, host2) exit(0) # do some selection based on a url pattern, remove all non-matching urls from the record if args.select_by_url: pattern = args.select_by_url records = [r for r in records if record_has_matching_url(r, pattern)] for record in records: record_remove_urls_not_matching(record, pattern) # sort the records by id, to be extra sure, that we get the same order every time this is called # print each line as a csv column records = sorted(records, key=lambda r: r.get("id")) writer = csv.writer(sys.stdout, delimiter=",", quoting=csv.QUOTE_ALL) for record in records: to_print = [] if args.print_id: to_print.append(record.get("id", "")) if args.print_url: to_print.append(record.get("urls")[0].get("url") if any(record.get("urls")) else "") if args.print_pub_date: to_print.append(earliest_year(record.get("publicationDates", []))) if args.print_languages: to_print.append("|".join(record.get("languages", []))) writer.writerow(to_print) if __name__ == '__main__': parser = argparse.ArgumentParser( description="Process a file with zenon json records and print some information about them.") parser.add_argument("scrape_file", type=str, help="The file that contains the zenon dumps as json.") parser.add_argument("--desc-filters", type=str, help="A file to filter urls by. Excludes urls with 'desc' fields matching a line in the file.") # these are arguments to print some specific information parser.add_argument("--print-common-hosts", type=int, default=-1, help="Print hosts that appear more than n times in the records urls, then exit.") parser.add_argument("--print-host-urls", type=str, help="Print all urls for the host, then exit.") parser.add_argument("--patterns-cooccur", type=str, help="Format: 'pattern1,pattern2', print how often these occur in single records url fields, then exit.") # these are meant to work together select by a url pattern then print information about the records parser.add_argument("--select-by-url", type=str, help="Give a pattern for a url to select records by.") parser.add_argument("--print-url", action="store_true", help="Print the first of each urls for the selected records. (Ignores other urls present on the records if --select-url is given.)") parser.add_argument("--print-pub-date", action="store_true", help="Print the earliest publication year for each of the selected records.") parser.add_argument("--print-id", action="store_true", help="Print the selected records' ids") parser.add_argument("--print-languages", action="store_true", help="Print the selected records' languages") main(parser.parse_args())
2.90625
3
src/python/twitter/pants/targets/java_antlr_library.py
wfarner/commons
1
2464
# ================================================================================================== # Copyright 2012 Twitter, Inc. # -------------------------------------------------------------------------------------------------- # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this work except in compliance with the License. # You may obtain a copy of the License in the LICENSE file, or at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ================================================================================================== __author__ = '<NAME>' from twitter.pants.targets.exportable_jvm_library import ExportableJvmLibrary class JavaAntlrLibrary(ExportableJvmLibrary): """Defines a target that builds java stubs from an Antlr grammar file.""" def __init__(self, name, sources, provides = None, dependencies = None, excludes = None, compiler = 'antlr3'): """name: The name of this module target, addressable via pants via the portion of the spec following the colon sources: A list of paths containing the Antlr source files this module's jar is compiled from provides: An optional Dependency object indicating the The ivy artifact to export dependencies: An optional list of Dependency objects specifying the binary (jar) dependencies of this module. excludes: An optional list of dependency exclude patterns to filter all of this module's transitive dependencies against. compiler: The name of the compiler used to compile the ANTLR files. Currently only supports 'antlr3' and 'antlr4'""" ExportableJvmLibrary.__init__(self, name, sources, provides, dependencies, excludes) self.add_labels('codegen') if compiler not in ['antlr3', 'antlr4']: raise ValueError("Illegal value for 'compiler': {}".format(compiler)) self.compiler = compiler def _as_jar_dependency(self): return ExportableJvmLibrary._as_jar_dependency(self).with_sources()
1.734375
2
bigml/tests/create_pca_steps_bck.py
devs-cloud/python_ml
0
2465
# -*- coding: utf-8 -*- #!/usr/bin/env python # # Copyright 2018-2020 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import time import json import os from datetime import datetime, timedelta from world import world from nose.tools import eq_, assert_less from bigml.api import HTTP_CREATED from bigml.api import HTTP_ACCEPTED from bigml.api import FINISHED from bigml.api import FAULTY from bigml.api import get_status from read_pca_steps import i_get_the_pca #@step(r'the pca name is "(.*)"') def i_check_pca_name(step, name): pca_name = world.pca['name'] eq_(name, pca_name) #@step(r'I create a PCA from a dataset$') def i_create_a_pca_from_dataset(step): dataset = world.dataset.get('resource') resource = world.api.create_pca(dataset, {'name': 'new PCA'}) world.status = resource['code'] eq_(world.status, HTTP_CREATED) world.location = resource['location'] world.pca = resource['object'] world.pcas.append(resource['resource']) #@step(r'I create a PCA from a dataset$') def i_create_a_pca_with_params(step, params): params = json.loads(params) dataset = world.dataset.get('resource') resource = world.api.create_pca(dataset, params) world.status = resource['code'] eq_(world.status, HTTP_CREATED) world.location = resource['location'] world.pca = resource['object'] world.pcas.append(resource['resource']) def i_create_a_pca(step): i_create_a_pca_from_dataset(step) #@step(r'I update the PCA name to "(.*)"$') def i_update_pca_name(step, name): resource = world.api.update_pca(world.pca['resource'], {'name': name}) world.status = resource['code'] eq_(world.status, HTTP_ACCEPTED) world.location = resource['location'] world.pca = resource['object'] #@step(r'I wait until the PCA status code is either (\d) or (-\d) less than (\d+)') def wait_until_pca_status_code_is(step, code1, code2, secs): start = datetime.utcnow() delta = int(secs) * world.delta pca_id = world.pca['resource'] i_get_the_pca(step, pca_id) status = get_status(world.pca) while (status['code'] != int(code1) and status['code'] != int(code2)): time.sleep(3) assert_less(datetime.utcnow() - start, timedelta(seconds=delta)) i_get_the_pca(step, pca_id) status = get_status(world.pca) eq_(status['code'], int(code1)) #@step(r'I wait until the PCA is ready less than (\d+)') def the_pca_is_finished_in_less_than(step, secs): wait_until_pca_status_code_is(step, FINISHED, FAULTY, secs)
2.234375
2
config.py
Pasmikh/quiz_please_bot
0
2466
<filename>config.py days_of_week = ['Monday','Tuesday','Wednesday','Thursday','Friday','Saturday', 'Sunday'] operation = '' options = ['Info', 'Check-in/Out', 'Edit games', 'Back'] admins = ['admin1_telegram_nickname', 'admin2_telegram_nickname'] avail_days = [] TOKEN = 'bot_<PASSWORD>' group_id = id_of_group_chat
1.640625
2
Chapter 8/sandwich-maker.py
ostin-r/automate-boring-stuff-solutions
4
2467
''' <NAME> 2/20/21 sandwich-maker.py uses pyinputplus to validate user input for sandwich preferences ''' import pyinputplus as ip def get_cost(food_name): '''gets the cost of items in sandwich_builder''' food_dict = { 'sourdough':1.75, 'rye':2.0, 'wheat':1.50, 'white':1.25, 'chicken':2.0, 'turkey':1.50, 'ham':2.0, 'tofu':1.25, 'cheddar':2.0, 'swiss':2.5, 'mozzarella':2.5, 'yes':0.25, # toppings return 'yes' in sandwich_builder(), so I made them all cost 0.25 'no':0 # saying no to a topping costs nothing } return food_dict[food_name] def sandwich_builder(): print('Enter your sandwich preferences below:\n') bread_prompt = 'What bread type would you like? (sourdough, rye, wheat, or white)\n' bread_type = ip.inputChoice(['sourdough', 'rye', 'wheat', 'white'], prompt=bread_prompt) protein_prompt = 'What type of protein would you like? (chicken, turkey, ham, or tofu)\n' protein_type = ip.inputChoice(['chicken', 'turkey', 'ham', 'tofu'], prompt=protein_prompt) mayo = ip.inputYesNo(prompt='Would you like mayo?\n') mustard = ip.inputYesNo(prompt='Would you like mustard?\n') tomato = ip.inputYesNo(prompt='Would you like tomato?\n') lettuce = ip.inputYesNo(prompt='Would you like lettuce?\n') like_cheese = ip.inputYesNo(prompt='Do you like cheese on your sandwich?\n') if like_cheese is 'yes': cheese_prompt = 'What kind of cheese would you like? (cheddar, swiss, mozzarella)\n' cheese_type = ip.inputChoice(['cheddar', 'swiss', 'mozzarella'], prompt=cheese_prompt) sandwich = [] cost = 0 sandwich.extend([bread_type, protein_type, cheese_type, mayo, mustard, tomato, lettuce]) for item in sandwich: cost += get_cost(item) else: sandwich = [] cost = 0 sandwich.extend([bread_type, protein_type, mayo, mustard, tomato, lettuce]) for item in sandwich: cost += get_cost(item) how_many_prompt = 'How many sandwiches would you like?\n' how_many = ip.inputInt(min=1, prompt=how_many_prompt) print('\nFinal cost: ${}'.format(round(cost * how_many * 1.06, 2))) sandwich_builder()
3.953125
4
tests/core/test_headerupdater.py
My-Novel-Management/storybuilderunite
1
2468
<filename>tests/core/test_headerupdater.py # -*- coding: utf-8 -*- ''' HeaderUpdater class test ======================== ''' import unittest from tests.testutils import print_testtitle, validate_with_fail from builder.commands.scode import SCode, SCmd from builder.containers.chapter import Chapter from builder.containers.episode import Episode from builder.containers.scene import Scene from builder.containers.story import Story from builder.core import headerupdater as hd class HeaderUpdaterTest(unittest.TestCase): @classmethod def setUpClass(cls): print_testtitle(hd.__name__, 'HeaderUpdater class') def test_instance(self): tmp = hd.HeaderUpdater() self.assertIsInstance(tmp, hd.HeaderUpdater) def test_title_of(self): data = [ # (src, expect, exp_opt) (True, Story('test',), ('test',), 1), ] def checker(src, expect, exp_opt): tmp = hd.HeaderUpdater()._title_of(src) self.assertIsInstance(tmp, SCode) self.assertEqual(tmp.cmd, SCmd.TAG_TITLE) self.assertEqual(tmp.script, expect) self.assertEqual(tmp.option, exp_opt) validate_with_fail(self, 'title_of', checker, data) def test_outline_of(self): data = [ # (src, expect) (True, Story('test',outline='apple'), ('apple',)), ] def checker(src, expect): tmp = hd.HeaderUpdater()._outline_of(src) self.assertIsInstance(tmp, SCode) self.assertEqual(tmp.cmd, SCmd.TAG_COMMENT) self.assertEqual(tmp.script, expect) validate_with_fail(self, 'outline_of', checker, data) def test_end_of(self): data = [ # (src, expect) (True, Chapter('test',), SCmd.END_CHAPTER), ] validate_with_fail(self, 'end_of', lambda src, expect: self.assertEqual( hd.HeaderUpdater()._end_of(src).cmd, expect), data)
2.65625
3
dotsDB/test_vlen_datasets.py
aernesto/Lab_DotsDB_Utilities
1
2469
<gh_stars>1-10 import numpy as np import h5py filename = "test_vlen_datasets_np_bool.h5" rows = [np.array([np.True_, np.False_]), np.array([np.True_, np.True_, np.False_])] f = h5py.File(filename, 'x') # create file, fails if exists vlen_data_type = h5py.special_dtype(vlen=np.bool_) dset = f.create_dataset("vlen_matrix", (2,), compression="gzip", compression_opts=9, fletcher32=True, dtype=vlen_data_type) for r in range(len(rows)): dset[r] = rows[r] f.flush() f.close() f = h5py.File(filename, 'r') dsetr = f["vlen_matrix"] for r in range(dsetr.shape[0]): print(dsetr[r])
2.625
3
utils.py
g4idrijs/CardiacUltrasoundPhaseEstimation
1
2470
import os, time import numpy as np import scipy.signal import scipy.misc import scipy.ndimage.filters import matplotlib.pyplot as plt import PIL from PIL import ImageDraw import angles import cv2 import SimpleITK as sitk def cvShowImage(imDisp, strName, strAnnotation='', textColor=(0, 0, 255), resizeAmount=None): if resizeAmount is not None: imDisp = cv2.resize(imDisp.copy(), None, fx=resizeAmount, fy=resizeAmount) imDisp = cv2.cvtColor(imDisp, cv2.COLOR_GRAY2RGB) if len(strAnnotation) > 0: cv2.putText(imDisp, strAnnotation, (10, 20), cv2.FONT_HERSHEY_PLAIN, 2.0, textColor, thickness=2) cv2.imshow(strName, imDisp) def cvShowColorImage(imDisp, strName, strAnnotation='', textColor=(0, 0, 255), resizeAmount=None): if resizeAmount is not None: imDisp = cv2.resize(imDisp.copy(), None, fx=resizeAmount, fy=resizeAmount) if len(strAnnotation) > 0: cv2.putText(imDisp, strAnnotation, (10, 20), cv2.FONT_HERSHEY_PLAIN, 2.0, textColor, thickness=2) cv2.imshow(strName, imDisp) def mplotShowImage(imInput): plt.imshow(imInput, cmap=plt.cm.gray) plt.grid(False) plt.xticks(()) plt.yticks(()) def normalizeArray(a): return np.single(0.0 + a - a.min()) / (a.max() - a.min()) def AddTextOnImage(imInput, strText, loc=(2, 2), color=255): imInputPIL = PIL.Image.fromarray(imInput) d = ImageDraw.Draw(imInputPIL) d.text(loc, strText, fill=color) return np.asarray(imInputPIL) def AddTextOnVideo(imVideo, strText, loc=(2, 2)): imVideoOut = np.zeros_like(imVideo) for i in range(imVideo.shape[2]): imVideoOut[:, :, i] = AddTextOnImage(imVideo[:, :, i], strText, loc) return imVideoOut def cvShowVideo(imVideo, strWindowName, waitTime=30, resizeAmount=None): if not isinstance(imVideo, list): imVideo = [imVideo] strWindowName = [strWindowName] # find max number of frames maxFrames = 0 for vid in range(len(imVideo)): if imVideo[vid].shape[-1] > maxFrames: maxFrames = imVideo[vid].shape[2] # display video blnLoop = True fid = 0 while True: for vid in range(len(imVideo)): curVideoFid = fid % imVideo[vid].shape[2] imCur = imVideo[vid][:, :, curVideoFid] # resize image if requested if resizeAmount: imCur = scipy.misc.imresize(imCur, resizeAmount) # show image cvShowImage(imCur, strWindowName[vid], '%d' % (curVideoFid + 1)) # look for "esc" key k = cv2.waitKey(waitTime) & 0xff if blnLoop: if k == 27: break elif k == ord(' '): blnLoop = False else: fid = (fid + 1) % maxFrames else: if k == 27: # escape break elif k == ord(' '): # space blnLoop = True elif k == 81: # left arrow fid = (fid - 1) % maxFrames elif k == 83: # right arrow fid = (fid + 1) % maxFrames for vid in range(len(imVideo)): cv2.destroyWindow(strWindowName[vid]) def normalizeArray(a, bounds=None): if bounds is None: return (0.0 + a - a.min()) / (a.max() - a.min()) else: b = (0.0 + a - bounds[0]) / (bounds[1] - bounds[0]) b[b < 0] = bounds[0] b[b > bounds[1]] = bounds[1] return b def loadVideoFromFile(dataFilePath, sigmaSmooth=None, resizeAmount=None): vidseq = cv2.VideoCapture(dataFilePath) print vidseq, vidseq.isOpened() # print metadata metadata = {} numFrames = vidseq.get(cv2.CAP_PROP_FRAME_COUNT) print '\tFRAME_COUNT = ', numFrames metadata['FRAME_COUNT'] = numFrames frameHeight = vidseq.get(cv2.CAP_PROP_FRAME_HEIGHT) if frameHeight > 0: print '\tFRAME HEIGHT = ', frameHeight metadata['FRAME_HEIGHT'] = frameHeight frameWidth = vidseq.get(cv2.CAP_PROP_FRAME_WIDTH) if frameWidth > 0: print '\tFRAME WIDTH = ', frameWidth metadata['FRAME_WIDTH'] = frameWidth fps = vidseq.get(cv2.CAP_PROP_FPS) if fps > 0: print '\tFPS = ', fps metadata['FPS'] = fps fmt = vidseq.get(cv2.CAP_PROP_FORMAT) if fmt > 0: print '\FORMAT = ', fmt metadata['FORMAT'] = fmt vmode = vidseq.get(cv2.CAP_PROP_MODE) if vmode > 0: print '\MODE = ', vmode metadata['MODE'] = MODE # smooth if wanted if sigmaSmooth: wSmooth = 4 * sigmaSmooth + 1 print metadata # read video frames imInput = [] fid = 0 prevPercent = 0 print '\n' while True: valid_object, frame = vidseq.read() if not valid_object: break frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) if resizeAmount: frame = scipy.misc.imresize(frame, resizeAmount) if sigmaSmooth: frame = cv2.GaussianBlur(frame, (wSmooth, wSmooth), 0) imInput.append(frame) # update progress fid += 1 curPercent = np.floor(100.0 * fid / numFrames) if curPercent > prevPercent: prevPercent = curPercent print '%.2d%%' % curPercent, print '\n' imInput = np.dstack(imInput) vidseq.release() return (imInput, metadata) def writeVideoToFile(imVideo, filename, codec='DIVX', fps=30, isColor=False): # start timer tStart = time.time() # write video # fourcc = cv2.FOURCC(*list(codec)) # opencv 2.4 fourcc = cv2.VideoWriter_fourcc(*list(codec)) height, width = imVideo.shape[:2] writer = cv2.VideoWriter(filename, fourcc, fps=fps, frameSize=(width, height), isColor=isColor) print writer.isOpened() numFrames = imVideo.shape[-1] for fid in range(numFrames): if isColor: writer.write(imVideo[:, :, :, fid].astype('uint8')) else: writer.write(imVideo[:, :, fid].astype('uint8')) # end timer tEnd = time.time() print 'Writing video {} took {} seconds'.format(filename, tEnd - tStart) # release writer.release() def writeVideoAsTiffStack(imVideo, strFilePrefix): # start timer tStart = time.time() for fid in range(imVideo.shape[2]): plt.imsave(strFilePrefix + '.%.3d.tif' % (fid + 1), imVideo[:, :, fid]) # end timer tEnd = time.time() print 'Writing video {} took {} seconds'.format(strFilePrefix, tEnd - tStart) def mplotShowMIP(im, axis, xlabel=None, ylabel=None, title=None): plt.imshow(im.max(axis)) if title: plt.title(title) if xlabel: plt.xlabel(xlabel) if ylabel: plt.ylabel(ylabel) def convertFromRFtoBMode(imInputRF): return np.abs(scipy.signal.hilbert(imInputRF, axis=0)) def normalizeAngles(angleList, angle_range): return np.array( [angles.normalize(i, angle_range[0], angle_range[1]) for i in angleList]) def SaveFigToDisk(saveDir, fileName, saveext=('.png', '.eps'), **kwargs): for ext in saveext: plt.savefig(os.path.join(saveDir, fileName + ext), **kwargs) def SaveImageToDisk(im, saveDir, fileName, saveext=('.png',)): for ext in saveext: plt.imsave(os.path.join(saveDir, fileName + ext), im) def generateGatedVideoUsingSplineInterp(imInput, numOutFrames, minFrame, maxFrame, splineOrder): tZoom = np.float(numOutFrames) / (maxFrame - minFrame + 1) return scipy.ndimage.interpolation.zoom( imInput[:, :, minFrame:maxFrame + 1], (1, 1, tZoom), order=splineOrder) def ncorr(imA, imB): imA = (imA - imA.mean()) / imA.std() imB = (imB - imB.mean()) / imB.std() return np.mean(imA * imB) def vis_checkerboard(im1, im2): im_chk = sitk.CheckerBoard(sitk.GetImageFromArray(im1), sitk.GetImageFromArray(im2)) return sitk.GetArrayFromImage(im_chk) def fig2data(fig): """ @brief Convert a Matplotlib figure to a 4D numpy array with RGBA channels and return it @param fig a matplotlib figure @return a numpy 3D array of RGBA values """ # draw the renderer fig.canvas.draw() # Get the RGBA buffer from the figure w, h = fig.canvas.get_width_height() buf = np.fromstring(fig.canvas.tostring_argb(), dtype=np.uint8) buf.shape = (w, h, 4) # canvas.tostring_argb give pixmap in ARGB mode. # Roll the ALPHA channel to have it in RGBA mode buf = np.roll(buf, 3, axis=2) return buf
2.421875
2
weasyl/emailer.py
akash143143/weasyl
0
2471
<filename>weasyl/emailer.py from __future__ import absolute_import import re from email.mime.text import MIMEText from smtplib import SMTP from weasyl import define, macro EMAIL_ADDRESS = re.compile(r"^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+\Z") def normalize_address(address): """ Converts an e-mail address to a consistent representation. Returns None if the given address is not considered valid. """ address = address.strip() if not EMAIL_ADDRESS.match(address): return None local, domain = address.split("@", 1) return "%s@%s" % (local, domain.lower()) def send(mailto, subject, content): """Send an e-mail. `mailto` must be a normalized e-mail address to send this e-mail to. The system email will be designated as the sender. """ message = MIMEText(content.strip()) message["To"] = mailto message["From"] = macro.MACRO_EMAIL_ADDRESS message["Subject"] = subject # smtp.sendmail() only converts CR and LF (produced by MIMEText and our templates) to CRLF in Python 3. In Python 2, we need this: msg_crlf = re.sub(r"\r\n|[\r\n]", "\r\n", message.as_string()) smtp = SMTP(define.config_read_setting('host', "localhost", section='smtp')) try: smtp.sendmail( from_addr=macro.MACRO_EMAIL_ADDRESS, to_addrs=[mailto], msg=msg_crlf, ) finally: smtp.quit() define.metric('increment', 'emails')
3
3
tests/test_missing_process.py
ricklupton/sphinx_probs_rdf
1
2472
<filename>tests/test_missing_process.py import pytest from rdflib import Graph, Namespace, Literal from rdflib.namespace import RDF, RDFS from sphinx_probs_rdf.directives import PROBS SYS = Namespace("http://example.org/system/") @pytest.mark.sphinx( 'probs_rdf', testroot='missing', confoverrides={'probs_rdf_system_prefix': str(SYS)}) def test_builder_reports_warning_for_missing_process(app, status, warning): app.builder.build_all() assert "build succeeded" not in status.getvalue() warnings = warning.getvalue().strip() assert 'WARNING: Requested child "http://example.org/system/Missing" of "http://example.org/system/ErrorMissingProcess" is not a Process' in warnings
2.15625
2
analysis_functionarcademix.py
thekushalpokhrel/Python_Programs_SoftDev_DataAnalysis
0
2473
<reponame>thekushalpokhrel/Python_Programs_SoftDev_DataAnalysis #analysis function for three level game def stat_analysis(c1,c2,c3): #ask question for viewing analysis of game analysis=input('\nDo you want to see your game analysis? (Yes/No) ') if analysis=='Yes': levels=['Level 1','Level 2','Level 3'] #calculating the score of levels l1_score= c1*10 l2_score= c2*10 l3_score= c3*10 level_score=[l1_score,l2_score,l3_score] #plot bar chart plt.bar(levels,level_score,color='blue',edgecolor='black') plt.title('Levelwise Scores',fontsize=16)#add title plt.xlabel('Levels')#set x-axis label plt.ylabel('Scores')#set y-axis label plt.show() print('\nDescriptive Statistics of Scores:') #find mean value print('\nMean: ',statistics.mean(level_score)) #find median value print('\nMediand: ',statistics.median(level_score)) #Mode calculation #create numPy array of values with only one mode arr_val = np.array(level_score) #find unique values in array along with their counts vals, uni_val_counts = np.unique(arr_val, return_counts=True) #find mode mode_value = np.argwhere(counts == np.max(uni_val_counts)) print('\nMode: ',vals[mode_value].flatten().tolist()) #find variance print('\nVariance: ',np.var(level_score)) #find standard deviation print('\nStandard Deviation: ',statistics.stdev(level_score)) print('\nGood Bye.See you later!!!') elif analysis=='No': print('\nGood Bye.See you later!!!') else: print('Invalid value enter') stat_analysis(c1,c2,c3)
3.640625
4
Hello_Cone.py
TechnoTanuki/Python_BMP
3
2474
notice = """ Cone Demo ----------------------------------- | Copyright 2022 by <NAME> | | [<EMAIL>] | |-----------------------------------| | We make absolutely no warranty | | of any kind, expressed or implied | |-----------------------------------| | This graphics library outputs | | to a bitmap file. | ----------------------------------- """ from Python_BMP.BITMAPlib import( newBMP, centercoord, plot3Dsolid, getRGBfactors, rotvec3D, conevertandsurface, saveBMP ) import subprocess as proc from os import path def main(): print(notice) imgedt = 'mspaint' # replace with another editor if Unix rootdir = path.dirname(__file__) # get path of this script mx = my = 250 # x=y square bmp file = 'HelloCone.bmp' # some random file name as string bmp = newBMP(mx, my, 24) # RGB bmp cenpt = centercoord(bmp) # helper method to get center of a bitmap cf = getRGBfactors() # color info with presets d, translationvector = 400, [0, 0, 200] # be careful with these variables or object goes offscreen isSolid = True # toggle solid or outline showoutline = False # can show outline even if solid cf = getRGBfactors() # color list color = cf['brightyellow'] # color of solid outlinecolor = 0 # outline color rotation = rotvec3D(25,240,70) # rotation vector (x,y,z) in degrees vcen = (1,0,0) # x y z coords r = 40 # radius of cone zlen = 40 # height of cone deganglestep = 5 # how finely we tile flat surfaces around the cone obj3D = conevertandsurface(vcen, r, zlen, deganglestep)# A solid is defined by vertices and surfaces plot3Dsolid(bmp, obj3D, isSolid, color, showoutline, outlinecolor, rotation, translationvector, d, cenpt) saveBMP(file, bmp) # save file print('Saved to %s in %s\nAll done close %s to finish' % \ (file, rootdir, imgedt)) ret = proc.call([imgedt, file]) if __name__=="__main__": main()
2.1875
2
analysis/training_curve_6D.py
AndrewKirby2/data_synthesis
0
2475
<reponame>AndrewKirby2/data_synthesis """ Plot a training curve for the 6D data simulator of CT* """ import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, WhiteKernel, Matern from sklearn.metrics import mean_squared_error from sklearn.pipeline import Pipeline import sys sys.path.append(r'/home/andrewkirby72/phd_work/data_synthesis') from GP_machine_learning.GP_machine_learning_functions import * from regular_array_sampling.functions import regular_array_monte_carlo # create array to store results for plotting rmse = np.ones((25, 2)) noise = 0.01 # create array of sampled regular array layouts #cand_points = regular_array_monte_carlo(10000) # create testing points X_test, y_test = create_testing_points_regular(noise) n = 0 n_target = 0 n_train = 0 while n_train < 200: n_target = 100 +100*n # create training points X_train, y_train, n_train = \ create_training_points_irregular(n_target, noise) # fit GP regression and calculate rmse kernel = 1.0 ** 2 * RBF(length_scale=[1., 1., 1., 1., 1., 1.]) \ + WhiteKernel(noise_level=1e-5, noise_level_bounds=[1e-10, 1]) pipe = Pipeline([('scaler', StandardScaler()), ('gp', GaussianProcessRegressor(kernel=kernel, n_restarts_optimizer=20))]) pipe.fit(X_train, y_train) y_predict = pipe.predict(X_test) mse = mean_squared_error(y_test, y_predict) # report rmse print(n_train, np.sqrt(mse)) rmse[n, 0] = n_train rmse[n, 1] = np.sqrt(mse) n += 1 plt.scatter(rmse[:, 0], rmse[:, 1]) plt.yscale('log') plt.ylim([1e-3, 1e-1]) plt.xlim([0, 200]) plt.title('Training curve RBF - 6D 1% noise - irregular array training - max change halved') plt.ylabel('RMSE') plt.xlabel('Training points') plt.savefig('analysis/GP_machine_learning_plots/\ gp_training_curve_RBF_irregular_training_maxchangehalved_regular_testing.png')
3.078125
3
website/raspac.py
tpudlik/RaspAC
28
2476
import sqlite3 import subprocess, datetime from flask import Flask, request, session, g, redirect, url_for, \ abort, render_template, flash from contextlib import closing from tquery import get_latest_record from config import * app = Flask(__name__) app.config.from_object(__name__) # DB helper functions def connect_db(): return sqlite3.connect(app.config['DATABASE']) def init_db(): """Initializes the sqlite3 database. This function must be imported and executed from the Python interpreter before the application is first run.""" with closing(connect_db()) as db: with app.open_resource('schema.sql', mode='r') as f: db.cursor().executescript(f.read()) db.commit() # Auto-open and close DB when serving requests @app.before_request def before_request(): g.db = connect_db() @app.teardown_request def teardown_request(exception): db = getattr(g, 'db', None) if db is not None: db.close() @app.route('/', methods=['GET', 'POST']) def welcome_page(): if 'username' in session and session['username']: return redirect(url_for('submit_page')) error = None if request.method == 'POST': # someone's logging in if not request.form['username'] in app.config['USERNAMES']: error = 'username' elif request.form['password'] != app.config['PASSWORD']: error = 'password' else: # successful login session['username'] = request.form['username'] flash('Hi ' + session['username'] + '!') return redirect(url_for('submit_page')) return render_template('welcome_page.html', commands=command_history(), error=error, last_record=last_record()) @app.route('/submit', methods=['GET', 'POST']) def submit_page(): error = None if not session.get('username'): abort(401) if request.method == 'POST': # command is being issued to AC user_mode = request.form['mode'] user_temperature = request.form['temperature'] validation_codes = validate_AC_command(user_mode, user_temperature) if (validation_codes['mode_error'] or validation_codes['temperature_error']): error=validation_codes else: subprocess.call(['/usr/bin/irsend','SEND_ONCE', 'lgac', validation_codes['command']]) g.db.execute('insert into commands (command, ts, user) values (?, ?, ?)', [validation_codes['command'], datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), session['username']]) g.db.commit() flash('Command submitted') return render_template('submit_page.html', commands=command_history(), error=error, last_record=last_record()) @app.route('/logout') def logout(): session.pop('logged_in', None) flash('You were logged out') return redirect(url_for('welcome_page')) def validate_AC_command(user_mode, user_temperature): """Validates and sanitizes user-input command; translates command into irsend call.""" codes = dict() if user_mode not in app.config['ACMODES']: codes['mode_error'] = True else: codes['mode_error'] = False if user_mode is not 'off' and user_temperature not in app.config['ACTEMPERATURES']: codes['temperature_error'] = True else: codes['temperature_error'] = False if not codes['mode_error'] and not codes['temperature_error']: codes['mode'] = user_mode codes['temperature'] = user_temperature if codes['mode'] == 'off': command_postfix = 'off' elif codes['mode'] == 'heat': command_postfix = 'heat' + codes['temperature'] else: command_postfix = codes['temperature'] codes['command'] = command_postfix return codes def command_history(): """Returns a list of dictionaries, each containing a command issued to the AC previously. The list is ordered chronologically, from newest to oldest.""" cur = g.db.execute('select command, ts, user from commands order by id desc') command_history = [] for row in cur.fetchall(): if row[0][0] == 'h': cmd = 'heat to ' + row[0][4:] elif row[0] == 'off': cmd = 'off' else: cmd = 'cool to ' + row[0] command_history.append(dict(command=cmd, ts=row[1], user=row[2])) return command_history def last_record(): """Returns the last temperature and humidity record data. The returned object is a dict with keys ts, fahrenheit, celsius and humidity. """ db_record = get_latest_record() out_record = dict() out_record['date'] = db_record[0].strftime("%Y-%m-%d") out_record['time'] = db_record[0].strftime("%H:%M") out_record['celsius'] = db_record[1] out_record['fahrenheit'] = int(round(out_record['celsius']*9/5.0 + 32)) out_record['humidity'] = int(round(db_record[2])) return out_record if __name__ == '__main__': app.run(host='0.0.0.0')
2.53125
3
tests/util_test.py
NLESC-JCER/pyspectra
1
2477
"""Helper functions to tests.""" import numpy as np def norm(vs: np.array) -> float: """Compute the norm of a vector.""" return np.sqrt(np.dot(vs, vs)) def create_random_matrix(size: int) -> np.array: """Create a numpy random matrix.""" return np.random.normal(size=size ** 2).reshape(size, size) def create_symmetic_matrix(size: int) -> np.array: """Create a numpy symmetric matrix.""" xs = create_random_matrix(size) return xs + xs.T def check_eigenpairs( matrix: np.ndarray, eigenvalues: np.ndarray, eigenvectors: np.ndarray) -> bool: """Check that the eigenvalue equation holds.""" for i, value in enumerate(eigenvalues): residue = np.dot( matrix, eigenvectors[:, i]) - value * eigenvectors[:, i] assert norm(residue) < 1e-8
3.265625
3
solutions/Interview-03-shu-zu-zhong-zhong-fu-de-shu-zi-lcof/03.py
leetcode-notebook/wonz
12
2478
<filename>solutions/Interview-03-shu-zu-zhong-zhong-fu-de-shu-zi-lcof/03.py<gh_stars>10-100 from typing import List class Solution: def findRepeatNumber(self, nums: List[int]) -> int: # solution one: 哈希表 n = len(nums) flag = [False for i in range(n)] for i in range(n): if flag[nums[i]] == False: flag[nums[i]] = True else: return nums[i] return -1 # solution two: 排序 nums.sort() pre = nums[0] for i in range(1, len(nums)): if pre == nums[i]: return nums[i] else: pre = nums[i] return -1 # solution three: 两个萝卜一个坑 n = len(nums) for i in range(n): if nums[i] == i: continue # 有重复 elif nums[nums[i]] == nums[i]: return nums[i] # 交换 else: nums[nums[i]], nums[i] = nums[i], nums[nums[i]] return -1 if __name__ == "__main__": nums = [2, 3, 1, 0, 2, 5, 3] print(Solution().findRepeatNumber(nums))
3.578125
4
examples/test_network.py
Charles-Peeke/gwu_nn
4
2479
<reponame>Charles-Peeke/gwu_nn<gh_stars>1-10 import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from gwu_nn.gwu_network import GWUNetwork from gwu_nn.layers import Dense from gwu_nn.activation_layers import Sigmoid np.random.seed(8) num_obs = 8000 # Create our features to draw from two distinct 2D normal distributions x1 = np.random.multivariate_normal([0, 0], [[1, .75],[.75, 1]], num_obs) x2 = np.random.multivariate_normal([3, 8], [[1, .25],[.25, 1]], num_obs) # Stack our inputs into one feature space X = np.vstack((x1, x2)) print(X.shape) y = np.hstack((np.zeros(num_obs), np.ones(num_obs))) print(y.shape) # colors = ['red'] * num_obs + ['blue'] * num_obs # plt.figure(figsize=(12,8)) # plt.scatter(X[:, 0], X[:, 1], c = colors, alpha = 0.5) # Lets randomly split things into training and testing sets so we don't cheat X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) # Create our model network = GWUNetwork() network.add(Dense(2, 1, True, 'sigmoid')) network.add(Sigmoid()) #network.set_loss('mse') network.compile('log_loss', 0.001) network.fit(X_train, y_train, epochs=100) from scipy.special import logit colors = ['red'] * num_obs + ['blue'] * num_obs plt.figure(figsize=(12, 8)) plt.scatter(X[:, 0], X[:, 1], c=colors, alpha=0.5) # Range of our X values start_x1 = -5 end_x1 = 7 weights = network.layers[0].weights.reshape(-1).tolist() bias = network.layers[0].bias[0][0] start_y = (bias + start_x1 * weights[0] - logit(0.5)) / - weights[1] end_y = (bias + end_x1 * weights[0] - logit(0.5)) / -weights[1] plt.plot([start_x1, end_x1], [start_y, end_y], color='grey')
2.875
3
scattering/van_hove.py
XiaoboLinlin/scattering
0
2480
<reponame>XiaoboLinlin/scattering import itertools as it import numpy as np import mdtraj as md from progressbar import ProgressBar from scattering.utils.utils import get_dt from scattering.utils.constants import get_form_factor def compute_van_hove(trj, chunk_length, water=False, r_range=(0, 1.0), bin_width=0.005, n_bins=None, self_correlation=True, periodic=True, opt=True, partial=False): """Compute the partial van Hove function of a trajectory Parameters ---------- trj : mdtraj.Trajectory trajectory on which to compute the Van Hove function chunk_length : int length of time between restarting averaging water : bool use X-ray form factors for water that account for polarization r_range : array-like, shape=(2,), optional, default=(0.0, 1.0) Minimum and maximum radii. bin_width : float, optional, default=0.005 Width of the bins in nanometers. n_bins : int, optional, default=None The number of bins. If specified, this will override the `bin_width` parameter. self_correlation : bool, default=True Whether or not to include the self-self correlations Returns ------- r : numpy.ndarray r positions generated by histogram binning g_r_t : numpy.ndarray Van Hove function at each time and position """ n_physical_atoms = len([a for a in trj.top.atoms if a.element.mass > 0]) unique_elements = list(set([a.element for a in trj.top.atoms if a.element.mass > 0])) partial_dict = dict() for elem1, elem2 in it.combinations_with_replacement(unique_elements[::-1], 2): print('doing {0} and {1} ...'.format(elem1, elem2)) r, g_r_t_partial = compute_partial_van_hove(trj=trj, chunk_length=chunk_length, selection1='element {}'.format(elem1.symbol), selection2='element {}'.format(elem2.symbol), r_range=r_range, bin_width=bin_width, n_bins=n_bins, self_correlation=self_correlation, periodic=periodic, opt=opt) partial_dict[(elem1, elem2)] = g_r_t_partial if partial: return partial_dict norm = 0 g_r_t = None for key, val in partial_dict.items(): elem1, elem2 = key concentration1 = trj.atom_slice(trj.top.select('element {}'.format(elem1.symbol))).n_atoms / n_physical_atoms concentration2 = trj.atom_slice(trj.top.select('element {}'.format(elem2.symbol))).n_atoms / n_physical_atoms form_factor1 = get_form_factor(element_name=elem1.symbol, water=water) form_factor2 = get_form_factor(element_name=elem2.symbol, water=water) coeff = form_factor1 * concentration1 * form_factor2 * concentration2 if g_r_t is None: g_r_t = np.zeros_like(val) g_r_t += val * coeff norm += coeff # Reshape g_r_t to better represent the discretization in both r and t g_r_t_final = np.empty(shape=(chunk_length, len(r))) for i in range(chunk_length): g_r_t_final[i, :] = np.mean(g_r_t[i::chunk_length], axis=0) g_r_t_final /= norm t = trj.time[:chunk_length] return r, t, g_r_t_final def compute_partial_van_hove(trj, chunk_length=10, selection1=None, selection2=None, r_range=(0, 1.0), bin_width=0.005, n_bins=200, self_correlation=True, periodic=True, opt=True): """Compute the partial van Hove function of a trajectory Parameters ---------- trj : mdtraj.Trajectory trajectory on which to compute the Van Hove function chunk_length : int length of time between restarting averaging selection1 : str selection to be considered, in the style of MDTraj atom selection selection2 : str selection to be considered, in the style of MDTraj atom selection r_range : array-like, shape=(2,), optional, default=(0.0, 1.0) Minimum and maximum radii. bin_width : float, optional, default=0.005 Width of the bins in nanometers. n_bins : int, optional, default=None The number of bins. If specified, this will override the `bin_width` parameter. self_correlation : bool, default=True Whether or not to include the self-self correlations Returns ------- r : numpy.ndarray r positions generated by histogram binning g_r_t : numpy.ndarray Van Hove function at each time and position """ unique_elements = ( set([a.element for a in trj.atom_slice(trj.top.select(selection1)).top.atoms]), set([a.element for a in trj.atom_slice(trj.top.select(selection2)).top.atoms]), ) if any([len(val) > 1 for val in unique_elements]): raise UserWarning( 'Multiple elements found in a selection(s). Results may not be ' 'direcitly comprable to scattering experiments.' ) # Don't need to store it, but this serves to check that dt is constant dt = get_dt(trj) pairs = trj.top.select_pairs(selection1=selection1, selection2=selection2) n_chunks = int(trj.n_frames / chunk_length) g_r_t = None pbar = ProgressBar() for i in pbar(range(n_chunks)): times = list() for j in range(chunk_length): times.append([chunk_length*i, chunk_length*i+j]) r, g_r_t_frame = md.compute_rdf_t( traj=trj, pairs=pairs, times=times, r_range=r_range, bin_width=bin_width, n_bins=n_bins, period_length=chunk_length, self_correlation=self_correlation, periodic=periodic, opt=opt, ) if g_r_t is None: g_r_t = np.zeros_like(g_r_t_frame) g_r_t += g_r_t_frame return r, g_r_t
2.453125
2
nn_benchmark/networks/__init__.py
QDucasse/nn_benchmark
18
2481
# -*- coding: utf-8 -*- # nn_benchmark # author - <NAME> # https://github.com/QDucasse # <EMAIL> from __future__ import absolute_import __all__ = ["lenet","lenet5","quant_lenet5", "quant_cnv", "quant_tfc", "mobilenetv1","quant_mobilenetv1", "vggnet", "quant_vggnet", "common", "alexnet", "quant_alexnet"] from .alexnet import * from .lenet import * from .lenet5 import * from .mobilenetv1 import * from .quant_mobilenetv1 import * from .quant_alexnet import * from .quant_lenet5 import * from .quant_cnv import * from .quant_tfc import * from .vggnet import * from .quant_vggnet import * from .common import *
1.171875
1
Section1_Basics/contours.py
NeeharikaDva/opencv_course
0
2482
#pylint:disable=no-member import cv2 as cv import numpy as np img = cv.imread('/Users/webileapp/Desktop/niharika_files/projects/opencv_course_master/Resources/Photos/cats.jpg') cv.imshow('Cats', img) # blank = np.zeros(img.shape[:2], dtype='uint8') cv.imshow('Blank', blank) gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) cv.imshow('Gray', gray) # blur = cv.GaussianBlur(gray, (5,5), cv.BORDER_DEFAULT) cv.imshow('Blur', blur) canny = cv.Canny(blur, 125, 175) cv.imshow('Canny Edges', canny) # ret, thresh = cv.threshold(gray, 125, 255, cv.THRESH_BINARY) cv.imshow('Thresh', thresh) # contours, hierarchies = cv.findContours(canny, cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE) print(f'{len(contours)} contour(s) found!') # cv.drawContours(blank, contours, -1, (200,120,100), 1) cv.imshow('Contours Drawn', blank) cv.waitKey(0)
2.828125
3
mmdet/ops/fcosr_tools/__init__.py
RangeKing/FCOSR
38
2483
from . import fcosr_tools __all__ = ['fcosr_tools']
1.117188
1
health_care/health_care/doctype/practitioner/practitioner.py
Jnalis/frappe-health-care
0
2484
# Copyright (c) 2022, Juve and contributors # For license information, please see license.txt # import frappe from frappe.model.document import Document class Practitioner(Document): def before_save(self): self.practitioner_full_name = f'{self.first_name} {self.second_name or ""}'
1.992188
2
install-hooks.py
JustasGau/DonjinKrawler
0
2485
<reponame>JustasGau/DonjinKrawler import sys from os import path import urllib; from urllib.request import urlretrieve from subprocess import call def install_hooks(directory): checkstyleUrl = 'https://github.com/checkstyle/checkstyle/releases/download/checkstyle-8.36.1/checkstyle-8.36.1-all.jar' preCommitUrl = 'https://gist.githubusercontent.com/EdotJ/d512826d5b4fd3e6cdc285b9236511b2/raw/43e5087ed173fd03aab640b0b3db22f11319c623/pre-commit' checkstyleName = checkstyleUrl.split('/')[len(checkstyleUrl.split('/')) - 1] basePath = path.abspath(directory) print("Downloading checkstyle to %s..." % basePath + "/.git/hooks/" + checkstyleName) urlretrieve(checkstyleUrl, basePath + "/.git/hooks/" + checkstyleName) print("Downloading pre-commit script to %s" % basePath + "/.git/hooks/pre-commit") urlretrieve(preCommitUrl, basePath + "/.git/hooks/pre-commit") with open(basePath + '/.git/config', 'a+') as gitConfig: if ("[checkstyle]" not in gitConfig.read()): print("Adding git configurations to .git/config") gitConfig.write("[checkstyle]\n") gitConfig.write("jar = %s\n" % (basePath + "/.git/hooks/" + checkstyleName)) gitConfig.write("checkfile = %s\n" % (basePath + "/checkstyle_config.xml")) print("Changing permissions for pre-commit. Has to run as root, enter password plz") call(["sudo", "chmod", "+x", (basePath + "/.git/hooks/pre-commit")]) if __name__ == "__main__": if (len(sys.argv) < 2): print("Enter a directory to install hooks") else: if (path.exists(sys.argv[1])): install_hooks(sys.argv[1])
2.40625
2
09_MicroServer_Cookies/micro_server.py
Rockfish/PythonCourse
0
2486
""" Micro webapp based on WebOb, Jinja2, WSGI with a simple router """ import os import hmac import hashlib import mimetypes from wsgiref.simple_server import WSGIServer, WSGIRequestHandler from webob import Request from webob import Response from jinja2 import Environment, FileSystemLoader class MicroServer(object): """Small web server.""" def __init__(self): """Initializes the class and configures the paths and the Jinja2 environment so it can find and render pages.""" if self.static_root is None: self.static_root = 'static' if self.templates_root is None: self.templates_root = 'templates' if self.routes is None: self.routes = {} # Set up the paths and environment for Jinja. This is how it finds the templates. self.template_path = os.path.join(os.path.dirname(__file__), self.templates_root) self.env = Environment(autoescape=True, loader=FileSystemLoader(self.template_path)) # Figure out what directory the server is running it as save the path. # The path will be used later to find the site's resources. self.current_dir = os.path.dirname(os.path.realpath(__file__)) def __call__(self, environ, start_response): """This method is called by the HTTPServer when there is a request to be handled.""" # Create the WebOb Request and Response objects for # used to read the request and write the response. self.request = Request(environ) self.response = Response() # Find a handler for the path if there is one. handler = self.routes.get(self.request.path_info) # If there is call it. If not call the static handler. if handler: handler() else: self.static() return self.response(environ, start_response) def static(self, resource=''): """Handles request for static pages. It is the default handler.""" # Build a file path using either the resource parameter or the path in the request. if resource: file_path = os.path.join(self.current_dir, self.static_root, resource) else: file_path = os.path.join(self.current_dir, self.static_root, self.request.path_info[1:]) print("File path:", file_path) # Try to open the file. If we can then guess its type and write its # content to the response object to send it to the client. # If we can't find the file then return an error to the client. try: file_type = mimetypes.guess_type(file_path)[0] self.response.content_type = file_type data = open(file_path, 'rb').read() self.response.body_file.write(data) except Exception as e: self.response.status = 404 self.response.write(str(e)) def render_template(self, template_name, template_values={}): """Renders Jinja2 templates into HTML""" # Find the template and render it to HTML # then write it to the response object to send it to the client. template = self.env.get_template(template_name) html = template.render(template_values) self.response.write(html) def get_signature(self, passphrase, *parts): """Creates a hash from strings based on a passphrase.""" cookiehash = hmac.new(passphrase.encode(), digestmod=hashlib.sha1) for part in parts: cookiehash.update(part.encode()) return cookiehash.hexdigest() def run(self, port): """Starts the HTTP server and tells it what port to listen on""" # Create the WSGI HTTP server. Set the port it should listen on. # And start the server. server = WSGIServer(('', 8000), WSGIRequestHandler) server.set_app(self) print("Serving on http://localhost:8000/ ...") server.serve_forever()
3.140625
3
apps/addons/management/commands/jetpackers.py
clouserw/olympia
1
2487
import logging from django.core import mail from django.conf import settings from django.core.management.base import BaseCommand import amo.utils from users.models import UserProfile log = logging.getLogger('z.mailer') FROM = settings.DEFAULT_FROM_EMAIL class Command(BaseCommand): help = "Send the email for bug 662571" def handle(self, *args, **options): sendmail() def sendmail(): addrs = set(UserProfile.objects.values_list('email', flat=True) # whoa .filter(addons__versions__files__jetpack_version__isnull=False)) log.info('There are %d emails to send.' % len(addrs)) count = 0 for addr in addrs: count += 1 try: mail.send_mail(SUBJECT, MSG, FROM, [addr]) log.info('%s. DONE: %s' % (count, addr)) except Exception, e: log.info('%s. FAIL: %s (%s)' % (count, addr, e)) SUBJECT = 'Instructions for Automatic Upgrade to Add-on SDK 1.0' MSG = """\ Hello Mozilla Add-ons Developer! With the final version of the Add-on SDK only a week away, we wanted to get in touch with all add-on developers who have existing SDK-based (Jetpack) add-ons. We would like you to know that going forward AMO will be auto-updating add-ons with new versions of the Add-on SDK upon release. To ensure that your add-on(s) are auto-updated with the 1.0 final version of the SDK, we would ask that you download the latest release candidate build - https://ftp.mozilla.org/pub/mozilla.org/labs/jetpack/addon-sdk-1.0rc2.tar.gz, https://ftp.mozilla.org/pub/mozilla.org/labs/jetpack/addon-sdk-1.0rc2.zip - and update your add-on(s) on AMO. After the 1.0 release, we will scan our add-ons database and automatically upgrade any SDK-based add-ons we find that are using verions 1.0RC2 or greater to the 1.0 final version of the SDK. Any add-ons we find using versions of the SDK below 1.0RC2 will not be auto-updated and you will need to upgrade them to the 1.0 version of the SDK manually. Thank you for participating in the early stages of the Add-on SDK's development. Feedback and engagement from developers like you are the foundations for success in our open source community! Sincerely, The Mozilla Add-ons Team """
2.046875
2
astroplan/constraints.py
edose/astroplan
160
2488
<gh_stars>100-1000 # Licensed under a 3-clause BSD style license - see LICENSE.rst """ Specify and constraints to determine which targets are observable for an observer. """ from __future__ import (absolute_import, division, print_function, unicode_literals) # Standard library from abc import ABCMeta, abstractmethod import datetime import time import warnings # Third-party from astropy.time import Time import astropy.units as u from astropy.coordinates import get_body, get_sun, get_moon, Galactic, SkyCoord from astropy import table import numpy as np from numpy.lib.stride_tricks import as_strided # Package from .moon import moon_illumination from .utils import time_grid_from_range from .target import get_skycoord __all__ = ["AltitudeConstraint", "AirmassConstraint", "AtNightConstraint", "is_observable", "is_always_observable", "time_grid_from_range", "GalacticLatitudeConstraint", "SunSeparationConstraint", "MoonSeparationConstraint", "MoonIlluminationConstraint", "LocalTimeConstraint", "PrimaryEclipseConstraint", "SecondaryEclipseConstraint", "Constraint", "TimeConstraint", "observability_table", "months_observable", "max_best_rescale", "min_best_rescale", "PhaseConstraint", "is_event_observable"] _current_year = time.localtime().tm_year # needed for backward compatibility _current_year_time_range = Time( # needed for backward compatibility [str(_current_year) + '-01-01', str(_current_year) + '-12-31'] ) def _make_cache_key(times, targets): """ Make a unique key to reference this combination of ``times`` and ``targets``. Often, we wish to store expensive calculations for a combination of ``targets`` and ``times`` in a cache on an ``observer``` object. This routine will provide an appropriate, hashable, key to store these calculations in a dictionary. Parameters ---------- times : `~astropy.time.Time` Array of times on which to test the constraint. targets : `~astropy.coordinates.SkyCoord` Target or list of targets. Returns ------- cache_key : tuple A hashable tuple for use as a cache key """ # make a tuple from times try: timekey = tuple(times.jd) + times.shape except BaseException: # must be scalar timekey = (times.jd,) # make hashable thing from targets coords try: if hasattr(targets, 'frame'): # treat as a SkyCoord object. Accessing the longitude # attribute of the frame data should be unique and is # quicker than accessing the ra attribute. targkey = tuple(targets.frame.data.lon.value.ravel()) + targets.shape else: # assume targets is a string. targkey = (targets,) except BaseException: targkey = (targets.frame.data.lon,) return timekey + targkey def _get_altaz(times, observer, targets, force_zero_pressure=False): """ Calculate alt/az for ``target`` at times linearly spaced between the two times in ``time_range`` with grid spacing ``time_resolution`` for ``observer``. Cache the result on the ``observer`` object. Parameters ---------- times : `~astropy.time.Time` Array of times on which to test the constraint. targets : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`} Target or list of targets. observer : `~astroplan.Observer` The observer who has constraints ``constraints``. force_zero_pressure : bool Forcefully use 0 pressure. Returns ------- altaz_dict : dict Dictionary containing two key-value pairs. (1) 'times' contains the times for the alt/az computations, (2) 'altaz' contains the corresponding alt/az coordinates at those times. """ if not hasattr(observer, '_altaz_cache'): observer._altaz_cache = {} # convert times, targets to tuple for hashing aakey = _make_cache_key(times, targets) if aakey not in observer._altaz_cache: try: if force_zero_pressure: observer_old_pressure = observer.pressure observer.pressure = 0 altaz = observer.altaz(times, targets, grid_times_targets=False) observer._altaz_cache[aakey] = dict(times=times, altaz=altaz) finally: if force_zero_pressure: observer.pressure = observer_old_pressure return observer._altaz_cache[aakey] def _get_moon_data(times, observer, force_zero_pressure=False): """ Calculate moon altitude az and illumination for an array of times for ``observer``. Cache the result on the ``observer`` object. Parameters ---------- times : `~astropy.time.Time` Array of times on which to test the constraint. observer : `~astroplan.Observer` The observer who has constraints ``constraints``. force_zero_pressure : bool Forcefully use 0 pressure. Returns ------- moon_dict : dict Dictionary containing three key-value pairs. (1) 'times' contains the times for the computations, (2) 'altaz' contains the corresponding alt/az coordinates at those times and (3) contains the moon illumination for those times. """ if not hasattr(observer, '_moon_cache'): observer._moon_cache = {} # convert times to tuple for hashing aakey = _make_cache_key(times, 'moon') if aakey not in observer._moon_cache: try: if force_zero_pressure: observer_old_pressure = observer.pressure observer.pressure = 0 altaz = observer.moon_altaz(times) illumination = np.array(moon_illumination(times)) observer._moon_cache[aakey] = dict(times=times, illum=illumination, altaz=altaz) finally: if force_zero_pressure: observer.pressure = observer_old_pressure return observer._moon_cache[aakey] def _get_meridian_transit_times(times, observer, targets): """ Calculate next meridian transit for an array of times for ``targets`` and ``observer``. Cache the result on the ``observer`` object. Parameters ---------- times : `~astropy.time.Time` Array of times on which to test the constraint observer : `~astroplan.Observer` The observer who has constraints ``constraints`` targets : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`} Target or list of targets Returns ------- time_dict : dict Dictionary containing a key-value pair. 'times' contains the meridian_transit times. """ if not hasattr(observer, '_meridian_transit_cache'): observer._meridian_transit_cache = {} # convert times to tuple for hashing aakey = _make_cache_key(times, targets) if aakey not in observer._meridian_transit_cache: meridian_transit_times = observer.target_meridian_transit_time(times, targets) observer._meridian_transit_cache[aakey] = dict(times=meridian_transit_times) return observer._meridian_transit_cache[aakey] @abstractmethod class Constraint(object): """ Abstract class for objects defining observational constraints. """ __metaclass__ = ABCMeta def __call__(self, observer, targets, times=None, time_range=None, time_grid_resolution=0.5*u.hour, grid_times_targets=False): """ Compute the constraint for this class Parameters ---------- observer : `~astroplan.Observer` the observation location from which to apply the constraints targets : sequence of `~astroplan.Target` The targets on which to apply the constraints. times : `~astropy.time.Time` The times to compute the constraint. WHAT HAPPENS WHEN BOTH TIMES AND TIME_RANGE ARE SET? time_range : `~astropy.time.Time` (length = 2) Lower and upper bounds on time sequence. time_grid_resolution : `~astropy.units.quantity` Time-grid spacing grid_times_targets : bool if True, grids the constraint result with targets along the first index and times along the second. Otherwise, we rely on broadcasting the shapes together using standard numpy rules. Returns ------- constraint_result : 1D or 2D array of float or bool The constraints. If 2D with targets along the first index and times along the second. """ if times is None and time_range is not None: times = time_grid_from_range(time_range, time_resolution=time_grid_resolution) if grid_times_targets: targets = get_skycoord(targets) # TODO: these broadcasting operations are relatively slow # but there is potential for huge speedup if the end user # disables gridding and re-shapes the coords themselves # prior to evaluating multiple constraints. if targets.isscalar: # ensure we have a (1, 1) shape coord targets = SkyCoord(np.tile(targets, 1))[:, np.newaxis] else: targets = targets[..., np.newaxis] times, targets = observer._preprocess_inputs(times, targets, grid_times_targets=False) result = self.compute_constraint(times, observer, targets) # make sure the output has the same shape as would result from # broadcasting times and targets against each other if targets is not None: # broadcasting times v targets is slow due to # complex nature of these objects. We make # to simple numpy arrays of the same shape and # broadcast these to find the correct shape shp1, shp2 = times.shape, targets.shape x = np.array([1]) a = as_strided(x, shape=shp1, strides=[0] * len(shp1)) b = as_strided(x, shape=shp2, strides=[0] * len(shp2)) output_shape = np.broadcast(a, b).shape if output_shape != np.array(result).shape: result = np.broadcast_to(result, output_shape) return result @abstractmethod def compute_constraint(self, times, observer, targets): """ Actually do the real work of computing the constraint. Subclasses override this. Parameters ---------- times : `~astropy.time.Time` The times to compute the constraint observer : `~astroplan.Observer` the observaton location from which to apply the constraints targets : sequence of `~astroplan.Target` The targets on which to apply the constraints. Returns ------- constraint_result : 2D array of float or bool The constraints, with targets along the first index and times along the second. """ # Should be implemented on each subclass of Constraint raise NotImplementedError class AltitudeConstraint(Constraint): """ Constrain the altitude of the target. .. note:: This can misbehave if you try to constrain negative altitudes, as the `~astropy.coordinates.AltAz` frame tends to mishandle negative Parameters ---------- min : `~astropy.units.Quantity` or `None` Minimum altitude of the target (inclusive). `None` indicates no limit. max : `~astropy.units.Quantity` or `None` Maximum altitude of the target (inclusive). `None` indicates no limit. boolean_constraint : bool If True, the constraint is treated as a boolean (True for within the limits and False for outside). If False, the constraint returns a float on [0, 1], where 0 is the min altitude and 1 is the max. """ def __init__(self, min=None, max=None, boolean_constraint=True): if min is None: self.min = -90*u.deg else: self.min = min if max is None: self.max = 90*u.deg else: self.max = max self.boolean_constraint = boolean_constraint def compute_constraint(self, times, observer, targets): cached_altaz = _get_altaz(times, observer, targets) alt = cached_altaz['altaz'].alt if self.boolean_constraint: lowermask = self.min <= alt uppermask = alt <= self.max return lowermask & uppermask else: return max_best_rescale(alt, self.min, self.max) class AirmassConstraint(AltitudeConstraint): """ Constrain the airmass of a target. In the current implementation the airmass is approximated by the secant of the zenith angle. .. note:: The ``max`` and ``min`` arguments appear in the order (max, min) in this initializer to support the common case for users who care about the upper limit on the airmass (``max``) and not the lower limit. Parameters ---------- max : float or `None` Maximum airmass of the target. `None` indicates no limit. min : float or `None` Minimum airmass of the target. `None` indicates no limit. boolean_contstraint : bool Examples -------- To create a constraint that requires the airmass be "better than 2", i.e. at a higher altitude than airmass=2:: AirmassConstraint(2) """ def __init__(self, max=None, min=1, boolean_constraint=True): self.min = min self.max = max self.boolean_constraint = boolean_constraint def compute_constraint(self, times, observer, targets): cached_altaz = _get_altaz(times, observer, targets) secz = cached_altaz['altaz'].secz.value if self.boolean_constraint: if self.min is None and self.max is not None: mask = secz <= self.max elif self.max is None and self.min is not None: mask = self.min <= secz elif self.min is not None and self.max is not None: mask = (self.min <= secz) & (secz <= self.max) else: raise ValueError("No max and/or min specified in " "AirmassConstraint.") return mask else: if self.max is None: raise ValueError("Cannot have a float AirmassConstraint if max is None.") else: mx = self.max mi = 1 if self.min is None else self.min # values below 1 should be disregarded return min_best_rescale(secz, mi, mx, less_than_min=0) class AtNightConstraint(Constraint): """ Constrain the Sun to be below ``horizon``. """ @u.quantity_input(horizon=u.deg) def __init__(self, max_solar_altitude=0*u.deg, force_pressure_zero=True): """ Parameters ---------- max_solar_altitude : `~astropy.units.Quantity` The altitude of the sun below which it is considered to be "night" (inclusive). force_pressure_zero : bool (optional) Force the pressure to zero for solar altitude calculations. This avoids errors in the altitude of the Sun that can occur when the Sun is below the horizon and the corrections for atmospheric refraction return nonsense values. """ self.max_solar_altitude = max_solar_altitude self.force_pressure_zero = force_pressure_zero @classmethod def twilight_civil(cls, **kwargs): """ Consider nighttime as time between civil twilights (-6 degrees). """ return cls(max_solar_altitude=-6*u.deg, **kwargs) @classmethod def twilight_nautical(cls, **kwargs): """ Consider nighttime as time between nautical twilights (-12 degrees). """ return cls(max_solar_altitude=-12*u.deg, **kwargs) @classmethod def twilight_astronomical(cls, **kwargs): """ Consider nighttime as time between astronomical twilights (-18 degrees). """ return cls(max_solar_altitude=-18*u.deg, **kwargs) def _get_solar_altitudes(self, times, observer, targets): if not hasattr(observer, '_altaz_cache'): observer._altaz_cache = {} aakey = _make_cache_key(times, 'sun') if aakey not in observer._altaz_cache: try: if self.force_pressure_zero: observer_old_pressure = observer.pressure observer.pressure = 0 # find solar altitude at these times altaz = observer.altaz(times, get_sun(times)) altitude = altaz.alt # cache the altitude observer._altaz_cache[aakey] = dict(times=times, altitude=altitude) finally: if self.force_pressure_zero: observer.pressure = observer_old_pressure else: altitude = observer._altaz_cache[aakey]['altitude'] return altitude def compute_constraint(self, times, observer, targets): solar_altitude = self._get_solar_altitudes(times, observer, targets) mask = solar_altitude <= self.max_solar_altitude return mask class GalacticLatitudeConstraint(Constraint): """ Constrain the distance between the Galactic plane and some targets. """ def __init__(self, min=None, max=None): """ Parameters ---------- min : `~astropy.units.Quantity` or `None` (optional) Minimum acceptable Galactic latitude of target (inclusive). `None` indicates no limit. max : `~astropy.units.Quantity` or `None` (optional) Minimum acceptable Galactic latitude of target (inclusive). `None` indicates no limit. """ self.min = min self.max = max def compute_constraint(self, times, observer, targets): separation = abs(targets.transform_to(Galactic).b) if self.min is None and self.max is not None: mask = self.max >= separation elif self.max is None and self.min is not None: mask = self.min <= separation elif self.min is not None and self.max is not None: mask = ((self.min <= separation) & (separation <= self.max)) else: raise ValueError("No max and/or min specified in " "GalacticLatitudeConstraint.") return mask class SunSeparationConstraint(Constraint): """ Constrain the distance between the Sun and some targets. """ def __init__(self, min=None, max=None): """ Parameters ---------- min : `~astropy.units.Quantity` or `None` (optional) Minimum acceptable separation between Sun and target (inclusive). `None` indicates no limit. max : `~astropy.units.Quantity` or `None` (optional) Maximum acceptable separation between Sun and target (inclusive). `None` indicates no limit. """ self.min = min self.max = max def compute_constraint(self, times, observer, targets): # use get_body rather than get sun here, since # it returns the Sun's coordinates in an observer # centred frame, so the separation is as-seen # by the observer. # 'get_sun' returns ICRS coords. sun = get_body('sun', times, location=observer.location) solar_separation = sun.separation(targets) if self.min is None and self.max is not None: mask = self.max >= solar_separation elif self.max is None and self.min is not None: mask = self.min <= solar_separation elif self.min is not None and self.max is not None: mask = ((self.min <= solar_separation) & (solar_separation <= self.max)) else: raise ValueError("No max and/or min specified in " "SunSeparationConstraint.") return mask class MoonSeparationConstraint(Constraint): """ Constrain the distance between the Earth's moon and some targets. """ def __init__(self, min=None, max=None, ephemeris=None): """ Parameters ---------- min : `~astropy.units.Quantity` or `None` (optional) Minimum acceptable separation between moon and target (inclusive). `None` indicates no limit. max : `~astropy.units.Quantity` or `None` (optional) Maximum acceptable separation between moon and target (inclusive). `None` indicates no limit. ephemeris : str, optional Ephemeris to use. If not given, use the one set with ``astropy.coordinates.solar_system_ephemeris.set`` (which is set to 'builtin' by default). """ self.min = min self.max = max self.ephemeris = ephemeris def compute_constraint(self, times, observer, targets): # removed the location argument here, which causes small <1 deg # innacuracies, but it is needed until astropy PR #5897 is released # which should be astropy 1.3.2 moon = get_moon(times, ephemeris=self.ephemeris) # note to future editors - the order matters here # moon.separation(targets) is NOT the same as targets.separation(moon) # the former calculates the separation in the frame of the moon coord # which is GCRS, and that is what we want. moon_separation = moon.separation(targets) if self.min is None and self.max is not None: mask = self.max >= moon_separation elif self.max is None and self.min is not None: mask = self.min <= moon_separation elif self.min is not None and self.max is not None: mask = ((self.min <= moon_separation) & (moon_separation <= self.max)) else: raise ValueError("No max and/or min specified in " "MoonSeparationConstraint.") return mask class MoonIlluminationConstraint(Constraint): """ Constrain the fractional illumination of the Earth's moon. Constraint is also satisfied if the Moon has set. """ def __init__(self, min=None, max=None, ephemeris=None): """ Parameters ---------- min : float or `None` (optional) Minimum acceptable fractional illumination (inclusive). `None` indicates no limit. max : float or `None` (optional) Maximum acceptable fractional illumination (inclusive). `None` indicates no limit. ephemeris : str, optional Ephemeris to use. If not given, use the one set with `~astropy.coordinates.solar_system_ephemeris` (which is set to 'builtin' by default). """ self.min = min self.max = max self.ephemeris = ephemeris @classmethod def dark(cls, min=None, max=0.25, **kwargs): """ initialize a `~astroplan.constraints.MoonIlluminationConstraint` with defaults of no minimum and a maximum of 0.25 Parameters ---------- min : float or `None` (optional) Minimum acceptable fractional illumination (inclusive). `None` indicates no limit. max : float or `None` (optional) Maximum acceptable fractional illumination (inclusive). `None` indicates no limit. """ return cls(min, max, **kwargs) @classmethod def grey(cls, min=0.25, max=0.65, **kwargs): """ initialize a `~astroplan.constraints.MoonIlluminationConstraint` with defaults of a minimum of 0.25 and a maximum of 0.65 Parameters ---------- min : float or `None` (optional) Minimum acceptable fractional illumination (inclusive). `None` indicates no limit. max : float or `None` (optional) Maximum acceptable fractional illumination (inclusive). `None` indicates no limit. """ return cls(min, max, **kwargs) @classmethod def bright(cls, min=0.65, max=None, **kwargs): """ initialize a `~astroplan.constraints.MoonIlluminationConstraint` with defaults of a minimum of 0.65 and no maximum Parameters ---------- min : float or `None` (optional) Minimum acceptable fractional illumination (inclusive). `None` indicates no limit. max : float or `None` (optional) Maximum acceptable fractional illumination (inclusive). `None` indicates no limit. """ return cls(min, max, **kwargs) def compute_constraint(self, times, observer, targets): # first is the moon up? cached_moon = _get_moon_data(times, observer) moon_alt = cached_moon['altaz'].alt moon_down_mask = moon_alt < 0 moon_up_mask = moon_alt >= 0 illumination = cached_moon['illum'] if self.min is None and self.max is not None: mask = (self.max >= illumination) | moon_down_mask elif self.max is None and self.min is not None: mask = (self.min <= illumination) & moon_up_mask elif self.min is not None and self.max is not None: mask = ((self.min <= illumination) & (illumination <= self.max)) & moon_up_mask else: raise ValueError("No max and/or min specified in " "MoonSeparationConstraint.") return mask class LocalTimeConstraint(Constraint): """ Constrain the observable hours. """ def __init__(self, min=None, max=None): """ Parameters ---------- min : `~datetime.time` Earliest local time (inclusive). `None` indicates no limit. max : `~datetime.time` Latest local time (inclusive). `None` indicates no limit. Examples -------- Constrain the observations to targets that are observable between 23:50 and 04:08 local time: >>> from astroplan import Observer >>> from astroplan.constraints import LocalTimeConstraint >>> import datetime as dt >>> subaru = Observer.at_site("Subaru", timezone="US/Hawaii") >>> # bound times between 23:50 and 04:08 local Hawaiian time >>> constraint = LocalTimeConstraint(min=dt.time(23,50), max=dt.time(4,8)) """ self.min = min self.max = max if self.min is None and self.max is None: raise ValueError("You must at least supply either a minimum or a maximum time.") if self.min is not None: if not isinstance(self.min, datetime.time): raise TypeError("Time limits must be specified as datetime.time objects.") if self.max is not None: if not isinstance(self.max, datetime.time): raise TypeError("Time limits must be specified as datetime.time objects.") def compute_constraint(self, times, observer, targets): timezone = None # get timezone from time objects, or from observer if self.min is not None: timezone = self.min.tzinfo elif self.max is not None: timezone = self.max.tzinfo if timezone is None: timezone = observer.timezone if self.min is not None: min_time = self.min else: min_time = self.min = datetime.time(0, 0, 0) if self.max is not None: max_time = self.max else: max_time = datetime.time(23, 59, 59) # If time limits occur on same day: if min_time < max_time: try: mask = np.array([min_time <= t.time() <= max_time for t in times.datetime]) except BaseException: # use np.bool so shape queries don't cause problems mask = np.bool_(min_time <= times.datetime.time() <= max_time) # If time boundaries straddle midnight: else: try: mask = np.array([(t.time() >= min_time) or (t.time() <= max_time) for t in times.datetime]) except BaseException: mask = np.bool_((times.datetime.time() >= min_time) or (times.datetime.time() <= max_time)) return mask class TimeConstraint(Constraint): """Constrain the observing time to be within certain time limits. An example use case for this class would be to associate an acceptable time range with a specific observing block. This can be useful if not all observing blocks are valid over the time limits used in calls to `is_observable` or `is_always_observable`. """ def __init__(self, min=None, max=None): """ Parameters ---------- min : `~astropy.time.Time` Earliest time (inclusive). `None` indicates no limit. max : `~astropy.time.Time` Latest time (inclusive). `None` indicates no limit. Examples -------- Constrain the observations to targets that are observable between 2016-03-28 and 2016-03-30: >>> from astroplan import Observer >>> from astropy.time import Time >>> subaru = Observer.at_site("Subaru") >>> t1 = Time("2016-03-28T12:00:00") >>> t2 = Time("2016-03-30T12:00:00") >>> constraint = TimeConstraint(t1,t2) """ self.min = min self.max = max if self.min is None and self.max is None: raise ValueError("You must at least supply either a minimum or a " "maximum time.") if self.min is not None: if not isinstance(self.min, Time): raise TypeError("Time limits must be specified as " "astropy.time.Time objects.") if self.max is not None: if not isinstance(self.max, Time): raise TypeError("Time limits must be specified as " "astropy.time.Time objects.") def compute_constraint(self, times, observer, targets): with warnings.catch_warnings(): warnings.simplefilter('ignore') min_time = Time("1950-01-01T00:00:00") if self.min is None else self.min max_time = Time("2120-01-01T00:00:00") if self.max is None else self.max mask = np.logical_and(times > min_time, times < max_time) return mask class PrimaryEclipseConstraint(Constraint): """ Constrain observations to times during primary eclipse. """ def __init__(self, eclipsing_system): """ Parameters ---------- eclipsing_system : `~astroplan.periodic.EclipsingSystem` System which must be in primary eclipse. """ self.eclipsing_system = eclipsing_system def compute_constraint(self, times, observer=None, targets=None): mask = self.eclipsing_system.in_primary_eclipse(times) return mask class SecondaryEclipseConstraint(Constraint): """ Constrain observations to times during secondary eclipse. """ def __init__(self, eclipsing_system): """ Parameters ---------- eclipsing_system : `~astroplan.periodic.EclipsingSystem` System which must be in secondary eclipse. """ self.eclipsing_system = eclipsing_system def compute_constraint(self, times, observer=None, targets=None): mask = self.eclipsing_system.in_secondary_eclipse(times) return mask class PhaseConstraint(Constraint): """ Constrain observations to times in some range of phases for a periodic event (e.g.~transiting exoplanets, eclipsing binaries). """ def __init__(self, periodic_event, min=None, max=None): """ Parameters ---------- periodic_event : `~astroplan.periodic.PeriodicEvent` or subclass System on which to compute the phase. For example, the system could be an eclipsing or non-eclipsing binary, or exoplanet system. min : float (optional) Minimum phase (inclusive) on interval [0, 1). Default is zero. max : float (optional) Maximum phase (inclusive) on interval [0, 1). Default is one. Examples -------- To constrain observations on orbital phases between 0.4 and 0.6, >>> from astroplan import PeriodicEvent >>> from astropy.time import Time >>> import astropy.units as u >>> binary = PeriodicEvent(epoch=Time('2017-01-01 02:00'), period=1*u.day) >>> constraint = PhaseConstraint(binary, min=0.4, max=0.6) The minimum and maximum phase must be described on the interval [0, 1). To constrain observations on orbital phases between 0.6 and 1.2, for example, you should subtract one from the second number: >>> constraint = PhaseConstraint(binary, min=0.6, max=0.2) """ self.periodic_event = periodic_event if (min < 0) or (min > 1) or (max < 0) or (max > 1): raise ValueError('The minimum of the PhaseConstraint must be within' ' the interval [0, 1).') self.min = min if min is not None else 0.0 self.max = max if max is not None else 1.0 def compute_constraint(self, times, observer=None, targets=None): phase = self.periodic_event.phase(times) mask = np.where(self.max > self.min, (phase >= self.min) & (phase <= self.max), (phase >= self.min) | (phase <= self.max)) return mask def is_always_observable(constraints, observer, targets, times=None, time_range=None, time_grid_resolution=0.5*u.hour): """ A function to determine whether ``targets`` are always observable throughout ``time_range`` given constraints in the ``constraints_list`` for a particular ``observer``. Parameters ---------- constraints : list or `~astroplan.constraints.Constraint` Observational constraint(s) observer : `~astroplan.Observer` The observer who has constraints ``constraints`` targets : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`} Target or list of targets times : `~astropy.time.Time` (optional) Array of times on which to test the constraint time_range : `~astropy.time.Time` (optional) Lower and upper bounds on time sequence, with spacing ``time_resolution``. This will be passed as the first argument into `~astroplan.time_grid_from_range`. time_grid_resolution : `~astropy.units.Quantity` (optional) If ``time_range`` is specified, determine whether constraints are met between test times in ``time_range`` by checking constraint at linearly-spaced times separated by ``time_resolution``. Default is 0.5 hours. Returns ------- ever_observable : list List of booleans of same length as ``targets`` for whether or not each target is observable in the time range given the constraints. """ if not hasattr(constraints, '__len__'): constraints = [constraints] applied_constraints = [constraint(observer, targets, times=times, time_range=time_range, time_grid_resolution=time_grid_resolution, grid_times_targets=True) for constraint in constraints] constraint_arr = np.logical_and.reduce(applied_constraints) return np.all(constraint_arr, axis=1) def is_observable(constraints, observer, targets, times=None, time_range=None, time_grid_resolution=0.5*u.hour): """ Determines if the ``targets`` are observable during ``time_range`` given constraints in ``constraints_list`` for a particular ``observer``. Parameters ---------- constraints : list or `~astroplan.constraints.Constraint` Observational constraint(s) observer : `~astroplan.Observer` The observer who has constraints ``constraints`` targets : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`} Target or list of targets times : `~astropy.time.Time` (optional) Array of times on which to test the constraint time_range : `~astropy.time.Time` (optional) Lower and upper bounds on time sequence, with spacing ``time_resolution``. This will be passed as the first argument into `~astroplan.time_grid_from_range`. time_grid_resolution : `~astropy.units.Quantity` (optional) If ``time_range`` is specified, determine whether constraints are met between test times in ``time_range`` by checking constraint at linearly-spaced times separated by ``time_resolution``. Default is 0.5 hours. Returns ------- ever_observable : list List of booleans of same length as ``targets`` for whether or not each target is ever observable in the time range given the constraints. """ if not hasattr(constraints, '__len__'): constraints = [constraints] applied_constraints = [constraint(observer, targets, times=times, time_range=time_range, time_grid_resolution=time_grid_resolution, grid_times_targets=True) for constraint in constraints] constraint_arr = np.logical_and.reduce(applied_constraints) return np.any(constraint_arr, axis=1) def is_event_observable(constraints, observer, target, times=None, times_ingress_egress=None): """ Determines if the ``target`` is observable at each time in ``times``, given constraints in ``constraints`` for a particular ``observer``. Parameters ---------- constraints : list or `~astroplan.constraints.Constraint` Observational constraint(s) observer : `~astroplan.Observer` The observer who has constraints ``constraints`` target : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`} Target times : `~astropy.time.Time` (optional) Array of mid-event times on which to test the constraints times_ingress_egress : `~astropy.time.Time` (optional) Array of ingress and egress times for ``N`` events, with shape (``N``, 2). Returns ------- event_observable : `~numpy.ndarray` Array of booleans of same length as ``times`` for whether or not the target is ever observable at each time, given the constraints. """ if not hasattr(constraints, '__len__'): constraints = [constraints] if times is not None: applied_constraints = [constraint(observer, target, times=times, grid_times_targets=True) for constraint in constraints] constraint_arr = np.logical_and.reduce(applied_constraints) else: times_ing = times_ingress_egress[:, 0] times_egr = times_ingress_egress[:, 1] applied_constraints_ing = [constraint(observer, target, times=times_ing, grid_times_targets=True) for constraint in constraints] applied_constraints_egr = [constraint(observer, target, times=times_egr, grid_times_targets=True) for constraint in constraints] constraint_arr = np.logical_and(np.logical_and.reduce(applied_constraints_ing), np.logical_and.reduce(applied_constraints_egr)) return constraint_arr def months_observable(constraints, observer, targets, time_range=_current_year_time_range, time_grid_resolution=0.5*u.hour): """ Determines which month the specified ``targets`` are observable for a specific ``observer``, given the supplied ``constraints``. Parameters ---------- constraints : list or `~astroplan.constraints.Constraint` Observational constraint(s) observer : `~astroplan.Observer` The observer who has constraints ``constraints`` targets : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`} Target or list of targets time_range : `~astropy.time.Time` (optional) Lower and upper bounds on time sequence If ``time_range`` is not specified, defaults to current year (localtime) time_grid_resolution : `~astropy.units.Quantity` (optional) If ``time_range`` is specified, determine whether constraints are met between test times in ``time_range`` by checking constraint at linearly-spaced times separated by ``time_resolution``. Default is 0.5 hours. Returns ------- observable_months : list List of sets of unique integers representing each month that a target is observable, one set per target. These integers are 1-based so that January maps to 1, February maps to 2, etc. """ # TODO: This method could be sped up a lot by dropping to the trigonometric # altitude calculations. if not hasattr(constraints, '__len__'): constraints = [constraints] times = time_grid_from_range(time_range, time_grid_resolution) # TODO: This method could be sped up a lot by dropping to the trigonometric # altitude calculations. applied_constraints = [constraint(observer, targets, times=times, grid_times_targets=True) for constraint in constraints] constraint_arr = np.logical_and.reduce(applied_constraints) months_observable = [] for target, observable in zip(targets, constraint_arr): s = set([t.datetime.month for t in times[observable]]) months_observable.append(s) return months_observable def observability_table(constraints, observer, targets, times=None, time_range=None, time_grid_resolution=0.5*u.hour): """ Creates a table with information about observability for all the ``targets`` over the requested ``time_range``, given the constraints in ``constraints_list`` for ``observer``. Parameters ---------- constraints : list or `~astroplan.constraints.Constraint` Observational constraint(s) observer : `~astroplan.Observer` The observer who has constraints ``constraints`` targets : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`} Target or list of targets times : `~astropy.time.Time` (optional) Array of times on which to test the constraint time_range : `~astropy.time.Time` (optional) Lower and upper bounds on time sequence, with spacing ``time_resolution``. This will be passed as the first argument into `~astroplan.time_grid_from_range`. If a single (scalar) time, the table will be for a 24 hour period centered on that time. time_grid_resolution : `~astropy.units.Quantity` (optional) If ``time_range`` is specified, determine whether constraints are met between test times in ``time_range`` by checking constraint at linearly-spaced times separated by ``time_resolution``. Default is 0.5 hours. Returns ------- observability_table : `~astropy.table.Table` A Table containing the observability information for each of the ``targets``. The table contains four columns with information about the target and it's observability: ``'target name'``, ``'ever observable'``, ``'always observable'``, and ``'fraction of time observable'``. The column ``'time observable'`` will also be present if the ``time_range`` is given as a scalar. It also contains metadata entries ``'times'`` (with an array of all the times), ``'observer'`` (the `~astroplan.Observer` object), and ``'constraints'`` (containing the supplied ``constraints``). """ if not hasattr(constraints, '__len__'): constraints = [constraints] is_24hr_table = False if hasattr(time_range, 'isscalar') and time_range.isscalar: time_range = (time_range-12*u.hour, time_range+12*u.hour) is_24hr_table = True applied_constraints = [constraint(observer, targets, times=times, time_range=time_range, time_grid_resolution=time_grid_resolution, grid_times_targets=True) for constraint in constraints] constraint_arr = np.logical_and.reduce(applied_constraints) colnames = ['target name', 'ever observable', 'always observable', 'fraction of time observable'] target_names = [target.name for target in targets] ever_obs = np.any(constraint_arr, axis=1) always_obs = np.all(constraint_arr, axis=1) frac_obs = np.sum(constraint_arr, axis=1) / constraint_arr.shape[1] tab = table.Table(names=colnames, data=[target_names, ever_obs, always_obs, frac_obs]) if times is None and time_range is not None: times = time_grid_from_range(time_range, time_resolution=time_grid_resolution) if is_24hr_table: tab['time observable'] = tab['fraction of time observable'] * 24*u.hour tab.meta['times'] = times.datetime tab.meta['observer'] = observer tab.meta['constraints'] = constraints return tab def min_best_rescale(vals, min_val, max_val, less_than_min=1): """ rescales an input array ``vals`` to be a score (between zero and one), where the ``min_val`` goes to one, and the ``max_val`` goes to zero. Parameters ---------- vals : array-like the values that need to be rescaled to be between 0 and 1 min_val : float worst acceptable value (rescales to 0) max_val : float best value cared about (rescales to 1) less_than_min : 0 or 1 what is returned for ``vals`` below ``min_val``. (in some cases anything less than ``min_val`` should also return one, in some cases it should return zero) Returns ------- array of floats between 0 and 1 inclusive rescaled so that ``vals`` equal to ``max_val`` equal 0 and those equal to ``min_val`` equal 1 Examples -------- rescale airmasses to between 0 and 1, with the best (1) and worst (2.25). All values outside the range should return 0. >>> from astroplan.constraints import min_best_rescale >>> import numpy as np >>> airmasses = np.array([1, 1.5, 2, 3, 0]) >>> min_best_rescale(airmasses, 1, 2.25, less_than_min = 0) # doctest: +FLOAT_CMP array([ 1. , 0.6, 0.2, 0. , 0. ]) """ rescaled = (vals - max_val) / (min_val - max_val) below = vals < min_val above = vals > max_val rescaled[below] = less_than_min rescaled[above] = 0 return rescaled def max_best_rescale(vals, min_val, max_val, greater_than_max=1): """ rescales an input array ``vals`` to be a score (between zero and one), where the ``max_val`` goes to one, and the ``min_val`` goes to zero. Parameters ---------- vals : array-like the values that need to be rescaled to be between 0 and 1 min_val : float worst acceptable value (rescales to 0) max_val : float best value cared about (rescales to 1) greater_than_max : 0 or 1 what is returned for ``vals`` above ``max_val``. (in some cases anything higher than ``max_val`` should also return one, in some cases it should return zero) Returns ------- array of floats between 0 and 1 inclusive rescaled so that ``vals`` equal to ``min_val`` equal 0 and those equal to ``max_val`` equal 1 Examples -------- rescale an array of altitudes to be between 0 and 1, with the best (60) going to 1 and worst (35) going to 0. For values outside the range, the rescale should return 0 below 35 and 1 above 60. >>> from astroplan.constraints import max_best_rescale >>> import numpy as np >>> altitudes = np.array([20, 30, 40, 45, 55, 70]) >>> max_best_rescale(altitudes, 35, 60) # doctest: +FLOAT_CMP array([ 0. , 0. , 0.2, 0.4, 0.8, 1. ]) """ rescaled = (vals - min_val) / (max_val - min_val) below = vals < min_val above = vals > max_val rescaled[below] = 0 rescaled[above] = greater_than_max return rescaled
1.820313
2
backend/views.py
Raulios/django-blog
0
2489
from django.contrib import messages from django.contrib.auth.decorators import login_required from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage from django.core.urlresolvers import reverse from django.shortcuts import render from django.http import HttpResponseRedirect from core.models import Post, Category, Tag from backend.forms import PostForm, CategoryForm, TagForm # Create your views here. @login_required() def index(request): context = {} context['nav_active'] = 'index' return render(request, 'backend/index.html', context) @login_required() def posts(request): context = {} context['nav_active'] = 'posts' post_list = Post.objects.all() paginator = Paginator(list(reversed(post_list)), 10) page = request.GET.get('page') try: posts = paginator.page(page) except PageNotAnInteger: posts = paginator.page(1) except EmptyPage: posts = paginator.page(paginator.num_pages) context['posts'] = posts return render(request, 'backend/posts.html', context) @login_required() def add_post(request): context = {} context['nav_active'] = 'posts' form = PostForm() if request.method == 'POST': form = PostForm(request.POST, request.FILES) if form.is_valid(): form.save() messages.success(request, 'Post created.') return HttpResponseRedirect(reverse('user_panel_posts')) context['form'] = form return render(request, 'backend/edit_post.html', context) @login_required() def edit_post(request, post_id): context = {} context['nav_active'] = 'posts' post = Post.objects.get(pk=post_id) context['post'] = post form = PostForm(instance=post) if request.method == 'POST': form = PostForm(request.POST, request.FILES, instance=post) if form.is_valid(): form.save() messages.success(request, 'Post updated.') return HttpResponseRedirect(reverse('user_panel_posts')) context['form'] = form return render(request, 'backend/edit_post.html', context) @login_required() def delete_post(request, post_id): context = {} context['nav_active'] = 'posts' post = Post.objects.get(pk=post_id) post.delete() messages.success(request, 'Post deleted.') return HttpResponseRedirect(reverse('user_panel_posts')) @login_required() def categories(request): context = {} context['nav_active'] = 'categories' categories_list = Category.objects.all() paginator = Paginator(list(reversed(categories_list)), 10) page = request.GET.get('page') try: categories = paginator.page(page) except PageNotAnInteger: categories = paginator.page(1) except EmptyPage: categories = paginator.page(paginator.num_pages) context['categories'] = categories return render(request, 'backend/categories.html', context) @login_required() def add_category(request): context = {} context['nav_active'] = 'categories' form = CategoryForm() if request.method == 'POST': form = CategoryForm(request.POST, request.FILES) if form.is_valid(): form.save() messages.success(request, 'Category created.') return HttpResponseRedirect(reverse('user_panel_categories')) context['form'] = form return render(request, 'backend/edit_category.html', context) @login_required() def edit_category(request, category_id): context = {} context['nav_active'] = 'categories' category = Category.objects.get(pk=category_id) context['category'] = category form = CategoryForm(instance=category) if request.method == 'POST': form = CategoryForm(request.POST, request.FILES, instance=category) if form.is_valid(): form.save() messages.success(request, 'Category updated.') return HttpResponseRedirect(reverse('user_panel_categories')) context['form'] = form return render(request, 'backend/edit_category.html', context) @login_required() def delete_category(request, category_id): context = {} context['nav_active'] = 'categories' category = Category.objects.get(pk=category_id) category.delete() messages.success(request, 'Category deleted.') return HttpResponseRedirect(reverse('user_panel_categories')) @login_required() def tags(request): context = {} context['nav_active'] = 'tags' tags_list = Tag.objects.all() paginator = Paginator(list(reversed(tags_list)), 10) page = request.GET.get('page') try: tags = paginator.page(page) except PageNotAnInteger: tags = paginator.page(1) except EmptyPage: tags = paginator.page(paginator.num_pages) context['tags'] = tags return render(request, 'backend/tags.html', context) @login_required() def add_tag(request): context = {} context['nav_active'] = 'tags' form = TagForm() if request.method == 'POST': form = TagForm(request.POST, request.FILES) if form.is_valid(): form.save() messages.success(request, 'Tag created.') return HttpResponseRedirect(reverse('user_panel_tags')) context['form'] = form return render(request, 'backend/edit_tag.html', context) @login_required() def edit_tag(request, tag_id): context = {} context['nav_active'] = 'tags' tag = Tag.objects.get(pk=tag_id) context['tag'] = tag form = TagForm(instance=tag) if request.method == 'POST': form = TagForm(request.POST, request.FILES, instance=tag) if form.is_valid(): form.save() messages.success(request, 'Tag updated.') return HttpResponseRedirect(reverse('user_panel_tags')) context['form'] = form return render(request, 'backend/edit_tag.html', context) @login_required() def delete_tag(request, tag_id): context = {} context['nav_active'] = 'tags' tag = Tag.objects.get(pk=tag_id) tag.delete() messages.success(request, 'Tag deleted.') return HttpResponseRedirect(reverse('user_panel_tags'))
2.125
2
tiktorch/server/session/process.py
FynnBe/tiktorch
0
2490
import dataclasses import io import multiprocessing as _mp import uuid import zipfile from concurrent.futures import Future from multiprocessing.connection import Connection from typing import List, Optional, Tuple import numpy from tiktorch import log from tiktorch.rpc import Shutdown from tiktorch.rpc import mp as _mp_rpc from tiktorch.rpc.mp import MPServer from tiktorch.server.reader import eval_model_zip from .backend import base from .rpc_interface import IRPCModelSession @dataclasses.dataclass class ModelInfo: # TODO: Test for model info name: str input_axes: str output_axes: str valid_shapes: List[List[Tuple[str, int]]] halo: List[Tuple[str, int]] offset: List[Tuple[str, int]] scale: List[Tuple[str, float]] class ModelSessionProcess(IRPCModelSession): def __init__(self, model_zip: bytes, devices: List[str]) -> None: with zipfile.ZipFile(io.BytesIO(model_zip)) as model_file: self._model = eval_model_zip(model_file, devices) self._datasets = {} self._worker = base.SessionBackend(self._model) def forward(self, input_tensor: numpy.ndarray) -> Future: res = self._worker.forward(input_tensor) return res def create_dataset(self, mean, stddev): id_ = uuid.uuid4().hex self._datasets[id_] = {"mean": mean, "stddev": stddev} return id_ def get_model_info(self) -> ModelInfo: return ModelInfo( self._model.name, self._model.input_axes, self._model.output_axes, valid_shapes=[self._model.input_shape], halo=self._model.halo, scale=self._model.scale, offset=self._model.offset, ) def shutdown(self) -> Shutdown: self._worker.shutdown() return Shutdown() def _run_model_session_process( conn: Connection, model_zip: bytes, devices: List[str], log_queue: Optional[_mp.Queue] = None ): try: # from: https://github.com/pytorch/pytorch/issues/973#issuecomment-346405667 import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) resource.setrlimit(resource.RLIMIT_NOFILE, (4096, rlimit[1])) except ModuleNotFoundError: pass # probably running on windows if log_queue: log.configure(log_queue) session_proc = ModelSessionProcess(model_zip, devices) srv = MPServer(session_proc, conn) srv.listen() def start_model_session_process( model_zip: bytes, devices: List[str], log_queue: Optional[_mp.Queue] = None ) -> Tuple[_mp.Process, IRPCModelSession]: client_conn, server_conn = _mp.Pipe() proc = _mp.Process( target=_run_model_session_process, name="ModelSessionProcess", kwargs={"conn": server_conn, "devices": devices, "log_queue": log_queue, "model_zip": model_zip}, ) proc.start() return proc, _mp_rpc.create_client(IRPCModelSession, client_conn)
2.171875
2
openpype/modules/ftrack/event_handlers_server/event_del_avalon_id_from_new.py
dangerstudios/OpenPype
0
2491
from openpype.modules.ftrack.lib import BaseEvent from openpype.modules.ftrack.lib.avalon_sync import CUST_ATTR_ID_KEY from openpype.modules.ftrack.event_handlers_server.event_sync_to_avalon import ( SyncToAvalonEvent ) class DelAvalonIdFromNew(BaseEvent): ''' This event removes AvalonId from custom attributes of new entities Result: - 'Copy->Pasted' entities won't have same AvalonID as source entity Priority of this event must be less than SyncToAvalon event ''' priority = SyncToAvalonEvent.priority - 1 ignore_me = True def launch(self, session, event): created = [] entities = event['data']['entities'] for entity in entities: try: entity_id = entity['entityId'] if entity.get('action', None) == 'add': id_dict = entity['changes']['id'] if id_dict['new'] is not None and id_dict['old'] is None: created.append(id_dict['new']) elif ( entity.get('action', None) == 'update' and CUST_ATTR_ID_KEY in entity['keys'] and entity_id in created ): ftrack_entity = session.get( self._get_entity_type(entity), entity_id ) cust_attrs = ftrack_entity["custom_attributes"] if cust_attrs[CUST_ATTR_ID_KEY]: cust_attrs[CUST_ATTR_ID_KEY] = "" session.commit() except Exception: session.rollback() continue def register(session): '''Register plugin. Called when used as an plugin.''' DelAvalonIdFromNew(session).register()
1.679688
2
tests/workflow/test_workflow_ingest_accepted_submission.py
elifesciences/elife-bot
17
2492
import unittest import tests.settings_mock as settings_mock from tests.activity.classes_mock import FakeLogger from workflow.workflow_IngestAcceptedSubmission import workflow_IngestAcceptedSubmission class TestWorkflowIngestAcceptedSubmission(unittest.TestCase): def setUp(self): self.workflow = workflow_IngestAcceptedSubmission( settings_mock, FakeLogger(), None, None, None, None ) def test_init(self): self.assertEqual(self.workflow.name, "IngestAcceptedSubmission")
2.59375
3
go/token/views.py
lynnUg/vumi-go
0
2493
from urllib import urlencode import urlparse from django.shortcuts import Http404, redirect from django.contrib.auth.views import logout from django.contrib import messages from django.core.urlresolvers import reverse from django.contrib.auth.decorators import login_required from vumi.utils import load_class_by_string from go.base.utils import vumi_api def token(request, token): # We only need the redis manager here, but it's saner to get a whole # vumi_api and not worry about all the setup magic. api = vumi_api() token_data = api.token_manager.get(token) if not token_data: raise Http404 user_id = int(token_data['user_id']) redirect_to = token_data['redirect_to'] system_token = token_data['system_token'] # If we're authorized and we're the same user_id then redirect to # where we need to be if not user_id or request.user.id == user_id: path, _, qs = redirect_to.partition('?') params = urlparse.parse_qs(qs) # since the token can be custom we prepend the size of the user_token # to the token being forwarded so the view handling the `redirect_to` # can lookup the token and verify the system token. params.update({'token': '%s-%s%s' % (len(token), token, system_token)}) return redirect('%s?%s' % (path, urlencode(params))) # If we got here then we need authentication and the user's either not # logged in or is logged in with a wrong account. if request.user.is_authenticated(): logout(request) messages.info(request, 'Wrong account for this token.') return redirect('%s?%s' % (reverse('auth_login'), urlencode({ 'next': reverse('token', kwargs={'token': token}), }))) @login_required def token_task(request): api = request.user_api.api token = request.GET.get('token') token_data = api.token_manager.verify_get(token) if not token_data: raise Http404 params = token_data['extra_params'] callback_name = params['callback_name'] callback_args = params['callback_args'] callback_kwargs = params['callback_kwargs'] return_to = params['return_to'] message = params['message'] message_level = params['message_level'] callback = load_class_by_string(callback_name) callback(*callback_args, **callback_kwargs) messages.add_message(request, message_level, message) return redirect(return_to)
2.125
2
typogrify/templatetags/typogrify_tags.py
tylerbutler/typogrify
0
2494
from typogrify.filters import amp, caps, initial_quotes, smartypants, titlecase, typogrify, widont, TypogrifyError from functools import wraps from django.conf import settings from django import template from django.utils.safestring import mark_safe from django.utils.encoding import force_unicode register = template.Library() def make_safe(f): """ A function wrapper to make typogrify play nice with django's unicode support. """ @wraps(f) def wrapper(text): text = force_unicode(text) f.is_safe = True out = text try: out = f(text) except TypogrifyError, e: if settings.DEBUG: raise e return text return mark_safe(out) wrapper.is_safe = True return wrapper register.filter('amp', make_safe(amp)) register.filter('caps', make_safe(caps)) register.filter('initial_quotes', make_safe(initial_quotes)) register.filter('smartypants', make_safe(smartypants)) register.filter('titlecase', make_safe(titlecase)) register.filter('typogrify', make_safe(typogrify)) register.filter('widont', make_safe(widont))
2.265625
2
bvbabel/vmr.py
carbrock/bvbabel
7
2495
"""Read, write, create Brainvoyager VMR file format.""" import struct import numpy as np from bvbabel.utils import (read_variable_length_string, write_variable_length_string) # ============================================================================= def read_vmr(filename): """Read Brainvoyager VMR file. Parameters ---------- filename : string Path to file. Returns ------- header : dictionary Pre-data and post-data headers. data : 3D numpy.array Image data. """ header = dict() with open(filename, 'rb') as f: # --------------------------------------------------------------------- # VMR Pre-Data Header # --------------------------------------------------------------------- # NOTE(Developer Guide 2.6): VMR files contain anatomical 3D data sets, # typically containing the whole brain (head) of subjects. The # intensity values are stored as a series of bytes. See the V16 format # for a version storing each intensity value with two bytes (short # integers). The VMR format contains a small header followed by the # actual data followed by a second, more extensive, header. The current # version of VMR files is "4", which is only slightly different from # version 3 (as indicated below). Version 3 added offset values to # format 2 in order to represent large data sets efficiently, e.g. in # the context of advanced segmentation processing. Compared to the # original file version "1", file versions 2 and higher contain # additional header information after the actual data ("post-data # header"). This allows to read VMR data sets with minimal header # checking if the extended information is not needed. The information # in the post-data header contains position information (if available) # and stores a series of spatial transformations, which might have been # performed to the original data set ("history record"). The # post-header data can be probably ignored for custom routines, but is # important in BrainVoyager QX for spatial transformation and # coregistration routines as well as for proper visualization. # Expected binary data: unsigned short int (2 bytes) data, = struct.unpack('<H', f.read(2)) header["File version"] = data data, = struct.unpack('<H', f.read(2)) header["DimX"] = data data, = struct.unpack('<H', f.read(2)) header["DimY"] = data data, = struct.unpack('<H', f.read(2)) header["DimZ"] = data # --------------------------------------------------------------------- # VMR Data # --------------------------------------------------------------------- # NOTE(Developer Guide 2.6): Each data element (intensity value) is # represented in 1 byte. The data is organized in three loops: # DimZ # DimY # DimX # # The axes terminology follows the internal BrainVoyager (BV) format. # The mapping to Talairach axes is as follows: # BV (X front -> back) [axis 2 after np.reshape] = Y in Tal space # BV (Y top -> bottom) [axis 1 after np.reshape] = Z in Tal space # BV (Z left -> right) [axis 0 after np.reshape] = X in Tal space # Expected binary data: unsigned char (1 byte) data_img = np.zeros((header["DimZ"] * header["DimY"] * header["DimX"]), dtype="<B") for i in range(data_img.size): data_img[i], = struct.unpack('<B', f.read(1)) data_img = np.reshape( data_img, (header["DimZ"], header["DimY"], header["DimX"])) data_img = np.transpose(data_img, (0, 2, 1)) # BV to Tal data_img = data_img[::-1, ::-1, ::-1] # Flip BV axes # --------------------------------------------------------------------- # VMR Post-Data Header # --------------------------------------------------------------------- # NOTE(Developer Guide 2.6): The first four entries of the post-data # header are new since file version "3" and contain offset values for # each dimension as well as a value indicating the size of a cube with # iso-dimensions to which the data set will be internally "expanded" # for certain operations. The axes labels are in terms of # BrainVoyager's internal format. These four entries are followed by # scan position information from the original file headers, e.g. from # DICOM files. The coordinate axes labels in these entries are not in # terms of BrainVoyager's internal conventions but follow the DICOM # standard. Then follows eventually a section listing spatial # transformations which have been eventually performed to create the # current VMR (e.g. ACPC transformation). Finally, additional # information further descries the data set, including the assumed # left-right convention, the reference space (e.g. Talairach after # normalization) and voxel resolution. if header["File version"] >= 3: # NOTE(Developer Guide 2.6): These four entries have been added in # file version "3" with BrainVoyager QX 1.7. All other entries are # identical to file version "2". # Expected binary data: short int (2 bytes) data, = struct.unpack('<h', f.read(2)) header["OffsetX"] = data data, = struct.unpack('<h', f.read(2)) header["OffsetY"] = data data, = struct.unpack('<h', f.read(2)) header["OffsetZ"] = data data, = struct.unpack('<h', f.read(2)) header["FramingCubeDim"] = data # Expected binary data: int (4 bytes) data, = struct.unpack('<i', f.read(4)) header["PosInfosVerified"] = data data, = struct.unpack('<i', f.read(4)) header["CoordinateSystem"] = data # Expected binary data: float (4 bytes) data, = struct.unpack('<f', f.read(4)) header["Slice1CenterX"] = data # First slice center X coordinate data, = struct.unpack('<f', f.read(4)) header["Slice1CenterY"] = data # First slice center Y coordinate data, = struct.unpack('<f', f.read(4)) header["Slice1CenterZ"] = data # First slice center Z coordinate data, = struct.unpack('<f', f.read(4)) header["SliceNCenterX"] = data # Last slice center X coordinate data, = struct.unpack('<f', f.read(4)) header["SliceNCenterY"] = data # Last slice center Y coordinate data, = struct.unpack('<f', f.read(4)) header["SliceNCenterZ"] = data # Last slice center Z coordinate data, = struct.unpack('<f', f.read(4)) header["RowDirX"] = data # Slice row direction vector X component data, = struct.unpack('<f', f.read(4)) header["RowDirY"] = data # Slice row direction vector Y component data, = struct.unpack('<f', f.read(4)) header["RowDirZ"] = data # Slice row direction vector Z component data, = struct.unpack('<f', f.read(4)) header["ColDirX"] = data # Slice column direction vector X component data, = struct.unpack('<f', f.read(4)) header["ColDirY"] = data # Slice column direction vector Y component data, = struct.unpack('<f', f.read(4)) header["ColDirZ"] = data # Slice column direction vector Z component # Expected binary data: int (4 bytes) data, = struct.unpack('<i', f.read(4)) header["NRows"] = data # Nr of rows of slice image matrix data, = struct.unpack('<i', f.read(4)) header["NCols"] = data # Nr of columns of slice image matrix # Expected binary data: float (4 bytes) data, = struct.unpack('<f', f.read(4)) header["FoVRows"] = data # Field of view extent in row direction [mm] data, = struct.unpack('<f', f.read(4)) header["FoVCols"] = data # Field of view extent in column dir. [mm] data, = struct.unpack('<f', f.read(4)) header["SliceThickness"] = data # Slice thickness [mm] data, = struct.unpack('<f', f.read(4)) header["GapThickness"] = data # Gap thickness [mm] # Expected binary data: int (4 bytes) data, = struct.unpack('<i', f.read(4)) header["NrOfPastSpatialTransformations"] = data if header["NrOfPastSpatialTransformations"] != 0: # NOTE(Developer Guide 2.6): For each past transformation, the # information specified in the following table is stored. The # "type of transformation" is a value determining how many # subsequent values define the transformation: # "1": Rigid body+scale (3 translation, 3 rotation, 3 scale) # "2": Affine transformation (16 values, 4x4 matrix) # "4": Talairach transformation # "5": Un-Talairach transformation (1 - 5 -> BV axes) header["PastTransformation"] = [] for i in range(header["NrOfPastSpatialTransformations"]): header["PastTransformation"].append(dict()) # Expected binary data: variable-length string data = read_variable_length_string(f) header["PastTransformation"][i]["Name"] = data # Expected binary data: int (4 bytes) data, = struct.unpack('<i', f.read(4)) header["PastTransformation"][i]["Type"] = data # Expected binary data: variable-length string data = read_variable_length_string(f) header["PastTransformation"][i]["SourceFileName"] = data # Expected binary data: int (4 bytes) data, = struct.unpack('<i', f.read(4)) header["PastTransformation"][i]["NrOfValues"] = data # Store transformation values as a list trans_values = [] for j in range(header["PastTransformation"][i]["NrOfValues"]): # Expected binary data: float (4 bytes) data, = struct.unpack('<f', f.read(4)) trans_values.append(data) header["PastTransformation"][i]["Values"] = trans_values # Expected binary data: char (1 byte) data, = struct.unpack('<B', f.read(1)) header["LeftRightConvention"] = data # modified in v4 data, = struct.unpack('<B', f.read(1)) header["ReferenceSpaceVMR"] = data # new in v4 # Expected binary data: float (4 bytes) data, = struct.unpack('<f', f.read(4)) header["VoxelSizeX"] = data # Voxel resolution along X axis data, = struct.unpack('<f', f.read(4)) header["VoxelSizeY"] = data # Voxel resolution along Y axis data, = struct.unpack('<f', f.read(4)) header["VoxelSizeZ"] = data # Voxel resolution along Z axis # Expected binary data: char (1 byte) data, = struct.unpack('<B', f.read(1)) header["VoxelResolutionVerified"] = data data, = struct.unpack('<B', f.read(1)) header["VoxelResolutionInTALmm"] = data # Expected binary data: int (4 bytes) data, = struct.unpack('<i', f.read(4)) header["VMROrigV16MinValue"] = data # 16-bit data min intensity data, = struct.unpack('<i', f.read(4)) header["VMROrigV16MeanValue"] = data # 16-bit data mean intensity data, = struct.unpack('<i', f.read(4)) header["VMROrigV16MaxValue"] = data # 16-bit data max intensity return header, data_img # ============================================================================= def write_vmr(filename, header, data_img): """Protocol to write Brainvoyager VMR file. Parameters ---------- filename : string Output filename. header : dictionary Header of VMR file. data_img : numpy.array, 3D Image. """ with open(filename, 'wb') as f: # --------------------------------------------------------------------- # VMR Pre-Data Header # --------------------------------------------------------------------- # Expected binary data: unsigned short int (2 bytes) data = header["File version"] f.write(struct.pack('<H', data)) data = header["DimX"] f.write(struct.pack('<H', data)) data = header["DimY"] f.write(struct.pack('<H', data)) data = header["DimZ"] f.write(struct.pack('<H', data)) # --------------------------------------------------------------------- # VMR Data # --------------------------------------------------------------------- # Convert axes from Nifti standard back to BV standard data_img = data_img[::-1, ::-1, ::-1] # Flip BV axes data_img = np.transpose(data_img, (0, 2, 1)) # BV to Tal # Expected binary data: unsigned char (1 byte) data_img = data_img.flatten() for i in range(data_img.size): f.write(struct.pack('<B', data_img[i])) # --------------------------------------------------------------------- # VMR Post-Data Header # --------------------------------------------------------------------- if header["File version"] >= 3: # Expected binary data: short int (2 bytes) data = header["OffsetX"] f.write(struct.pack('<h', data)) data = header["OffsetY"] f.write(struct.pack('<h', data)) data = header["OffsetZ"] f.write(struct.pack('<h', data)) data = header["FramingCubeDim"] f.write(struct.pack('<h', data)) # Expected binary data: int (4 bytes) data = header["PosInfosVerified"] f.write(struct.pack('<i', data)) data = header["CoordinateSystem"] f.write(struct.pack('<i', data)) # Expected binary data: float (4 bytes) data = header["Slice1CenterX"] f.write(struct.pack('<f', data)) data = header["Slice1CenterY"] f.write(struct.pack('<f', data)) data = header["Slice1CenterZ"] f.write(struct.pack('<f', data)) data = header["SliceNCenterX"] f.write(struct.pack('<f', data)) data = header["SliceNCenterY"] f.write(struct.pack('<f', data)) data = header["SliceNCenterZ"] f.write(struct.pack('<f', data)) data = header["RowDirX"] f.write(struct.pack('<f', data)) data = header["RowDirY"] f.write(struct.pack('<f', data)) data = header["RowDirZ"] f.write(struct.pack('<f', data)) data = header["ColDirX"] f.write(struct.pack('<f', data)) data = header["ColDirY"] f.write(struct.pack('<f', data)) data = header["ColDirZ"] f.write(struct.pack('<f', data)) # Expected binary data: int (4 bytes) data = header["NRows"] f.write(struct.pack('<i', data)) data = header["NCols"] f.write(struct.pack('<i', data)) # Expected binary data: float (4 bytes) data = header["FoVRows"] f.write(struct.pack('<f', data)) data = header["FoVCols"] f.write(struct.pack('<f', data)) data = header["SliceThickness"] f.write(struct.pack('<f', data)) data = header["GapThickness"] f.write(struct.pack('<f', data)) # Expected binary data: int (4 bytes) data = header["NrOfPastSpatialTransformations"] f.write(struct.pack('<i', data)) if header["NrOfPastSpatialTransformations"] != 0: for i in range(header["NrOfPastSpatialTransformations"]): # Expected binary data: variable-length string data = header["PastTransformation"][i]["Name"] write_variable_length_string(f, data) # Expected binary data: int (4 bytes) data = header["PastTransformation"][i]["Type"] f.write(struct.pack('<i', data)) # Expected binary data: variable-length string data = header["PastTransformation"][i]["SourceFileName"] write_variable_length_string(f, data) # Expected binary data: int (4 bytes) data = header["PastTransformation"][i]["NrOfValues"] f.write(struct.pack('<i', data)) # Transformation values are stored as a list trans_values = header["PastTransformation"][i]["Values"] for j in range(header["PastTransformation"][i]["NrOfValues"]): # Expected binary data: float (4 bytes) f.write(struct.pack('<f', trans_values[j])) # Expected binary data: char (1 byte) data = header["LeftRightConvention"] f.write(struct.pack('<B', data)) data = header["ReferenceSpaceVMR"] f.write(struct.pack('<B', data)) # Expected binary data: float (4 bytes) data = header["VoxelSizeX"] f.write(struct.pack('<f', data)) data = header["VoxelSizeY"] f.write(struct.pack('<f', data)) data = header["VoxelSizeZ"] f.write(struct.pack('<f', data)) # Expected binary data: char (1 byte) data = header["VoxelResolutionVerified"] f.write(struct.pack('<B', data)) data = header["VoxelResolutionInTALmm"] f.write(struct.pack('<B', data)) # Expected binary data: int (4 bytes) data = header["VMROrigV16MinValue"] f.write(struct.pack('<i', data)) data = header["VMROrigV16MeanValue"] f.write(struct.pack('<i', data)) data = header["VMROrigV16MaxValue"] f.write(struct.pack('<i', data)) return print("VMR saved.")
3.078125
3
example/image-classification/test_score.py
Vikas-kum/incubator-mxnet
399
2496
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """ test pretrained models """ from __future__ import print_function import mxnet as mx from common import find_mxnet, modelzoo from score import score VAL_DATA='data/val-5k-256.rec' def download_data(): return mx.test_utils.download( 'http://data.mxnet.io/data/val-5k-256.rec', VAL_DATA) def test_imagenet1k_resnet(**kwargs): models = ['imagenet1k-resnet-50', 'imagenet1k-resnet-152'] accs = [.77, .78] for (m, g) in zip(models, accs): acc = mx.metric.create('acc') (speed,) = score(model=m, data_val=VAL_DATA, rgb_mean='0,0,0', metrics=acc, **kwargs) r = acc.get()[1] print('Tested %s, acc = %f, speed = %f img/sec' % (m, r, speed)) assert r > g and r < g + .1 def test_imagenet1k_inception_bn(**kwargs): acc = mx.metric.create('acc') m = 'imagenet1k-inception-bn' g = 0.75 (speed,) = score(model=m, data_val=VAL_DATA, rgb_mean='123.68,116.779,103.939', metrics=acc, **kwargs) r = acc.get()[1] print('Tested %s acc = %f, speed = %f img/sec' % (m, r, speed)) assert r > g and r < g + .1 if __name__ == '__main__': gpus = mx.test_utils.list_gpus() assert len(gpus) > 0 batch_size = 16 * len(gpus) gpus = ','.join([str(i) for i in gpus]) kwargs = {'gpus':gpus, 'batch_size':batch_size, 'max_num_examples':500} download_data() test_imagenet1k_resnet(**kwargs) test_imagenet1k_inception_bn(**kwargs)
1.867188
2
verticapy/vcolumn.py
vertica/vertica_ml_python
7
2497
# (c) Copyright [2018-2022] Micro Focus or one of its affiliates. # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # |_ |~) _ _| _ /~\ _ |. # |_)\/ |_)(_|(_|| \_/|_|(_||| # / # ____________ ______ # / __ `\ / / # | \/ / / / # |______ / / / # |____/ / / # _____________ / / # \ / / / # \ / / / # \_______/ / / # ______ / / # \ / / / # \ / / / # \/ / / # / / # / / # \ / # \ / # \/ # _ # \ / _ __|_. _ _ |_) # \/ (/_| | |(_(_|| \/ # / # VerticaPy is a Python library with scikit-like functionality for conducting # data science projects on data stored in Vertica, taking advantage Vertica’s # speed and built-in analytics and machine learning features. It supports the # entire data science life cycle, uses a ‘pipeline’ mechanism to sequentialize # data transformation operations, and offers beautiful graphical options. # # VerticaPy aims to do all of the above. The idea is simple: instead of moving # data around for processing, VerticaPy brings the logic to the data. # # # Modules # # Standard Python Modules import math, re, decimal, warnings, datetime from collections.abc import Iterable from typing import Union # VerticaPy Modules import verticapy from verticapy.utilities import * from verticapy.toolbox import * from verticapy.errors import * ## # # __ __ ______ ______ __ __ __ __ __ __ __ # /\ \ / / /\ ___\ /\ __ \ /\ \ /\ \/\ \ /\ "-./ \ /\ "-.\ \ # \ \ \'/ \ \ \____ \ \ \/\ \ \ \ \____ \ \ \_\ \ \ \ \-./\ \ \ \ \-. \ # \ \__| \ \_____\ \ \_____\ \ \_____\ \ \_____\ \ \_\ \ \_\ \ \_\\"\_\ # \/_/ \/_____/ \/_____/ \/_____/ \/_____/ \/_/ \/_/ \/_/ \/_/ # # # ---# class vColumn(str_sql): """ --------------------------------------------------------------------------- Python object which that stores all user transformations. If the vDataFrame represents the entire relation, a vColumn can be seen as one column of that relation. vColumns simplify several processes with its abstractions. Parameters ---------- alias: str vColumn alias. transformations: list, optional List of the different transformations. Each transformation must be similar to the following: (function, type, category) parent: vDataFrame, optional Parent of the vColumn. One vDataFrame can have multiple children vColumns whereas one vColumn can only have one parent. catalog: dict, optional Catalog where each key corresponds to an aggregation. vColumns will memorize the already computed aggregations to gain in performance. The catalog will be updated when the parent vDataFrame is modified. Attributes ---------- alias, str : vColumn alias. catalog, dict : Catalog of pre-computed aggregations. parent, vDataFrame : Parent of the vColumn. transformations, str : List of the different transformations. """ # # Special Methods # # ---# def __init__( self, alias: str, transformations: list = [], parent=None, catalog: dict = {} ): self.parent, self.alias, self.transformations = ( parent, alias, [elem for elem in transformations], ) self.catalog = { "cov": {}, "pearson": {}, "spearman": {}, "spearmand": {}, "kendall": {}, "cramer": {}, "biserial": {}, "regr_avgx": {}, "regr_avgy": {}, "regr_count": {}, "regr_intercept": {}, "regr_r2": {}, "regr_slope": {}, "regr_sxx": {}, "regr_sxy": {}, "regr_syy": {}, } for elem in catalog: self.catalog[elem] = catalog[elem] # ---# def __getitem__(self, index): if isinstance(index, slice): assert index.step in (1, None), ValueError( "vColumn doesn't allow slicing having steps different than 1." ) index_stop = index.stop index_start = index.start if not (isinstance(index_start, int)): index_start = 0 if index_start < 0: index_start += self.parent.shape()[0] if isinstance(index_stop, int): if index_stop < 0: index_stop += self.parent.shape()[0] limit = index_stop - index_start if limit <= 0: limit = 0 limit = " LIMIT {}".format(limit) else: limit = "" query = "(SELECT {} FROM {}{} OFFSET {}{}) VERTICAPY_SUBTABLE".format( self.alias, self.parent.__genSQL__(), self.parent.__get_last_order_by__(), index_start, limit, ) return vDataFrameSQL(query) elif isinstance(index, int): cast = "::float" if self.category() == "float" else "" if index < 0: index += self.parent.shape()[0] query = "SELECT {}{} FROM {}{} OFFSET {} LIMIT 1".format( self.alias, cast, self.parent.__genSQL__(), self.parent.__get_last_order_by__(), index, ) return executeSQL( query=query, title="Getting the vColumn element.", method="fetchfirstelem", ) else: return getattr(self, index) # ---# def __len__(self): return int(self.count()) # ---# def __nonzero__(self): return self.count() > 0 # ---# def __repr__(self): return self.head(limit=verticapy.options["max_rows"]).__repr__() # ---# def _repr_html_(self): return self.head(limit=verticapy.options["max_rows"])._repr_html_() # ---# def __setattr__(self, attr, val): self.__dict__[attr] = val # # Methods # # ---# def aad(self): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'aad' (Average Absolute Deviation). Returns ------- float aad See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.aggregate(["aad"]).values[self.alias][0] # ---# def abs(self): """ --------------------------------------------------------------------------- Applies the absolute value function to the input vColumn. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].apply : Applies a function to the input vColumn. """ return self.apply(func="ABS({})") # ---# def add(self, x: float): """ --------------------------------------------------------------------------- Adds the input element to the vColumn. Parameters ---------- x: float If the vColumn type is date like (date, datetime ...), the parameter 'x' will represent the number of seconds, otherwise it will represent a number. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].apply : Applies a function to the input vColumn. """ check_types([("x", x, [int, float])]) if self.isdate(): return self.apply(func="TIMESTAMPADD(SECOND, {}, {})".format(x, "{}")) else: return self.apply(func="{} + ({})".format("{}", x)) # ---# def add_copy(self, name: str): """ --------------------------------------------------------------------------- Adds a copy vColumn to the parent vDataFrame. Parameters ---------- name: str Name of the copy. Returns ------- vDataFrame self.parent See Also -------- vDataFrame.eval : Evaluates a customized expression. """ check_types([("name", name, [str])]) name = quote_ident(name.replace('"', "_")) assert name.replace('"', ""), EmptyParameter( "The parameter 'name' must not be empty" ) assert not (self.parent.is_colname_in(name)), NameError( f"A vColumn has already the alias {name}.\nBy changing the parameter 'name', you'll be able to solve this issue." ) new_vColumn = vColumn( name, parent=self.parent, transformations=[item for item in self.transformations], catalog=self.catalog, ) setattr(self.parent, name, new_vColumn) setattr(self.parent, name[1:-1], new_vColumn) self.parent._VERTICAPY_VARIABLES_["columns"] += [name] self.parent.__add_to_history__( "[Add Copy]: A copy of the vColumn {} named {} was added to the vDataFrame.".format( self.alias, name ) ) return self.parent # ---# def aggregate(self, func: list): """ --------------------------------------------------------------------------- Aggregates the vColumn using the input functions. Parameters ---------- func: list List of the different aggregation. aad : average absolute deviation approx_unique : approximative cardinality count : number of non-missing elements cvar : conditional value at risk dtype : vColumn type iqr : interquartile range kurtosis : kurtosis jb : Jarque-Bera index mad : median absolute deviation max : maximum mean : average median : median min : minimum mode : most occurent element percent : percent of non-missing elements q% : q quantile (ex: 50% for the median) prod : product range : difference between the max and the min sem : standard error of the mean skewness : skewness sum : sum std : standard deviation topk : kth most occurent element (ex: top1 for the mode) topk_percent : kth most occurent element density unique : cardinality (count distinct) var : variance Other aggregations could work if it is part of the DB version you are using. Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. See Also -------- vDataFrame.analytic : Adds a new vColumn to the vDataFrame by using an advanced analytical function on a specific vColumn. """ return self.parent.aggregate(func=func, columns=[self.alias]).transpose() agg = aggregate # ---# def apply(self, func: str, copy_name: str = ""): """ --------------------------------------------------------------------------- Applies a function to the vColumn. Parameters ---------- func: str, Function in pure SQL used to transform the vColumn. The function variable must be composed of two flower brackets {}. For example to apply the function: x -> x^2 + 2 use "POWER({}, 2) + 2". copy_name: str, optional If not empty, a copy will be created using the input Name. Returns ------- vDataFrame self.parent See Also -------- vDataFrame.apply : Applies functions to the input vColumns. vDataFrame.applymap : Applies a function to all the vColumns. vDataFrame.eval : Evaluates a customized expression. """ if isinstance(func, str_sql): func = str(func) check_types([("func", func, [str]), ("copy_name", copy_name, [str])]) try: try: ctype = get_data_types( "SELECT {} AS apply_test_feature FROM {} WHERE {} IS NOT NULL LIMIT 0".format( func.replace("{}", self.alias), self.parent.__genSQL__(), self.alias, ), "apply_test_feature", ) except: ctype = get_data_types( "SELECT {} AS apply_test_feature FROM {} WHERE {} IS NOT NULL LIMIT 0".format( func.replace("{}", self.alias), self.parent.__genSQL__(), self.alias, ), "apply_test_feature", ) category = get_category_from_vertica_type(ctype=ctype) all_cols, max_floor = self.parent.get_columns(), 0 for column in all_cols: try: if (quote_ident(column) in func) or ( re.search( re.compile("\\b{}\\b".format(column.replace('"', ""))), func ) ): max_floor = max( len(self.parent[column].transformations), max_floor ) except: pass max_floor -= len(self.transformations) if copy_name: self.add_copy(name=copy_name) for k in range(max_floor): self.parent[copy_name].transformations += [ ("{}", self.ctype(), self.category()) ] self.parent[copy_name].transformations += [(func, ctype, category)] self.parent[copy_name].catalog = self.catalog self.parent.__add_to_history__( "[Apply]: The vColumn '{}' was transformed with the func 'x -> {}'.".format( copy_name.replace('"', ""), func.replace("{}", "x"), ) ) else: for k in range(max_floor): self.transformations += [("{}", self.ctype(), self.category())] self.transformations += [(func, ctype, category)] self.parent.__update_catalog__(erase=True, columns=[self.alias]) self.parent.__add_to_history__( "[Apply]: The vColumn '{}' was transformed with the func 'x -> {}'.".format( self.alias.replace('"', ""), func.replace("{}", "x"), ) ) return self.parent except Exception as e: raise QueryError( "{}\nError when applying the func 'x -> {}' to '{}'".format( e, func.replace("{}", "x"), self.alias.replace('"', "") ) ) # ---# def apply_fun(self, func: str, x: float = 2): """ --------------------------------------------------------------------------- Applies a default function to the vColumn. Parameters ---------- func: str Function to use to transform the vColumn. abs : absolute value acos : trigonometric inverse cosine asin : trigonometric inverse sine atan : trigonometric inverse tangent cbrt : cube root ceil : value up to the next whole number cos : trigonometric cosine cosh : hyperbolic cosine cot : trigonometric cotangent exp : exponential function floor : value down to the next whole number ln : natural logarithm log : logarithm log10 : base 10 logarithm mod : remainder of a division operation pow : number raised to the power of another number round : rounds a value to a specified number of decimal places sign : arithmetic sign sin : trigonometric sine sinh : hyperbolic sine sqrt : arithmetic square root tan : trigonometric tangent tanh : hyperbolic tangent x: int/float, optional If the function has two arguments (example, power or mod), 'x' represents the second argument. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].apply : Applies a function to the vColumn. """ check_types( [ ( "func", func, [ "abs", "acos", "asin", "atan", "cbrt", "ceil", "cos", "cosh", "cot", "exp", "floor", "ln", "log", "log10", "mod", "pow", "round", "sign", "sin", "sinh", "sqrt", "tan", "tanh", ], ), ("x", x, [int, float]), ] ) if func not in ("log", "mod", "pow", "round"): expr = "{}({})".format(func.upper(), "{}") else: expr = "{}({}, {})".format(func.upper(), "{}", x) return self.apply(func=expr) # ---# def astype(self, dtype: str): """ --------------------------------------------------------------------------- Converts the vColumn to the input type. Parameters ---------- dtype: str New type. Returns ------- vDataFrame self.parent See Also -------- vDataFrame.astype : Converts the vColumns to the input type. """ check_types([("dtype", dtype, [str])]) try: query = "SELECT {}::{} AS {} FROM {} WHERE {} IS NOT NULL LIMIT 20".format( self.alias, dtype, self.alias, self.parent.__genSQL__(), self.alias ) executeSQL(query, title="Testing the Type casting.") self.transformations += [ ( "{}::{}".format("{}", dtype), dtype, get_category_from_vertica_type(ctype=dtype), ) ] self.parent.__add_to_history__( "[AsType]: The vColumn {} was converted to {}.".format( self.alias, dtype ) ) return self.parent except Exception as e: raise ConversionError( "{}\nThe vColumn {} can not be converted to {}".format( e, self.alias, dtype ) ) # ---# def avg(self): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'avg' (Average). Returns ------- float average See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.aggregate(["avg"]).values[self.alias][0] mean = avg # ---# def bar( self, method: str = "density", of: str = "", max_cardinality: int = 6, nbins: int = 0, h: float = 0, ax=None, **style_kwds, ): """ --------------------------------------------------------------------------- Draws the bar chart of the vColumn based on an aggregation. Parameters ---------- method: str, optional The method to use to aggregate the data. count : Number of elements. density : Percentage of the distribution. mean : Average of the vColumn 'of'. min : Minimum of the vColumn 'of'. max : Maximum of the vColumn 'of'. sum : Sum of the vColumn 'of'. q% : q Quantile of the vColumn 'of' (ex: 50% to get the median). It can also be a cutomized aggregation (ex: AVG(column1) + 5). of: str, optional The vColumn to use to compute the aggregation. max_cardinality: int, optional Maximum number of the vColumn distinct elements to be used as categorical (No h will be picked or computed) nbins: int, optional Number of nbins. If empty, an optimized number of nbins will be computed. h: float, optional Interval width of the bar. If empty, an optimized h will be computed. ax: Matplotlib axes object, optional The axes to plot on. **style_kwds Any optional parameter to pass to the Matplotlib functions. Returns ------- ax Matplotlib axes object See Also -------- vDataFrame[].hist : Draws the histogram of the vColumn based on an aggregation. """ check_types( [ ("method", method, [str]), ("of", of, [str]), ("max_cardinality", max_cardinality, [int, float]), ("nbins", nbins, [int, float]), ("h", h, [int, float]), ] ) if of: self.parent.are_namecols_in(of) of = self.parent.format_colnames(of) from verticapy.plot import bar return bar(self, method, of, max_cardinality, nbins, h, ax=ax, **style_kwds) # ---# def boxplot( self, by: str = "", h: float = 0, max_cardinality: int = 8, cat_priority: list = [], ax=None, **style_kwds, ): """ --------------------------------------------------------------------------- Draws the box plot of the vColumn. Parameters ---------- by: str, optional vColumn to use to partition the data. h: float, optional Interval width if the vColumn is numerical or of type date like. Optimized h will be computed if the parameter is empty or invalid. max_cardinality: int, optional Maximum number of vColumn distinct elements to be used as categorical. The less frequent elements will be gathered together to create a new category : 'Others'. cat_priority: list, optional List of the different categories to consider when drawing the box plot. The other categories will be filtered. ax: Matplotlib axes object, optional The axes to plot on. **style_kwds Any optional parameter to pass to the Matplotlib functions. Returns ------- ax Matplotlib axes object See Also -------- vDataFrame.boxplot : Draws the Box Plot of the input vColumns. """ if isinstance(cat_priority, str) or not (isinstance(cat_priority, Iterable)): cat_priority = [cat_priority] check_types( [ ("by", by, [str]), ("max_cardinality", max_cardinality, [int, float]), ("h", h, [int, float]), ("cat_priority", cat_priority, [list]), ] ) if by: self.parent.are_namecols_in(by) by = self.parent.format_colnames(by) from verticapy.plot import boxplot return boxplot(self, by, h, max_cardinality, cat_priority, ax=ax, **style_kwds) # ---# def category(self): """ --------------------------------------------------------------------------- Returns the category of the vColumn. The category will be one of the following: date / int / float / text / binary / spatial / uuid / undefined Returns ------- str vColumn category. See Also -------- vDataFrame[].ctype : Returns the vColumn database type. """ return self.transformations[-1][2] # ---# def clip(self, lower=None, upper=None): """ --------------------------------------------------------------------------- Clips the vColumn by transforming the values lesser than the lower bound to the lower bound itself and the values higher than the upper bound to the upper bound itself. Parameters ---------- lower: float, optional Lower bound. upper: float, optional Upper bound. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].fill_outliers : Fills the vColumn outliers using the input method. """ check_types([("lower", lower, [float, int]), ("upper", upper, [float, int])]) assert (lower != None) or (upper != None), ParameterError( "At least 'lower' or 'upper' must have a numerical value" ) lower_when = ( "WHEN {} < {} THEN {} ".format("{}", lower, lower) if (isinstance(lower, (float, int))) else "" ) upper_when = ( "WHEN {} > {} THEN {} ".format("{}", upper, upper) if (isinstance(upper, (float, int))) else "" ) func = "(CASE {}{}ELSE {} END)".format(lower_when, upper_when, "{}") self.apply(func=func) return self.parent # ---# def count(self): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'count' (Number of non-Missing elements). Returns ------- int number of non-Missing elements. See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.aggregate(["count"]).values[self.alias][0] # ---# def cut( self, breaks: list, labels: list = [], include_lowest: bool = True, right: bool = True, ): """ --------------------------------------------------------------------------- Discretizes the vColumn using the input list. Parameters ---------- breaks: list List of values used to cut the vColumn. labels: list, optional Labels used to name the new categories. If empty, names will be generated. include_lowest: bool, optional If set to True, the lowest element of the list will be included. right: bool, optional How the intervals should be closed. If set to True, the intervals will be closed on the right. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].apply : Applies a function to the input vColumn. """ check_types( [ ("breaks", breaks, [list]), ("labels", labels, [list]), ("include_lowest", include_lowest, [bool]), ("right", right, [bool]), ] ) assert self.isnum() or self.isdate(), TypeError( "cut only works on numerical / date-like vColumns." ) assert len(breaks) >= 2, ParameterError( "Length of parameter 'breaks' must be greater or equal to 2." ) assert len(breaks) == len(labels) + 1 or not (labels), ParameterError( "Length of parameter breaks must be equal to the length of parameter 'labels' + 1 or parameter 'labels' must be empty." ) conditions, column = [], self.alias for idx in range(len(breaks) - 1): first_elem, second_elem = breaks[idx], breaks[idx + 1] if right: op1, op2, close_l, close_r = "<", "<=", "]", "]" else: op1, op2, close_l, close_r = "<=", "<", "[", "[" if idx == 0 and include_lowest: op1, close_l = "<=", "[" elif idx == 0: op1, close_l = "<", "]" if labels: label = labels[idx] else: label = f"{close_l}{first_elem};{second_elem}{close_r}" conditions += [ f"'{first_elem}' {op1} {column} AND {column} {op2} '{second_elem}' THEN '{label}'" ] expr = "CASE WHEN " + " WHEN ".join(conditions) + " END" self.apply(func=expr) # ---# def ctype(self): """ --------------------------------------------------------------------------- Returns the vColumn DB type. Returns ------- str vColumn DB type. """ return self.transformations[-1][1].lower() dtype = ctype # ---# def date_part(self, field: str): """ --------------------------------------------------------------------------- Extracts a specific TS field from the vColumn (only if the vColumn type is date like). The vColumn will be transformed. Parameters ---------- field: str The field to extract. It must be one of the following: CENTURY / DAY / DECADE / DOQ / DOW / DOY / EPOCH / HOUR / ISODOW / ISOWEEK / ISOYEAR / MICROSECONDS / MILLENNIUM / MILLISECONDS / MINUTE / MONTH / QUARTER / SECOND / TIME ZONE / TIMEZONE_HOUR / TIMEZONE_MINUTE / WEEK / YEAR Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].slice : Slices the vColumn using a time series rule. """ return self.apply(func="DATE_PART('{}', {})".format(field, "{}")) # ---# def decode(self, *argv): """ --------------------------------------------------------------------------- Encodes the vColumn using a user-defined encoding. Parameters ---------- argv: object Any amount of expressions. The expression generated will look like: even: CASE ... WHEN vColumn = argv[2 * i] THEN argv[2 * i + 1] ... END odd : CASE ... WHEN vColumn = argv[2 * i] THEN argv[2 * i + 1] ... ELSE argv[n] END Returns ------- vDataFrame self.parent See Also -------- vDataFrame.case_when : Creates a new feature by evaluating some conditions. vDataFrame[].discretize : Discretizes the vColumn. vDataFrame[].label_encode : Encodes the vColumn with Label Encoding. vDataFrame[].get_dummies : Encodes the vColumn with One-Hot Encoding. vDataFrame[].mean_encode : Encodes the vColumn using the mean encoding of a response. """ import verticapy.stats as st return self.apply(func=st.decode(str_sql("{}"), *argv)) # ---# def density( self, by: str = "", bandwidth: float = 1.0, kernel: str = "gaussian", nbins: int = 200, xlim: tuple = None, ax=None, **style_kwds, ): """ --------------------------------------------------------------------------- Draws the vColumn Density Plot. Parameters ---------- by: str, optional vColumn to use to partition the data. bandwidth: float, optional The bandwidth of the kernel. kernel: str, optional The method used for the plot. gaussian : Gaussian kernel. logistic : Logistic kernel. sigmoid : Sigmoid kernel. silverman : Silverman kernel. nbins: int, optional Maximum number of points to use to evaluate the approximate density function. Increasing this parameter will increase the precision but will also increase the time of the learning and scoring phases. xlim: tuple, optional Set the x limits of the current axes. ax: Matplotlib axes object, optional The axes to plot on. **style_kwds Any optional parameter to pass to the Matplotlib functions. Returns ------- ax Matplotlib axes object See Also -------- vDataFrame[].hist : Draws the histogram of the vColumn based on an aggregation. """ check_types( [ ("by", by, [str]), ("kernel", kernel, ["gaussian", "logistic", "sigmoid", "silverman"]), ("bandwidth", bandwidth, [int, float]), ("nbins", nbins, [float, int]), ] ) if by: self.parent.are_namecols_in(by) by = self.parent.format_colnames(by) from verticapy.plot import gen_colors from matplotlib.lines import Line2D colors = gen_colors() if not xlim: xmin = self.min() xmax = self.max() else: xmin, xmax = xlim custom_lines = [] columns = self.parent[by].distinct() for idx, column in enumerate(columns): param = {"color": colors[idx % len(colors)]} ax = self.parent.search( "{} = '{}'".format(self.parent[by].alias, column) )[self.alias].density( bandwidth=bandwidth, kernel=kernel, nbins=nbins, xlim=(xmin, xmax), ax=ax, **updated_dict(param, style_kwds, idx), ) custom_lines += [ Line2D( [0], [0], color=updated_dict(param, style_kwds, idx)["color"], lw=4, ), ] ax.set_title("KernelDensity") ax.legend( custom_lines, columns, title=by, loc="center left", bbox_to_anchor=[1, 0.5], ) ax.set_xlabel(self.alias) return ax kernel = kernel.lower() from verticapy.learn.neighbors import KernelDensity schema = verticapy.options["temp_schema"] if not (schema): schema = "public" name = gen_tmp_name(schema=schema, name="kde") if isinstance(xlim, (tuple, list)): xlim_tmp = [xlim] else: xlim_tmp = [] model = KernelDensity( name, bandwidth=bandwidth, kernel=kernel, nbins=nbins, xlim=xlim_tmp, store=False, ) try: result = model.fit(self.parent.__genSQL__(), [self.alias]).plot( ax=ax, **style_kwds ) model.drop() return result except: model.drop() raise # ---# def describe( self, method: str = "auto", max_cardinality: int = 6, numcol: str = "" ): """ --------------------------------------------------------------------------- Aggregates the vColumn using multiple statistical aggregations: min, max, median, unique... depending on the input method. Parameters ---------- method: str, optional The describe method. auto : Sets the method to 'numerical' if the vColumn is numerical , 'categorical' otherwise. categorical : Uses only categorical aggregations during the computation. cat_stats : Computes statistics of a numerical column for each vColumn category. In this case, the parameter 'numcol' must be defined. numerical : Uses popular numerical aggregations during the computation. max_cardinality: int, optional Cardinality threshold to use to determine if the vColumn will be considered as categorical. numcol: str, optional Numerical vColumn to use when the parameter method is set to 'cat_stats'. Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ check_types( [ ("method", method, ["auto", "numerical", "categorical", "cat_stats"]), ("max_cardinality", max_cardinality, [int, float]), ("numcol", numcol, [str]), ] ) method = method.lower() assert (method != "cat_stats") or (numcol), ParameterError( "The parameter 'numcol' must be a vDataFrame column if the method is 'cat_stats'" ) distinct_count, is_numeric, is_date = ( self.nunique(), self.isnum(), self.isdate(), ) if (is_date) and not (method == "categorical"): result = self.aggregate(["count", "min", "max"]) index = result.values["index"] result = result.values[self.alias] elif (method == "cat_stats") and (numcol != ""): numcol = self.parent.format_colnames(numcol) assert self.parent[numcol].category() in ("float", "int"), TypeError( "The column 'numcol' must be numerical" ) cast = "::int" if (self.parent[numcol].isbool()) else "" query, cat = [], self.distinct() if len(cat) == 1: lp, rp = "(", ")" else: lp, rp = "", "" for category in cat: tmp_query = """SELECT '{0}' AS 'index', COUNT({1}) AS count, 100 * COUNT({1}) / {2} AS percent, AVG({3}{4}) AS mean, STDDEV({3}{4}) AS std, MIN({3}{4}) AS min, APPROXIMATE_PERCENTILE ({3}{4} USING PARAMETERS percentile = 0.1) AS 'approx_10%', APPROXIMATE_PERCENTILE ({3}{4} USING PARAMETERS percentile = 0.25) AS 'approx_25%', APPROXIMATE_PERCENTILE ({3}{4} USING PARAMETERS percentile = 0.5) AS 'approx_50%', APPROXIMATE_PERCENTILE ({3}{4} USING PARAMETERS percentile = 0.75) AS 'approx_75%', APPROXIMATE_PERCENTILE ({3}{4} USING PARAMETERS percentile = 0.9) AS 'approx_90%', MAX({3}{4}) AS max FROM vdf_table""".format( category, self.alias, self.parent.shape()[0], numcol, cast, ) tmp_query += ( " WHERE {} IS NULL".format(self.alias) if (category in ("None", None)) else " WHERE {} = '{}'".format( bin_spatial_to_str(self.category(), self.alias), category, ) ) query += [lp + tmp_query + rp] query = "WITH vdf_table AS (SELECT * FROM {}) {}".format( self.parent.__genSQL__(), " UNION ALL ".join(query) ) title = "Describes the statics of {} partitioned by {}.".format( numcol, self.alias ) values = to_tablesample(query, title=title).values elif ( ((distinct_count < max_cardinality + 1) and (method != "numerical")) or not (is_numeric) or (method == "categorical") ): query = """(SELECT {0} || '', COUNT(*) FROM vdf_table GROUP BY {0} ORDER BY COUNT(*) DESC LIMIT {1})""".format( self.alias, max_cardinality ) if distinct_count > max_cardinality: query += ( "UNION ALL (SELECT 'Others', SUM(count) FROM (SELECT COUNT(*) AS count" " FROM vdf_table WHERE {0} IS NOT NULL GROUP BY {0} ORDER BY COUNT(*)" " DESC OFFSET {1}) VERTICAPY_SUBTABLE) ORDER BY count DESC" ).format(self.alias, max_cardinality + 1) query = "WITH vdf_table AS (SELECT * FROM {}) {}".format( self.parent.__genSQL__(), query ) query_result = executeSQL( query=query, title="Computing the descriptive statistics of {}.".format(self.alias), method="fetchall", ) result = [distinct_count, self.count()] + [item[1] for item in query_result] index = ["unique", "count"] + [item[0] for item in query_result] else: result = ( self.parent.describe( method="numerical", columns=[self.alias], unique=False ) .transpose() .values[self.alias] ) result = [distinct_count] + result index = [ "unique", "count", "mean", "std", "min", "approx_25%", "approx_50%", "approx_75%", "max", ] if method != "cat_stats": values = { "index": ["name", "dtype"] + index, "value": [self.alias, self.ctype()] + result, } if ((is_date) and not (method == "categorical")) or ( method == "is_numeric" ): self.parent.__update_catalog__({"index": index, self.alias: result}) for elem in values: for i in range(len(values[elem])): if isinstance(values[elem][i], decimal.Decimal): values[elem][i] = float(values[elem][i]) return tablesample(values) # ---# def discretize( self, method: str = "auto", h: float = 0, nbins: int = -1, k: int = 6, new_category: str = "Others", RFmodel_params: dict = {}, response: str = "", return_enum_trans: bool = False, ): """ --------------------------------------------------------------------------- Discretizes the vColumn using the input method. Parameters ---------- method: str, optional The method to use to discretize the vColumn. auto : Uses method 'same_width' for numerical vColumns, cast the other types to varchar. same_freq : Computes bins with the same number of elements. same_width : Computes regular width bins. smart : Uses the Random Forest on a response column to find the most relevant interval to use for the discretization. topk : Keeps the topk most frequent categories and merge the other into one unique category. h: float, optional The interval size to convert to use to convert the vColumn. If this parameter is equal to 0, an optimised interval will be computed. nbins: int, optional Number of bins used for the discretization (must be > 1) k: int, optional The integer k of the 'topk' method. new_category: str, optional The name of the merging category when using the 'topk' method. RFmodel_params: dict, optional Dictionary of the Random Forest model parameters used to compute the best splits when 'method' is set to 'smart'. A RF Regressor will be trained if the response is numerical (except ints and bools), a RF Classifier otherwise. Example: Write {"n_estimators": 20, "max_depth": 10} to train a Random Forest with 20 trees and a maximum depth of 10. response: str, optional Response vColumn when method is set to 'smart'. return_enum_trans: bool, optional Returns the transformation instead of the vDataFrame parent and do not apply it. This parameter is very useful for testing to be able to look at the final transformation. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].decode : Encodes the vColumn with user defined Encoding. vDataFrame[].get_dummies : Encodes the vColumn with One-Hot Encoding. vDataFrame[].label_encode : Encodes the vColumn with Label Encoding. vDataFrame[].mean_encode : Encodes the vColumn using the mean encoding of a response. """ check_types( [ ("RFmodel_params", RFmodel_params, [dict]), ("return_enum_trans", return_enum_trans, [bool]), ("h", h, [int, float]), ("response", response, [str]), ("nbins", nbins, [int, float]), ( "method", method, ["auto", "smart", "same_width", "same_freq", "topk"], ), ("return_enum_trans", return_enum_trans, [bool]), ] ) method = method.lower() if self.isnum() and method == "smart": schema = verticapy.options["temp_schema"] if not (schema): schema = "public" tmp_view_name = gen_tmp_name(schema=schema, name="view") tmp_model_name = gen_tmp_name(schema=schema, name="model") assert nbins >= 2, ParameterError( "Parameter 'nbins' must be greater or equals to 2 in case of discretization using the method 'smart'." ) assert response, ParameterError( "Parameter 'response' can not be empty in case of discretization using the method 'smart'." ) self.parent.are_namecols_in(response) response = self.parent.format_colnames(response) drop(tmp_view_name, method="view") self.parent.to_db(tmp_view_name) from verticapy.learn.ensemble import ( RandomForestClassifier, RandomForestRegressor, ) drop(tmp_model_name, method="model") if self.parent[response].category() == "float": model = RandomForestRegressor(tmp_model_name) else: model = RandomForestClassifier(tmp_model_name) model.set_params({"n_estimators": 20, "max_depth": 8, "nbins": 100}) model.set_params(RFmodel_params) parameters = model.get_params() try: model.fit(tmp_view_name, [self.alias], response) query = [ "(SELECT READ_TREE(USING PARAMETERS model_name = '{}', tree_id = {}, format = 'tabular'))".format( tmp_model_name, i ) for i in range(parameters["n_estimators"]) ] query = "SELECT split_value FROM (SELECT split_value, MAX(weighted_information_gain) FROM ({}) VERTICAPY_SUBTABLE WHERE split_value IS NOT NULL GROUP BY 1 ORDER BY 2 DESC LIMIT {}) VERTICAPY_SUBTABLE ORDER BY split_value::float".format( " UNION ALL ".join(query), nbins - 1 ) result = executeSQL( query=query, title="Computing the optimized histogram nbins using Random Forest.", method="fetchall", ) result = [elem[0] for elem in result] except: drop(tmp_view_name, method="view") drop(tmp_model_name, method="model") raise drop(tmp_view_name, method="view") drop(tmp_model_name, method="model") result = [self.min()] + result + [self.max()] elif method == "topk": assert k >= 2, ParameterError( "Parameter 'k' must be greater or equals to 2 in case of discretization using the method 'topk'" ) distinct = self.topk(k).values["index"] trans = ( "(CASE WHEN {} IN ({}) THEN {} || '' ELSE '{}' END)".format( bin_spatial_to_str(self.category()), ", ".join( [ "'{}'".format(str(elem).replace("'", "''")) for elem in distinct ] ), bin_spatial_to_str(self.category()), new_category.replace("'", "''"), ), "varchar", "text", ) elif self.isnum() and method == "same_freq": assert nbins >= 2, ParameterError( "Parameter 'nbins' must be greater or equals to 2 in case of discretization using the method 'same_freq'" ) count = self.count() nb = int(float(count / int(nbins))) assert nb != 0, Exception( "Not enough values to compute the Equal Frequency discretization" ) total, query, nth_elems = nb, [], [] while total < int(float(count / int(nbins))) * int(nbins): nth_elems += [str(total)] total += nb where = "WHERE _verticapy_row_nb_ IN ({})".format( ", ".join(["1"] + nth_elems + [str(count)]) ) query = "SELECT {} FROM (SELECT {}, ROW_NUMBER() OVER (ORDER BY {}) AS _verticapy_row_nb_ FROM {} WHERE {} IS NOT NULL) VERTICAPY_SUBTABLE {}".format( self.alias, self.alias, self.alias, self.parent.__genSQL__(), self.alias, where, ) result = executeSQL( query=query, title="Computing the equal frequency histogram bins.", method="fetchall", ) result = [elem[0] for elem in result] elif self.isnum() and method in ("same_width", "auto"): if not (h) or h <= 0: if nbins <= 0: h = self.numh() else: h = (self.max() - self.min()) * 1.01 / nbins if h > 0.01: h = round(h, 2) elif h > 0.0001: h = round(h, 4) elif h > 0.000001: h = round(h, 6) if self.category() == "int": h = int(max(math.floor(h), 1)) floor_end = -1 if (self.category() == "int") else "" if (h > 1) or (self.category() == "float"): trans = ( "'[' || FLOOR({} / {}) * {} || ';' || (FLOOR({} / {}) * {} + {}{}) || ']'".format( "{}", h, h, "{}", h, h, h, floor_end ), "varchar", "text", ) else: trans = ("FLOOR({}) || ''", "varchar", "text") else: trans = ("{} || ''", "varchar", "text") if (self.isnum() and method == "same_freq") or ( self.isnum() and method == "smart" ): n = len(result) trans = "(CASE " for i in range(1, n): trans += "WHEN {} BETWEEN {} AND {} THEN '[{};{}]' ".format( "{}", result[i - 1], result[i], result[i - 1], result[i] ) trans += " ELSE NULL END)" trans = (trans, "varchar", "text") if return_enum_trans: return trans else: self.transformations += [trans] sauv = {} for elem in self.catalog: sauv[elem] = self.catalog[elem] self.parent.__update_catalog__(erase=True, columns=[self.alias]) try: if "count" in sauv: self.catalog["count"] = sauv["count"] self.catalog["percent"] = ( 100 * sauv["count"] / self.parent.shape()[0] ) except: pass self.parent.__add_to_history__( "[Discretize]: The vColumn {} was discretized.".format(self.alias) ) return self.parent # ---# def distinct(self, **kwargs): """ --------------------------------------------------------------------------- Returns the distinct categories of the vColumn. Returns ------- list Distinct caterogies of the vColumn. See Also -------- vDataFrame.topk : Returns the vColumn most occurent elements. """ if "agg" not in kwargs: query = "SELECT {} AS {} FROM {} WHERE {} IS NOT NULL GROUP BY {} ORDER BY {}".format( bin_spatial_to_str(self.category(), self.alias), self.alias, self.parent.__genSQL__(), self.alias, self.alias, self.alias, ) else: query = "SELECT {} FROM (SELECT {} AS {}, {} AS verticapy_agg FROM {} WHERE {} IS NOT NULL GROUP BY 1) x ORDER BY verticapy_agg DESC".format( self.alias, bin_spatial_to_str(self.category(), self.alias), self.alias, kwargs["agg"], self.parent.__genSQL__(), self.alias, ) query_result = executeSQL( query=query, title="Computing the distinct categories of {}.".format(self.alias), method="fetchall", ) return [item for sublist in query_result for item in sublist] # ---# def div(self, x: float): """ --------------------------------------------------------------------------- Divides the vColumn by the input element. Parameters ---------- x: float Input number. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].apply : Applies a function to the input vColumn. """ check_types([("x", x, [int, float])]) assert x != 0, ValueError("Division by 0 is forbidden !") return self.apply(func="{} / ({})".format("{}", x)) # ---# def drop(self, add_history: bool = True): """ --------------------------------------------------------------------------- Drops the vColumn from the vDataFrame. Dropping a vColumn means simply not selecting it in the final generated SQL code. Note: Dropping a vColumn can make the vDataFrame "heavier" if it is used to compute other vColumns. Parameters ---------- add_history: bool, optional If set to True, the information will be stored in the vDataFrame history. Returns ------- vDataFrame self.parent See Also -------- vDataFrame.drop: Drops the input vColumns from the vDataFrame. """ check_types([("add_history", add_history, [bool])]) try: parent = self.parent force_columns = [ column for column in self.parent._VERTICAPY_VARIABLES_["columns"] ] force_columns.remove(self.alias) executeSQL( "SELECT * FROM {} LIMIT 10".format( self.parent.__genSQL__(force_columns=force_columns) ), print_time_sql=False, ) self.parent._VERTICAPY_VARIABLES_["columns"].remove(self.alias) delattr(self.parent, self.alias) except: self.parent._VERTICAPY_VARIABLES_["exclude_columns"] += [self.alias] if add_history: self.parent.__add_to_history__( "[Drop]: vColumn {} was deleted from the vDataFrame.".format(self.alias) ) return parent # ---# def drop_outliers( self, threshold: float = 4.0, use_threshold: bool = True, alpha: float = 0.05 ): """ --------------------------------------------------------------------------- Drops outliers in the vColumn. Parameters ---------- threshold: float, optional Uses the Gaussian distribution to identify outliers. After normalizing the data (Z-Score), if the absolute value of the record is greater than the threshold, it will be considered as an outlier. use_threshold: bool, optional Uses the threshold instead of the 'alpha' parameter. alpha: float, optional Number representing the outliers threshold. Values lesser than quantile(alpha) or greater than quantile(1-alpha) will be dropped. Returns ------- vDataFrame self.parent See Also -------- vDataFrame.fill_outliers : Fills the outliers in the vColumn. vDataFrame.outliers : Adds a new vColumn labeled with 0 and 1 (1 meaning global outlier). """ check_types( [ ("alpha", alpha, [int, float]), ("use_threshold", use_threshold, [bool]), ("threshold", threshold, [int, float]), ] ) if use_threshold: result = self.aggregate(func=["std", "avg"]).transpose().values self.parent.filter( "ABS({} - {}) / {} < {}".format( self.alias, result["avg"][0], result["std"][0], threshold ) ) else: p_alpha, p_1_alpha = ( self.parent.quantile([alpha, 1 - alpha], [self.alias]) .transpose() .values[self.alias] ) self.parent.filter( "({} BETWEEN {} AND {})".format(self.alias, p_alpha, p_1_alpha) ) return self.parent # ---# def dropna(self): """ --------------------------------------------------------------------------- Filters the vDataFrame where the vColumn is missing. Returns ------- vDataFrame self.parent See Also -------- vDataFrame.filter: Filters the data using the input expression. """ self.parent.filter("{} IS NOT NULL".format(self.alias)) return self.parent # ---# def fill_outliers( self, method: str = "winsorize", threshold: float = 4.0, use_threshold: bool = True, alpha: float = 0.05, ): """ --------------------------------------------------------------------------- Fills the vColumns outliers using the input method. Parameters ---------- method: str, optional Method to use to fill the vColumn outliers. mean : Replaces the upper and lower outliers by their respective average. null : Replaces the outliers by the NULL value. winsorize : Clips the vColumn using as lower bound quantile(alpha) and as upper bound quantile(1-alpha) if 'use_threshold' is set to False else the lower and upper ZScores. threshold: float, optional Uses the Gaussian distribution to define the outliers. After normalizing the data (Z-Score), if the absolute value of the record is greater than the threshold it will be considered as an outlier. use_threshold: bool, optional Uses the threshold instead of the 'alpha' parameter. alpha: float, optional Number representing the outliers threshold. Values lesser than quantile(alpha) or greater than quantile(1-alpha) will be filled. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].drop_outliers : Drops outliers in the vColumn. vDataFrame.outliers : Adds a new vColumn labeled with 0 and 1 (1 meaning global outlier). """ if isinstance(method, str): method = method.lower() check_types( [ ("method", method, ["winsorize", "null", "mean"]), ("alpha", alpha, [int, float]), ("use_threshold", use_threshold, [bool]), ("threshold", threshold, [int, float]), ] ) if use_threshold: result = self.aggregate(func=["std", "avg"]).transpose().values p_alpha, p_1_alpha = ( -threshold * result["std"][0] + result["avg"][0], threshold * result["std"][0] + result["avg"][0], ) else: query = "SELECT PERCENTILE_CONT({}) WITHIN GROUP (ORDER BY {}) OVER (), PERCENTILE_CONT(1 - {}) WITHIN GROUP (ORDER BY {}) OVER () FROM {} LIMIT 1".format( alpha, self.alias, alpha, self.alias, self.parent.__genSQL__() ) p_alpha, p_1_alpha = executeSQL( query=query, title="Computing the quantiles of {}.".format(self.alias), method="fetchrow", ) if method == "winsorize": self.clip(lower=p_alpha, upper=p_1_alpha) elif method == "null": self.apply( func="(CASE WHEN ({} BETWEEN {} AND {}) THEN {} ELSE NULL END)".format( "{}", p_alpha, p_1_alpha, "{}" ) ) elif method == "mean": query = "WITH vdf_table AS (SELECT * FROM {}) (SELECT AVG({}) FROM vdf_table WHERE {} < {}) UNION ALL (SELECT AVG({}) FROM vdf_table WHERE {} > {})".format( self.parent.__genSQL__(), self.alias, self.alias, p_alpha, self.alias, self.alias, p_1_alpha, ) mean_alpha, mean_1_alpha = [ item[0] for item in executeSQL( query=query, title="Computing the average of the {}'s lower and upper outliers.".format( self.alias ), method="fetchall", ) ] if mean_alpha == None: mean_alpha = "NULL" if mean_1_alpha == None: mean_alpha = "NULL" self.apply( func="(CASE WHEN {} < {} THEN {} WHEN {} > {} THEN {} ELSE {} END)".format( "{}", p_alpha, mean_alpha, "{}", p_1_alpha, mean_1_alpha, "{}" ) ) return self.parent # ---# def fillna( self, val=None, method: str = "auto", expr: str = "", by: list = [], order_by: list = [], ): """ --------------------------------------------------------------------------- Fills missing elements in the vColumn with a user-specified rule. Parameters ---------- val: int/float/str, optional Value to use to impute the vColumn. method: dict, optional Method to use to impute the missing values. auto : Mean for the numerical and Mode for the categorical vColumns. bfill : Back Propagation of the next element (Constant Interpolation). ffill : Propagation of the first element (Constant Interpolation). mean : Average. median : median. mode : mode (most occurent element). 0ifnull : 0 when the vColumn is null, 1 otherwise. expr: str, optional SQL expression. by: list, optional vColumns used in the partition. order_by: list, optional List of the vColumns to use to sort the data when using TS methods. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].dropna : Drops the vColumn missing values. """ if isinstance(by, str): by = [by] if isinstance(order_by, str): order_by = [order_by] check_types( [ ( "method", method, [ "auto", "mode", "0ifnull", "mean", "avg", "median", "ffill", "pad", "bfill", "backfill", ], ), ("expr", expr, [str]), ("by", by, [list]), ("order_by", order_by, [list]), ] ) method = method.lower() self.parent.are_namecols_in([elem for elem in order_by] + by) by = self.parent.format_colnames(by) if method == "auto": method = "mean" if (self.isnum() and self.nunique(True) > 6) else "mode" total = self.count() if (method == "mode") and (val == None): val = self.mode(dropna=True) if val == None: warning_message = "The vColumn {} has no mode (only missing values).\nNothing was filled.".format( self.alias ) warnings.warn(warning_message, Warning) return self.parent if isinstance(val, str): val = val.replace("'", "''") if val != None: new_column = "COALESCE({}, '{}')".format("{}", val) elif expr: new_column = "COALESCE({}, {})".format("{}", expr) elif method == "0ifnull": new_column = "DECODE({}, NULL, 0, 1)" elif method in ("mean", "avg", "median"): fun = "MEDIAN" if (method == "median") else "AVG" if by == []: if fun == "AVG": val = self.avg() elif fun == "MEDIAN": val = self.median() new_column = "COALESCE({}, {})".format("{}", val) elif (len(by) == 1) and (self.parent[by[0]].nunique() < 50): try: if fun == "MEDIAN": fun = "APPROXIMATE_MEDIAN" query = "SELECT {}, {}({}) FROM {} GROUP BY {};".format( by[0], fun, self.alias, self.parent.__genSQL__(), by[0] ) result = executeSQL( query, title="Computing the different aggregations.", method="fetchall", ) for idx, elem in enumerate(result): result[idx][0] = ( "NULL" if (elem[0] == None) else "'{}'".format(str(elem[0]).replace("'", "''")) ) result[idx][1] = "NULL" if (elem[1] == None) else str(elem[1]) new_column = "COALESCE({}, DECODE({}, {}, NULL))".format( "{}", by[0], ", ".join( ["{}, {}".format(elem[0], elem[1]) for elem in result] ), ) executeSQL( "SELECT {} FROM {} LIMIT 1".format( new_column.format(self.alias), self.parent.__genSQL__() ), print_time_sql=False, ) except: new_column = "COALESCE({}, {}({}) OVER (PARTITION BY {}))".format( "{}", fun, "{}", ", ".join(by) ) else: new_column = "COALESCE({}, {}({}) OVER (PARTITION BY {}))".format( "{}", fun, "{}", ", ".join(by) ) elif method in ("ffill", "pad", "bfill", "backfill"): assert order_by, ParameterError( "If the method is in ffill|pad|bfill|backfill then 'order_by' must be a list of at least one element to use to order the data" ) desc = "" if (method in ("ffill", "pad")) else " DESC" partition_by = ( "PARTITION BY {}".format( ", ".join([quote_ident(column) for column in by]) ) if (by) else "" ) order_by_ts = ", ".join([quote_ident(column) + desc for column in order_by]) new_column = "COALESCE({}, LAST_VALUE({} IGNORE NULLS) OVER ({} ORDER BY {}))".format( "{}", "{}", partition_by, order_by_ts ) if method in ("mean", "median") or isinstance(val, float): category, ctype = "float", "float" elif method == "0ifnull": category, ctype = "int", "bool" else: category, ctype = self.category(), self.ctype() copy_trans = [elem for elem in self.transformations] total = self.count() if method not in ["mode", "0ifnull"]: max_floor = 0 all_partition = by if method in ["ffill", "pad", "bfill", "backfill"]: all_partition += [elem for elem in order_by] for elem in all_partition: if len(self.parent[elem].transformations) > max_floor: max_floor = len(self.parent[elem].transformations) max_floor -= len(self.transformations) for k in range(max_floor): self.transformations += [("{}", self.ctype(), self.category())] self.transformations += [(new_column, ctype, category)] try: sauv = {} for elem in self.catalog: sauv[elem] = self.catalog[elem] self.parent.__update_catalog__(erase=True, columns=[self.alias]) total = abs(self.count() - total) except Exception as e: self.transformations = [elem for elem in copy_trans] raise QueryError("{}\nAn Error happened during the filling.".format(e)) if total > 0: try: if "count" in sauv: self.catalog["count"] = int(sauv["count"]) + total self.catalog["percent"] = ( 100 * (int(sauv["count"]) + total) / self.parent.shape()[0] ) except: pass total = int(total) conj = "s were " if total > 1 else " was " if verticapy.options["print_info"]: print("{} element{}filled.".format(total, conj)) self.parent.__add_to_history__( "[Fillna]: {} {} missing value{} filled.".format( total, self.alias, conj, ) ) else: if verticapy.options["print_info"]: print("Nothing was filled.") self.transformations = [elem for elem in copy_trans] for elem in sauv: self.catalog[elem] = sauv[elem] return self.parent # ---# def geo_plot(self, *args, **kwargs): """ --------------------------------------------------------------------------- Draws the Geospatial object. Parameters ---------- *args / **kwargs Any optional parameter to pass to the geopandas plot function. For more information, see: https://geopandas.readthedocs.io/en/latest/docs/reference/api/ geopandas.GeoDataFrame.plot.html Returns ------- ax Matplotlib axes object """ columns = [self.alias] check = True if len(args) > 0: column = args[0] elif "column" in kwargs: column = kwargs["column"] else: check = False if check: self.parent.are_namecols_in(column) column = self.parent.format_colnames(column) columns += [column] if not ("cmap" in kwargs): from verticapy.plot import gen_cmap kwargs["cmap"] = gen_cmap()[0] else: if not ("color" in kwargs): from verticapy.plot import gen_colors kwargs["color"] = gen_colors()[0] if not ("legend" in kwargs): kwargs["legend"] = True if not ("figsize" in kwargs): kwargs["figsize"] = (14, 10) return self.parent[columns].to_geopandas(self.alias).plot(*args, **kwargs) # ---# def get_dummies( self, prefix: str = "", prefix_sep: str = "_", drop_first: bool = True, use_numbers_as_suffix: bool = False, ): """ --------------------------------------------------------------------------- Encodes the vColumn with the One-Hot Encoding algorithm. Parameters ---------- prefix: str, optional Prefix of the dummies. prefix_sep: str, optional Prefix delimitor of the dummies. drop_first: bool, optional Drops the first dummy to avoid the creation of correlated features. use_numbers_as_suffix: bool, optional Uses numbers as suffix instead of the vColumns categories. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].decode : Encodes the vColumn with user defined Encoding. vDataFrame[].discretize : Discretizes the vColumn. vDataFrame[].label_encode : Encodes the vColumn with Label Encoding. vDataFrame[].mean_encode : Encodes the vColumn using the mean encoding of a response. """ check_types( [ ("prefix", prefix, [str]), ("prefix_sep", prefix_sep, [str]), ("drop_first", drop_first, [bool]), ("use_numbers_as_suffix", use_numbers_as_suffix, [bool]), ] ) distinct_elements = self.distinct() if distinct_elements not in ([0, 1], [1, 0]) or self.isbool(): all_new_features = [] prefix = ( self.alias.replace('"', "") + prefix_sep.replace('"', "_") if not (prefix) else prefix.replace('"', "_") + prefix_sep.replace('"', "_") ) n = 1 if drop_first else 0 for k in range(len(distinct_elements) - n): name = ( '"{}{}"'.format(prefix, k) if (use_numbers_as_suffix) else '"{}{}"'.format( prefix, str(distinct_elements[k]).replace('"', "_") ) ) assert not (self.parent.is_colname_in(name)), NameError( f"A vColumn has already the alias of one of the dummies ({name}).\n" "It can be the result of using previously the method on the vColumn " "or simply because of ambiguous columns naming.\nBy changing one of " "the parameters ('prefix', 'prefix_sep'), you'll be able to solve this " "issue." ) for k in range(len(distinct_elements) - n): name = ( '"{}{}"'.format(prefix, k) if (use_numbers_as_suffix) else '"{}{}"'.format( prefix, str(distinct_elements[k]).replace('"', "_") ) ) name = ( name.replace(" ", "_") .replace("/", "_") .replace(",", "_") .replace("'", "_") ) expr = "DECODE({}, '{}', 1, 0)".format( "{}", str(distinct_elements[k]).replace("'", "''") ) transformations = self.transformations + [(expr, "bool", "int")] new_vColumn = vColumn( name, parent=self.parent, transformations=transformations, catalog={ "min": 0, "max": 1, "count": self.parent.shape()[0], "percent": 100.0, "unique": 2, "approx_unique": 2, "prod": 0, }, ) setattr(self.parent, name, new_vColumn) setattr(self.parent, name.replace('"', ""), new_vColumn) self.parent._VERTICAPY_VARIABLES_["columns"] += [name] all_new_features += [name] conj = "s were " if len(all_new_features) > 1 else " was " self.parent.__add_to_history__( "[Get Dummies]: One hot encoder was applied to the vColumn {}\n{} feature{}created: {}".format( self.alias, len(all_new_features), conj, ", ".join(all_new_features) ) + "." ) return self.parent one_hot_encode = get_dummies # ---# def head(self, limit: int = 5): """ --------------------------------------------------------------------------- Returns the head of the vColumn. Parameters ---------- limit: int, optional Number of elements to display. Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. See Also -------- vDataFrame[].tail : Returns the a part of the vColumn. """ return self.iloc(limit=limit) # ---# def hist( self, method: str = "density", of: str = "", max_cardinality: int = 6, nbins: int = 0, h: float = 0, ax=None, **style_kwds, ): """ --------------------------------------------------------------------------- Draws the histogram of the vColumn based on an aggregation. Parameters ---------- method: str, optional The method to use to aggregate the data. count : Number of elements. density : Percentage of the distribution. mean : Average of the vColumn 'of'. min : Minimum of the vColumn 'of'. max : Maximum of the vColumn 'of'. sum : Sum of the vColumn 'of'. q% : q Quantile of the vColumn 'of' (ex: 50% to get the median). It can also be a cutomized aggregation (ex: AVG(column1) + 5). of: str, optional The vColumn to use to compute the aggregation. max_cardinality: int, optional Maximum number of the vColumn distinct elements to be used as categorical (No h will be picked or computed) nbins: int, optional Number of bins. If empty, an optimized number of bins will be computed. h: float, optional Interval width of the bar. If empty, an optimized h will be computed. ax: Matplotlib axes object, optional The axes to plot on. **style_kwds Any optional parameter to pass to the Matplotlib functions. Returns ------- ax Matplotlib axes object See Also -------- vDataFrame[].bar : Draws the Bar Chart of vColumn based on an aggregation. """ check_types( [ ("method", method, [str]), ("of", of, [str]), ("max_cardinality", max_cardinality, [int, float]), ("h", h, [int, float]), ("nbins", nbins, [int, float]), ] ) if of: self.parent.are_namecols_in(of) of = self.parent.format_colnames(of) from verticapy.plot import hist return hist(self, method, of, max_cardinality, nbins, h, ax=ax, **style_kwds) # ---# def iloc(self, limit: int = 5, offset: int = 0): """ --------------------------------------------------------------------------- Returns a part of the vColumn (delimited by an offset and a limit). Parameters ---------- limit: int, optional Number of elements to display. offset: int, optional Number of elements to skip. Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. See Also -------- vDataFrame[].head : Returns the head of the vColumn. vDataFrame[].tail : Returns the tail of the vColumn. """ check_types([("limit", limit, [int, float]), ("offset", offset, [int, float])]) if offset < 0: offset = max(0, self.parent.shape()[0] - limit) title = "Reads {}.".format(self.alias) tail = to_tablesample( "SELECT {} AS {} FROM {}{} LIMIT {} OFFSET {}".format( bin_spatial_to_str(self.category(), self.alias), self.alias, self.parent.__genSQL__(), self.parent.__get_last_order_by__(), limit, offset, ), title=title, ) tail.count = self.parent.shape()[0] tail.offset = offset tail.dtype[self.alias] = self.ctype() tail.name = self.alias return tail # ---# def isbool(self): """ --------------------------------------------------------------------------- Returns True if the vColumn is boolean, False otherwise. Returns ------- bool True if the vColumn is boolean. See Also -------- vDataFrame[].isdate : Returns True if the vColumn category is date. vDataFrame[].isnum : Returns True if the vColumn is numerical. """ return self.ctype().lower() in ("bool", "boolean") # ---# def isdate(self): """ --------------------------------------------------------------------------- Returns True if the vColumn category is date, False otherwise. Returns ------- bool True if the vColumn category is date. See Also -------- vDataFrame[].isbool : Returns True if the vColumn is boolean. vDataFrame[].isnum : Returns True if the vColumn is numerical. """ return self.category() == "date" # ---# def isin(self, val: list, *args): """ --------------------------------------------------------------------------- Looks if some specific records are in the vColumn and it returns the new vDataFrame of the search. Parameters ---------- val: list List of the different records. For example, to check if Badr and Fouad are in the vColumn. You can write the following list: ["Fouad", "Badr"] Returns ------- vDataFrame The vDataFrame of the search. See Also -------- vDataFrame.isin : Looks if some specific records are in the vDataFrame. """ if isinstance(val, str) or not (isinstance(val, Iterable)): val = [val] val += list(args) check_types([("val", val, [list])]) val = {self.alias: val} return self.parent.isin(val) # ---# def isnum(self): """ --------------------------------------------------------------------------- Returns True if the vColumn is numerical, False otherwise. Returns ------- bool True if the vColumn is numerical. See Also -------- vDataFrame[].isbool : Returns True if the vColumn is boolean. vDataFrame[].isdate : Returns True if the vColumn category is date. """ return self.category() in ("float", "int") # ---# def iv_woe(self, y: str, nbins: int = 10): """ --------------------------------------------------------------------------- Computes the Information Value (IV) / Weight Of Evidence (WOE) Table. It tells the predictive power of an independent variable in relation to the dependent variable. Parameters ---------- y: str Response vColumn. nbins: int, optional Maximum number of nbins used for the discretization (must be > 1) Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. See Also -------- vDataFrame.iv_woe : Computes the Information Value (IV) Table. """ check_types([("y", y, [str]), ("nbins", nbins, [int])]) self.parent.are_namecols_in(y) y = self.parent.format_colnames(y) assert self.parent[y].nunique() == 2, TypeError( "vColumn {} must be binary to use iv_woe.".format(y) ) response_cat = self.parent[y].distinct() response_cat.sort() assert response_cat == [0, 1], TypeError( "vColumn {} must be binary to use iv_woe.".format(y) ) self.parent[y].distinct() trans = self.discretize( method="same_width" if self.isnum() else "topk", nbins=nbins, k=nbins, new_category="Others", return_enum_trans=True, )[0].replace("{}", self.alias) query = "SELECT {} AS {}, {} AS ord, {}::int AS {} FROM {}".format( trans, self.alias, self.alias, y, y, self.parent.__genSQL__(), ) query = "SELECT {}, MIN(ord) AS ord, SUM(1 - {}) AS non_events, SUM({}) AS events FROM ({}) x GROUP BY 1".format( self.alias, y, y, query, ) query = "SELECT {}, ord, non_events, events, non_events / NULLIFZERO(SUM(non_events) OVER ()) AS pt_non_events, events / NULLIFZERO(SUM(events) OVER ()) AS pt_events FROM ({}) x".format( self.alias, query, ) query = "SELECT {} AS index, non_events, events, pt_non_events, pt_events, CASE WHEN non_events = 0 OR events = 0 THEN 0 ELSE ZEROIFNULL(LN(pt_non_events / NULLIFZERO(pt_events))) END AS woe, CASE WHEN non_events = 0 OR events = 0 THEN 0 ELSE (pt_non_events - pt_events) * ZEROIFNULL(LN(pt_non_events / NULLIFZERO(pt_events))) END AS iv FROM ({}) x ORDER BY ord".format( self.alias, query, ) title = "Computing WOE & IV of {} (response = {}).".format(self.alias, y) result = to_tablesample(query, title=title) result.values["index"] += ["total"] result.values["non_events"] += [sum(result["non_events"])] result.values["events"] += [sum(result["events"])] result.values["pt_non_events"] += [""] result.values["pt_events"] += [""] result.values["woe"] += [""] result.values["iv"] += [sum(result["iv"])] return result # ---# def kurtosis(self): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'kurtosis'. Returns ------- float kurtosis See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.aggregate(["kurtosis"]).values[self.alias][0] kurt = kurtosis # ---# def label_encode(self): """ --------------------------------------------------------------------------- Encodes the vColumn using a bijection from the different categories to [0, n - 1] (n being the vColumn cardinality). Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].decode : Encodes the vColumn with a user defined Encoding. vDataFrame[].discretize : Discretizes the vColumn. vDataFrame[].get_dummies : Encodes the vColumn with One-Hot Encoding. vDataFrame[].mean_encode : Encodes the vColumn using the mean encoding of a response. """ if self.category() in ["date", "float"]: warning_message = ( "label_encode is only available for categorical variables." ) warnings.warn(warning_message, Warning) else: distinct_elements = self.distinct() expr = ["DECODE({}"] text_info = "\n" for k in range(len(distinct_elements)): expr += [ "'{}', {}".format(str(distinct_elements[k]).replace("'", "''"), k) ] text_info += "\t{} => {}".format(distinct_elements[k], k) expr = ", ".join(expr) + ", {})".format(len(distinct_elements)) self.transformations += [(expr, "int", "int")] self.parent.__update_catalog__(erase=True, columns=[self.alias]) self.catalog["count"] = self.parent.shape()[0] self.catalog["percent"] = 100 self.parent.__add_to_history__( "[Label Encoding]: Label Encoding was applied to the vColumn {} using the following mapping:{}".format( self.alias, text_info ) ) return self.parent # ---# def mad(self): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'mad' (median absolute deviation). Returns ------- float mad See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.aggregate(["mad"]).values[self.alias][0] # ---# def max(self): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'max' (Maximum). Returns ------- float/str maximum See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.aggregate(["max"]).values[self.alias][0] # ---# def mean_encode(self, response: str): """ --------------------------------------------------------------------------- Encodes the vColumn using the average of the response partitioned by the different vColumn categories. Parameters ---------- response: str Response vColumn. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].decode : Encodes the vColumn using a user-defined encoding. vDataFrame[].discretize : Discretizes the vColumn. vDataFrame[].label_encode : Encodes the vColumn with Label Encoding. vDataFrame[].get_dummies : Encodes the vColumn with One-Hot Encoding. """ check_types([("response", response, [str])]) self.parent.are_namecols_in(response) response = self.parent.format_colnames(response) assert self.parent[response].isnum(), TypeError( "The response column must be numerical to use a mean encoding" ) max_floor = len(self.parent[response].transformations) - len( self.transformations ) for k in range(max_floor): self.transformations += [("{}", self.ctype(), self.category())] self.transformations += [ ("AVG({}) OVER (PARTITION BY {})".format(response, "{}"), "int", "float") ] self.parent.__update_catalog__(erase=True, columns=[self.alias]) self.parent.__add_to_history__( "[Mean Encode]: The vColumn {} was transformed using a mean encoding with {} as Response Column.".format( self.alias, response ) ) if verticapy.options["print_info"]: print("The mean encoding was successfully done.") return self.parent # ---# def median( self, approx: bool = True, ): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'median'. Parameters ---------- approx: bool, optional If set to True, the approximate median is returned. By setting this parameter to False, the function's performance can drastically decrease. Returns ------- float/str median See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.quantile(0.5, approx=approx) # ---# def memory_usage(self): """ --------------------------------------------------------------------------- Returns the vColumn memory usage. Returns ------- float vColumn memory usage (byte) See Also -------- vDataFrame.memory_usage : Returns the vDataFrame memory usage. """ import sys total = ( sys.getsizeof(self) + sys.getsizeof(self.alias) + sys.getsizeof(self.transformations) + sys.getsizeof(self.catalog) ) for elem in self.catalog: total += sys.getsizeof(elem) return total # ---# def min(self): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'min' (Minimum). Returns ------- float/str minimum See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.aggregate(["min"]).values[self.alias][0] # ---# def mode(self, dropna: bool = False, n: int = 1): """ --------------------------------------------------------------------------- Returns the nth most occurent element. Parameters ---------- dropna: bool, optional If set to True, NULL values will not be considered during the computation. n: int, optional Integer corresponding to the offset. For example, if n = 1 then this method will return the mode of the vColumn. Returns ------- str/float/int vColumn nth most occurent element. See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ check_types([("dropna", dropna, [bool]), ("n", n, [int, float])]) if n == 1: pre_comp = self.parent.__get_catalog_value__(self.alias, "top") if pre_comp != "VERTICAPY_NOT_PRECOMPUTED": if not (dropna) and (pre_comp != None): return pre_comp assert n >= 1, ParameterError("Parameter 'n' must be greater or equal to 1") where = " WHERE {} IS NOT NULL ".format(self.alias) if (dropna) else " " result = executeSQL( "SELECT {} FROM (SELECT {}, COUNT(*) AS _verticapy_cnt_ FROM {}{}GROUP BY {} ORDER BY _verticapy_cnt_ DESC LIMIT {}) VERTICAPY_SUBTABLE ORDER BY _verticapy_cnt_ ASC LIMIT 1".format( self.alias, self.alias, self.parent.__genSQL__(), where, self.alias, n ), title="Computing the mode.", method="fetchall", ) top = None if not (result) else result[0][0] if not (dropna): n = "" if (n == 1) else str(int(n)) if isinstance(top, decimal.Decimal): top = float(top) self.parent.__update_catalog__( {"index": ["top{}".format(n)], self.alias: [top]} ) return top # ---# def mul(self, x: float): """ --------------------------------------------------------------------------- Multiplies the vColumn by the input element. Parameters ---------- x: float Input number. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].apply : Applies a function to the input vColumn. """ check_types([("x", x, [int, float])]) return self.apply(func="{} * ({})".format("{}", x)) # ---# def nlargest(self, n: int = 10): """ --------------------------------------------------------------------------- Returns the n largest vColumn elements. Parameters ---------- n: int, optional Offset. Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. See Also -------- vDataFrame[].nsmallest : Returns the n smallest elements in the vColumn. """ check_types([("n", n, [int, float])]) query = "SELECT * FROM {} WHERE {} IS NOT NULL ORDER BY {} DESC LIMIT {}".format( self.parent.__genSQL__(), self.alias, self.alias, n ) title = "Reads {} {} largest elements.".format(self.alias, n) return to_tablesample(query, title=title) # ---# def normalize( self, method: str = "zscore", by: list = [], return_trans: bool = False ): """ --------------------------------------------------------------------------- Normalizes the input vColumns using the input method. Parameters ---------- method: str, optional Method to use to normalize. zscore : Normalization using the Z-Score (avg and std). (x - avg) / std robust_zscore : Normalization using the Robust Z-Score (median and mad). (x - median) / (1.4826 * mad) minmax : Normalization using the MinMax (min and max). (x - min) / (max - min) by: list, optional vColumns used in the partition. return_trans: bool, optimal If set to True, the method will return the transformation used instead of the parent vDataFrame. This parameter is used for testing purpose. Returns ------- vDataFrame self.parent See Also -------- vDataFrame.outliers : Computes the vDataFrame Global Outliers. """ if isinstance(by, str): by = [by] check_types( [ ("method", method, ["zscore", "robust_zscore", "minmax"]), ("by", by, [list]), ("return_trans", return_trans, [bool]), ] ) method = method.lower() self.parent.are_namecols_in(by) by = self.parent.format_colnames(by) nullifzero, n = 1, len(by) if self.isbool(): warning_message = "Normalize doesn't work on booleans".format(self.alias) warnings.warn(warning_message, Warning) elif self.isnum(): if method == "zscore": if n == 0: nullifzero = 0 avg, stddev = self.aggregate(["avg", "std"]).values[self.alias] if stddev == 0: warning_message = "Can not normalize {} using a Z-Score - The Standard Deviation is null !".format( self.alias ) warnings.warn(warning_message, Warning) return self elif (n == 1) and (self.parent[by[0]].nunique() < 50): try: result = executeSQL( "SELECT {}, AVG({}), STDDEV({}) FROM {} GROUP BY {}".format( by[0], self.alias, self.alias, self.parent.__genSQL__(), by[0], ), title="Computing the different categories to normalize.", method="fetchall", ) for i in range(len(result)): if result[i][2] == None: pass elif math.isnan(result[i][2]): result[i][2] = None avg = "DECODE({}, {}, NULL)".format( by[0], ", ".join( [ "{}, {}".format( "'{}'".format(str(elem[0]).replace("'", "''")) if elem[0] != None else "NULL", elem[1] if elem[1] != None else "NULL", ) for elem in result if elem[1] != None ] ), ) stddev = "DECODE({}, {}, NULL)".format( by[0], ", ".join( [ "{}, {}".format( "'{}'".format(str(elem[0]).replace("'", "''")) if elem[0] != None else "NULL", elem[2] if elem[2] != None else "NULL", ) for elem in result if elem[2] != None ] ), ) executeSQL( "SELECT {}, {} FROM {} LIMIT 1".format( avg, stddev, self.parent.__genSQL__() ), print_time_sql=False, ) except: avg, stddev = ( "AVG({}) OVER (PARTITION BY {})".format( self.alias, ", ".join(by) ), "STDDEV({}) OVER (PARTITION BY {})".format( self.alias, ", ".join(by) ), ) else: avg, stddev = ( "AVG({}) OVER (PARTITION BY {})".format( self.alias, ", ".join(by) ), "STDDEV({}) OVER (PARTITION BY {})".format( self.alias, ", ".join(by) ), ) if return_trans: return "({} - {}) / {}({})".format( self.alias, avg, "NULLIFZERO" if (nullifzero) else "", stddev ) else: final_transformation = [ ( "({} - {}) / {}({})".format( "{}", avg, "NULLIFZERO" if (nullifzero) else "", stddev ), "float", "float", ) ] elif method == "robust_zscore": if n > 0: warning_message = "The method 'robust_zscore' is available only if the parameter 'by' is empty\nIf you want to normalize by grouping by elements, please use a method in zscore|minmax" warnings.warn(warning_message, Warning) return self mad, med = self.aggregate(["mad", "approx_median"]).values[self.alias] mad *= 1.4826 if mad != 0: if return_trans: return "({} - {}) / ({})".format(self.alias, med, mad) else: final_transformation = [ ( "({} - {}) / ({})".format("{}", med, mad), "float", "float", ) ] else: warning_message = "Can not normalize {} using a Robust Z-Score - The MAD is null !".format( self.alias ) warnings.warn(warning_message, Warning) return self elif method == "minmax": if n == 0: nullifzero = 0 cmin, cmax = self.aggregate(["min", "max"]).values[self.alias] if cmax - cmin == 0: warning_message = "Can not normalize {} using the MIN and the MAX. MAX = MIN !".format( self.alias ) warnings.warn(warning_message, Warning) return self elif n == 1: try: result = executeSQL( "SELECT {}, MIN({}), MAX({}) FROM {} GROUP BY {}".format( by[0], self.alias, self.alias, self.parent.__genSQL__(), by[0], ), title="Computing the different categories {} to normalize.".format( by[0] ), method="fetchall", ) cmin = "DECODE({}, {}, NULL)".format( by[0], ", ".join( [ "{}, {}".format( "'{}'".format(str(elem[0]).replace("'", "''")) if elem[0] != None else "NULL", elem[1] if elem[1] != None else "NULL", ) for elem in result if elem[1] != None ] ), ) cmax = "DECODE({}, {}, NULL)".format( by[0], ", ".join( [ "{}, {}".format( "'{}'".format(str(elem[0]).replace("'", "''")) if elem[0] != None else "NULL", elem[2] if elem[2] != None else "NULL", ) for elem in result if elem[2] != None ] ), ) executeSQL( "SELECT {}, {} FROM {} LIMIT 1".format( cmax, cmin, self.parent.__genSQL__() ), print_time_sql=False, ) except: cmax, cmin = ( "MAX({}) OVER (PARTITION BY {})".format( self.alias, ", ".join(by) ), "MIN({}) OVER (PARTITION BY {})".format( self.alias, ", ".join(by) ), ) else: cmax, cmin = ( "MAX({}) OVER (PARTITION BY {})".format( self.alias, ", ".join(by) ), "MIN({}) OVER (PARTITION BY {})".format( self.alias, ", ".join(by) ), ) if return_trans: return "({} - {}) / {}({} - {})".format( self.alias, cmin, "NULLIFZERO" if (nullifzero) else "", cmax, cmin, ) else: final_transformation = [ ( "({} - {}) / {}({} - {})".format( "{}", cmin, "NULLIFZERO" if (nullifzero) else "", cmax, cmin, ), "float", "float", ) ] if method != "robust_zscore": max_floor = 0 for elem in by: if len(self.parent[elem].transformations) > max_floor: max_floor = len(self.parent[elem].transformations) max_floor -= len(self.transformations) for k in range(max_floor): self.transformations += [("{}", self.ctype(), self.category())] self.transformations += final_transformation sauv = {} for elem in self.catalog: sauv[elem] = self.catalog[elem] self.parent.__update_catalog__(erase=True, columns=[self.alias]) try: if "count" in sauv: self.catalog["count"] = sauv["count"] self.catalog["percent"] = ( 100 * sauv["count"] / self.parent.shape()[0] ) for elem in sauv: if "top" in elem: if "percent" in elem: self.catalog[elem] = sauv[elem] elif elem == None: self.catalog[elem] = None elif method == "robust_zscore": self.catalog[elem] = (sauv[elem] - sauv["approx_50%"]) / ( 1.4826 * sauv["mad"] ) elif method == "zscore": self.catalog[elem] = (sauv[elem] - sauv["mean"]) / sauv[ "std" ] elif method == "minmax": self.catalog[elem] = (sauv[elem] - sauv["min"]) / ( sauv["max"] - sauv["min"] ) except: pass if method == "robust_zscore": self.catalog["median"] = 0 self.catalog["mad"] = 1 / 1.4826 elif method == "zscore": self.catalog["mean"] = 0 self.catalog["std"] = 1 elif method == "minmax": self.catalog["min"] = 0 self.catalog["max"] = 1 self.parent.__add_to_history__( "[Normalize]: The vColumn '{}' was normalized with the method '{}'.".format( self.alias, method ) ) else: raise TypeError("The vColumn must be numerical for Normalization") return self.parent # ---# def nsmallest(self, n: int = 10): """ --------------------------------------------------------------------------- Returns the n smallest elements in the vColumn. Parameters ---------- n: int, optional Offset. Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. See Also -------- vDataFrame[].nlargest : Returns the n largest vColumn elements. """ check_types([("n", n, [int, float])]) query = "SELECT * FROM {} WHERE {} IS NOT NULL ORDER BY {} ASC LIMIT {}".format( self.parent.__genSQL__(), self.alias, self.alias, n ) title = "Reads {} {} smallest elements.".format(n, self.alias) return to_tablesample(query, title=title) # ---# def numh(self, method: str = "auto"): """ --------------------------------------------------------------------------- Computes the optimal vColumn bar width. Parameters ---------- method: str, optional Method to use to compute the optimal h. auto : Combination of Freedman Diaconis and Sturges. freedman_diaconis : Freedman Diaconis [2 * IQR / n ** (1 / 3)] sturges : Sturges [CEIL(log2(n)) + 1] Returns ------- float optimal bar width. """ check_types( [("method", method, ["sturges", "freedman_diaconis", "fd", "auto"])] ) method = method.lower() if method == "auto": pre_comp = self.parent.__get_catalog_value__(self.alias, "numh") if pre_comp != "VERTICAPY_NOT_PRECOMPUTED": return pre_comp assert self.isnum() or self.isdate(), ParameterError( "numh is only available on type numeric|date" ) if self.isnum(): result = ( self.parent.describe( method="numerical", columns=[self.alias], unique=False ) .transpose() .values[self.alias] ) count, vColumn_min, vColumn_025, vColumn_075, vColumn_max = ( result[0], result[3], result[4], result[6], result[7], ) elif self.isdate(): min_date = self.min() table = "(SELECT DATEDIFF('second', '{}'::timestamp, {}) AS {} FROM {}) VERTICAPY_OPTIMAL_H_TABLE".format( min_date, self.alias, self.alias, self.parent.__genSQL__() ) query = "SELECT COUNT({}) AS NAs, MIN({}) AS min, APPROXIMATE_PERCENTILE({} USING PARAMETERS percentile = 0.25) AS Q1, APPROXIMATE_PERCENTILE({} USING PARAMETERS percentile = 0.75) AS Q3, MAX({}) AS max FROM {}".format( self.alias, self.alias, self.alias, self.alias, self.alias, table ) result = executeSQL( query, title="Different aggregations to compute the optimal h.", method="fetchrow", ) count, vColumn_min, vColumn_025, vColumn_075, vColumn_max = result sturges = max( float(vColumn_max - vColumn_min) / int(math.floor(math.log(count, 2) + 2)), 1e-99, ) fd = max(2.0 * (vColumn_075 - vColumn_025) / (count) ** (1.0 / 3.0), 1e-99) if method.lower() == "sturges": best_h = sturges elif method.lower() in ("freedman_diaconis", "fd"): best_h = fd else: best_h = max(sturges, fd) self.parent.__update_catalog__({"index": ["numh"], self.alias: [best_h]}) if self.category() == "int": best_h = max(math.floor(best_h), 1) return best_h # ---# def nunique(self, approx: bool = True): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'unique' (cardinality). Parameters ---------- approx: bool, optional If set to True, the approximate cardinality is returned. By setting this parameter to False, the function's performance can drastically decrease. Returns ------- int vColumn cardinality (or approximate cardinality). See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ check_types([("approx", approx, [bool])]) if approx: return self.aggregate(func=["approx_unique"]).values[self.alias][0] else: return self.aggregate(func=["unique"]).values[self.alias][0] # ---# def pie( self, method: str = "density", of: str = "", max_cardinality: int = 6, h: float = 0, pie_type: str = "auto", ax=None, **style_kwds, ): """ --------------------------------------------------------------------------- Draws the pie chart of the vColumn based on an aggregation. Parameters ---------- method: str, optional The method to use to aggregate the data. count : Number of elements. density : Percentage of the distribution. mean : Average of the vColumn 'of'. min : Minimum of the vColumn 'of'. max : Maximum of the vColumn 'of'. sum : Sum of the vColumn 'of'. q% : q Quantile of the vColumn 'of' (ex: 50% to get the median). It can also be a cutomized aggregation (ex: AVG(column1) + 5). of: str, optional The vColumn to use to compute the aggregation. max_cardinality: int, optional Maximum number of the vColumn distinct elements to be used as categorical (No h will be picked or computed) h: float, optional Interval width of the bar. If empty, an optimized h will be computed. pie_type: str, optional The type of pie chart. auto : Regular pie chart. donut : Donut chart. rose : Rose chart. It can also be a cutomized aggregation (ex: AVG(column1) + 5). ax: Matplotlib axes object, optional The axes to plot on. **style_kwds Any optional parameter to pass to the Matplotlib functions. Returns ------- ax Matplotlib axes object See Also -------- vDataFrame.donut : Draws the donut chart of the vColumn based on an aggregation. """ if isinstance(pie_type, str): pie_type = pie_type.lower() check_types( [ ("method", method, [str]), ("of", of, [str]), ("max_cardinality", max_cardinality, [int, float]), ("h", h, [int, float]), ("pie_type", pie_type, ["auto", "donut", "rose"]), ] ) donut = True if pie_type == "donut" else False rose = True if pie_type == "rose" else False if of: self.parent.are_namecols_in(of) of = self.parent.format_colnames(of) from verticapy.plot import pie return pie( self, method, of, max_cardinality, h, donut, rose, ax=None, **style_kwds, ) # ---# def plot( self, ts: str, by: str = "", start_date: Union[str, datetime.datetime, datetime.date] = "", end_date: Union[str, datetime.datetime, datetime.date] = "", area: bool = False, step: bool = False, ax=None, **style_kwds, ): """ --------------------------------------------------------------------------- Draws the Time Series of the vColumn. Parameters ---------- ts: str TS (Time Series) vColumn to use to order the data. The vColumn type must be date like (date, datetime, timestamp...) or numerical. by: str, optional vColumn to use to partition the TS. start_date: str / date, optional Input Start Date. For example, time = '03-11-1993' will filter the data when 'ts' is lesser than November 1993 the 3rd. end_date: str / date, optional Input End Date. For example, time = '03-11-1993' will filter the data when 'ts' is greater than November 1993 the 3rd. area: bool, optional If set to True, draw an Area Plot. step: bool, optional If set to True, draw a Step Plot. ax: Matplotlib axes object, optional The axes to plot on. **style_kwds Any optional parameter to pass to the Matplotlib functions. Returns ------- ax Matplotlib axes object See Also -------- vDataFrame.plot : Draws the time series. """ check_types( [ ("ts", ts, [str]), ("by", by, [str]), ("start_date", start_date, [str, datetime.datetime, datetime.date]), ("end_date", end_date, [str, datetime.datetime, datetime.date]), ("area", area, [bool]), ("step", step, [bool]), ] ) self.parent.are_namecols_in(ts) ts = self.parent.format_colnames(ts) if by: self.parent.are_namecols_in(by) by = self.parent.format_colnames(by) from verticapy.plot import ts_plot return ts_plot( self, ts, by, start_date, end_date, area, step, ax=ax, **style_kwds, ) # ---# def product(self): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'product'. Returns ------- float product See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.aggregate(func=["prod"]).values[self.alias][0] prod = product # ---# def quantile(self, x: float, approx: bool = True): """ --------------------------------------------------------------------------- Aggregates the vColumn using an input 'quantile'. Parameters ---------- x: float A float between 0 and 1 that represents the quantile. For example: 0.25 represents Q1. approx: bool, optional If set to True, the approximate quantile is returned. By setting this parameter to False, the function's performance can drastically decrease. Returns ------- float quantile (or approximate quantile). See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ check_types([("x", x, [int, float], ("approx", approx, [bool]))]) prefix = "approx_" if approx else "" return self.aggregate(func=[prefix + "{}%".format(x * 100)]).values[self.alias][ 0 ] # ---# def range_plot( self, ts: str, q: tuple = (0.25, 0.75), start_date: Union[str, datetime.datetime, datetime.date] = "", end_date: Union[str, datetime.datetime, datetime.date] = "", plot_median: bool = False, ax=None, **style_kwds, ): """ --------------------------------------------------------------------------- Draws the range plot of the vColumn. The aggregations used are the median and two input quantiles. Parameters ---------- ts: str TS (Time Series) vColumn to use to order the data. The vColumn type must be date like (date, datetime, timestamp...) or numerical. q: tuple, optional Tuple including the 2 quantiles used to draw the Plot. start_date: str / date, optional Input Start Date. For example, time = '03-11-1993' will filter the data when 'ts' is lesser than November 1993 the 3rd. end_date: str / date, optional Input End Date. For example, time = '03-11-1993' will filter the data when 'ts' is greater than November 1993 the 3rd. plot_median: bool, optional If set to True, the Median will be drawn. ax: Matplotlib axes object, optional The axes to plot on. **style_kwds Any optional parameter to pass to the Matplotlib functions. Returns ------- ax Matplotlib axes object See Also -------- vDataFrame.plot : Draws the time series. """ check_types( [ ("ts", ts, [str]), ("q", q, [tuple]), ( "start_date", start_date, [str, datetime.datetime, datetime.date, int, float], ), ( "end_date", end_date, [str, datetime.datetime, datetime.date, int, float], ), ("plot_median", plot_median, [bool]), ] ) self.parent.are_namecols_in(ts) ts = self.parent.format_colnames(ts) from verticapy.plot import range_curve_vdf return range_curve_vdf( self, ts, q, start_date, end_date, plot_median, ax=ax, **style_kwds, ) # ---# def rename(self, new_name: str): """ --------------------------------------------------------------------------- Renames the vColumn by dropping the current vColumn and creating a copy with the specified name. \u26A0 Warning : SQL code generation will be slower if the vDataFrame has been transformed multiple times, so it's better practice to use this method when first preparing your data. Parameters ---------- new_name: str The new vColumn alias. Returns ------- vDataFrame self.parent See Also -------- vDataFrame.add_copy : Creates a copy of the vColumn. """ check_types([("new_name", new_name, [str])]) old_name = quote_ident(self.alias) new_name = new_name.replace('"', "") assert not (self.parent.is_colname_in(new_name)), NameError( f"A vColumn has already the alias {new_name}.\nBy changing the parameter 'new_name', you'll be able to solve this issue." ) self.add_copy(new_name) parent = self.drop(add_history=False) parent.__add_to_history__( "[Rename]: The vColumn {} was renamed '{}'.".format(old_name, new_name) ) return parent # ---# def round(self, n: int): """ --------------------------------------------------------------------------- Rounds the vColumn by keeping only the input number of digits after the comma. Parameters ---------- n: int Number of digits to keep after the comma. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].apply : Applies a function to the input vColumn. """ check_types([("n", n, [int, float])]) return self.apply(func="ROUND({}, {})".format("{}", n)) # ---# def sem(self): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'sem' (standard error of mean). Returns ------- float sem See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.aggregate(["sem"]).values[self.alias][0] # ---# def skewness(self): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'skewness'. Returns ------- float skewness See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.aggregate(["skewness"]).values[self.alias][0] skew = skewness # ---# def slice(self, length: int, unit: str = "second", start: bool = True): """ --------------------------------------------------------------------------- Slices and transforms the vColumn using a time series rule. Parameters ---------- length: int Slice size. unit: str, optional Slice size unit. For example, it can be 'minute' 'hour'... start: bool, optional If set to True, the record will be sliced using the floor of the slicing instead of the ceiling. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].date_part : Extracts a specific TS field from the vColumn. """ check_types( [ ("length", length, [int, float]), ("unit", unit, [str]), ("start", start, [bool]), ] ) start_or_end = "START" if (start) else "END" return self.apply( func="TIME_SLICE({}, {}, '{}', '{}')".format( "{}", length, unit.upper(), start_or_end ) ) # ---# def spider( self, by: str = "", method: str = "density", of: str = "", max_cardinality: Union[int, tuple] = (6, 6), h: Union[int, float, tuple] = (None, None), ax=None, **style_kwds, ): """ --------------------------------------------------------------------------- Draws the spider plot of the input vColumn based on an aggregation. Parameters ---------- by: str, optional vColumn to use to partition the data. method: str, optional The method to use to aggregate the data. count : Number of elements. density : Percentage of the distribution. mean : Average of the vColumn 'of'. min : Minimum of the vColumn 'of'. max : Maximum of the vColumn 'of'. sum : Sum of the vColumn 'of'. q% : q Quantile of the vColumn 'of' (ex: 50% to get the median). It can also be a cutomized aggregation (ex: AVG(column1) + 5). of: str, optional The vColumn to use to compute the aggregation. h: int/float/tuple, optional Interval width of the vColumns 1 and 2 bars. It is only valid if the vColumns are numerical. Optimized h will be computed if the parameter is empty or invalid. max_cardinality: int/tuple, optional Maximum number of distinct elements for vColumns 1 and 2 to be used as categorical (No h will be picked or computed) ax: Matplotlib axes object, optional The axes to plot on. **style_kwds Any optional parameter to pass to the Matplotlib functions. Returns ------- ax Matplotlib axes object See Also -------- vDataFrame.bar : Draws the Bar Chart of the input vColumns based on an aggregation. """ check_types( [ ("by", by, [str]), ("method", method, [str]), ("of", of, [str]), ("max_cardinality", max_cardinality, [list]), ("h", h, [list, float, int]), ] ) if by: self.parent.are_namecols_in(by) by = self.parent.format_colnames(by) columns = [self.alias, by] else: columns = [self.alias] if of: self.parent.are_namecols_in(of) of = self.parent.format_colnames(of) from verticapy.plot import spider as spider_plot return spider_plot( self.parent, columns, method, of, max_cardinality, h, ax=ax, **style_kwds, ) # ---# def std(self): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'std' (Standard Deviation). Returns ------- float std See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.aggregate(["stddev"]).values[self.alias][0] stddev = std # ---# def store_usage(self): """ --------------------------------------------------------------------------- Returns the vColumn expected store usage (unit: b). Returns ------- int vColumn expected store usage. See Also -------- vDataFrame.expected_store_usage : Returns the vDataFrame expected store usage. """ pre_comp = self.parent.__get_catalog_value__(self.alias, "store_usage") if pre_comp != "VERTICAPY_NOT_PRECOMPUTED": return pre_comp store_usage = executeSQL( "SELECT ZEROIFNULL(SUM(LENGTH({}::varchar))) FROM {}".format( bin_spatial_to_str(self.category(), self.alias), self.parent.__genSQL__(), ), title="Computing the Store Usage of the vColumn {}.".format(self.alias), method="fetchfirstelem", ) self.parent.__update_catalog__( {"index": ["store_usage"], self.alias: [store_usage]} ) return store_usage # ---# def str_contains(self, pat: str): """ --------------------------------------------------------------------------- Verifies if the regular expression is in each of the vColumn records. The vColumn will be transformed. Parameters ---------- pat: str Regular expression. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].str_count : Computes the number of matches for the regular expression in each record of the vColumn. vDataFrame[].extract : Extracts the regular expression in each record of the vColumn. vDataFrame[].str_replace : Replaces the regular expression matches in each of the vColumn records by an input value. vDataFrame[].str_slice : Slices the vColumn. """ check_types([("pat", pat, [str])]) return self.apply( func="REGEXP_COUNT({}, '{}') > 0".format("{}", pat.replace("'", "''")) ) # ---# def str_count(self, pat: str): """ --------------------------------------------------------------------------- Computes the number of matches for the regular expression in each record of the vColumn. The vColumn will be transformed. Parameters ---------- pat: str regular expression. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].str_contains : Verifies if the regular expression is in each of the vColumn records. vDataFrame[].extract : Extracts the regular expression in each record of the vColumn. vDataFrame[].str_replace : Replaces the regular expression matches in each of the vColumn records by an input value. vDataFrame[].str_slice : Slices the vColumn. """ check_types([("pat", pat, [str])]) return self.apply( func="REGEXP_COUNT({}, '{}')".format("{}", pat.replace("'", "''")) ) # ---# def str_extract(self, pat: str): """ --------------------------------------------------------------------------- Extracts the regular expression in each record of the vColumn. The vColumn will be transformed. Parameters ---------- pat: str regular expression. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].str_contains : Verifies if the regular expression is in each of the vColumn records. vDataFrame[].str_count : Computes the number of matches for the regular expression in each record of the vColumn. vDataFrame[].str_replace : Replaces the regular expression matches in each of the vColumn records by an input value. vDataFrame[].str_slice : Slices the vColumn. """ check_types([("pat", pat, [str])]) return self.apply( func="REGEXP_SUBSTR({}, '{}')".format("{}", pat.replace("'", "''")) ) # ---# def str_replace(self, to_replace: str, value: str = ""): """ --------------------------------------------------------------------------- Replaces the regular expression matches in each of the vColumn record by an input value. The vColumn will be transformed. Parameters ---------- to_replace: str Regular expression to replace. value: str, optional New value. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].str_contains : Verifies if the regular expression is in each of the vColumn records. vDataFrame[].str_count : Computes the number of matches for the regular expression in each record of the vColumn. vDataFrame[].extract : Extracts the regular expression in each record of the vColumn. vDataFrame[].str_slice : Slices the vColumn. """ check_types([("to_replace", to_replace, [str]), ("value", value, [str])]) return self.apply( func="REGEXP_REPLACE({}, '{}', '{}')".format( "{}", to_replace.replace("'", "''"), value.replace("'", "''") ) ) # ---# def str_slice(self, start: int, step: int): """ --------------------------------------------------------------------------- Slices the vColumn. The vColumn will be transformed. Parameters ---------- start: int Start of the slicing. step: int Size of the slicing. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].str_contains : Verifies if the regular expression is in each of the vColumn records. vDataFrame[].str_count : Computes the number of matches for the regular expression in each record of the vColumn. vDataFrame[].extract : Extracts the regular expression in each record of the vColumn. vDataFrame[].str_replace : Replaces the regular expression matches in each of the vColumn records by an input value. """ check_types([("start", start, [int, float]), ("step", step, [int, float])]) return self.apply(func="SUBSTR({}, {}, {})".format("{}", start, step)) # ---# def sub(self, x: float): """ --------------------------------------------------------------------------- Subtracts the input element from the vColumn. Parameters ---------- x: float If the vColumn type is date like (date, datetime ...), the parameter 'x' will represent the number of seconds, otherwise it will represent a number. Returns ------- vDataFrame self.parent See Also -------- vDataFrame[].apply : Applies a function to the input vColumn. """ check_types([("x", x, [int, float])]) if self.isdate(): return self.apply(func="TIMESTAMPADD(SECOND, -({}), {})".format(x, "{}")) else: return self.apply(func="{} - ({})".format("{}", x)) # ---# def sum(self): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'sum'. Returns ------- float sum See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.aggregate(["sum"]).values[self.alias][0] # ---# def tail(self, limit: int = 5): """ --------------------------------------------------------------------------- Returns the tail of the vColumn. Parameters ---------- limit: int, optional Number of elements to display. Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. See Also -------- vDataFrame[].head : Returns the head of the vColumn. """ return self.iloc(limit=limit, offset=-1) # ---# def topk(self, k: int = -1, dropna: bool = True): """ --------------------------------------------------------------------------- Returns the k most occurent elements and their distributions as percents. Parameters ---------- k: int, optional Number of most occurent elements to return. dropna: bool, optional If set to True, NULL values will not be considered during the computation. Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. See Also -------- vDataFrame[].describe : Computes the vColumn descriptive statistics. """ check_types([("k", k, [int, float]), ("dropna", dropna, [bool])]) topk = "" if (k < 1) else "LIMIT {}".format(k) dropna = " WHERE {} IS NOT NULL".format(self.alias) if (dropna) else "" query = "SELECT {} AS {}, COUNT(*) AS _verticapy_cnt_, 100 * COUNT(*) / {} AS percent FROM {}{} GROUP BY {} ORDER BY _verticapy_cnt_ DESC {}".format( bin_spatial_to_str(self.category(), self.alias), self.alias, self.parent.shape()[0], self.parent.__genSQL__(), dropna, self.alias, topk, ) result = executeSQL( query, title="Computing the top{} categories of {}.".format( k if k > 0 else "", self.alias ), method="fetchall", ) values = { "index": [item[0] for item in result], "count": [int(item[1]) for item in result], "percent": [float(round(item[2], 3)) for item in result], } return tablesample(values) # ---# def value_counts(self, k: int = 30): """ --------------------------------------------------------------------------- Returns the k most occurent elements, how often they occur, and other statistical information. Parameters ---------- k: int, optional Number of most occurent elements to return. Returns ------- tablesample An object containing the result. For more information, see utilities.tablesample. See Also -------- vDataFrame[].describe : Computes the vColumn descriptive statistics. """ return self.describe(method="categorical", max_cardinality=k) # ---# def var(self): """ --------------------------------------------------------------------------- Aggregates the vColumn using 'var' (Variance). Returns ------- float var See Also -------- vDataFrame.aggregate : Computes the vDataFrame input aggregations. """ return self.aggregate(["variance"]).values[self.alias][0] variance = var
1.890625
2
booktags/flaskapp/book/views.py
MagicSword/Booktags
0
2498
<reponame>MagicSword/Booktags #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ example.py ~~~~~~~~~ A simple command line application to run flask apps. :copyright: 2019 Miller :license: BSD-3-Clause """ # Known bugs that can't be fixed here: # - synopsis() cannot be prevented from clobbering existing # loaded modules. # - If the __file__ attribute on a module is a relative path and # the current directory is changed with os.chdir(), an incorrect # path will be displayed. from flask import render_template, redirect, request, url_for, flash,jsonify,current_app from flask_login import login_user, logout_user, login_required, current_user from . import book from flask_sqlalchemy import get_debug_queries from sqlalchemy.sql.expression import cast from datatables import ColumnDT, DataTables from .. import auth from .. import db from .forms import EditBookForm, HackmdMeta # from booktags.db.basemodels import Book from booktags.flaskapp.model.models import BookMain # --------------------------------------------------------- common routines @book.after_app_request def after_request(response): for query in get_debug_queries(): if query.duration >= current_app.config['PROJECT_SLOW_DB_QUERY_TIME']: current_app.logger.warning( 'Slow query: %s\nParameters: %s\nDuration: %fs\nContext: %s\n' % (query.statement, query.parameters, query.duration, query.context)) return response @book.route('/', methods=['GET', 'POST']) def index(): # books=BookMain.get_all_book() query = BookMain.query page = request.args.get('page', 1, type=int) pagination = query.order_by(cast(BookMain.id, db.Integer)).paginate( page, per_page=current_app.config['PROJECT_BOOKS_PER_PAGE'], error_out=False) books = pagination.items return render_template('book/index.html',books=books,pagination=pagination) # @book.route('/list/', methods=['GET', 'POST']) # def list_book(): # """ # # :param field: col name # :param order: asc or desc # :return: renew query # """ # books = BookMain.get_all_book() # return render_template('book/list_book.html',books=books) @book.route("/list") def list_book(): """List users with DataTables <= 1.10.x.""" return render_template('book/list_book.html') @book.route('/data', methods=['GET', 'POST']) def data(): """Return server side data.""" # defining columns # - explicitly cast date to string, so string searching the date # will search a date formatted equal to how it is presented # in the table columns = [ # ColumnDT(cast(BookMain.id, db.Integer)), ColumnDT(BookMain.id), ColumnDT(BookMain.isbn), ColumnDT(BookMain.title_short), ColumnDT(BookMain.title), ColumnDT(BookMain.catalogue), ColumnDT(BookMain.cutter), ColumnDT(BookMain.pub_year), ColumnDT(BookMain.copy_info) # ColumnDT(BookMain.get_link), # ColumnDT(BookMain.note), # ColumnDT(BookMain.reprint), # ColumnDT(BookMain.removed), # ColumnDT(BookMain.keepsite) ] # defining the initial query depending on your purpose query = db.session.query().select_from(BookMain) # GET parameters params = request.args.to_dict() # instantiating a DataTable for the query and table needed rowTable = DataTables(params, query, columns) # returns what is needed by DataTable return jsonify(rowTable.output_result()) @book.route('/get/<int:id>', methods=['GET', 'POST']) def get_book(): return f"Hello book index : {id}" @book.route('/post/', methods=['GET', 'POST']) def post_book(): """ post new book entry :return: """ book = BookMain.query.all() id = int(book[-1].id) + 1 print(f"id is : {id}") form = EditBookForm() if form.validate_on_submit(): book.id = form.id.data book.isbn = form.isbn.data book.title_short = form.title_short.data book.title = form.title.data book.catalogue = form.catalogue.data book.cutter = form.cutter.data book.pub_year = form.pub_year.data book.copy_info = form.copy_info.data book.get_link = form.get_link.data book.note = form.note.data book.reprint = form.reprint.data book.removed = form.removed.data book.keepsite = form.keepsite.data db.session.add(book) db.session.commit() flash('Your book data has been added.', 'success') return redirect(url_for('book.index')) form.id.data = id return render_template('book/edit_book.html', form=form) @book.route('/edit/<int:id>', methods=['GET', 'POST']) def edit_book(id): """ edit , put book data :param id: :return: """ form = EditBookForm() book = BookMain.query.filter_by(id=id).first_or_404() if form.validate_on_submit(): # book.id = form.id.data book.isbn = form.isbn.data book.title_short = form.title_short.data book.title = form.title.data book.catalogue = form.catalogue.data book.cutter = form.cutter.data book.pub_year = form.pub_year.data book.copy_info = form.copy_info.data book.get_link = form.get_link.data book.note = form.note.data book.reprint = form.reprint.data book.removed = form.removed.data book.keepsite = form.keepsite.data db.session.add(book) db.session.commit() flash('Your book data has been updated.', 'success') return redirect(url_for('book.index')) form.id.data = book.id form.isbn.data = book.isbn form.title_short.data = book.title_short form.title.data = book.title form.catalogue.data = book.catalogue form.cutter.data = book.cutter form.pub_year.data = book.pub_year form.copy_info.data = book.copy_info form.get_link.data = book.get_link form.note.data = book.note form.reprint.data = book.reprint form.removed.data = book.removed form.keepsite.data = book.keepsite return render_template('book/edit_book.html', form=form) @book.route('/del/<int:id>', methods=['GET', 'POST']) def del_book(id): return f"Hello book index: del {id}" @book.route('/hackmdmeta', methods=['GET', 'POST']) def hackmd_meta(): """ :return: """ from booktags.vendor.hackmd_meta import get_hackmdmeta form = HackmdMeta() if form.validate_on_submit(): booksn = str(form.booksn.data) # print(f"booksn is : {booksn}") temp = get_hackmdmeta(booksn) # print(temp) form.body.data = temp # flash('Your book data has been updated.', 'success') # return redirect(url_for('book.hackmd_meta')) return render_template('book/hackmd_meta.html',form=form) if __name__ == '__main__': pass
2.125
2
narwhallet/core/kws/http/enumerations/mediatypes.py
Snider/narwhallet
3
2499
from enum import Enum class content_type(Enum): # https://www.iana.org/assignments/media-types/media-types.xhtml css = 'text/css' gif = 'image/gif' htm = 'text/html' html = 'text/html' ico = 'image/bmp' jpg = 'image/jpeg' jpeg = 'image/jpeg' js = 'application/javascript' png = 'image/png' txt = 'text/plain; charset=us-ascii' json = 'application/json' svg = 'image/svg+xml'
2.6875
3